Supporting Information for **"Online molecular characterisation of organic aerosols in an atmospheric chamber using Extractive Electrospray Ionisation Mass Spectrometry"** by P.J. Gallimore et al.

1

Experimental setup

The experimental apparatus used for production and classification of standard aerosols (section 2.1) and for the simulation chamber experiments (section 2.2) are shown below.

Figure S1: Aerosol flow setup used for producing, classifying and measuring the chemical composition of model aerosols to quantify the extraction process.

Figure S2: Operational details for the Cambridge Atmospheric Simulation Chamber (CASC), adapted from Gallimore et al., (2017b). The 5.4 m³ chamber enables study of secondary organic aerosol formation and aging processes in the laboratory; water vapour, seed aerosols, atmospheric oxidants and volatile organic compounds can be introduced under controlled conditions. A variety of instrumentation is attached to characterise the resulting chemistry, including a recently-developed extractive electrospray ionisation mass spectrometer (EESI-MS) to detect organic aerosol components.

Flow conditions in the EESI batch sampling system

This section considers the flow and mixing characteristics in the 10 L sampling reservoir (dimensions ~ 92 × 12 cm) described in section 2.3. The 1 L min⁻¹ "pushing flow" was introduced under laminar flow conditions (Reynolds number ~12). The total introduction of air was 3.5 L over

5 3.5 minutes, corresponding to a nominal distance of 32 cm along the flow tube. The extent of additional mixing beyond this volume displacement will be determined by molecular diffusion, described by Equation S1:

$$\tau = \frac{l^2}{D} \quad (S1)$$

10 Where τ is the diffusion time, *l* is the diffusion length and *D* is the diffusion coefficient of air. Diffusion of accumulation mode particles will be negligible by comparison. For an introduction time of 3.5 minutes and diffusion coefficient 0.2 cm² s⁻¹, the diffusion length is 6.5 cm. Therefore only the first ~40 % of the tube length, furthest from the MS sampling, will be influenced by zero air introduction.

15

The EESI-MS signal is also relatively consistent across each 3.5 minute sampling period (Figure 3), confirming that this cycling does not significantly affect the sampled particle composition.

Extraction efficiency of tartaric acid in mixed organic-inorganic aerosols

Figure S3: Tartaric acid MS signal, normalised by the tartaric acid aerosol mass, as a function of the ammonium sulfate aerosol mass. The blue solid and dotted lines represent represents the mean and
standard deviation respectively of measurements on single-component tartaric acid aerosols (x_{TA} = 1).

Figure S4: Mass spectra obtained during the dark ozonolysis of α-pinene under "medium" conditions (Table 1) using three online MS techniques: (a) EESI-MS in positive ionisation mode, (b) EESI-MS in negative ionisation mode and (c) PTR-MS using H₃O⁺ as a chemical ionisation reagent. The ions have been assigned to molecular formulae and are plotted as neutral masses to aid comparison. Only PTR-MS ions corresponding to assigned α-pinene ozonolysis products are shown. Taken together, the three techniques enable online detection of a wide variety of organic compound classes and volatilities, from hydrocarbons such as α-pinene to highly oxidised carboxylic acids.

10

Figure S5: Mass spectra obtained during the dark ozonolysis of α-pinene under "medium" conditions (Table 1) using (a) online EESI-MS in negative ionisation mode and (b) nanoESI-MS of SOA filter
extracts. The online MS was acquired and the filter collected 1 hour after the start of ozonolysis in the chamber. The spectra are very similar in the monomer region (< 250 Da), but the oligomers detected are more numerous and possess slightly higher molecular weights in the nanoESI(–) spectrum.

Comparison between measured MS intensities and MCM concentrations for oxidation products

Figure S6: α-pinene loss and SOA production during chamber experiments with varying [α-pinene]₀,
showing only the medium and low concentration conditions. Dashed lines: measured [α-pinene] from PTR-MS; Solid lines: MCM simulated [α-pinene]; Points: measured aerosol mass from SMPS.

7

Figure S7: Comparison between EESI-MS intensities (left y-axis) and MCM simulated concentrations (right y-axis) for (a) pinonic acid, (b) pinic acid and (c) OH-pinonic acid, showing only the medium and
low concentration conditions. The scales of the y-axes from Figure 7 have been divided by 4, so that the relative scaling between the *m/z* and MCM axes is consistent with Figure 7.

Figure S8: MS intensity of pinonic, pinic and OH-pinonic acids as a function of predicted MCM concentrations. The data shown are for the measurements approximately 1 hour after the start of ozonolysis in Figure 7, where the rate of change of concentration slows and hence simulated and measured concentrations represent approximate final yields.