
Response to comments on “Potential of European 14CO2 observation 

network to estimate the fossil fuel CO2 emissions via atmospheric 

inversions” by Y. Wang et al. 

 

We thank the three referees for their very detailed reviews. Their comments have 

allowed us to improve the manuscript by better emphasizing its strength. In this final 

response, we keep all the answers to the reviewers in previously response, but also 

add changes in the revised manuscript, highlighted with dark red. All the pages and 

line numbers correspond to the original versions of text. 

 

General Comments 

This paper lays out the potential for current and future 14CO2 observations to improve 

estimates of fossil fuel emissions in Europe. It uses two types of Observing System 

Simulation Experiments (OSSEs) based on either the theoretical uncertainty reduction 

for a well-tuned case or a more realistic case where prior uncertainties do not match 

differences between prior and truth. It also uses several versions of an observing 

network ranging from the current network to a saturated case where every grid cell in 

the target domain is sampled. Results are not very surprising with the current network 

offering useful information at the conjunction of dense networks and high emissions 

(and concomitant uncertainties) with the case improving as networks become more 

dense. Results are, however, sensitive to the proper tuning of prior covariances; a 

salutary result the authors are right to emphasise. The paper addresses an important 

problem with reasonable if not state-of-the-art tools, is clearly written and within 

scope.  

Response:  

We would like to thank the reviewer for the valuable comments and suggestions 

for improving our manuscript. Following the reviewer’s comments, we will carefully 

revise our manuscript. Most of the concerns about the observation and aggregation 

errors raised by the reviewer were analyzed (at least partly) in Wang et al. (2017) 

which is cited in our manuscript. We will better remind the conclusions from this 

paper in the manuscript. 

Please find below the point-to-point responses (in black) to all referee comments 

(in blue). All the pages and line numbers correspond to the original versions of text. 

 

References: 
Wang, Y., Broquet, G., Ciais, P., Chevallier, F., Vogel, F., Kadygrov, N., Wu, L., Yin, Y., Wang, R. and 

Tao, S.: Estimation of observation errors for large-scale atmospheric inversion of CO2 emissions 

from fossil fuel combustion, Tellus B: Chemical and Physical Meteorology, 69(1), 1325723, 

doi:10.1080/16000889.2017.1325723, 2017. 

 

I have two concerns about the paper, one general and one specific. the authors note 

the dependence of their results on the resolution of their transport model (3.75×2.5º) 



but I think should do more to evaluate this. It is unlikely that anyone would use this 

resolution for an inversion of fossil fuel emissions targeting Europe and the guidance 

on network density is hard to generalise.  

Response:  

In this paper, our analysis focuses on the inversion of European fossil fuel 

emissions. However, we have worked with a global and thus coarse resolution 

transport model in order to: (1) properly account for the uncertainties in emissions 

from other continents than Europe when inverting European emissions, and (2) 

because we developed a system which also allows us to study the inversion of the 

emissions in North America and Eastern Asia.  

  Sect 4.2 analyses whether the uncertainty in the emissions outside Europe has an 

impact on the inversion of the emissions in Europe. The results indicate that this 

impact is in fact weak, which was not obvious to prove before doing the study. 

Furthermore, studies including some of the sources of uncertainties that have been 

ignored here could reveal, e.g. that uncertainties in the 14CO2 fluxes from oceans and 

land ecosystems outside Europe have a strong impact on the inversion of the 

emissions in Europe. A cautious account for such uncertainties could require the use 

of a global inverse modeling system, or of the coupling between a European scale and 

global scale inverse modeling systems. At our stage of investigation in this study, we 

thus think that the use of a global inversion system is appropriate.  

The spatial resolution of LMDZ is typical for global transport models and 

inversion studies (Peylin et al., 2013). For example, the Transport Model 3 (TM3, 

5º×4º) used for the Jena CarbonScope (Rödenbeck et al., 2006), TM5 (3º×2º without 

nested version) used for CarbonTracker (Peters et al., 2007), Model of Atmospheric 

Transport and Chemistry (MATCH, 5.6º×2.8º) and the CSIRO Conformal-Cubic 

Atmospheric Model (CCAM, about 220 km) used by Rayner et al. (2008), have 

similar spatial resolutions as LMDZv4 used here. Using a much higher resolution 

transport model, e.g. 1º×1º, for global simulations is computationally expensive. 

In principle, we properly accounted for the representation error and its temporal 

and spatial correlations by using the detailed analysis of the aggregation and 

representation errors from Wang et al. (2017). In particular this should prevent from 

overestimating the effect of the spatial sampling of FFCO2 and thus performance of 

inversions when using dense networks. In a more general way, we think that our 

configuration of the observation errors support our confidence in the guidance that we 

derived from our relatively coarse resolution inversion system regarding the impact of 

the network density. In our conclusions, we were cautious regarding the dependence 

of the results to the transport spatial resolution.  

The analysis by Wang et al. (2017) provides some insights and understanding on 

the dependence of the results to the resolution of the transport model. However, 

running atmospheric inversions using higher spatial resolution model, which was out 

of the scope of this study, would have been the only way to assess the dependence of 

the results to the spatial resolution correctly, since it depends on a complex 

combination between the prior and observation error covariance structures together 

with the atmospheric transport.  



We highlight that the use of LMDZv4 aims at properly accounting for the 

uncertainties in FFCO2 emitted over other regions outside Europe, by adding in line 

112: “Although the results are presented only over Europe, we use a global inversion 

system and the global transport model LMDZv4 to ensure that uncertainties in FFCO2 

emitted over other regions of the globe are properly accounted for and to study their 

impact on the inversion of the FFCO2 emission in Europe. LMDZv4 has a 3.75°×2.5° 

longitude×latitude horizontal resolution and 19 layers in the vertical between the 

surface and the top of the atmosphere. This spatial resolution is comparable to that of 

transport models used in state-of-the-art global inversions (Peylin et al., 2013). We 

assess the potential…” 

We also better stress the dependence of our results to the spatial resolution of the 

transport model but the fact this study aimed at providing some understanding of the 

inversion behavior and sensitivity to the network density rather than to provide a 

precise quantification of the uncertainty reduction that would be obtained if working 

with real data by: 

- Adding in line 110: “… at ICOS-like stations. The study primarily aims at 

providing a typical quantification of the inversion performances and at 

understanding qualitatively how the inversion behaves depending on the level 

of FFCO2 emissions, on the knowledge on these emissions and on the 

network density. …”  

- Adding in line 521: “This study provides understanding of the inversion 

behavior and sensitivity to network density, but the precise quantification of 

the performance of the inversion is largely dependent on the spatial resolution 

of the transport model. Wang et al. (2017) showed that the representation 

error contributes the most to the observation errors, followed by the transport 

and measurement errors. …” 

 

The authors can help a little here since their group has access to higher resolution 

models. How much do the representation and aggregation errors change with 

increasing model resolution. Representation error probably decreases while 

aggregation error increases but how much? Increased resolution makes gaps in the 

network inevitable, what effect will they have? this could be tested by a couple of 

systematic thinning experiments on the saturated network case here. 

Response:  

Wang et al. (2017) used the meso-scale transport model CHIMERE run with a 

0.5° horizontal resolution to assess the statistics of the representation and aggregation 

errors when working with the global inversion system that is used in our study. These 

statistics are summarized in Sect. 2.2.2 (Page 11, lines 327-337) and Table S3 and 

Table S4 of this paper. 

The representation error will definitely decrease with increasing spatial resolution 

for the transport model. Our definition (which is also that of Wang et al., 2017) of the 

representation error encompasses the errors associated to the representation of the 

emissions using a constant value within one pixel and one time step of the transport 

model. Therefore, our definition of the aggregation errors limits them to the errors 



associated with the fixed spatial distribution of the emissions within a region and 

month at the transport model spatial and temporal resolution. With such definitions, 

the aggregations errors increase when the spatial resolution of the transport model 

becomes finer. But such an increase is balanced, in the representation error, by the 

decrease of the component associated to the emission representation. Overall, the 

dominant pattern of the variations of the observation errors associated with the 

increase of the transport model spatial resolution should be the decrease of the 

representation error associated with the representation of the concentrations. 

If following the specific framework and error definitions of Wang et al. 2017, a 

precise assessment of the change of the representation error in Europe as a function of 

the spatial resolution of the transport model would require series of European scale 

simulations with emission maps at different spatial resolutions (e.g. 1º , 1.5º , etc.) to 

feed the high-resolution transport model, and then require aggregating the output 

(concentrations) of the transport model at corresponding spatial resolutions (e.g. 1º , 

1.5º , etc.). It would have been feasible but it was out of the focus of this previous 

paper. It would now be out of the scope of our paper to resume such computations, 

especially since properly assessing the impact of these changes of representation 

errors in the inversion results, would require conducting inversions with different 

transport model configurations (topographies, wind fields etc. are needed at different 

resolutions) as stated in the previous answer to the reviewer’s comment.  

Regarding the “gaps in the network”, this phenomena is supposed to be well 

accounted for even when using the coarse resolution global transport model and when 

having two stations in each grid cell of this model thanks to a proper account for the 

observation errors. Representation errors indicate to the system that a station does not 

have a full coverage of its corresponding grid cell and so that it does not see the same 

information as the other station in the same grid cell (i.e. that there is already a gap 

between them even if using the coarse-resolution transport model of LMDZ). The 

physical separation of the stations in the grid of a higher spatial resolution system 

should not lead, in principle, to a strongly different behavior of the inversions, 

especially since the correlation length scale of the projection of the prior uncertainties 

in the concentration space is 700 km. In order to demonstrate it, we have conducted 

three additional experiments with different thinned networks: a) one with two sites 

located in the same grid cell of every two grid cells (113 sites in total); b) one site in 

each grid cell (117 sites in total); c) one site every two grid cell (57 sites in total). Fig. 

1 shows the URs for INV-E inversions (the behavior of the results from INV-N 

inversions are similar but not shown). Fig. 1a and 1b show quite similar distributions 

and values of UR scores. The comparison between the Fig. 4g in the original 

manuscript with Fig. 1a and 1b here, and between Fig. 1a and 1b with Fig. 1c, show 

the decrease of UR across Europe due to using less sites. Since NET233 and the three 

thinned networks are uniformly distributed across Europe, this decrease of URs due to 

the gap in the networks are also nearly uniform, which confirms that the general 

behavior of the inversion does not significantly change due to generating gaps 

between the observed grid cells. We do not plan to include these results in the 

manuscript because they are not qualitatively very different from the ones we already 



showed and would not really lead to new insights or conclusions on the inversion 

behavior. 

 

Figure 1: Average monthly uncertainty reductions in FFCO2 emissions from INV-E 

inversions over regions delineated by solid black lines, using three networks and 

2-week sampling for the inversions. The three networks are: a) two sites located in the 

same grid cell of every two grid cells (113 sites in total); b) one site in each grid cell 

(117 sites in total); c) one site every two grid cell (57 sites in total). The dots and 

triangles denote the locations of the observation sites where the gradients are 

extracted with respect to the JFJ reference site. Dots (triangles) correspond to “urban” 

(or “rural”) stations defined in Sect. 2.1 of the original manuscript. 

We add in line 521: “followed by the transport and measurement errors. 

Following the definition of the observation errors in Wang et al. (2017) and in this 

study, the representation and the transport error are highly dependent…” We highlight 

the fact that assessing properly the impact of the change these errors on the inversion 

results would require a large amount of work (which would be worth being 

investigated) by adding in line 527: “… to improve the results from atmospheric 

inversion of FFCO2 emissions at regional scale. A proper quantification of the change 

of representation and transport error as a function of spatial resolution, and of the 

impact of this change on the performance of the inversion system would require a 

series of transport models and inversions at varying spatial resolution which are out of 

the scope of this study but which would be worth being investigated in the future.”.  

We also add cautious discussions on this general topic raised by the reviewer in 

the discussion section by: 

- Rewriting the paragraph from lines 93-107: “In this study, we study the 

potential of an atmospheric inversion system to quantify FFCO2 emissions at 

regional scales (i.e. the size of a medium-sized country in Europe like France 

or Germany) over the European continent based on continental-scale 

networks of atmospheric CO2 and 14CO2 measurements. Special attention is 

paid to the representation and aggregation errors induced by the use of a 

coarse grid transport model. Wang et al. (2017) derived the statistics of these 

errors for the inversion system that we apply here, which is based on the 

Laboratoire de Météorologie Dynamique LMDZv4 global transport model 

(Hourdin et al., 2006) and our study strongly relies on their results. They 

highlighted that both the representation and aggregation errors have large 

magnitudes, and could thus strongly reduce the ability of the inversion to 



filter the information on the uncertainties in regional FFCO2 emissions. They 

also stressed the fact that the spatial scales of the correlations in the 

representation and aggregation errors are smaller than that of the projection in 

the atmospheric observation space of the typical uncertainties in the prior 

estimates of regional emissions (called “prior FFCO2 errors” hereafter). More 

precisely, with their modelling configuration they obtained values smaller 

than 200 km and larger than 700 km respectively for these spatial scales. 

Therefore, if the observation networks are dense enough to provide 

information at finer spatial scale (typically with distances from a given station 

to the closest ones being systematically smaller than 700 km), the impact of 

aggregation and representation errors on the inversion of the regional budgets 

of FFCO2 emissions could be small (Wang et al. 2017). In this study, we 

account for the aggregation and representation errors using their detailed and 

quantitative characterization and check whether using dense networks could 

overcome the limitations brought by coarse resolution transport models and 

by the uncertainties in the distribution of the emissions at high resolution 

when retrieving regional emission budgets. Using the error estimates from 

Wang et al. (2017) ensures that our inverse modelling system does not 

overestimate the potential of measurement networks that are dense compared 

to our coarse transport model resolution but whose distances between the sites 

are larger than the spatial scales of local atmospheric signals from the 

anthropogenic emissions.” 

- Adding in line 151: “… assumed to be one urban and one rural distant by 

more than 200 km in order to combine data for the structures of representation 

errors are different (i.e. which have a different view in terms of the scale of 

FFCO2 emissions). Any of the transport model pixels provides such locations 

since having areas of nearly 105 km2 (Wang et al. 2017).” 

- Adding in the Sect. 4.2, line 520: “… 2) the observation errors bear complex 

temporal and spatial correlations which are close to the prior FFCO2 errors 

(Wang et al., 2017). Such a result illustrates the need for using a suitable 

observation error characterization (here based on the results from Wang et al., 

2017) to prevent the stations having a full coverage of information on the 

emissions in the model framework shown here even when the observation 

network is as dense as NET233. A proper account for the observation errors 

and their temporal and spatial correlations avoid overestimating the potential 

of the atmospheric inversion in OSSES when using a coarse resolution 

transport model.” 

 

My other concern is for this saturated case. As I understand it, each grid cell is 

oversampled with two measurements. If this is the case and the transport Jacobians for 

the two measurements are the same then I think the two measurements can be 

combined into a single measurement by summing their information content. There 

should also be strong correlation between the two measurements in the same grid cell, 

accounting for large-scale errors in the transport model. In particular, I think that the 



relationship between the aggregation and representation errors for the two types of 

site is complex, interesting and perhaps important. It is quite possible that using both 

types of site reduces the sampling inhomogeneity necessary for aggregation errors 

(Trampert and Snieder, 1996; Kaminski et al., 2001). 

Response:  

 Yes, in this case, each grid cell is sampled by two measurements at each sampling 

time, and the transport Jacobians for the two measurements are the same. Our 

modeling of R (based on the statistical estimates by Wang et al., 2017) is made such 

that there are full correlations between the transport errors and between the 

aggregation errors in the two measurements within the same grid cell. However, Wang 

et al. (2017) showed that the spatial correlation of the representation errors is less than 

100 km, while the typical distance between the stations in NET233 network (with two 

sites per 3.75°×2.5° grid cell) is about 200 km. Therefore we ignored the spatial 

correlation between the representation errors in the two measurements within the 

same grid cell. Wang et al. (2017) also diagnosed that the spatial correlation between 

representation errors for urban and rural sites is even smaller than the spatial 

correlation between two rural or urban sites so that it is also negligible. In addition, 

their analysis does not reveal any correlation between representation and aggregation 

errors (if following their definition of these types of errors as discussed above). Our 

configuration of the observation error matrix in this study exactly followed these 

indications. 

Mathematically speaking the two measurements in each grid cell could be 

combined into a single measurement, but this would require the derivation of a 

complex observation error covariance matrix for the “combined” measurements, 

accounting for all the components of the observation error for individual data 

(measurement, transport, representation and aggregation errors) with varying standard 

deviations (depending on the location of the stations for the computation of transport 

error and on the urban or rural type of the station for the representation error) and 

their respective temporal and spatial correlations. In this context, such a combination 

would not really simplify the representation and understanding of the inversion 

problem of the data and of their observation errors.  

We rewrite the paragraph in lines 323-337 to better describe the configuration of 

the R and associated correlations in the observation errors: 

“In this study, we use the estimates of the standard deviations and of the 

correlation functions for these different types of observation errors from Wang et al. 

(2017) to set up the R matrix. Wang et al. (2017) sampled representation and 

aggregation errors by using simulations with a mesoscale (with higher resolution than 

LMDZv4) regional transport model and by degrading the spatial and temporal 

resolution of the emission maps in the input of this model and in the output FFCO2. 

Based on these samples, the standard deviation of εr was characterized by a function 

of season and on whether a station is “urban” or “rural” (see Sect. 2.1). For εa, the 

standard deviation for spring/summer and autumn/winter were derived. The standard 

deviation of the transport error at a given site is set-up proportional to the temporal 

standard deviation of the 1-year long time-series of the high-frequency variability of 



the detrended and deseasonalized simulated daily mean afternoon mixing ratios in the 

grid cell of the transport model, at which the sites are located. Such an estimation of 

transport error which relies on some results from Peylin et al. (2011) aims at 

representing the typical value for global transport models, not that of the specific 

transport model used in this study. The temporal auto-correlations in the 

representation and aggregation errors were characterized by Wang et al. (2017) using 

the sum of a long-term component and a short-term component: 

r(Δt)=a×e-Δt/b+(1-a)×e-Δt/c where Δt is the timelag (in days) and a, b, c are parameters 

optimized by regressions against the samples of the errors. Furthermore, we do not 

include temporal auto-correlations in the transport error for simulated daily to 2-week 

mean afternoon FFCO2 gradients, since previous studies of the auto-correlations of 

the transport errors have not evidenced that they should be significant at daily scale 

(Lin and Gerbig, 2005; Lauvaux, 2009; Broquet et al., 2011). This choice follows the 

corresponding discussion by Wang et al. (2017) and implicitly ignores that transport 

model errors likely bear long-term components (often referred to as “biases”, Miller et 

al., 2015) even when being dominated by components on short timescales. The 

corresponding values of the standard deviation and the modelling of temporal 

autocorrelation of the observation errors for 2-week/daily mean afternoon FFCO2 

gradients are listed in Table S3 and Table S4. 

A simpler account of the spatial correlations in the observation errors is derived 

from the diagnostics of Wang et al. (2017). We do not account for the spatial 

correlation in the representation error, as the scale of the spatial correlation according 

to Wang et al. (2017), i.e. 55-89 km, is much smaller than the size of the grid cells of 

the global transport model Htransp
LMDZ used for the inversion. When there are more 

than two sites are located in the same grid cell of the transport model, we consider 

that the aggregation errors and the transport errors are fully correlated between these 

sites, according to the definition by Wang et al. (2017). We do not account for spatial 

correlations between aggregation errors for measurements made at sites in different 

grid cells, because the scale of the spatial correlation is 171 km and is smaller than the 

size of the grid cell, according to Wang et al. (2017). Finally, we do not account for 

spatial correlations between transport errors or measurements made at sites in 

different grid cells.” 

We also stress in the updated manuscript the fact that using NET233 reduces the 

sampling inhomogeneity and can reduce the impact of aggregation errors, as shown 

by the references proposed by the reviewer by adding in line 141: “…of the LMDZv4 

transport model (Fig. 1c). The NET233 network is denser than NET17 and NET43 in 

the high emitting regions, e.g. Germany, and also covers the region that is not well 

sampled by NET17 and NET43. However, the location of its 233 sites is not intended 

to be optimal since the emissions have a very heterogeneous spatial distribution. Their 

homogeneous spreads allow us to reduce the impact of representation and aggregation 

errors (Trampert and Snieder, 1996; Kaminski et al., 2001) and to assess the impact of 

having a dense network for all control regions.” 



Response to comments on “Potential of European 14CO2 observation 

network to estimate the fossil fuel CO2 emissions via atmospheric 

inversions” by Y. Wang et al. 

 

We thank the three referees for their very detailed reviews. Their comments have 

allowed us to improve the manuscript by better emphasizing its strength. In this final 

response, we keep all the answers to the reviewers in previously response, but also 

add changes in the revised manuscript, highlighted with dark red. All the pages and 

line numbers correspond to the original versions of text. 

 

The authors present an OSSE study of the capability of ICOS 14CO2 observations to 

constrain European fossil fuel CO2 fluxes and their trends. The study is well 

structured and should be published. I have a few comments which I’d like the authors 

to address before publication. 

Response:  

We would like to thank the reviewer for the valuable comments and suggestions 

for improving our manuscript. Following the reviewer’s comments, we will carefully 

revise our manuscript. Please find below the point-to-point responses (in black) to all 

referee comments (in blue). All the pages and line numbers correspond to the original 

versions of text. 

 

Major comments 

1. Line 112: The assumption that 14CO2 measurements can be accurately translated 

into FF CO2, i.e., there are no spatial patterns introduced due to the other terms 

(especially disequilibrium and nuclear plants in the European context), is a big one. 

Those terms will not only affect annual emission estimates, but also the ability to 

detect trends, as countries change their nuclear power generation capacity and switch 

to wood-fired domestic heating (e.g., Germany). I understand that modeling the full 
14CO2 budget is beyond the scope of the authors’ framework, but it should be possible 

to estimate the impact, by e.g. modelling just the nuclear or disequilibrium 

contribution as a tracer in a transport model and looking at the change in Δ14C. Have 

the authors done that? Unless that concern is addressed, the actual numbers from the 

manuscript are hard to trust. 

Response: 

Indeed, the modeling of the full 14CO2 budget is beyond the scope of this study. It 

would be necessary to study the impact of uncertainties in other 14CO2 fluxes on the 
14CO2 gradients, to precisely quantify the corresponding errors when converting the 

gradients of atmospheric 14CO2 measurements into FFCO2 gradients. Graven and 

Gruber (2011) estimated the sources of 14C from nuclear power generation and spent 

fuel reprocessing and used the global TM3 transport model at 1.8º×1.8º resolution, 

which is slightly higher than LMDZv4 used in our study, to simulate their 



continental-scale influences on Δ14C. Their results showed that nuclear enrichment 

may cause an impact of -0.9 [-0.6, -1.4] ppm in FFCO2 for Orleans, France (48.8ºN, 

2.5ºE) and an impact of -0.7 [-0.4, -1.3] ppm for Heidelberg if nuclear 14C enrichment 

was not accounted for. These two sites are representative of European continental 

sites that are close to nuclear power plants. Turnbull et al. (2009) estimated the impact 

in large-scale FFCO2 signals caused by ignoring other 14C fluxes including 

cosmogenic production, 14C disequilibrium between atmosphere and biosphere and 

between atmosphere and ocean, and 14C source from nuclear power plant (the 

estimate of 14C sources from nuclear power plants is not as accurate as Graven and 

Gruber, 2011), using the same transport model LMDZv4 as in this study. Turnbull et 

al. (2009) showed that impact caused by other 14CO2 sources in translating 

atmospheric measurements of 14CO2 into FFCO2 is mainly from terrestrial biosphere, 

whereas the contributions from ocean CO2 exchange and cosmogenic production of 
14C contribute are weak. According to Turnbull et al. (2009), neglecting the influences 

from biosphere leads to an error typically between 0.2 and 0.8 ppm. Miller et al. 

(2012) estimated the impact of biospheric disequilibrium 14C fluxes in North America 

and get a similar value as Turnbull et al. (2009), ranging from less than 0.2 ppm to 1.4 

ppm.  

We work with OSSEs so that what matters in our system is the correct 

representation of the uncertainties in the different components of the model, not a 

correct representation of these components. In our OSSE framework, by ignoring the 

fluxes of 14CO2 other than the dilution of 14C in CO2 by fossil fuel emissions, we 

implicitly assume that the uncertainties in these fluxes has a weak impact, not that 

these fluxes themselves are ignored. The results mentioned above show that the 

uncertainties in the signals of these 14CO2 fluxes may cause some impact on the 

interpretation of FFCO2 using atmospheric 14CO2 samples indeed, but also that this 

impact is below 1 ppm and thus smaller than the components of observation errors, 

e.g. measurement error (1 ppm), representation error (0.17-2.56 ppm) and transport 

error (0.52-4.15 ppm) in the paper. In this context, we assume that the influence of the 

uncertainties in 14CO2 fluxes other than the dilution of 14C in CO2 by fossil fuel 

emissions on the inversion of fossil fuel emission should be relatively weak. Our 

estimate of URs and MRs could be slightly over-estimated due to the ignorance of 

other sources of uncertainties from other 14CO2 fluxes. But this study aims at 

understanding how the inversion system behaves when dealing with uncertainties in 

the FFCO2 emissions versus observation errors, about how the variation of the UR as 

a function of regions, of level of emissions, of the density of networks, rather than 

about providing absolute values of UR that would apply when conducting real-data 

applications. Further investigations accounting for uncertainties in other 14CO2 fluxes 

will be needed to refine those numbers.  

We explain the assumptions underlying the conversion of 14CO2 into FFCO2 

gradients with a 1 ppm uncertainty given that we work with an OSSE framework (i.e. 

it does not mean that the nuclear plant, cosmogenic and biosphere fluxes themselves 

have been ignored) by rewriting the paragraph between lines 108-118: “Our inversion 

system solves for monthly FFCO2 emissions in different regions of Europe over a 



period of one year by assimilating synthetic observations of atmospheric gradients of 

FFCO2 mixing ratios obtained from co-located CO2 and 14CO2 measurements at 

ICOS-like stations. The study primarily aims at providing a typical quantification of 

the inversion performances and at understanding qualitatively how the inversion 

behaves depending on the level of FFCO2 emissions, on the knowledge on these 

emissions and on the network density. Furthermore, we assume here that the 

uncertainties in the signals from 14CO2 fluxes other than the FFCO2 emissions, such as 

that from terrestrial biosphere, oceans, nuclear power plants and cosmogenic 

production, should have a moderate impact on the order of magnitude of the inversion 

performances that are analysed in this study. This leads us to ignore these 

uncertainties and consider that the only uncertainties in the FFCO2 mixing ratios data 

are related to the instrumental precision of CO2 and 14CO2 measurements. In practice, 

in the frame of this study, which focuses on the propagation of uncertainties, this is 

mathematically equivalent to assuming that 14CO2 is a perfect tracer of FFCO2. 

However, this does not imply that the signal from natural fluxes and nuclear power 

plants could be ignored when processing real data.” 

To recall the fact that the uncertainties associated with the signals from 14CO2 

fluxes other than the dilution of 14C in CO2 by fossil fuel emissions are expected to be 

relatively small compared to the uncertainties in the atmospheric 14CO2 caused by 

fossil fuel emissions and by other types of observation errors and to stress that future 

studies will be needed to quantify the impact from uncertainties in the nuclear plant 

emissions, cosmogenic production, biogenic fluxes, etc., we modify the sentences in 

Sect. 4.2, between lines 502-507: “… This 1-ppm standard deviation approximately 

corresponds to the errors in the atmospheric measurements and ignores uncertainties 

in the conversion of 14CO2 and CO2 measurements into FFCO2. Uncertainties in 

various fluxes that influence atmospheric 14CO2, such as those from cosmogenic 

production, ocean, biosphere and nuclear facilities, bring errors to the conversion of 
14C measurements into FFCO2 (Lehman et al., 2013; Vogel et al., 2013). Over land 

regions, heterotrophic respiration is expected to be one of the main contributors to the 

large-scale signals of atmospheric 14CO2 (Turnbull et al., 2009). Over some areas of 

Europe, 14C emissions from nuclear facilities may have even larger influences than 

plant and heterotrophic respiration (Graven and Gruber, 2011). The level of 

uncertainties in these fluxes and how much their influences on the FFCO2 gradients 

will introduce additional errors remains to be quantified. According to the simulations 

by Graven and Grubber (2011), Turnbull et al. (2009) and Miller et al. (2012), one can 

expect that the impact of signals from the uncertainties associated in the estimate of 

these fluxes, on the conversion of atmospheric 14CO2 measurements to FFCO2, are 

typically below 1 ppm, i.e. much smaller than the observation errors that have been 

accounted for in this study, justifying that we have ignored these fluxes. However 

these signals may have complex spatial and temporal patterns leading to significant 

impact on the quantification of the inversion performances. Uncertainties in the trends 

of these fluxes could also impact that in the fossil fuel trend detection. Therefore, in 

future studies, especially if working with real data, the impacts from uncertainties in 

the 14CO2 fluxes other than the anthropogenic fossil fuel emissions need to be 



investigated and accounted for by modelling all these 14CO2 fluxes, their atmospheric 
14CO2 signals and associated uncertainties.” 
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Graven, H. D. and Gruber, N.: Continental-scale enrichment of atmospheric 14CO2 from the nuclear 

power industry: potential impact on the estimation of fossil fuel-derived CO2, Atmos. Chem. 

Phys., 11(23), 12339–12349, doi:10.5194/acp-11-12339-2011, 2011. 

Turnbull, J., Rayner, P., Miller, J., Naegler, T., Ciais, P. and Cozic, A.: On the use of 14CO2 as a tracer 

for fossil fuel CO2: Quantifying uncertainties using an atmospheric transport model, J. Geophys. 

Res., 114(D22), doi:10.1029/2009jd012308, 2009. 

Miller, J. B., Lehman, S. J., Montzka, S. A., Sweeney, C., Miller, B. R., Karion, A., Wolak, C., 

Dlugokencky, E. J., Southon, J., Turnbull, J. C. and Tans, P. P.: Linking emissions of fossil fuel 

CO2 and other anthropogenic trace gases using atmospheric 14CO2, J. Geophys. Res., 117(D8), 

doi:10.1029/2011jd017048, 2012. 

 

2. Line 145: The authors say that the inversion interpret the gradient between JFJ and 

other sites. I do not understand how that is implemented. Is it that JFJ is the only 

background site in the network, and hence the inversion implicitly interprets gradients 

w.r.t. JFJ (much as a global CO2 inversion might interpret everything w.r.t. MLO and 

SPO)? Or is it that the pseudo-obs are fed in after explicitly subtracting the JFJ time 

series, in which case the model’s observation operator looks like “site – JFJ” at each 

individual site? Basically, the authors say in words that they interpret the gradient w.r.t. 

JFJ, but I do not understand how that is implemented in practice. 

Response: 

 Our implementation corresponds to the second option explained by the reviewer, 

i.e. the pseudo-observation are differences between the data at other sites and at JFJ 

for a given time, and the observation operator relates the fluxes to “site minus JFJ” 

gradients. To clarify this, we revise the sentence in lines 159-160: “This correction is 

based on (i) a set of gradients of FFCO2 mixing ratios between the different 

measurement sites and JFJ sampled during the afternoon (see Sect. 2.2.2) across 

Europe, called hereafter the “observations” yo, (ii)…”, in lines 237-238: “In this study, 

we first consider 2-week integrated afternoon data. More precisely, we first consider 

2-week averages of afternoon FFCO2 gradients with respect to JFJ. In addition, we 

present tests with daily afternoon gradients, for which the corresponding sampling 

scheme would be more costly.”, and in line 249: “… Htransp is the atmospheric 

transport model, and Hsamp samples the FFCO2 gradients with respect to JFJ 

corresponding to the observation vector from the transport model outputs (Wang et al. 

2017).” 

 

3. Line 201: I’m having trouble deciphering the meaning of “mismatch reduction”, 

and its bounds and limits. Instead of describing it in words after equation (4), could 

the authors please write down the mathematical expressions for εa and εb? Since I did 

not know what those ε’s were, I also could not interpret maps of MR (e.g., Figure 4). 

In particular, I did not understand what negative vs positive MR meant. 

Response: 

The “misfits” (i.e. the “mismatch” in the reviewer’s comment) that are considered 

for the “misfit reduction” are the differences between the prior or posterior and “true” 



estimates of the emission budgets. For a given region i and month m in the control 

vector x, the prior misfit xb
i,m-xt

i,m is denoted εb
i,m and the posterior misfit xa

i,m-xt
i,m is 

denoted εa
i,m. We compute a misfit reduction for each region-month emission budget 

as the relative difference between the prior and posterior misfits: 

MRi,m=1-εa
i,m/εb

i,m 

We only have one practical realization for xb, yo and xa and thus a single 

realization of the misfits for each month and region. However, we want to have a 

statistical assessment of the performance of the inversion system based on the misfits 

that could be compared to the scores of uncertainty reduction. Therefore, we also 

consider the typical MR at the 1-month scale for a given region i which is the relative 

difference between the quadratic mean of the monthly prior misfits and the quadratic 

mean of the monthly posterior misfits.  

 
In all cases MR values could theoretically range between –infinity and 1. When, 

on average, the posterior emission estimates are closer to the synthetic truth than the 

prior estimates, the MR is positive (the inversion reduces the misfits). Conversely, 

when the posterior emission estimates are further from the synthetic truth than the 

prior estimates, the MR is negative (the inversion increases the misfits). MR is null 

when the posterior misfits are as large as the prior misfits, i.e. the inversion do not 

decrease or increase the misfits.  

We revise the paragraphs in lines 202-210: “true values for the corresponding 

emission budgets. MR range from negative values (when the inversion deteriorates 

the precision of the estimation) to 1 (or “100%”; when the inversion provides a 

perfect estimate of the emissions). 

We focus on uncertainties and misfits at both monthly and annual scales. 

However, we can have only one practical realization for xb, yo and xa following the 

protocol of that is presented in Sect. 2.3. Therefore, the assessment of the 

performance of the inversion for a given region-month using the corresponding score 

of MR may be over- or under-estimated due to the lack of sampling of the prior and 

observation errors. Consequently, at monthly scale, in order to strengthen the 

evaluation of the theoretical uncertainties based on these single realizations of the 

prior and posterior misfits, we compare, for a given region, the quadratic mean of the 

twelve monthly misfits (called “monthly misfits” without mention of a specific month 

in Sect. 3) to the quadratic mean of the standard deviations of the twelve monthly 

uncertainties (called “monthly uncertainties” without mention of a specific month in 

Sect. 3), which characterizes the average monthly uncertainties over the year. This 

computation implicitly assumes that the twelve monthly misfits through a year follow 

the same statistical distribution, and represent twelve independent realization of this 

distribution. In such a situation, the comparison between the averages of the prior and 

posterior monthly misfits give a good indications of the error reduction that should 

not be highly skewed by sampling errors. In the result section, for a given region i, 



UR and MR scores derived at the “monthly” scale without mention to a specific 

month will correspond to the relative difference between the prior and posterior 

values of these average monthly uncertainties and misfits from a whole year of 

inversion: 

                                              (5) 

                                              (6) 

At the annual scale, …” 

 

 

Minor comments 

1. Line 151: For NET233, each grid box is supposed to have one urban and one rural 

site. I’m not sure that’s a good strategy. Wouldn’t it be better to designate urban/rural 

depending on the nearest NET43 site? I mean, there could easily be grid boxes where 

it was more realistic to put two rural or two urban sites. 

Response: 

The design of NET233 was not intended to be optimal. We wanted to conduct a 

test with many sites whose distribution would be homogeneous and cover all the 

control regions. In this case, the variations of UR from one region to the other one are 

a direct consequence of variations in the emission uncertainties, and not as a 

consequence of the variations in the network density. Putting most of the sites near the 

areas with the highest emissions could have larger URs than spreading them 

homogeneously across Europe, but will not distinguish the role of network density 

and the role of emissions uncertainties themselves in the variations of the UR from 

one region to the other one. 

Even though the distribution of the emissions is highly heterogeneous in Europe, 

the grid cells of the transport model used in this study have a 3.75º×2.5º resolution (i.e. 

they cover areas that are much larger than megacities like London or Paris), so that we 

can assume that nearly all pixels have both rural and urban locations.  

 We clarify the rational for the NET233 network in Sect. 2.1 by adding in line 141: 

“… in which two sites are placed in each European land pixel of the LMDZv4 

transport model (Fig. 1c). The NET233 network is denser than NET17 and NET43 in 

the high emitting regions, e.g. Germany, and also covers the region that is not well 

sampled by NET17 and NET43. However, the location of its 233 sites is not intended 

to be optimal since the emissions have a very heterogeneous spatial distribution. Their 

homogeneous spreads allow us to reduce the impact of representation and aggregation 

errors (Trampert and Snieder, 1996; Kaminski et al., 2001) and to assess the impact of 

having a dense network for all control regions.” 

 

2. Line 233: In the ICOS protocol, are the two-week samples going to be filled 

continuously, or are they only going to integrate mid-afternoon (or nighttime) air? 



That would very much change the sensitivity of the observations to FF CO2, and the 

impact of transport errors. 

Response: 

 The present protocol for almost all of the ICOS 14CO2 sites is to fill continuously 

two-week samples. And some sites fill continuously daily/weekly atmospheric 14CO2. 

However, the option of intermittent filling of air samples is feasible in practice and 

has been used (Levin et al., 2008; Turnbull et al., 2016). On the other hand, the 

state-of-the-art transport models used for atmospheric inversion studies have still 

difficulties in simulating the vertical mixing during night-time and in the morning. So 

we prefer to consider this option of two-week afternoon sampling in the OSSE. We 

keep in mind the fact that using samples filled continuously over two weeks instead of 

during the afternoon only would definitely change the transport condition and 

sensitivity of the observation to FFCO2, and thus may give different values of UR and 

MR. But we assume that it should change the result in a quantitative but not 

qualitative way. 

 We add a sentence in line 232 to mention that common practice of 14CO2 

sampling is continuously over the course two weeks: “Current atmospheric 14CO2 

samples in Europe are usually filled continuously over the course of two weeks 

(Vogel et al., 2013; Levin et al., 2013). However, state-of-art inversion systems 

generally make use of data during the afternoon only, …” We already mentioned in 

the manuscript in the same paragraph that intermittent filling of air samples is 

practically feasible so that our definition of the observations in this study can be seen 

as a compromise between the current requirement of state-of-the-art inversion systems 

and current measurement practices.  

 

References: 
Turnbull, J. C., Keller, E. D., Norris, M. W. and Wiltshire, R. M.: Independent evaluation of point 

source fossil fuel CO2 emissions to better than 10%, Proc. Natl. Acad. Sci. U. S. A., 113(37), 

10287–10291, doi:10.1073/pnas.1602824113, 2016. 

Levin, I., Hammer, S., Kromer, B. and Meinhardt, F.: Radiocarbon observations in atmospheric CO2: 

determining fossil fuel CO2 over Europe using Jungfraujoch observations as background, Sci. 

Total Environ., 391(2–3), 211–6, doi:10.1016/j.scitotenv.2007.10.019, 2008. 

 

3. Line 237: Are the authors assuming that two week average Δ14CO2 will translate 

into two week average FF CO2? What the two week average Δ14CO2 represents 

depends on the method of collection; an open tray will fix CO2 proportional to the 

partial pressure of CO2, while a bubbled trap will fix all the CO2 in the ingested air. 

The former represents average FF CO2 weighted by the total CO2 mole fraction, while 

the latter represents average FF CO2 over two weeks. Which one applies for the ICOS 

protocol? 

Response: 

 The sampling technology (https://www.icos-cal.eu/crl/radiocarbon_samples) that 

ICOS utilize for two-week integrated samples follows the method developed in the 

1970s (Levin et al., 1980). The sampling system is equipped with a small aquarium 

pump, which actively collects about 15 m3 of air during the two week period. CO2 is 

collected by chemical absorption in CO2-free NaOH solution in the so-called 



Raschig-tube samplers. In this context, the FFCO2 represents the average FFCO2 over 

two weeks (the second way that the reviewer mentioned). 

 We clarify the fact that our definition of FFCO2 corresponds to the average 

afternoon FFCO2 over the course of two weeks here in line 237: “In this study, we 

first consider 2-week integrated afternoon data. More precisely, we first consider 

2-week averages of afternoon FFCO2 gradients with respect to JFJ. In addition, …” 

 

References: 
Levin, I., Munnich, K. O., Weiss, W.: The effect of anthropogenic CO2 and 14C sources on the 

distribution of 14C in the atmosphere, Radiocarbon, 22, 379–391, 1980. 

 

4. Line 253: Did the authors model a diurnal cycle in FF CO2 emissions? According 

to Nassar et al. (2013), the diurnal cycle can be fairly large over populated areas. 

Along with the selective mid-afternoon sampling used by the authors, the impact 

could be sizeable. 

Response: 

 We fully account for the diurnal cycle of emissions in our computations. The 

synthetic truth of the OSSEs and the synthetic FFCO2 observations are modelled 

using the emission map IER-EDG, which is an hourly emission products and has a 

clear diurnal cycle in the emissions. However, the emission map used to compute the 

observation operator is PKU-CO2 version 1 (Wang et al., 2013), which is an annual 

product and which does not have temporal profiles, so that there is no diurnal/seasonal 

cycle in Hdistr
PKU. The mismatch between the temporal profiles of synthetic true 

emission and Hdistr
PKU contribute to the so-called aggregation error (Wang et al., 2017). 

As shown in Table S3, the typical aggregation error is only 0.17-0.30 ppm, indicating 

that such difference only has a small impact on the simulated FFCO2 signals. 

Furthermore, the inversion results indicate that the inversion can significantly reduce 

the uncertainties and misfits of the estimate of monthly emission budgets for large 

regions, even if using flat temporal profiles for the emissions while the truth is 

modeled with diurnal, weekly and seasonal temporal profiles for the emissions. One 

explanation is that the two-week mean afternoon samplings integrate the signal from 

both daytime and nighttime emissions across Europe due to the atmospheric transport. 

 We add a discussion about this in Sect 4.2, line 496: “…yet mainly over high 

emitting regions. In particular, Sect. 3 indicates that the inversion can significantly 

reduce the uncertainties and misfits in the estimate of monthly emission budgets for 

large or high emitting regions, even though the observation operator used by the 

inversion assumes flat temporal profiles for the emissions while the true emissions 

have diurnal, weekly and seasonal temporal profiles. This confirms that the two-week 

mean afternoon 14CO2 samplings integrate the atmospheric signal transported from 

both daytime and nighttime emissions across Europe which can be filtered from the 

signal from local emissions to provide large-scale information on the emissions.” 

 

References: 
Wang, R., Tao, S., Ciais, P., Shen, H. Z., Huang, Y., Chen, H., Shen, G. F., Wang, B., Li, W., Zhang, Y. 

Y., Lu, Y., Zhu, D., Chen, Y. C., Liu, X. P., Wang, W. T., Wang, X. L., Liu, W. X., Li, B. G. and 

Piao, S. L.: High-resolution mapping of combustion processes and implications for CO2 



emissions, Atmos. Chem. Phys., 13(10), 5189–5203, doi:10.5194/acp-13-5189-2013, 2013. 

Wang, Y., Broquet, G., Ciais, P., Chevallier, F., Vogel, F., Kadygrov, N., Wu, L., Yin, Y., Wang, R. and 

Tao, S.: Estimation of observation errors for large-scale atmospheric inversion of CO2 emissions 

from fossil fuel combustion, Tellus B: Chemical and Physical Meteorology, 69(1), 1325723, 

doi:10.1080/16000889.2017.1325723, 2017. 

 

 

5. Line 264: Does “practical” refer to the operator used to generate 

pseudo-observations from the “true” fluxes? 

Response: 

 No, Hprac means this operator is a practical representation of the flux distribution 

and atmospheric transport that is used in the inversion system, while HOSSE is the 

theoretical “true” operator used to generate pseudo-observations for OSSEs. We 

explained in line 264 the Hprac= Hsamp
coloc Htransp

LMDZ Hdistr
PKU and we also wrote in 

line 364 “The synthetic observations are generated using xIER-EDG and the operator 

HOSSE=Hsamp
colocHtransp

LMDZHdistr
IER-EDG, which relies on the same Hsamp

coloc and Htransp 

operators as the Hprac observation operator used in the inversion system.” So the 

difference between the practical operator Hprac and HOSSE is their last sub-operators 

Hdistr
PKU and Hdistr

IER-EDG, respectively. To clarify such a use of the “practical” term to 

name Hprac, we revise the sentence in in Sect. 2.2.2, line 264: “In sum, the observation 

operator used in the practical configuration of the inversion system is defined by 

Hprac= Hsamp
coloc Htransp

LMDZ Hdistr
PKU.” 

 

6. Line 296: Is the covariance model global, or is this done only over Europe? 

Response: 

 This covariance model (which ignores the spatial correlations) is applied for the 

estimate of the prior uncertainty variance and temporal correlations for each of the 

control regions over the globe. We revise sentences in lines 295-296 to emphasize the 

fact that it is applied to all regions over the globe, not only to regions in Europe: “…, 

except for the Balkans where they reach up to 44%. We assume that there is no spatial 

correlation of the prior uncertainty between different control regions. For each control 

region of the globe, the statistics of the difference between the monthly emission 

budgets from the two maps are fitted by a covariance model that combines four 

different covariance matrices” and we delete the last sentence (lines 300-301) of this 

paragraph. 

 

7. Line 363: Can the authors explain how they obtained the IER hourly inventory? I 

tried to download it from their website, but given that each month had to be separately 

downloaded, that was very inconvenient. An email to the contact person listed on the 

website bounced, so that was a dead end too. 

Response: 

 We downloaded the “global fossil fuel emissions” under the “product” tab month 

by month. These files are hourly emissions for each month and for three emission 

heights. We summed the emissions at different emission heights together (our 

simulation of FFCO2 assumes that all the emissions are emitted at surface). In this 

case, we obtained twelve files of global hourly emission fields for one year and each 



file corresponds to one month.  

 

8. Line 366: This will only get at the random error in transport, not any systematic 

error in transport modeling. Have the authors tried quantifying the impact of 

systematic errors in LMDZ, say by using 222Rn or SF6? 

Response: 

We prefer to consider that errors can have long spatial and temporal scales rather 

than a “systematic” component, since what the people usually call biases or 

systematic errors vary in time and can be difficult to predict and diagnose. The 

inversion system integrate such temporal and spatial consistency of the errors through 

the temporal and spatial correlations in R. 

The assessment of the model errors over long temporal scales, e.g. by using real 

tracer data was out of the scope of this study and of that of Wang et al. (2017). It has 

been the topic of numerous model inter-comparison studies in the past including 

LMDZ such as Peylin et al. (2011) and Patra et al. (2011). Locatelli (2015) also 

studied in details the transport errors by LMDZ. These studies show that the skills of 

LMDZ are in line with state-of-the-art transport models and there is no evidence that 

LMDZ has a systematic error compared to other transport models. Furthermore, our 

aim here is not to assign transport errors for the specific transport model we use, but 

rather for a typical global transport model in order to produce general results.  

The structure of the transport error is hard to assess for a specific transport 

models. Some studies have made some attempts to characterize it, but have come to 

different conclusions. For example, Lin and Gerbig (2005) determined the correlation 

timescale to be 2-3 hours for U-/V- winds. Broquet et al. (2011) analyzed the 

distribution of differences between the simulated and measured atmospheric mole 

fractions of 222Rn (Radon). Temporal auto-correlations with 3 to 6-hour timescales are 

found in Broquet et al. (2011) based on such an analysis. Lauvaux et al. (2009) 

estimated the potential of the temporal correlations for transport error based on an 

ensemble of perturbations of the simulation of atmospheric transport. They found 

there are negative correlation between the atmospheric CO2 mole fractions in the day 

and the night and the correlations (of the errors) with a lag time of 1 day are close to 0 

for midafternoon data (Fig. 4a in Lauvaux et al., 2009). Miller et al. (2015) 

investigated the magnitude of temporally covarying atmospheric transport errors and 

found that removing temporal covariances in the transport would underestimate the 

transport error at the monthly scale, but their study did not try to use any function to 

describe the temporal auto-correlations so that their results are difficult to generalize.  

Most of these studies found temporal error correlations that are generally smaller 

than 1 day. If considering daily to monthly concentration averages, such a correlation 

should increase (if the transport error is a combination of error components at high 

and low frequencies). However, these various studies prove that the correlations in the 

transport error are challenging to estimate and the majority of existing inversion 

studies do not account for such potential correlations in atmospheric transport 

modeling (Peylin et al., 2013; Chevallier et al., 2010; Kadygrov et al., 2015; Peters et 

al., 2007; Gurney et al., 2008; Niwa et al., 2012). So, we keep the traditional 



assumption.  

We revise the paragraphs about the configuration of transport errors, as well as 

representation and aggregation errors in lines 328-337: “… For εa, the standard 

deviation for spring/summer and autumn/winter were derived. The standard deviation 

of the transport error at a given site is set-up proportional to the temporal standard 

deviation of the 1-year long time-series of the high-frequency variability of the 

detrended and deseasonalized simulated daily mean afternoon mixing ratios in the 

grid cell of the transport model, at which the sites are located. Such an estimation of 

transport error which relies on some results from Peylin et al. (2011) aims at 

representing the typical value for global transport models, not that of the specific 

transport model used in this study. The temporal auto-correlations in the 

representation and aggregation errors were characterized by Wang et al. (2017) using 

the sum of a long-term component and a short-term component: 

r(Δt)=a×e-Δt/b+(1-a)×e-Δt/c where Δt is the timelag (in days) and a, b, c are parameters 

optimized by regressions against the samples of the errors. Furthermore, we do not 

include temporal auto-correlations in the transport error for simulated daily to 2-week 

mean afternoon FFCO2 gradients, since previous studies of the auto-correlations of 

the transport errors have not evidenced that they should be significant at daily scale 

(Lin and Gerbig, 2005; Lauvaux, 2009; Broquet et al., 2011). This choice follows the 

corresponding discussion by Wang et al. (2017) and implicitly ignores that transport 

model errors likely bear long-term components (often referred to as “biases”, Miller et 

al., 2015) even when being dominated by components on short timescales. The 

corresponding values of the standard deviation and the modelling of temporal 

autocorrelation of the observation errors for 2-week/daily mean afternoon FFCO2 

gradients are listed in Table S3 and Table S4. 

A simpler account of the spatial correlations in the observation errors is derived 

from the diagnostics of Wang et al. (2017). We do not account for the spatial 

correlation in the representation error, as the scale of the spatial correlation according 

to Wang et al. (2017), i.e. 55-89 km, is much smaller than the size of the grid cells of 

the global transport model Htransp
LMDZ used for the inversion. When there are more 

than two sites are located in the same grid cell of the transport model, we consider 

that the aggregation errors and the transport errors are fully correlated between these 

sites, according to the definition by Wang et al. (2017). We do not account for spatial 

correlations between aggregation errors for measurements made at sites in different 

grid cells, because the scale of the spatial correlation is 171 km and is smaller than the 

size of the grid cell, according to Wang et al. (2017). Finally, we do not account for 

spatial correlations between transport errors or measurements made at sites in 

different grid cells.” 
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emissions, Atmospheric Chemistry and Physics, 13(10), 5189–5203, 

doi:10.5194/acp-13-5189-2013, 2013. 

 

9. Line 367: I know it is usual practice in the OSSE world to perturb the 

measurements according to the error statistics of R, but I have never understood why, 

unless it is done in an ensemble of multiple realizations of the measurements. In an 

ensemble of inversions with different measurements from the same network, it makes 

perfect sense to produce those measurements using perturbations according to R, 

since the resulting spread in the flux estimates then gives the uncertainty due to R. 

However, for a single inversion, perturbing the measurements according to R only 

ensures that the posterior will be different from the “true” flux, without any way to 

infer the significance of that difference. As in, how do the authors know that the MR’s 

they estimate are not because in the one realization of the measurements they used, 



some of them just happened to be skewed in one direction? This is especially a 

concern for the NET17 network, since there are so few measurements, with scant 

opportunity to average over the perturbations. 

Response: 

We carefully analyzed and discussed the UR and MR results keeping in mind and 

explicitly recalling the problems of working with a single realization of yo and xb. The 

risk of under- or over-estimating the posterior error in the emission budgets when 

using one realization only for the prior and measurement errors is the reason why we 

compute the “statistics of misfits” at the monthly scale and the “MR for monthly 

emissions” (see our answer to major question 3). By assuming that the monthly 

misfits all follow the same distribution, we roughly consider that we have an 

ensemble of twelve realizations of monthly inversions for which the average-based 

MR give a reliable indicator or the error reduction that should not be significantly 

skewed by sampling errors. 

Of note is also that even when considering NET17 and a 2-week sampling 

strategy, we have 416 data over the year and thus 416 realizations of perturbations to 

individual observations. Finally, the scores of UR should definitely be considered as 

the reference indicators of the inversion behavior, and the MR are mainly analyzed to 

provide confidence in these UR, as explained in Sect. 2.2.1. 

The perturbation of the observation according to R even when a single realization 

of the observation and prior errors is considered is a common practice in inversion 

because, we believe, this is what still makes most sense if having to assess the 

uncertainty reduction using a single inversion. In other words, we do not have a 

simple idea of perturbation that would make the single realization more adapted for 

assessing the typical impact of the errors. 

 We revise the paragraphs in Sect. 2.2.1, lines 203-204 to clarify the use of one 

realization of observations: “We focus on uncertainties and misfits at both monthly 

and annual scales. However, we can have only one practical realization for xb, yo and 

xa following the protocol of that is presented in Sect. 2.3. Therefore, the assessment of 

the performance of the inversion for a given region-month using the corresponding 

score of MR may be over- or under-estimated due to the lack of sampling of the prior 

and observation errors. Consequently, …” 

 

References: 
Basu, S., Miller, J. B. and Lehman, S.: Separation of biospheric and fossil fuel fluxes of CO2 by 

atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations, Atmos. 

Chem. Phys., 16(9), 5665–5683, doi:10.5194/acp-16-5665-2016, 2016. 

 

10. Line 374 and Figure 4: The authors solve for monthly emissions over a year, but 

report a single UR/MR map of monthly emissions. Is this the RMS of UR/MR values 

over 12 months, or the UR/MR calculated from the RMS of the posterior errors, or...? 

As in, can the authors give a mathematical expression of what is being shown in 

Figure 4 as the “monthly” UR/MR, in terms of their control vector and/or covariance 

matrix? 

Response: 



 This is related to the major comment #3. We computed the quadratic mean of the 

twelve values of monthly uncertainties and misfits to derive the so-called “average 

monthly URs and MRs”. As stated in the response to the major comment #3, we add 

two equations to show that we compute the UR and MR “at monthly scale” based on 

the quadratic mean of twelve monthly values across one year. Please see the changes 

correspond to the major comment #3. 

 

11. Line 381: I think the reference to Figure 4(d) should actually be to 4(e). Likewise, 

in line 384, the refences should be to 4(e) and 4(g). 

Response: 

 The reviewer is right. In line 381, the reference to figure is Fig. 4e and on line 

384, the reference to figure is Fig. 4e and 4g. We are sorry about these mistakes. We 

went through the paper again carefully and feel that there are not such mistakes 

anymore. 

 

12. Line 409: “... the posterior misfits are even larger than the prior misfits.” Why 

does the inversion allow this? For stations within the blue regions, is this obvious 

from looking at the atmospheric FF CO2 time series, that post-optimization the time 

series is further away from the pseudo-data than pre-optimization? I suspect the 

perturbed measurements are to blame (see earlier comment). 

Response: 

 The primary reason for getting posterior misfits in the emissions that are larger 

than the prior misfits in the emissions is connected to the fact that the prior 

uncertainty matrix B of the inversion system does not match the statistics of the actual 

errors in the prior estimate of emissions: 

1) As demonstrated by Wang et al. (2017), the signature of the errors in the prior 

estimates in the FFCO2 emissions has a smaller amplitude than the observation errors 

and the ability to filter this information for a proper correction of the emissions 

strongly relies on the knowledge of the prior uncertainty covariance. If B misses the 

amplitude, temporal and spatial correlations of the actual errors, the system can easily 

translate observation errors into its corrections to the emissions. While decreasing the 

differences between the simulated FFCO2 concentration time series and the 

atmospheric data, it would increase the misfits to the true emissions. 

2) Some of the region-months are poorly constrained by the observations due to 

the network distribution and to the meteorological conditions (even when using 

NET233), and the corrections to emissions from a poorly constrained region-months 

is imposed by the extrapolation of the corrections to other region-months following 

the patterns of B. If those patterns are wrong (typically, if spatial correlations in B for 

the errors of two neighbor regions are negative while the spatial correlations between 

the actual errors of these regions are positive), the system could apply corrections 

with a wrong sign or amplitude to the poorly observed region-months, which can 

easily lead to an average increase of the errors for such regions. The problem is 

similar when the network can constrain the sum of the budgets for several 

region-month but not these region month individually (due to being too coarse). In 



this case, if the structure of B is wrong, the repartition of the constraints from the 

observations between these different region-months could be erroneous. 

The fact that the aggregation error has a non-Gaussian and biased distribution 

while the inversion system believe it is Gaussian and unbiased can also feed the 

generation of negative MR as well as problems of sampling errors when computing 

scores of MR as suggested by the reviewer. However we believe that the impact of 

these additional factors is relatively small because when the setup of B matches well 

(even though not perfectly) with that of the actual prior errors, we have very few 

negative MRs. 

We add in lines 546 to discuss the negative scores of MR: “… This degradation 

occurs even when using daily measurements or the network NET233. A first 

explanation is that the signature of the errors in the prior emission estimates in the 

FFCO2 fields has a smaller amplitude than the observation errors and thus the ability 

to filter this information for a proper correction of the emissions strongly relies on the 

knowledge of the prior uncertainty covariance. If B misses the amplitude and the 

temporal and spatial correlations of the actual errors, the system can translate 

observation errors into corrections to the emissions. Furthermore, some of the 

region-months are poorly constrained by the observations (due to the meteorological 

conditions and/or to the observation network spatial distribution), and the corrections 

to such region months is imposed by the extrapolation of the corrections to other 

region-months following the uncertainty structures characterized by B. If those 

structures do not represent the actual errors correctly, the system could apply 

corrections with a wrong sign or amplitude to the poorly observed region-months. A 

similar problem occurs when the network can constrain the sum of the budgets for 

several region-months but not the individual budgets of these region months (due to 

being too coarse). If the structure of B is wrong, the repartition of the constraint from 

the observations between these different region-months can be erroneous. All these 

analysis reveal the difficulty to capture the signatures of uncertainties in the prior 

emission estimate from the assimilated prior-model data misfits in our specific inverse 

modeling problem and thus to derive good corrections when the prior uncertainty 

covariance matrix is not configured properly.” 

 

References: 
Wang, Y., Broquet, G., Ciais, P., Chevallier, F., Vogel, F., Kadygrov, N., Wu, L., Yin, Y., Wang, R. and 

Tao, S.: Estimation of observation errors for large-scale atmospheric inversion of CO2 emissions 

from fossil fuel combustion, Tellus B: Chemical and Physical Meteorology, 69(1), 1325723, 

doi:10.1080/16000889.2017.1325723, 2017. 

 

13. Line 417: The correlation is not between uncertainties, but between corrections 

from the prior emission. 

Response: 

 We do not agree with the reviewer. Fig. 6 shows the correlations in the B and A 

covariance matrices. Since B and A characterize the uncertainties in the prior and 

posterior estimates, the correlations in both B and A are indeed between uncertainties 

rather than corrections. 



Following Eq. (2) in the main text, the correction for x is actually 

AHTR-1(yo–Hxb), so that the covariance matrix for the corrections is 

AHTR-1(HBHT+R)R-1HA, and the correlations correspond to this matrix are between 

corrections. 

 

14. Line 455: I’m surprised at the low UR for the NET233 network. Why are there so 

many white areas (low UR) still? 

Response: 

 This is related to the fact that the signals from the uncertainties in the prior 

estimate of emissions are well below the observation errors in these regions and that 

the observation errors have similar error structures (temporal and spatial correlations) 

to the signals of uncertainties in the prior estimate of emissions, as discussed in Sect. 

4.2 (line 516-520). This demonstrates that the proper account for representation and 

aggregation errors avoid overestimating the potential of the atmospheric inversion in 

OSSES when using a coarse resolution transport model.  

We emphasize this by adding discussions in line 520: “which are close to the 

prior FFCO2 errors (Wang et al., 2017). Such a result illustrates the need for using a 

suitable observation error characterization (here based on the results from Wang et al., 

2017) to prevent the stations having a full coverage of information on the emissions in 

the model framework shown here even when the observation network is as dense as 

NET233. A proper account for the observation errors and their temporal and spatial 

correlations avoid overestimating the potential of the atmospheric inversion in OSSES 

when using a coarse resolution transport model.” 

 

15. Line 484: In real trend detection situations, the transport will vary year by year, as 

will the disequilibrium and nuclear fluxes of 14C. Can the authors estimate how big an 

impact this will have on the trend detection? 

Response: 

There is not a strong reason to think that there could be some major change in the 

uncertainties in the estimate of nuclear and disequilibrium fluxes of 14C from year to 

year, which is what really matters on the inversion results (rather than changes in the 

absolute value for these fluxes), as discussed in the response to the first major 

comments. This response also indicates that we assume that such uncertainties should 

have a relatively weak impact on the inversion results. 

The transport conditions (and thus H and the uncertainties in the transport 

modeling in R) may vary significantly from year to year which could lead to 

variations of the sensitivity of the observations to the emissions and variations of the 

scores of uncertainty reduction. We could even observe trends in the transport 

conditions over several years (e.g. the shallowing of the PBL between the 1990s and 

the 2000s by Aulagnier et al., 2009; Ramonet et al., 2010). However, the impact of the 

resulting changes in atmospheric transport condition on the UR and posterior 

uncertainties, and thus on our computation of the trend detectability is difficult to 

anticipate. We assume that this should not result in a behavior that is different from 

the one described by our computation with constant posterior uncertainties from year 



to year (it should change the result in a quantitative but not qualitative way). 

Conducting tests with varying posterior uncertainties would thus fall out of the scope 

of our assessment of the typical uncertainties in trends for a typical uncertainty in 

annual emissions, and we thus think that it is not worth investigating it.  

We delete the simple statement in line 479: “…fully independent and ignoring the 

changes in transport on decadal scales (Aulagnier et al. 2009; Ramonet et al., 2010), 

we calculate the uncertainty in relative trends …” and add a paragraph to discuss that 

the changing transport may have an impact on the trend detection but quantifying this 

impact would require detailed studies and further investigation after line 490: “Our 

assumption that the posterior uncertainties in annual emissions have the same 

amplitude from year to year should not strongly drive the results, so the results here 

give a good indication of the level of uncertainty in the trend detection for a typical 

level of uncertainty at the annual scale. However, changes of the transport from year 

to year or on decadal scales (Aulagnier et al. 2009; Ramonet et al., 2010) may change 

the level of the sensitivity of the observations to the emissions, i.e., the level of the 

atmospheric constraint of the inversions which leads to uncertainty reduction, and 

thus the level of posterior uncertainties on the same timescales. A more complex 

model accounting for varying levels of annual posterior uncertainties may thus be 

useful to refine the quantification of the uncertainty in the trends. Of note is that the 

level of uncertainties in the trends could be increased if the modeling framework 

accounts for the trends in the transport or in the sources of 14CO2 other than the fossil 

fuel emissions. Such trends in the modeling errors may have to be considered for 

applications with real data.” 

 

References: 
Aulagnier, C., Rayner, P., Ciais, P., Vautard, R., Rivier, L. and Ramonet, M.: Is the recent build-up of 

atmospheric CO2 over Europe reproduced by models. Part 2: an overview with the atmospheric 

mesoscale transport model CHIMERE, Tellus B, 62, 1, 2009. 

Ramonet, M., Ciais, P., Aalto, T., Aulagnier, C., Chevallier, F., Cipriano, D., Conway, T. J., Haszpra, L., 

Kazan, V., Meinhardt, F., Paris, J.-D., Schmidt, M., Simmonds, P., Xueref-Rémy, I. and Necki, J. 

N.: A recent build-up of atmospheric CO2 over Europe. Part 1: observed signals and possible 

explanations, Tellus B, 62(1), 1–13, doi:10.1111/j.1600-0889.2009.00442.x, 2010. 

 

16. Line 499: As far as I can tell, Basu et al. (2016) did not estimate UR. 

Response: 

 Basu et al. (2016) did not estimate UR, but they analyzed the misfits between the 

inversion-estimated fluxes and true fluxes such as when we analyze scores of MR. 

The text assumed that the “error reduction” can be characterized by either UR or MR. 

We revise the sentence accordingly to avoid the confusion: “We paid attention (as 

compared to previous OSSEs published for the USA) to account for aggregation and 

representation errors, which is the reason why our inversions do not provide as 

impressive error reductions (uncertainty and misfit) as the misfit reduction of Ray et 

al. (2014) and Basu et al. (2016). However, …”. 

 

17. Line 531: The authors seem to suggest that the boundary condition – a bane of 

most regional inversions – does not affect their flux and uncertainty estimates. Is this 



because everything is referenced to JFJ? 

Response: 

 Our simulation indicated that the reason why, in this study, the uncertainties in the 

emissions remote from Europe (i.e. what would feed the boundary conditions in a 

regional model) does not significantly impact the FFCO2 inversion in Europe is the 

atmospheric diffusion of the FFCO2 signal associated with these uncertainties. The 

high emitting regions outside Europe (USA, China) are far from the European 

continent. The diffused signals from these regions does not yield large gradients 

between the European sites which are mainly due to the emissions from European 

continent. Therefore, these signals should not impact the inversion of fluxes within 

Europe. Assimilating gradients to JFJ definitely helps the system understand that a 

large scale signal over Europe should not be connected to European emissions, but 

inversions system assimilating FFCO2 data at individual site could also naturally 

avoid to correct for emissions between the measurements sites based on such a large 

scale signal. 

The boundary conditions for traditional regional inversion of natural CO2 fluxes 

assimilating total CO2 concentrations which only target at natural CO2 fluxes can be 

more critical, since there are large fluxes from Atlantic Ocean and other adjacent 

continents like Asian Russia which can cause significant spatial patterns between 

European sites. But still, some studies, such as that of Lauvaux et al. (2008) showed 

that the influence of the boundary conditions is not significant in their regional 

inversion of the natural CO2 fluxes in the South West of France.  

At last, we keep in mind the fact that if the inversion would account for 

uncertainties in the biogenic and ocean 14CO2 fluxes, the situation could be different 

and could pose problems for the boundary conditions of the regional scale systems. 

There could be large 14CO2 fluxes from Atlantic Ocean and other adjacent continents 

like Asian Russia which can cause significant spatial patterns of 14CO2 within Europe. 

In the manuscript, we already discussed the fact that “the inversion system mainly 

exploits the signals of the gradients between the European sites to constrain the 

European emissions” (lines 533-535). We add a sentence in Sect. 4.2, line 539 to 

discuss the last point we discussed above: “… by controlling the regional transport 

model boundary conditions. However, such a conclusion may need to be re-evaluated 

when processing real data and accounting for uncertainties in other types of 14CO2 

fluxes, since, e.g., parts of the Atlantic ocean fluxes may have a significant signature 

on the European 14CO2 gradients.” 

 

References: 
Lauvaux, T., Uliasz, M., Sarrat, C., Chevallier, F., Bousquet, P., Lac, C., Davis, K. J., Ciais, P., Denning, 

A. S. and Rayner, P. J.: Mesoscale inversion: first results from the CERES campaign with 

synthetic data, Atmos. Chem. Phys., 8, 3459–3471, 2008. 

 

18. Eqs. C-3 and C-4: I believe there are errors in these two formulae. If  is 

obtained by minimizing the cost function J 



                                             (1) 

where R = cov( ) (R in their case contains the posterior error estimates on fluxes), 

then the optimal estimate of  and the corresponding covariance are 

 

 

Response: 

 The reviewer is right if cov(Y) (in the review’s equations, it’s R) is not diagonal 

or if the diagonal terms (variances of the variables in y vector) are not equal. In fact, 

the last equation proposed by the reviewer can be further simplified to: 

 

The equation we wrote as Eqs. C-3 and C-4 only applies when cov(Y) is diagonal 

and the terms in y all have equal variance, that is cov(Y)=σ2I where σ2 is the variance 

for all variables and I is an identity matrix. The equivalence between our equations 

and those proposed by the reviewer can be proved: 

cov(p)=(XTX)-1XTcov(Y)X(XTX)-1=(XTX)-1XTσ2IX(XTX)-1 

=σ2(XTX)-1XTX(XTX)-1=σ2(XTX)-1=(XTσ-2IX)-1=[XTcov(Y)-1X]-1 

In this sense, the equations proposed by the reviewer is more generalized. In this 

paper, we indeed used the cov(Y) in the equal variance case, so that the computation 

and results of the paper are correct. 

In order to avoid any confusion, we revise the sentence in lines 478-479: 

“Assuming that the absolute values of the standard deviations of the uncertainties in 

annual emissions of different years (in Tg/year) are identical and that these 

uncertainties are fully independent …” and we change the equations C-3 and C4 as 

proposed by the reviewer: 

p=(XTcov-1(Y)X)-1XTcov-1(Y)y                                                     (C-3) 

cov(p)=(XTcov-1(Y)X)-1                                                           (C-4) 

 

19. Table 2: In columns 2 and 3, I believe rows 3 and 4 have been flipped. 

Response: 

The reviewer is right. We correct this mistake accordingly. 

 

20. Figure 2(a): Am I supposed to see 56 colors in the world map? I don’t. I think the 

problem is that the country and state boundaries overlap with the region boundaries. I 

would suggest, at least in the world map, only showing the region boundaries from the 

control vector and eliminating the country and state boundaries. 

Response: 

 Here, we do not use 56 colors in the map actually because it is hard to find 56 



colors that are visibly differentiable. In fact, we repeatedly use 12 colors for 

non-adjacent regions. For example, the Northern Europe, Middle East, one region in 

the USA and one region in China are all red. But because they are in different 

continents, so that they represent four different regions. We change Figure 2 by 

removing the lines country and state boundaries, as the reviewer suggested, and 

mention the fact we repeatedly use 12 colors for non-adjacent regions in the caption: 
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Figure 2: (a) Map of the 56 regions whose monthly emission budgets are controlled by the 

inversion; (b) zoom over the 17 control regions in Europe. In (a), we repeatedly use twelve colors 

for non-adjacent regions. For example, the Northern Europe, Middle East, one region in the USA 

and one region in China are all red. But since they are in different continents, they represent four 

different regions. 
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Potential of European 14CO2 observation network to estimate the fossil 5 
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Abstract. Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in 

atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we 15 

solve for the monthly FFCO2 emission budgets at regional scale (i.e. the size of a medium-sized country in Europe) and 

investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is 

built on the LMDZv4 global transport model at 3.75°×2.5° resolution. We conduct Observing System Simulation Experiments 

(OSSE) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first 

one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as “posterior 20 

uncertainty”, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions which are used 

as a prior knowledge by the inversion (called “prior uncertainty”). The second one is based on comparisons of prior and 

posterior estimates of the emission to synthetic “true” emissions when these true emissions are used beforehand to generate 

the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently 

measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in 25 

a country where the network is rather dense like Germany, is larger than 30%. With the 43 14CO2 measurement stations planned 

in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for UK, France, Italy, Eastern Europe and the 

Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling 

frequency improve the uncertainty reduction (up to 40% to 70%) in high emitting regions, but the performance of the inversion 

remains limited over low-emitting regions, even assuming a dense observation network covering the whole of Europe. This 30 

study also shows that both the theoretical uncertainty reduction (and resulting posterior uncertainty) from the inversion and 

the posterior estimate of emissions itself, for a given prior and “true” estimate of the emissions, are highly sensitive to the 

choice between two configurations of the prior uncertainty derived from the general estimate by inventory compilers or 

computations on existing inventories. In particular, when the configuration of the prior uncertainty statistics in the inversion 

system does not match the difference between these prior and true estimates, the posterior estimate of emissions deviate 35 

significantly from the truth. This highlights the difficulty to filter the targeted signal in the model-data misfit for this specific 
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inversion framework, the need to strongly rely on the prior uncertainty characterization for this, and, consequently the need 

for improved estimates of the uncertainties in current emission inventories for real applications with actual data. We apply the 

posterior uncertainty in annual emissions to the problem of detecting a trend of FFCO2, showing that increasing the monitoring 

period (e.g. more than 20 years) is more efficient than reducing uncertainty in annual emissions by adding stations. The coarse 40 

spatial resolution of the atmospheric transport model used in this OSSE (typical of models used for global inversions of natural 

CO2 fluxes) leads to large representation errors (related to the inability of the transport model to capture the spatial variability 

of the actual fluxes and mixing ratios at sub-grid scales), which is a key limitation of our OSSE setup to improve the accuracy 

of the monitoring of FFCO2 emissions in European regions. Using a high-resolution transport model should improve the 

potential to retrieve FFCO2 emissions, and this needs to be investigated. 45 

1 Introduction 

CO2 emitted from fossil fuels is the major contributor to the increase of atmospheric CO2 (Ballantyne et al., 2015). 

Knowledge of FFCO2 emissions and their trends is essential to understand the drivers of their variations and assess the 

effectiveness of agreed upon emission reduction policies over time (Pacala et al., 2010). At national scale, FFCO2 emission 

inventories are derived based on energy and fuel use statistics, combustion efficiencies and emission factors. These inventories 50 

have low uncertainties in OECD countries, and large uncertainties in developing countries due to uncertain energy data and 

fuel-specific emission factors (Liu et al., 2015; Ballantyne et al., 2015; Andres et al., 2014; Ciais et al., 2010). At sub-national 

and intra-annual scales, the uncertainties in the estimates of FFCO2 emissions are higher than at national and annual scale 

(Ciais et al., 2010; Wang et al., 2013) because subnational intra-annual estimates require either the top-down disaggregation 

of national annual emissions relying on uncertain socio-economic proxies (Wang et al., 2013; Pregger et al., 2007; Oda and 55 

Maksyutov, 2011; Andres et al., 2012), or a detailed knowledge of local activity data for a bottom up-scaling of emissions 

(Gurney et al., 2009). The comparison of different emission maps of that kind also suggests large uncertainties due to treatment 

of administrative or land/water borders, the use of different proxies, and different spatial resolutions of the maps (Andres et 

al., 2016), etc. In consequence, national budgets obtained by aggregation of emission maps may have larger uncertainties than 

those based on national energy use and fuel accounting systems. 60 

Atmospheric inversions exploit the observed variability in atmospheric mixing ratios of CO2 to quantify CO2 fluxes. 

Inversions have been applied for natural CO2 sources and sinks based on CO2 observations (Broquet et al., 2011; Chevallier et 

al., 2010; Peylin et al., 2013). Recent attempts to quantify FFCO2 emissions with inversions based on atmospheric CO2 

measurements have stressed the importance to measure mixing ratio gradients very close to the emitting source, such as a city 

(Staufer et al., 2016; Cambaliza et al., 2014; Lindenmaier et al., 2014) or a power plant (Turnbull et al., 2016). Away from the 65 

emitting source, the atmospheric signals of FFCO2 emissions mixes with those of natural fluxes, so that FFCO2 emissions can 

hardly be monitored by atmospheric CO2 measurements only (Shiga et al., 2013). Because of this, monitoring FFCO2 emissions 
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at national scales, using continental networks of stations located outside the vicinity of the largest sources, is only possible 

when measuring an additional tracer specially sensitive to the signal of FFCO2 emissions (Miller and Michalak, 2017; Basu et 

al., 2016). Radiocarbon in CO2 is arguably the best tracer (Levin et al., 2003; Turnbull et al., 2006). Pacala et al. (2010) 70 

proposed to estimate national fossil fuel emissions of the US with an inversion based on measurements of radiocarbon in CO2. 

Assuming 10,000 atmospheric 14CO2 observations at 84 sites per year and a transport model of 5°×5° horizontal resolution, 

they suggested that the inversion could reduce the relative uncertainty in monthly emissions of the US from 100% (prior) to 

less than 10% (posterior). Ray et al. (2014) assumed virtual FFCO2 observations are sampled every 3 h from a network of 35 

measurement towers, and their inversion at 1°×1° resolution could reduce errors on 8 days country-level fossil-fuel emissions 75 

from about 15% (prior) down to 7% (posterior). Basu et al. (2016) developed an inversion system at 1°×1° resolution to account 

for the fact that 14CO2 is not a perfectly accurate tracer of FFCO2 alone and that its mixing ratio is also affected by natural 

fluxes. They showed that given the coverage of 14CO2 measurements available in 2010 over North America (969 measurements 

per year), the US national total fossil fuel emissions can be constrained with a relative precision of 1% for the annual mean, 

and less than 5% for most months.  80 

In all these pioneer studies, the actual spatial scale of the areas emitting FFCO2 is smaller than the grid sizes of the transport 

models (from 100 to 500 km). The misfits between the spatial scales controlled or modeled within the inversion system and 

those of actual emissions, or those of the FFCO2 patterns in the atmosphere generate errors known as aggregation and 

representation errors (see Sect. 2.2.2), which strongly affect the inversion of FFCO2 emissions (Wang et al., 2017). Those 

errors were not formally accounted for in previous FFCO2 inversion studies. 85 

In recent years, as part of the ICOS project, a rather dense network of standardized, long-term and high precision 

atmospheric measurements of CO2 has been set up in Europe. Some of the ICOS sites also measure 14CO2 and this type of 

measurement will be extended in the near term with the aim of determining gradients of FFCO2 mixing ratios across the 

European continent. The ICOS atmospheric network is expected to sample 2-week integrated 14CO2 at about 40 stations (1,000 

analyses per year; ICOS Stakeholder handbook 2013 at http://www.icos-uk.org/uk-icos/sites/uk-90 

icos/files/documents/Stakeholders%20Handbook%202013.pdf). In this context, network assessment studies are needed to 

understand how much this 14CO2 network will improve the knowledge on FFCO2 emissions. 

In this study, we study the potential of an atmospheric inversion system to quantify FFCO2 emissions at regional scales 

(i.e. the size of a medium-sized country in Europe like France or Germany) over the European continent based on continental-

scale networks of atmospheric CO2 and 14CO2 measurements. Special attention is paid to the representation and aggregation 95 

errors induced by the use of a coarse grid transport model. Wang et al. (2017) already evaluatedderived the statistics of these 

errors for the inversion system that we apply here, which is based on the Laboratoire de Météorologie Dynamique LMDZv4 

global transport model (Hourdin et al., 2006) and our study strongly relies on their results. Their resultsThey highlighted that 

both the representation and aggregation errors have large magnitudes, and could thus strongly reduce the ability of the inversion 

to filter the information on the uncertainties in regional FFCO2 emissions. They also stressed the fact that the spatial scales of 100 
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the correlations in the representation and aggregation errors are smaller than that of the projection in the atmospheric 

observation space of the typical uncertainties in the prior estimates of regional emissions (called “prior FFCO2 errors” 

hereafter). More precisely, with their modelling configuration they obtained values smaller than 200 km and larger than 700 

km respectively for these spatial scales. Therefore, if the observation networks are dense enough to provide information at 

finer spatial scale (typically with distances from a given station to the closest ones being systematically smaller than 700 km), 105 

the impact of aggregation and representation errors on the inversion of the regional budgets of FFCO2 emissions could be small 

(Wang et al. 2017). In this study, we account for the aggregation and representation errors using their detailed and quantitative 

characterization use the results from Wang et al. (2017) to take into account representation and aggregation errors and we 

check whether using dense networks could overcome the limitations brought by coarse resolution transport models and by the 

uncertainties in the distribution of the emissions at high resolution when retrieving regional emission budgets. Using the error 110 

estimates from Wang et al. (2017) ensures that our inverse modelling system does not overestimate the potential of 

measurement networks that are dense compared to our coarse transport model resolution but whose distances between the sites 

are larger than the spatial scales of local atmospheric signals from the anthropogenic emissions. 

 Our inversion system solves for monthly FFCO2 emissions in different regions of Europe over a period of one year by 

assimilating synthetic observations of atmospheric gradients of FFCO2 mixing ratios obtained from co-located CO2 and 14CO2 115 

measurements at ICOS-like stations. The study primarily aims at providing a typical quantification of the inversion 

performances and at understanding qualitatively how the inversion behaves depending on the level of FFCO2 emissions, on 

the knowledge on these emissions and on the network density. Furthermore, we We assume here that the uncertainties in the 

signals from 14CO2 fluxes other than the FFCO2 emissions, such as that from terrestrial biosphere, oceans, nuclear power plants 

and cosmogenic production, should have a moderate impact on the order of magnitude of the inversion performances that are 120 

analysed in this study. This leads us to ignore these uncertainties and consider 14CO2 is a perfect tracer of FFCO2 so that the 

only uncertainties in the FFCO2 mixing ratios data are related to the instrumental precision of CO2 and 14CO2 measurements. 

In practice, in the frame of this study, which focuses on the propagation of uncertainties, this is mathematically equivalent to 

assuming that 14CO2 is a perfect tracer of FFCO2. However, this does not imply that the signal from natural fluxes and nuclear 

power plants could be ignored when processing real data.In particular, we ignore the signals of 14CO2 fluxes (natural fluxes, 125 

nuclear power plants) other than those of FFCO2 emissions.  

Although the results are presented only over Europe, we use a globalour inversion system and the global transport model 

LMDZv4is global to ensure that uncertainties in FFCO2 emitted over other regions of the globe are properly accounted for and 

to study their impact on the inversion of the FFCO2 emission in Europe. LMDZv4 has a 3.75°×2.5° longitude×latitude 

horizontal resolution and 19 layers in the vertical between the surface and the top of the atmosphere. This spatial resolution is 130 

comparable to that of transport models used in state-of-the-art global inversions (Peylin et al., 2013). We assess the potential 

of this inversion to improve the estimates of regional fossil fuel emissions based 1) on the statistics of the theoretical prior and 

posterior uncertainties provided by a Bayesian statistical framework, and 2) on the statistics of the misfits between the prior 
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and posterior estimates of emissions against the assumed “truth” generated by the choice of another emission inventory 

independent from the one used as prior (see Sect. 2.3). The second type of assessment is used to test the impact of error 135 

structures that can hardly be accounted for by the representation of the prior and model uncertainties in the theoretical 

framework of the atmospheric inversion. 

The presentation of the results first focuses on regional FFCO2 emission budgets over one year. It also explores the 

monitoring of the decadal changes of FFCO2 emissions, compared to a baseline year, which is also of importance since it 

corresponds to climate mitigation targets set for the Kyoto Protocol and the Intended Nationally Determined Contribution. The 140 

trends of FFCO2 emissions over multiple years can be computed using simple regression of series of annual emissions estimates 

from inventories or atmospheric inversions. The relative uncertainties in decadal trends (e.g. the relative uncertainties in 

regression slopes) tend to be lower than that in the emission budget of a given year (Pacala et al., 2010), implying that changes 

can be monitored more accurately than annual budgets. Here, we provide a quantitative analysis of how accurate the trends of 

national annual FFCO2 emission can be monitored using measurements of FFCO2 mixing ratios.  145 

The paper is organized as follows. Section 2 gives a full description of the inversion and OSSE framework. Section 3 

analyzes the statistics of the posterior uncertainties and misfits from inversions using different observation networks. Section 

4 evaluates the potential of atmospheric inversion for the monitoring of decadal changes and discusses the relevance of using 

a coarse-resolution transport model in the inversion system to quantify regional FFCO2 emissions. Conclusions are drawn in 

Sect. 5. 150 

2. Methodology 

2.1 The configurations of the observation network 

We consider three different observation networks, in which the number of the stations ranges from 17 to 233. The 

minimum network (NE17) includes 17 sites, based on existing European ICOS 14CO2 stations in 2016. Using these sites and 

possible future additional 14CO2 stations listed in the 2013 ICOS Stakeholder handbook (available at http://www.icos-155 

uk.org/uk-icos/sites/uk-icos/files/documents/Stakeholders%20Handbook%202013.pdf), we also consider an intermediate 

14CO2 network of 43 sites (NET43). The NET17 and NET43 networks have high densities in France, Germany, UK and 

Switzerland, but remain sparse in Eastern Europe (Fig. 1). The corresponding site locations are given in Table S2. We also test 

a very dense network of 233 sites (NET233), in which two sites are placed in each European land pixel of the LMDZv4 

transport model (Fig. 1c). The NET233 network is denser than NET17 and NET43 in the high emitting regions, e.g. Germany, 160 

and also covers the region that is not well sampled by NET17 and NET43. However, the location of its 233 sites is not intended 

to be optimal since the emissions have a very heterogeneous spatial distribution. Their homogeneous spreads allow us to reduce 

the impact of representation and aggregation errors (Trampert and Snieder, 1996; Kaminski et al., 2001) and to assess the 

impact of having a dense network for all control regions.  
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The high-altitude station Jungfraujoch (JFJ) at 3450 meter above sea level (masl) in Switzerland samples free tropospheric 165 

air over Europe, assumed to be representative of the “background” concentration. In all the three configurations of the 

observation network, JFJ is chosen as the reference station. In this study, we assimilate gradients of FFCO2 between other sites 

and JFJ in the inversion. Measurements at other sites than JFJ are all assumed to be made at 100 meter above the ground level 

(magl), the typical height of ICOS tall towers (Kadygrov et al., 2015; Marquis and Tans, 2008).  

Wang et al. (2017) have already made a detailed characterization of the distributions of representation errors at the sites 170 

considered here and characterized two types of stations based on the population density of the grid cells within which a station 

is located and on the locations of large point sources (e.g. large power plants). All the sites in different networks are thus 

categorized as “urban” or “rural” sites according to their results. In the NET233 network, the two sites in each land pixel of 

the transport model are assumed to be one urban and one rural distant by more than 200 km in order to combine data for the 

structures of representation errors are different (i.e. which have a different view in terms of the scale of FFCO2 emissions). 175 

Any of the transport model pixels provides such locations since having areas of nearly 105 km2 (Wang et al. 2017). 

2.2 Configuration of the inversion system 

The assessment of the potential of different networks to constrain fossil fuel emissions is based on the inversion 

framework presented by Wang et al. (2017). In this section we summarize the main elements of this framework for which the 

details can be found in Wang et al. (2017). 180 

2.2.1 Theoretical framework of the Bayesian inversion and diagnostics of the inversion performance in OSSEs 

The inversion relies on a Bayesian statistical framework. The estimate of the fossil fuel emission budgets at monthly and 

regional scales over one year, called hereafter the control variables x, is corrected from a prior knowledge of these variables 

xb (that from a gridded inventory covering the globe). This correction is based on (i) a set of gradients of FFCO2 mixing ratios 

between the different measurement sites and JFJ sampled during the afternoon (see Sect. 2.2.2) across Europe, called hereafter 185 

the “observations” yo, (ii) the observation operator H linking y with x based on the spatial and temporal distribution of the 

emissions within a control region and within a month, on a linear CO2 atmospheric transport model, and on the sampling of 

the gradients between the corresponding sites and (iii and iv) a modeling of the covariances B and R of the distributions of the 

uncertainties in the prior estimate and of the observation errors. The observation error is a combination of the measurement 

error, the errors from the model transport, representation and aggregation errors. In this study, we ignore the impact on the 190 

FFCO2 gradients from the transport model initial conditions that are not controlled by the inversion since it is assumed to be 

negligible (Wang et al., 2017). Assuming that the prior uncertainties and observation errors are uncorrelated with each other 

and have unbiased and Gaussian statistical distributions, the statistical distribution of the estimate of x, given xb and yo, is also 

unbiased and Gaussian, and its corresponding mean xa and covariance matrix A are given by: 
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A = (B-1+HTR-1H)-1
                                                                                        (1) 195 

xa
 = xb

 + AHTR-1(yo–Hxb)                                                                        (2) 

where T and -1 denote the transpose and inverse of a matrix respectively. 

 Equation (1) shows that A depend on neither the value of the observations yo nor the prior emission budgets xb themselves, 

but rather on the prior and observation error covariance matrices, on the observation times and locations (through the definition 

of H corresponding to the y-space) and on the observation operator. Equation (2) shows that the actual value of xa also depends 200 

on the observations yo and on the prior emission budgets xb. 

 A common performance indicator is the theoretical uncertainty reduction (UR) for specific budgets of the fossil fuel 

emissions (at control or larger space and time scales), defined by: 

UR = 1 −
𝜎𝑎

𝜎𝑏
                                                                                        (3) 

where σa and σb are the standard deviations of the posterior and prior uncertainties in the corresponding budget of emissions. 205 

Such an indicator can directly be derived from the modeling of B and from the theoretical computation of A by Eq. (1). Of 

note is that the scores of uncertainty and of UR given in this study will refer to the standard deviation of the theoretical 

uncertainty in a specific emission budget. 

However, if the modeling of B and R does not match the actual statistics of the prior and observation uncertainties, or if 

the theoretical framework of the inversion (assuming that all sources of uncertainty have unbiased and Gaussian distributions, 210 

that prior and observation errors are uncorrelated and that the observation operator is linear) is not well satisfied, such a 

theoretical computation of UR may not reflect the actual performance of the inversion. Wang et al. (2017) derived the statistics 

of the different components of the observation errors for the same inversion framework as used here. Their statistics of the 

representation and aggregation errors were based on the comparison of transport model simulations made at high and low 

spatial resolutions. They highlighted the fact that the distribution of these errors depart from purely Gaussian distributions, and 215 

that their covariances can hardly be characterized by the relatively simple models traditionally used in atmospheric inversion 

systems. In this study, we thus test the inversion system with OSSEs using synthetic truth and errors to build xb and yo that 

better reflect the type of observation errors found by Wang et al. (2017). We use Eq. (2) to derive the estimates of xa and we 

analyze the misfits between xb and xa against the synthetic true emission budgets xt. This leads us to define an alternative 

indicator of the inversion performance, called misfit reduction (MR) hereafter. While this indicator does not provide an 220 

exhaustive statistical view of the uncertainty in the inverted emissions, it is used to evaluate the confidence in the more 

complete (with a full covariance estimate rather than just a realization of the distribution) but more theoretical computation of 

the posterior uncertainties and of the UR based on Eq. (1). We write the MR for specific budgets of the fossil fuel emissions 

(at control or larger space and time scales) as follows: 

MR = 1 −
𝜀𝑎

𝜀𝑏
                                                                                       (4) 225 

where εa and εb are the posterior and prior misfits between the inverted and prior emission budgets against true values for the 
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corresponding emission budgets. MR range from negative values (when the inversion deteriorates the precision of the 

estimation) to 1 (or “100%”; when the inversion provides a perfect estimate of the emissions). 

We focus on uncertainties and misfits at both monthly and annual scales. However, we canonly have only one practical 

realization for xb, yo and xa following the protocol of that is presented in (see Sect. 2.3). Therefore, the assessment of the 230 

performance of the inversion for a given region-month using the corresponding score of MR may be over- or under-estimated 

due to the lack of sampling of the prior and observation errors. Consequently, at monthly scale, in order to strengthen the 

evaluation of the theoretical uncertainties based on these single realizations of the prior and posterior misfits, we compare, for 

a given region, the quadratic mean of the twelve monthly misfits (called “monthly misfits” without mention of a specific month 

in Sect. 3) to the quadratic mean of the standard deviations of the twelve monthly uncertainties (called “monthly uncertainties” 235 

without mention of a specific month in Sect. 3), which characterizes the average monthly uncertainties over the year. This 

computation implicitly assumes that the twelve monthly misfits through a year follow the same statistical distribution, and 

represent twelve independent realizations of this distribution. In such a situation, the comparison between the averages of the 

prior and posterior monthly misfits give a good indications of the error reduction that should not be highly skewed by sampling 

errors. In the result section, for a given region i, UR and MR scores derived at the “monthly” scale without mention to a specific 240 

month will correspond to the relative difference between the prior and posterior values of these average monthly uncertainties 

and misfits from a whole year of inversion: 

UR𝑖 = 1 −
√

1

12
∑ (𝜎𝑖,𝑚

𝑎 )
212

𝑚=1

√ 1

12
∑ (𝜎𝑖,𝑚

𝑏 )
212

𝑚=1

                                                             (5) 

MR𝑖 = 1 −
√

1

12
∑ (𝜀𝑖,𝑚

𝑎 )
212

𝑚=1

√ 1

12
∑ (𝜀𝑖,𝑚

𝑏 )
212

𝑚=1

                                                             (6) 

(following equations similar to Eq. (3) and (4)). At the annual scale, the diagnostics of UR will have to be compared to 245 

MR values for single realizations of the annual misfits. In addition, we discuss the scores of the relative uncertainty and misfit, 

defined as the ratios of the absolute uncertainties and misfits to the absolute prior emission budgets. 

 

2.2.2 Practical setup 

Control vector 250 

The inversion system has a global coverage and controls monthly budgets of FFCO2 emissions for a set of regions during 

the year 2007. The map of these regions is given in Fig. 2a. The space discretization of regions is higher where emissions are 

the largest in Europe (area of interest, Fig. 2b) and also in the US and China. In other areas with lower emissions or where 

observational data to further constrain the prior emissions are lacking (Fig. 2a and Table S1), the size of the control regions is 
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much larger, and can reach that of a continent. The spatial resolution of the control vector (a region) in Central and Eastern 255 

Europe corresponds to the typical size of a medium-sized European country, but in western Europe apart from Spain, Portugal 

and Ireland, where emissions are the highest, the control variables correspond to sub-national regions (e.g. southern and 

northern UK, southern and northern Italy, western and eastern Germany, western and eastern France in Fig. 2b). Monthly 

emissions over the ocean are included in the control vector, but the ocean is considered as one large region. In total, the world 

is divided into 54 land regions and 1 ocean region (Table S1). The inversion solves for the 12 monthly budgets of emissions 260 

for these regions, but not for the spatio-temporal distributions within each region and month. In our framework, choosing year 

2007 for the inversion only impacts the meteorological conditions and thus the atmospheric transport conditions. We assume 

that the atmospheric transport conditions in 2007 are representative of average conditions. We also ignore the impact of inter-

annual variations of FFCO2 emissions, which is usually less than 4% (Levin and Rödenbeck, 2008), and of their prior 

uncertainty (see below the configuration of the prior uncertainty matrix, which is a function of the emissions). 265 

Time selection of data to be assimilated 

Current atmospheric 14CO2 samples in Europe are usually filled continuously over the course of two weeks (Vogel et al., 

2013; Levin et al., 2013). However, sState-of-art inversion systems generally make use of data during the afternoon only, due 

to limitations of transport models in simulating night-time mixing ratios near the ground. Given the ability to have an 

intermittent filling of air samples for 14C analysis (Turnbull et al., 2016; Levin et al., 2008), we thus define the observations to 270 

be selectively sampled only during the afternoon (12:00-18:00 local time). Since the cost of the 14CO2 analysis of one sample 

is presently high, monitoring of 14CO2 (and thus FFCO2) during a whole year favors the choice of integrated samples at the 

weekly to 2-week scale (Levin et al., 1980; Turnbull et al., 2009; Vogel et al., 2013). In this study, we first consider 2-week 

integrated afternoon data. More precisely, we first consider 2-week averages of afternoon FFCO2 gradients with respect to JFJ. 

In addition, we present tests with daily afternoon datagradients, for which the correspondingsuch a sampling scheme would be 275 

more costly. Sampling FFCO2 observations at high temporal resolution should decrease the weight of the random errors on 

longer time scales, which should improve the potential of the inversions of monthly to annual emission budgets. While 

inversions are conducted with 2-week samplings for the three networks, daily sampling is tested for NET43 only, which is 

sufficient to evaluate the usefulness of high frequency sampling. 

Observation operator 280 

The atmospheric FFCO2 mixing ratios are influenced by the 3-D initial FFCO2 distribution, and by surface emissions 

during the year. In this study, the inversion rescales all emissions during one year (here 2007) and we ignored initial conditions 

on January 1st which are rapidly transported out of Europe and do not cause subsequent FFCO2 gradients between European 

sites (Wang et al., 2017). The observation operator is restricted to a matrix H which consists of a chain of three sub-operators, 

H=HsampHtranspHdistr, where Hdistr distributes regional monthly emission budgets into a gridded emission map at the resolution 285 

of the transport model, Htransp is the atmospheric transport model, and Hsamp samples the FFCO2 gradients with respect to JFJ 

corresponding to the observation vector from the transport model outputs (Wang et al. 2017). 
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We use the high-resolution (0.1°) annual FFCO2 emission map from the PKU-CO2 inventory in the year 2007 (Wang et 

al., 2013) to distribute the emissions in space within each region. PKU-CO2 is an annual emission map with no temporal profile, 

so that the modelled temporal distribution in Hdistr is flat between months. This implementation of Hdistr is denoted Hdistr
PKU. 290 

The off-line version of the general circulation model of Laboratoire de Météorologie Dynamique LMDZv4 (Hourdin et 

al., 2006) forms Htransp. Atmospheric transport simulations was nudged to analyzed wind fields from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim, Dee et al., 2011) for the year 2007. We denote 

this implementation of Htransp by Htransp
LMDZ. 

The sampling of FFCO2 gradients relies on the extraction of individual simulated mixing ratio data at the measurement 295 

locations and chosen temporal sampling frequency, followed by the computation of differences (gradients) between time series 

of FFCO2 mixing ratios at each site and that at the JFJ reference site. The mixing ratio data for a given site is sampled at the 

chosen sampling height in the transport model grid cell containing this site. We recall that the sampling height is 100 m above 

ground level (magl), the 1st level of LMDZv4, except for JFJ being at 3450 m above sea level (masl), the 6th level. The resulting 

implementation of Hsamp is denoted Hsamp
coloc.  300 

In sum, the practical observation operator used for in the practical configuration of the inversions system is defined by 

Hprac= Hsamp
coloc Htransp

LMDZ Hdistr
PKU. 

Prior error covariance matrix 

Emission estimates from inventories are limited to annual and national scales and rarely provide systematic assessments 

of uncertainties. There are a limited number of datasets providing emission maps at higher spatial/temporal resolutions. 305 

Although there have been some efforts to compare such FFCO2 emission maps (Macknick et al., 2009; Ciais et al., 2010; 

Andres et al., 2012; Andres et al., 2016), the ability to characterize the uncertainties of an emission inventory is limited, 

especially for sub-national and sub-annual scales. In this study, we use different streams of information to model the prior 

emission uncertainty covariance matrix B and we use two different configurations of this matrix in the inversions. 

The first configuration of the B matrix, called here notional or Bnotion, is related to the notional estimates of (1-sigma) 310 

uncertainties for national emissions claimed by inventory compilers to range from 1-2.5% for the USA (US EPA, 2015), 2%-

7% for European countries (Andres et al., 2014; Ballantyne et al., 2015) to 7.5-10% for China (Gregg et al., 2008; Liu et al., 

2015). However, Ciais et al. (2010) found that the ratios between geographically distributed emission maps, even after 

correction for inconsistencies and aggregated at national scale, ranged from 0.86 to 1.5, which is larger than the uncertainties 

claimed by inventory compilers. In this study, the prior uncertainty covariance Bnotion of monthly emissions is set up based on 315 

three constraints: 1) the relative uncertainty in annual emission equals 10% for US and European national budgets, 15% for 

China, and 10% for individual control regions outside US, Europe and China; 2) uncertainties in monthly emissions have a 2-

month exponentially decaying temporal auto-correlation, and 3) spatial correlations between uncertainties in monthly 

emissions across adjacent regions within the same country are fixed to -0.2, a negative value to account for the fact that sub-

national emissions are usually disaggregated from national inventories, so that a positive bias in part of a country must be 320 



 

11 

 

compensated by a negative one in another. All other spatial correlations in Bnotion are assumed to be null, and the overall 

correlation matrix in Bnotion is derived from the Kronecker product of temporal and spatial correlation matrices (assuming that 

the correlation between two control variables are given by the product of the spatial and temporal correlations between the two 

corresponding control regions and the two corresponding time window respectively). The full computation of Bnotion is detailed 

in Appendix A. With this setting, prior uncertainties in monthly emissions can exceed 10% and be as large as 30% for some 325 

sub-national control regions.  

The second configuration of the B matrix, known as empirical or Bempiric, is based on the empirical derivation of the 

statistics of the differences between two spatially gridded emission maps (which will be used to define the prior and true 

estimate of emissions in the OSSEs, see Sect. 2.3). The two maps are PKU-CO2 (Wang et al., 2013, http://inventory.pku.edu.cn/) 

and IER-EDG (available at http://carbones.ier.uni-stuttgart.de/wms/index.html), both corresponding to the year 2007. The 330 

IER-EDG map combined EDGAR annual map with country specific temporal profiles (monthly, daily and hourly) from IER. 

In general, the differences in annual emissions from the control regions in Europe between these two emission maps range 

from 3% to 20%, except for the Balkans where they reach up to 44%. We assume that there is no spatial correlation of the prior 

uncertainty between different control regions. For each control region of the globe, the Sstatistics of the difference between 

the monthly emission budgets from the two mapstwo maps aggregated at the control region scale are fitted by a covariance 335 

model that combines four different covariance matrices, with exponentially decaying temporal correlations at time scales of 1 

month, 3 months, and 6 months for the first three ones respectively, and a full temporal correlation over the year for the fourth 

one (representing the annual bias on the prior emissions). The mathematical formulation for this computation and the full 

derivation of Bempiric is detailed in the Appendix B. In addition, we assume that there is no spatial correlation of the prior 

uncertainty between different control regions. Again, the overall correlation matrix in Bempiric is derived from the Kronecker 340 

product between the temporal and spatial correlation matrices. 

Bempiric is built using an error covariance model which cannot perfectly characterize the structure of the differences 

between the PKU-CO2 and IER-EDG budgets at the control resolution, which will be used to derive realistic xb and xt 

respectively and thus the “actual prior errors“ in the OSSEs with synthetic data (see Sect. 2.3). However, by construction, 

Bempiric better fits these errors in our OSSEs than the Bnotion matrix in terms of both the standard deviation of the uncertainty at 345 

the 1 month / regional scale and the temporal correlations. The differences between the results of the inversions using either 

Bempiric or Bnotion will be used to give an estimate of the range of the inversion skills as a function of different assumptions 

regarding the prior uncertainty in emission budgets. 

Observation error covariance matrix 

Wang et al. (2017) derived estimates of the observation errors in FFCO2 gradients across Europe when using the same 350 

inverse modeling framework as in this study. They analyzed four sources of observation errors (i.e. sources of misfits when 

comparing the modeled to the measured FFCO2 gradients other than the uncertainties in the estimates of the emission budgets 

at the 1-month and regional scale), one related to the FFCO2 data, three to the observation operator: 
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1) The measurement error εi on FFCO2 gradients is simply assumed to be 1 ppm with no temporal and spatial correlations, 

which corresponds to the typical precision of the analysis of air samples by accelerator mass spectrometry (AMS) for 14CO2 355 

(2‰-3‰) (Hammer et al., 2016; Turnbull et al., 2014). 

2) The representation error εr arises from the mismatch between the coarse resolution of modelled emissions and concentrations 

in the observation operator (here the transport model) and the spatial variability of the actual emissions and concentrations. 

3) The transport errors εt is due to discretized and simplified equations for modeling transport, using a given meteorological 

forcing in practice.  360 

4) The aggregation error εa arises from the mismatch between the control resolution (budgets of regions in each month) and 

the resolution of the emission modeled in the observation operator (here the transport model). It reflects uncertainties in Hdistr. 

In this study, we use the estimates of the standard deviations and of the correlation functions for these different types of 

observation errors from Wang et al. (2017) to set up the R matrix. Wang et al. (2017) sampled representation and aggregation 

errors by using simulations with a mesoscale (with higher resolution than LMDZv4) regional transport model and by degrading 365 

the spatial and temporal resolution of the emission maps in the input of this model and in the output FFCO2. Based on these 

samples, the standard deviation of εr was characterized by a function of season and on whether a station is “urban” or “rural” 

(see Sect. 2.1). For εa, the standard deviation for spring/summer and autumn/winter were derived. The standard deviation of 

the transport error at a given site is set-up proportional to the temporal standard deviation of the 1-year long time-series of the 

high-frequency variability of the detrended and deseasonalized simulated daily mean afternoon mixing ratios in the grid cell 370 

of the transport model, at which the sites are located. Such an estimation of transport error which relies on some results from 

Peylin et al. (2011) aims at representing the typical value for global transport models, not that of the specific transport model 

used in this study. The temporal and spatial auto-correlations in the representation and aggregation errors were characterized 

by Wang et al. (2017) using the sum of a long-term component and a short-term component: r(Δt)=a×e-Δt/b+(1-a)×e-Δt/c where 

Δt is the timelag (in days) and a, b, c are parameters optimized by regressions against the samples of the errors. Furthermore, 375 

Following Wang et al. (2017), we do not include temporal auto-correlations in the transport error for simulated daily to 2-week 

mean afternoon FFCO2 gradients, since previous studies of the auto-correlations of the transport errors have not evidenced that 

they should be significant at daily scale (Lin and Gerbig, 2005; Lauvaux, 2009; Broquet et al., 2011). This choice follows the 

corresponding discussion by Wang et al. (2017) and implicitly ignores that transport model errors likely bear long-term 

components (often referred to as “biases”, Miller et al., 2015) even when being dominated by components on short timescales. 380 

The corresponding values of the standard deviation and the modelling of temporal autocorrelation of the observation errors for 

2-week/daily mean afternoon FFCO2 gradients are listed in Table S3 and Table S4. 

A simpler account of the spatial correlations in the observation errors is derived from the diagnostics of Wang et al. (2017). 

We do not account for the spatial correlation in the representation error, as the scale of the spatial correlation according to 

Wang et al. (2017), i.e. 55-89 km, is much smaller than the size of the grid cells of the global transport model Htransp
LMDZ used 385 

for the inversion. When there are more than two sites located in the same grid cell of the transport model, we consider that the 
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aggregation errors and the transport errors are fully correlated between these sites, according to the definition by Wang et al. 

(2017). We do not account for spatial correlations between aggregation errors for measurements made at sites in different grid 

cells, because the scale of the spatial correlation is 171 km and is smaller than the size of the grid cell, according to Wang et 

al. (2017). Finally, we do not account for spatial correlations between transport errors or measurements made at sites in different 390 

grid cells. 

account for the spatial correlation in the R matrix, as the scale of the spatial correlation is smaller than the size of the grid 

cells of the global transport model Htransp
LMDZ used for the inversion. The standard deviation of the transport error at a given 

site is assumed proportional to the temporal standard deviation of the 1-year long time-series of the high-frequency variability 

of the detrended and deseasonalized simulated daily mean afternoon mixing ratios in the grid cell of the transport model, at 395 

which the sites are located. The corresponding values of the standard deviation and the modelling of temporal autocorrelation 

of the observation errors for 2-week/daily mean afternoon FFCO2 gradients are listed in Table S3 and Table S4. 

Assuming that all these sources of errors are independent from each other and have Gaussian and unbiased distributions: 

i.e. εi ~N(0, Ri), εr ~N(0, Rr), εt ~N(0, Rt), εa ~N(0, Radistr), R is given by the sum of the covariance matrices corresponding to 

each of them: R = Ri + Rr + Rt + Ra.  400 

2.3 Configurations of the OSSEs 

In this study, we consider two types of OSSEs corresponding to the two configurations of prior error covariance matrix 

Bnotion and Bempiric. The first OSSEs use Bnotion (called here INV-N), while the second type of OSSEs use Bempiric (called here 

INV-E). As discussed in Sect. 2.2.1, in both types of OSSEs, the theoretical computation of the posterior uncertainty and UR 

is based on Eq. (1). These diagnostics would perfectly characterize the performance of the system if the prior uncertainty and 405 

the observation errors have Gaussian and unbiased distributions that are perfectly characterized by the set-up of the prior 

uncertainty covariance matrix B and observation error R in the inversion system. In both types of OSSEs, these diagnostics 

are evaluated based on a practical application of Eq. (2), and on the analysis of posterior misfits and MR, with a synthetic truth 

(true emissions and true observation operator) and observations that are generated in a similar way as in Wang et al. (2017). 

Here, the “actual” prior and observation errors have a complex origin and structure which is not perfectly adapted to the 410 

unbiased and Gaussian assumptions and are not perfectly reflected by the set-up of the prior uncertainty covariance matrix B 

and observation error covariance matrix R in the inversion system, even in INV-E where B=Bempiric and R are fitted to the 

“actual” prior and observation errors. Of note is that in INV-N, Bnotion has significant inconsistencies with the actual differences 

between xb and xt, so that, in this experiment, the analysis of the posterior misfits and MR will be used to evaluate the 

performance of the inversion when using a poor configuration of the prior uncertainty covariance matrix in the inversion 415 

system in addition to accounting for errors which hardly fit with the assumption that their distribution is Gaussian and unbiased. 

This corresponds to situations for which there is little knowledge about the uncertainties in the inventories used for inversions 

with real data. The analysis of misfits and MR in INV-N is thus more pessimistic than that in INV-E.  
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In the OSSEs, the synthetic prior estimate of the regional/monthly emissions xb is built based on the emissions from PKU-

CO2 (xPKU hereafter). The synthetic true emission budgets and synthetic observations are modelled using a realistic 420 

representation the “actual” emission budgets xt and of the “actual” Hdistr operator based on the relatively independent IER-

EDG inventory. The synthetic true regional/monthly emissions and the synthetic true Hdistr operator are thus referred to as xIER-

EDG and Hdistr
IER-EDG hereafter. The synthetic observations are generated using xIER-EDG and the operator 

HOSSE=Hsamp
colocHtransp

LMDZHdistr
IER-EDG, which relies on the same Hsamp

coloc and Htransp operators as the Hprac observation operator 

used in the inversion system. Consequently, the difference between HOSSE and Hprac underlies aggregation errors only. Therefore, 425 

in order to account for the transport, representation and measurement errors, the data HOSSExIER-EDG are perturbed following 

the statistics of the corresponding errors as detailed in Sect. 2.2.2.  

The parameters of the two inversion configurations are summarized in Table 1 and Fig. 3. All the combinations of 

networks and data temporal sampling described in Sect. 2.1 and 2.2.2 are tested with the two configurations of OSSEs. The 

resulting eight OSSEs are listed in Table 2. 430 

3. Results 

3.1 Assessment of the performance of inversions when using the NET17/NET43 and 2-week integrated sampling 

3.1.1 Analysis of the results at the regional and monthly scale 

Figure 4 shows the URs of monthly emissions using the NET17 and NET43 networks and 2-week sampling (N-17W, E-

17W, N-43W and E-43W in Table 2). With NET17, INV-N and INV-E inversions show similar spatial patterns of UR scores. 435 

The largest UR occurs in region western Germany, being 34% for inversion N-17W and 38% for E-17W. The URs are also 

significant in eastern Germany for both inversions. This stems from the fact that several stations are located around and within 

these regions and that the emission in these regions are higher than those in other regions. Moderate UR values are found for 

Benelux (12%) and Eastern France (15%) in inversion E-17W and the UR values elsewhere are marginal. Going from NET17 

to NET43 adds a significant increase (improvement) of the UR for southern UK (from 3% to 23%), northern Italy (from 3% 440 

to 18%) and Eastern Europe (from 2% to 15%) in INV-N (Fig. 4d4e). The increase of UR in E-43W, compared with the UR in 

E-17W, mainly occurs in eastern France (from 16% to 33%) and the Balkans (from 3% to 13%). Because the added stations 

in NET43, compared to NET17, are mostly located outside Germany, the URs over western and eastern Germany are not 

significantly improved (Fig. 4d 4e and 4e4g). Despite their different URs for specific regions, both types of inversions highlight 

the overall increase in the UR for western European regions by increasing the number of sites from NET17 to NET43.  445 

The differences in the spatial patterns of UR between INV-N and INV-E inversions shown in Fig. 4 reveal the high 

sensitivity of UR to the configuration of the prior uncertainties. Figures 5a and 5b show the prior uncertainties associated with 

the two configurations of Bnotion and Bempiric. The regions where these uncertainties and thus the potential for reducing these 
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uncertainties from the inversion are the highest are very different between Bnotion and Bempiric. For example, Bempiric defines a 

much larger uncertainty than Bnotion over eastern France (43% vs 16%) while the opposite is true for southern UK (4% vs 14%). 450 

As a result, the UR of eastern France is 33% in E-43W and 8% in N-43W, and the UR of southern UK is 2% in E-43W and 

23% in N-43W. 

Complementing the uncertainty reduction, Fig. 5 shows the prior and posterior uncertainties and provides insight into the 

precision of the estimates of monthly FFCO2 emissions after inversion with NET17 and NET43 and 2-week sampling. For 

example, using NET17, uncertainties in monthly FFCO2 emissions are reduced from 29% (or 17%) in the prior estimates to 455 

17% (or 9%) in the posterior estimates for western Germany in INV-N (or INV-E). Using additional sites in NET43 reduces 

the uncertainties in monthly FFCO2 emissions in southern UK from 25% in the prior estimates to 19% in the posterior estimates 

in INV-N, and reduces the uncertainties in monthly FFCO2 emissions in eastern France from 44% in the prior estimates to 29% 

in the posterior estimates in INV-E. Like the UR, posterior uncertainties and their spatial variations are different between INV-

N and INV-E inversions, and demonstrate a strong dependence on the choice of B=Bnotion or B=Bempiric.  460 

The scores of the MR and misfits of monthly emissions in both inversions using NET17 and NET43 and 2-week sampling 

are shown in Fig. 4 (b, d, f, h) and Fig. 5 (b, d, f, h, j, l). In INV-E, there are slight differences between posterior misfits and 

uncertainties, and between MR and UR. For example, for E-43W, the MR (21%) for Iberian Peninsula is larger than the UR 

(5%), while the MR (40%) for western Germany is slightly smaller than the UR (47%). Despite such differences, the spatial 

patterns of the MRs in Fig. 4 and posterior misfits in Fig. 5 are close to those of the URs and posterior uncertainties. On the 465 

contrary, there are large differences between the statistics of posterior misfits and posterior uncertainties, and between MRs 

and URs in INV-N. In some regions, such as southern UK (MR= -0.9 in N-17W and MR= -1.4 in N-43W) and northern Italy 

(MR= -0.4 in N-17W and MR= -1.5 in N-43W), the MRs are negative and far below zero. This means that the posterior misfits 

are even larger than the prior misfits (comparing Fig. 5f and 5j with Fig. 5b), and thus a degradation of the emission estimates 

from the inversion is seen in these regions when assimilating FFCO2 data. This suggests that the theoretical computation of 470 

posterior uncertainty poorly characterizes the actual performance of the inversion in practice when the configuration of the 

prior uncertainty covariance matrix and the actual prior errors are not consistent. 

Figure 6 shows the correlations in the prior and posterior uncertainties in monthly emissions from different regions, and 

their differences in inversions N-43W and E-43W. After assimilating the observations, the change of correlations mainly occurs 

among regions that have large URs. In both inversions, there are negative correlations between the posterior uncertainties in 475 

monthly emissions from some neighboring regions, in particular between western Germany and eastern Germany (from -0.27 

to -0.18 depending on the months). The negative correlations between the posterior uncertainties in monthly emissions of 

different regions indicate that NET43 brings a strong constraint on the budgets over a large area but does not separate individual 

regions so well. At the same time, the temporal correlations in the posterior uncertainties between different months for a given 

region also change after the inversion. For example, in INV-N, temporal correlations between posterior uncertainties in 480 

monthly emissions for a specific region are smaller than those between prior uncertainties for that region when the time lag is 
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smaller than 3 months, while they are larger than the ones in prior uncertainties when the time lag exceeds 3 months (Fig. 6e). 

Because our setup of Bnotion only considers an exponentially decaying temporal correlation with a correlation length of 2 months 

(Sect. 2.2.2), these longer term correlations in monthly posterior uncertainties must hence be driven by the temporal 

correlations in observation error, which contains a long-term component (see Sect. 2.2.2). On the contrary, in INV-E where 485 

Bempiric includes a component with annual-scale temporal correlations, the temporal correlations between posterior uncertainties 

in the monthly emissions are smaller than those between prior uncertainties. The analysis of the correlations in the prior or 

posterior uncertainties from N-17W and E-17W leads to very similar conclusions, but is not shown here. 

3.1.2 Analysis for annual emissions 

We compare the performance of different inversions to constrain annual mean FFCO2 emissions. Corresponding UR and 490 

MR values are shown in Fig. 7. The patterns and values of UR for annual emissions are very similar to those at monthly scale 

(Fig. 4). High URs and MRs occur mostly in regions where the observation networks are dense and the emissions are high. 

For example, up to 47% UR is achieved for annual emissions in western Germany when using network NET43 and 2-week 

sampling. As a result, the posterior uncertainties of annual fossil fuel emissions, when using NET43 with 2-week sampling, 

are 10% (or 4%) for southern UK, 8% (or 8%) for western Germany and 15% (or 28%) for eastern France in INV-N (or INV-495 

E). 

Both the spatial spread and the magnitude of the MR of annual emissions in INV-E (Fig. 7d and 7h) are larger than those 

of the UR. The differences between MR and UR are much larger at annual than at monthly scale (when comparing Fig. 4 and 

7). The cause of the discrepancy between UR and MR was presented in Sect. 2.2.1, and it may have a larger impact at the 

annual scale than at the monthly scale due to the evaluation of annual UR scores to annual MR values corresponding to single 500 

realizations of the misfits. In INV-N, the spatial spread and the magnitude of the MR are still significantly different from those 

of the UR and the MRs for some regions are still negative and far below zero. 

3.2 Impact of using daily measurements and using a dense observation network 

Figure 8 shows the URs and MRs of monthly emissions from inversions using NET43 and daily sampling, and from 

inversions using NET233 network and 2-week sampling (N-43D, E-43D, N-233W and E-233W in Table 2). When using 505 

NET43 and daily sampling, the URs of monthly emissions are generally larger (improved) than when using 2-week sampling 

for all regions. The differences between the UR values of monthly emissions with daily and with 2-week sampling are larger 

(meaning more improvement with daily sampling) over the regions where the network is dense and the emissions are high. 

For instance, the UR of monthly emissions for western Germany are as high as 62% (or 67%) in INV-N (or INV-E). When 

using the much denser NET233 network yet with a lower 2-week sampling (Fig. 8 d-f), we found that UR of monthly emissions 510 

in some regions that were poorly sampled by networks NET17 and NET43 are largely improved. For instance, UR value in 

Eastern Europe is 36% in N-233W (compared with 15% in N-43W) and is 73% in the Balkans in E-233W (compared with 13% 
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in E-43W). In principle, large regions tend to encompass more sites and to be surrounded by more sites than small regions, 

and thus may have more observations to improve their estimates of emissions. However, in both N-233W and E-233W, the 

URs for regions with a large area like northern Europe are still limited to below 5%. Large URs are identified over the regions 515 

whose absolute uncertainties are high, revealing the important roles of the absolute prior uncertainties when using the coarse-

resolution transport model in the inversion of FFCO2 emissions over Europe. The scores of MR match relatively well those of 

UR only in E-43D and E-233W (INV-E inversions) but not in N-43D and N-233W (INV-N inversions) (comparing Fig. 8d 

versus Fig. 8c, and Fig. 8h versus Fig. 8g). Even though the temporal frequency or spatial coverage of the sampling of the 

FFCO2 mixing ratios are largely improved using NET43 and daily sampling, or NET233 and 2 week sampling, the MRs are 520 

still negative and below zero for a large number of regions in Europe. 

4. Discussion 

4.1 Implication for long-term trend detection of fossil fuel emissions 

 In the Copenhagen conference of parties, the European Union (EU) set up the goal to decrease its emissions (in CO2 

equivalents) by 80%–95% below 1990 by 2050 (European commission, 2010). In 2015, the EU Intended Nationally 525 

Determined Contribution (INDC) submitted to the UNFCCC set a target of 40% domestic greenhouse gas emissions reduction 

below 1990 levels by 2030. These targets translate into annual reductions compared to 1990 of roughly 1% per year in the 

2020s, 1.5% in the decade from 2020 until 2030, and 2 % in the two decades until 2050 (European commission, 2010). Levin 

and Rödenbeck (2008) showed that, taking into account the inter-annual variations of the atmospheric transport, changes of 7-

26% between two consecutive 5-year averages of FFCO2 emissions in south-western Germany could be detected at the 95% 530 

confidence level with monthly mean gradients of 14CO2 observations between two stations (Schauinsland and Heidelberg) and 

the reference site JFJ. Such a detectability skill is clearly insufficient to support the “verification” of 1-2% annual change of 

emissions per year (meaning 5-10% changes between two consecutive 5-year averages) corresponding to the EU targets. Here, 

we evaluate the skill to detect trends when using the much larger 14CO2 networks and the atmospheric inversion framework 

detailed in this study.  535 

The uncertainty in the trend of FFCO2 emissions calculated from the linear regression of a series of annual estimates, is 

independent of this trend itself (see Appendix C). This allows us to extrapolate posterior uncertainties in annual emissions 

from this study to investigate the detectability of emissions trends. Assuming that the absolute values of the standard deviations 

of the uncertainties in annual emissions of different years (in Tg/year) are identical and that these uncertainties are fully 

independent and ignoring the changes in transport on decadal scales (Aulagnier et al. 2009; Ramonet et al., 2010), we calculate 540 

the uncertainty in relative trends for different time lengths as a function of the posterior uncertainty in annual emissions (Table 

3). Here, the relative trend is defined as the ratio of the linear regression slope of emissions to the emission in the base year. 

Using NET17 or NET43 and 2-week sampling, the posterior uncertainty in annual emissions of some well-sampled regions, 
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e.g. Germany, is largely below 10% (Sect. 3.1.2). In this case, given Table 3, the uncertainty in the relative trends over 20 years 

is in the range of 0.27% yr-1 to 0.43% yr-1. However, the uncertainty in trend estimation over 10 years would be 1% yr-1. The 545 

EU target of 1-2% annual reduction, could thus be verified using NET17 or NET43 in these well-sampled regions over a period 

of 20 years but not over a period of 10 years. For other regions with sparser coverage of stations, either the posterior uncertainty 

in annual emissions are much larger than 10% (e.g. in Ireland and Balkans in INV-E) or the URs (or MRs) of annual emissions 

are marginal (meaning no improvement in the estimate of annual emissions from the inversion), so that the verification of the 

trend in these regions based on the inversion framework of our study is thus challenging. 550 

Our assumption that the posterior uncertainties in annual emissions have the same amplitude from year to year should 

not strongly drive the results, so the results here give a good indication of the level of uncertainty in the trend detection for a 

typical level of uncertainty at the annual scale. However, changes of the transport from year to year or on decadal scales 

(Aulagnier et al. 2009; Ramonet et al., 2010) may change the level of the sensitivity of the observations to the emissions, i.e., 

the level of the atmospheric constraint of the inversions which leads to uncertainty reduction, and thus the level of posterior 555 

uncertainties on the same timescales. A more complex model accounting for varying levels of annual posterior uncertainties 

may thus be useful to refine the quantification of the uncertainty in the trends. Of note is that the level of uncertainties in the 

trends could be increased if the modeling framework accounts for the trends in the transport or in the sources of 14CO2 other 

than the fossil fuel emissions. Such trends in the modeling errors may have to be considered for applications with real data. 

4.2 Adequacy of large-scale atmospheric inversion for the monitoring of fossil fuel emissions and potential 560 
improvements of the inversion skills 

In this study, we showed that given the NET17 14CO2 measurement station network, the potential of our atmospheric 

inversion of fossil fuel emissions at large scale using a coarse-resolution model is limited (Fig. 4 and Fig. 5). When using the 

denser NET43 network and 2-week sampling and assimilating ~1000 measurements per year, the potential of the inversion 

system is improved, yet mainly over high emitting regions. In particular, Sect. 3 indicates that the inversion can significantly 565 

reduce the uncertainties and misfits in the estimate of monthly emission budgets for large or high emitting regions, even though 

the observation operator used by the inversion assumes flat temporal profiles for the emissions while the true emissions have 

diurnal, weekly and seasonal temporal profiles. This confirms that the two-week mean afternoon 14CO2 samplings integrate 

the atmospheric signal transported from both daytime and nighttime emissions across Europe which can be filtered from the 

signal from local emissions to provide large-scale information on the emissions.  570 

We paid attention (as compared to previous OSSEs published for the USA) to account for aggregation and representation 

errors, which is the reason why our inversions do not provide as impressive error reductions (uncertainty and misfit) as those 

the misfit reduction of Ray et al. (2014) and Basu et al. (2016). However, we still did not account for all sources of uncertainty. 

Indeed, we assumed that atmospheric FFCO2 gradients can be derived from the 14CO2 measurements with a precision of 1 ppm. 

This 1-ppm standard deviation approximately corresponds to the errors in the atmospheric measurements and ignores 575 
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uncertainties in the conversion of 14CO2 and CO2 measurements into FFCO2. Uncertainties in Vvarious fluxes that influence 

atmospheric 14CO2, such as those from cosmogenic production, ocean, biosphere and nuclear facilities, bring systematic errors 

to the conversion of 14C measurements into FFCO2 (Lehman et al., 2013; Vogel et al., 2013). For example, oOver land regions, 

heterotrophic respiration is expected to be one of the main contributors to the large-scale signals of atmospheric 14CO2 

(Turnbull et al., 2009). Over regions likesome areas of Europe, 14C emissions from nuclear facilities may have even larger 580 

influences than plant and heterotrophic respiration in some areas (Graven and Gruber, 2011). The level of uncertainties in these 

fluxes and how much theirThe influences from these fluxes will introduce additional errors inon the FFCO2 gradients will 

introduce additional errors remains to be quantified. According to the simulations by Graven and Grubber (2011), Turnbull et 

al. (2009) and Miller et al. (2012), one can expect that the impact of signals from the uncertainties associated in the estimate 

of these fluxes, on the conversion of atmospheric 14CO2 measurements to FFCO2, are typically below 1 ppm, i.e. much smaller 585 

than the observation errors that have been accounted for in this study, justifying that we have ignored these fluxes. However 

these signals may have complex spatial and temporal patterns leading to significant impact on the quantification of the 

inversion performances. Uncertainties in the trends of these fluxes could also impact that in the fossil fuel trend detection. 

Therefore, in future studies, especially if working with real data, the impacts from uncertainties in the 14CO2 fluxes other than 

the anthropogenic fossil fuel emissions need to be investigated and accounted for by modelling all these 14CO2 fluxes, their 590 

atmospheric 14CO2 signals and associated uncertainties. 

In Sect. 3.3, we explored the concept of having more observations assimilated in the inversion system by increasing the 

sampling frequency and expanding the observational network. Wang et al. (2017) showed that because the representation error, 

aggregation error and the prior FFCO2 errors have very similar error structures in time, it is difficult to use daily sampling to 

filter uncertainties in the prior estimate of the emissions. However, we showed that when using NET43 and daily sampling, 595 

the UR of monthly emissions is still much larger than using 2-week sampling. This stems from the fact that having daily 

sampling decreases the weight of the measurement errors at the 2-week to annual scales, which are assumed not to have 

temporal autocorrelations. We also tested the concept of extending the observation network to a very dense configuration, 

NET233, with a wide coverage across Europe. It exhibits a significant increase in the UR of monthly emissions across Europe, 

especially over Eastern Europe. Emissions in Northern Europe, however, remains poorly constrained. This illustrates the 600 

limitation of using a coarse resolution transport model to quantify fossil fuel emissions. Such a limitation is attributed to the 

following facts: 1) the observation error in the inversions are larger than the prior FFCO2 error (typically 0.21 ppm for 2-week 

mean afternoon FFCO2 gradients and 0.49 ppm for daily mean afternoon FFCO2 gradients, Wang et al., 2017); and 2) the 

observation errors bear complex temporal and spatial correlations which are close to the prior FFCO2 errors (Wang et al., 2017). 

Such a result illustrates the need for using a suitable observation error characterization (here based on the results from Wang 605 

et al., 2017) to prevent the stations having a full coverage of information on the emissions in the model framework shown here 

even when the observation network is as dense as NET233. A proper account for the observation errors and their temporal and 

spatial correlations avoid overestimating the potential of the atmospheric inversion in OSSES when using a coarse resolution 
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transport model. 

This study provides understanding of the inversion behavior and sensitivity to network density, but the precise 610 

quantification of the performance of the inversion is largely dependent on the spatial resolution of the transport model. Wang 

et al. (2017) showed that the representation error contributes the most to the observation errors, followed by the transport and 

measurement errors. Following the definition of the observation errors in Wang et al. (2017) and in this study, Tthe 

representation and the transport error are highly dependent on the transport model resolution. Increasing the transport model 

resolution will reduce the representation errors and (potentially) reduce the transport error, if topography effects and synoptic 615 

variations are better simulated by finer-resolution models. We thus assume that using a regional mesoscale transport model 

with higher resolution than LMDZv4 (like for the regional scale natural flux inversions in Kadygrov et al., 2015; Broquet et 

al., 2013; Gourdji et al., 2012; Lauvaux et al., 2008) should be the most efficient way to improve the results from atmospheric 

inversion of FFCO2 emissions at regional scale. A proper quantification of the change of representation and transport error as 

a function of spatial resolution, and of the impact of this change on the performance of the inversion system would require a 620 

series of transport models and inversions at varying spatial resolution which are out of the scope of this study but which would 

be worth being investigated in the future. 

However, unlike such regional transport models, a global transport model can propagate uncertainties in emissions in 

other continents to Europe and thus allow to account for them when estimating the European emissions. To quantify the impact 

of the uncertainties in emissions from other continents, we conducted additional inversions that only solve for emissions in 625 

European regions ignoring those of other continents. The results show that fossil fuel emissions from other continents have 

negligible impacts on UR, MR and posterior emission budgets of European regions (the relative differences between these 

estimates being smaller than 1%; not shown). This indicates that the inversion system mainly exploits the signals of the 

gradients between the European sites to constrain the European emissions, and the incoming FFCO2 over the European air-

shed from emissions outside the European continent, results in very small FFCO2 gradients between JFJ and other stations in 630 

Europe. As a result, it highlights the possibility of using a mesoscale regional transport model and a regional inversion 

framework to derive monthly and national scale emission budgets from 14CO2 networks in Europe. In such a framework, the 

uncertainties in the signals of fossil fuel emissions from remote emissions outside Europe could be neglected or coarsely 

accounted for by controlling the regional transport model boundary conditions. However, such a conclusion may need to be 

re-evaluated when processing real data and accounting for uncertainties in other types of 14CO2 fluxes, since, e.g., parts of the 635 

Atlantic ocean fluxes may have a significant signature on the European 14CO2 gradients. 

4.3 The need for good estimates of the uncertainties in the prior estimate of the emissions from inventories 

The inconsistencies between the posterior misfits and the theoretical computation of posterior uncertainties, and between 

the scores of MR and UR in INV-N inversions indicate that the theoretical computation of posterior uncertainty is not sufficient 

to characterize the actual performance of the inversion, especially when the prior uncertainty covariance matrix does not 640 
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capture the actual error statistics of the prior estimate of the emissions. Moreover, in INV-N, there is a degradation of the 

emission estimates for many regions, characterized by negative and far-below-zero MRs in Sect. 3. This degradation occurs 

even when using daily measurements or the network NET233. A first explanation is that the signature of the errors in the prior 

emission estimates in the FFCO2 fields has a smaller amplitude than the observation errors and thus the ability to filter this 

information for a proper correction of the emissions strongly relies on the knowledge of the prior uncertainty covariance. If B 645 

misses the amplitude and the temporal and spatial correlations of the actual errors, the system can translate observation errors 

into corrections to the emissions. Furthermore, some of the region-months are poorly constrained by the observations (due to 

the meteorological conditions and/or to the observation network spatial distribution), and the corrections to such region months 

is imposed by the extrapolation of the corrections to other region-months following the uncertainty structures characterized by 

B. If those structures do not represent the actual errors correctly, the system could apply corrections with a wrong sign or 650 

amplitude to the poorly observed region-months. A similar problem occurs when the network can constrain the sum of the 

budgets for several region-months but not the individual budgets of these region months (due to being too coarse). If the 

structure of B is wrong, the repartition of the constraint from the observations between these different region-months can be 

erroneous. All these analysis reveal the difficulty to capture the signatures of uncertainties in the prior emission estimate from 

the assimilated prior-model data misfits in our specific inverse modeling problem and thus to derive good corrections when 655 

the prior uncertainty covariance matrix is not configured properly.  

In such a situation, only a precise configuration of the prior uncertainty covariance matrix can support the filtering of the 

prior errors. Consequently, even though both Bempiric and Bnotion are derived from realistic assumptions on the uncertainties in 

the inventories, and to some different extent, from the analysis of inventory maps, the inconsistencies between these two 

matrices lead, in general, to positive MR when using the former and negative ones when using the latter.  660 

In real applications, having such a good fit between the configuration of the prior uncertainty covariance matrix in the 

inversion system as between Bempiric and the synthetic prior errors in our OSSEs could appear to be unlikely, especially since 

the difference between Bempiric and Bnotion illustrates the range of assumption we could have on the uncertainties in the existing 

inventories. Consequently, in order to improve the estimate of FFCO2 emissions, on the one hand, more detailed and systematic 

evaluations of the uncertainty in the FFCO2 emission inventories and of their potential temporal/spatial correlations (Andres 665 

et al., 2014; 2016b) would be required. On the other hand, as mentioned in Sect. 4.2, using a regional mesoscale transport 

model with higher resolution would reduce the representation error and (potentially) the transport error, and thus the 

observation error. Such a model would be needed to decrease the ratio of the observation error to the prior FFCO2 error and 

thus increase the ability to filter the prior errors from the prior-model data misfits.  

5. Conclusion 670 

In this study, we present the application of a global atmospheric inversion method to quantify FFCO2 emissions over 
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Europe at regional scale using three continental networks of 14CO2 measurement sites. Its framework has been introduced by 

Wang et al. (2017). This method combines a prior emission estimate from an inventory with the information from atmospheric 

observations of FFCO2 gradients to provide improved emission estimates with reduced uncertainties. A set of inversions are 

performed to test the potential of such a global atmospheric inversion system and the relevance of the large-scale inverse 675 

modeling (using coarse resolution transport model and controlling the emissions at regional scale) to monitor FFCO2 emissions. 

The results show that given the 17 14CO2 measurement stations that are available in 2016 and the typical 2-week sampling 

frequency, the inversion reduces the uncertainties in monthly emission estimates for western Germany by 34% to 38%, 

depending on the setup of the prior uncertainty. By using a plausible network containing 43 measurement stations which is 

planned for the future and using 2-week sampling, one could expect higher URs of the emissions over the high emitters in 680 

Europe, e.g. eastern France (16% to 33%), southern UK (3% to 23%). In addition, given the posterior uncertainty in the 

emissions that could be achieved in such an inversion system, the uncertainties in the regressed trends can be significantly 

reduced below 1% yr-1 by monitoring the FFCO2 emissions for more than 20 years. 

Increasing the number of observations assimilated in the inversion system by using daily sampling or a very dense 

observational network could potentially increase the UR over European regions. However, even though the inverse modeling 685 

framework used here can be assumed to be optimistic, e.g. regarding the assumption of the FFCO2 data precision (see Sect. 

2.2.2), its potential to improve the estimate of FFCO2 emissions is often limited. The concept of using a coarse-resolution 

transport model in a global inversion system to solve for fossil fuel emissions of the regions whose emissions are not as high 

as those of Germany/France is challenged by the fact that coarse-resolution transport model can hardly filter the signature of 

the uncertainties in the emission budget from other signals and sources of errors within their coarse grid cells. Thus, regional 690 

high-resolution transport models could thus be required for the monitoring of FFCO2. At the same time, the posterior estimate 

of the emissions are much degraded when the configuration of prior uncertainty in the inversion system is improper, implying 

that systematic evaluations of the uncertainties and temporal and spatial correlations in FFCO2 emission inventories are also 

needed to improve the estimate of FFCO2 emissions when applying such an inversion system to actual data. 

Appendix A. Setup of Bnotion 695 

The Bnotion is a block diagonal matrix. The ith main diagonal block Bi represents the prior uncertainty covariance of the 

emissions for 12 months for a given region i. Assuming the relative error δi for xb
i are the same for 12 months and xb

i,m is the 

emission for region i and month m (m=1 means January, m=12 means December), so that the diagonal entries of the Bnotion are: 

Bi,(m,m)=(δix
b
i,m)2                                                                                   (A-1) 

The assumed 2-month temporal autocorrelations (Sect. 2.2.2), expressed by an exponential decaying function, leads to the 700 

non-diagonal entries in Bi. Accordingly, the covariance between the uncertainties in the emissions of 2 months (month m and 

n, for instance) to be: 
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                                                                     (A-2) 

If region i and region j are within the same country, the off-diagonal block Bi,j is built to account for the spatial correlation 

between these two regions. We assume that δi=δj=δij and the spatial correlation between this two regions for a given month m 705 

is -0.2 to account for fact that present emission estimates at such scales are generally disaggregated from national inventories, 

that is: 

                                                                    (A-3) 

We assume that the correlation between two control variables are given by the product of the spatial and temporal 

correlations between the two corresponding control regions and the two months respectively. At last, the δ for each region are 710 

determined so that the prior annual emission uncertainty is satisfied, i.e. 10% for US, 10% for European countries, 15% for 

China and 10% for other large regions. 

Appendix B. Setup of Bempiric 

The Bempiric is also a block diagonal matrix. For a given region i and a specific month m, assuming the prior control 

parameter corresponding to PKU-CO2 emission is xb
i,m, the “true” value of x, corresponding to IER-EDG writes xt

i,m, so that 715 

the errors of the prior monthly emissions are: 

Δxi,m= xt
i,m – xb

i,m                                                                                 (B-1) 

The long-term error component at annual scale εann equals: 

                                                                               (B-2) 

The residues are: 720 

                                                                                  (B-3) 

Then the 6-month variation ε6m equals the standard deviation of the 6-month mean residues: 

                                                                 (B-4) 

Again, the residues become: 

                                                         (B-5) 725 

In the same way, the 3-month variation ε3m equals the standard deviation of the 3-month mean residues: 
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                                              (B-6) 

And the corresponding residues: 

                                           (B-7) 

The 1-month variation ε1m equals the standard deviation of these residues: 730 

                                                                                 (B-8) 

Using such a decomposition, the root mean square of the errors (RMSE) between the prior and the “true” values Δxi,j 

satisfy the following equation: 

                                                           (B-9) 

Finally, for the diagonal entries of the B matrix corresponding to the monthly emissions of region i, they are equal to the 735 

RMSEi, for the non-diagonal entries, the covariance between month j and month k for a given region is expressed as the sum 

of the products of the different variations multiplied by corresponding correlations (expressed by exponential decay functions) 

at different time scales: 

                                                (B-10) 

Appendix C. Calculation of trends and corresponding uncertainties 740 

Assuming the linear trend of the FFCO2 emissions in an n-year period is to be calculated, which satisfies the function: 

y ≈ ỹ = ax+b                                                                                      (C-1) 

where y is the vector of annual emissions for the n years, ỹ is the predicted value by the regression and x is the vector of 

corresponding years, the slope a is the linear trend we are going to calculate by linear regression. We rewrite Eq. (C-1) as 

follows: 745 
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                                                                     (C-2) 

Thus the linear trend a and the interception b can be solved using linear algebra. With the notations used in Eq. (C-2), the 

result of the linear regression is: 

p=(XTcov-1(Y)X)-1XTcov-1(Y)y                                                                                      

(C-3) 750 

the associated uncertainties in the regression parameters in vector p is thus given by the following covariance matrix: 

cov(p)=(XTcov-1(Y)X)-1XTcov(Y)X(XTX)-1                                                                              

(C-4) 

where cov(.) is the covariance matrix for a set of variables. 

Since X is a fixed matrix filled by the numbers of years and 1’s, the uncertainties in the linear trend (first item in main 755 

diagonal of cov(p)), is independent of the annual emissions themselves but only depends on the uncertainties and associated 

correlations of annual emissions. As sketched in Fig. C1, this error covariance of y should include two independent parts: 1) 

the uncertainties associated with the estimation of the emissions for each year in y and 2) the inter-annual variability (IAV) in 

the detrended y.  

In this study, based on the time series of national annual emissions from IER-EDG, we assume a 5% IAV in the annual 760 

fossil fuel emissions for European countries. In general, this 5% IAV is the upper limit of the typical values for European 

countries (Levin and Rödenbeck, 2007). Ballantyne et al. (2015) assumed that in the self-reported fossil fuel emission 

inventories, the emission error in one year could be highly correlated with the error from the previous year by an autoregressive 

coefficient of 0.95, due to potential errors that are not corrected retroactively after about 20 years. However, we do not conduct 

a multi-year inversion to get a typical estimate of the correlations in the posterior uncertainties in annual emissions, and assume 765 

that there is no correlations between the posterior uncertainties in annual emissions. This assumption is fairly conservative, 

since Eq. (C-4) implies that the larger (either positive or negative) the correlations between the estimation of fossil fuel 

emissions from different years, the smaller the uncertainties in the regressed trends. 
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Table 1 Setup and performance indicators of the two types of inversions  

Input of inversions INV-N INV-E Performance indicators 

B Bnotion Bempiric 
A (Eq. (1)) 

UR (Eq. (3)) 
R Ri + Rr + Rt + Ra Ri + Rr + Rt + Ra 

H Hprac Hprac 

xt xIER-EDG xIER-EDG 
xa- xt (Eq. (2)) 

MR (Eq. (4)) 
xb xPKU xPKU 

yo HOSSExt + εi + εr + εt HOSSExt + εi + εr + εt 

 

  935 
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Table 2 Notations for the eight OSSEs.  

 Number of synthetic data INV-N INV-E 

NET17, 2-week sampling 416 N-17W E-17W 

NET43, 2-week sampling 1092 N-43W E-43W 

NET233, 2-week sampling 6032 N-43D E-43D 

NET43, 1-day sampling 15288 N-233W E-233W 
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Table 3 Uncertainties in the regressed linear trends as a function of the posterior uncertainty in annual emissions. The 

uncertainties in the trends are defined as the ratio between the uncertainties in the linear regression slope of absolute annual 940 
emissions and the annual emission budget in the base year. 

Relative posterior uncertainty in annual emissions 10-year trend 20-year trend 

10% 1.2% yr-1 0.43% yr-1 

5% 0.78% yr-1 0.27% yr-1 

1% 0.56% yr-1 0.20% yr-1 
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Figure 1: Site locations for the three continental network configurations used in this study: (a) NET17, (b) NET38, and (c) NET232. Circles 945 
correspond to “urban” sites and upper triangles are “rural” sites. Urban and rural sites are categorized according to the population density of 

the grid cells within which the stations are located and according to the locations of large point sources. The background color map is the 

annual FFCO2 emissions in 2007 at the resolution of LMDZv4 from the PKU-CO2 inventory (Wang et al., 2013). 
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Figure 2: (a) Map of the 56 regions whose monthly emission budgets are controlled by the inversion; (b) zoom over the 17 

control regions in Europe. In (a), we repeatedly use twelve colors for non-adjacent regions. For example, the Northern Europe, 

Middle East, one region in the USA and one region in China are all red. But since they are in different continents, they represent 955 
four different regions. 
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Figure 3: Schematic of the OSSEs 
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 Figure 4: Average monthly uncertainty reductions and misfit reductions in FFCO2 emissions over regions delineated by solid 

black lines, using the NET17 and NET43 networks and 2-week sampling for the inversions. The first and second columns are 

the results of INV-N inversions. The third and fourth columns are the results of INV-E inversions. The dashed lines show the 

grid cells of the transport model LMDZv4. The dots and triangles are the locations of the observation sites where the gradients 965 
are extracted with respect to the JFJ reference site. Dots (triangles) correspond to “urban” (or “rural”) stations defined in Sect. 

2.1. A value of UR and MR closer to unity means a better performance of an inversion to constrain FFCO2 emissions in a 

region. 
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 970 
Figure 5: Average monthly relative prior and posterior uncertainties and misfits of FFCO2 emissions over regions delineated 

by black lines, using the NET17 and NET43 networks and 2-week sampling for INV-N (first and second columns) and INV-E 

(third and fourth columns) inversions. First row shows the relative prior uncertainties and misfits. The second row shows the 

posterior uncertainties and misfits after assimilating 2-week mean afternoon observations from network NET17. The third row 

shows the posterior uncertainties and misfits after assimilating 2-week mean afternoon observations from network NET43. 975 
The dashed lines show the grid cells of the transport model LMDZv4. The dots and triangles are the locations of the observation 

sites where the gradients are extracted with respect to the JFJ reference site. Dots (triangles) correspond to “urban” (or “rural”) 

stations defined in Sect. 2.1.  
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 980 
Figure 6: The correlation structure in the prior (first row) and posterior (second row) uncertainties in monthly regional FFCO2 

emissions for the four Germany and France regions using the NET43 network and 2-week sampling for INV-N (first column) 

and INV-E (second column) inversions, as well as their differences (third row). The x and y axes cover all the control region-

months iterating through region first and months second (the blocks of pixels in each matrix). For clarity, we group these 

correlations into four regions and organize them for each region according to month indices. 985 
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Figure 7: Uncertainty reduction (UR) and misfit reduction (MR) of annual FFCO2 emissions over regions delineated by black 

lines using the NET17 and NET43 networks and 2-week sampling. The first and second columns show the results of INV-N 

inversions. The third and fourth columns show the results of INV-E inversions. The dashed lines show the grid cells of the 990 
transport model LMDZv4. The dots and triangles denote the locations of the observation sites where the gradients are extracted 

with respect to the JFJ reference site. Dots (triangles) correspond to “urban” (or “rural”) stations defined in Sect. 2.1. A value 

of UR and MR closer to unity means a better performance of an inversion to constrain FFCO2 emissions in a region. 
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 995 
Figure 8: Average uncertainty and misfit reductions in the monthly FFCO2 emissions over regions delineated by black lines 

using the NET43 network with daily sampling and NET233 network with 2-week sampling. The first and second columns are 

the results of INV-N inversions. The third and fourth columns are the results of INV-E inversions. The dashed lines show the 

grid cells of the transport model LMDZv4. The dots and triangles are the locations of the observation sites where the gradients 

are extracted with respect to the JFJ reference site. Dots (triangles) correspond to “urban” (or “rural”) stations defined in Sect. 1000 
2.1. The locations of the sites in the OSSEs N-233W and E-233W are not plotted to avoid blurring the maps. 
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Figure C1: Annual FFCO2 emissions from Germany in the period 2000-2009 calculated from IER-EDG. 
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