
The authors present an OSSE study of the capability of ICOS 14CO2 observations to 

constrain European fossil fuel CO2 fluxes and their trends. The study is well 

structured and should be published. I have a few comments which I’d like the authors 

to address before publication. 

Response:  

We would like to thank the reviewer for the valuable comments and suggestions 

for improving our manuscript. Following the reviewer’s comments, we will carefully 

revise our manuscript. Please find below the point-to-point responses (in black) to all 

referee comments (in blue). All the pages and line numbers correspond to the original 

versions of text. 

 

Major comments 

1. Line 112: The assumption that 14CO2 measurements can be accurately translated 

into FF CO2, i.e., there are no spatial patterns introduced due to the other terms 

(especially disequilibrium and nuclear plants in the European context), is a big one. 

Those terms will not only affect annual emission estimates, but also the ability to 

detect trends, as countries change their nuclear power generation capacity and switch 

to wood-fired domestic heating (e.g., Germany). I understand that modeling the full 
14CO2 budget is beyond the scope of the authors’ framework, but it should be possible 

to estimate the impact, by e.g. modelling just the nuclear or disequilibrium 

contribution as a tracer in a transport model and looking at the change in Δ14C. Have 

the authors done that? Unless that concern is addressed, the actual numbers from the 

manuscript are hard to trust. 

Response: 

Indeed, the modeling of the full 14CO2 budget is beyond the scope of this study. It 

would be necessary to study the impact of uncertainties in other 14CO2 fluxes on the 
14CO2 gradients, to precisely quantify the corresponding errors when converting the 

gradients of atmospheric 14CO2 measurements into FFCO2 gradients. Graven and 

Gruber (2011) estimated the sources of 14C from nuclear power generation and spent 

fuel reprocessing and used the global TM3 transport model at 1.8º×1.8º resolution, 

which is slightly higher than LMDZv4 used in our study, to simulate their 

continental-scale influences on Δ14C. Their results showed that nuclear enrichment 

may cause an impact of -0.9 [-0.6, -1.4] ppm in FFCO2 for Orleans, France (48.8ºN, 

2.5ºE) and an impact of -0.7 [-0.4, -1.3] ppm for Heidelberg if nuclear 14C enrichment 

was not accounted for. These two sites are representative of European continental 

sites that are close to nuclear power plants. Turnbull et al. (2009) estimated the impact 

in large-scale FFCO2 signals caused by ignoring other 14C fluxes including 

cosmogenic production, 14C disequilibrium between atmosphere and biosphere and 

between atmosphere and ocean, and 14C source from nuclear power plant (the 

estimate of 14C sources from nuclear power plants is not as accurate as Graven and 

Gruber, 2011), using the same transport model LMDZv4 as in this study. Turnbull et 

al. (2009) showed that impact caused by other 14CO2 sources in translating 

atmospheric measurements of 14CO2 into FFCO2 is mainly from terrestrial biosphere, 

whereas the contributions from ocean CO2 exchange and cosmogenic production of 



14C contribute are weak. According to Turnbull et al. (2009), neglecting the influences 

from biosphere leads to an error typically between 0.2 and 0.8 ppm. Miller et al. 

(2012) estimated the impact of biospheric disequilibrium 14C fluxes in North America 

and get a similar value as Turnbull et al. (2009), ranging from less than 0.2 ppm to 1.4 

ppm.  

We work with OSSEs so that what matters in our system is the correct 

representation of the uncertainties in the different components of the model, not a 

correct representation of these components. In our OSSE framework, by ignoring the 

fluxes of 14CO2 other than the dilution of 14C in CO2 by fossil fuel emissions, we 

implicitly assume that the uncertainties in these fluxes has a weak impact, not that 

these fluxes themselves are ignored. The results mentioned above show that the 

uncertainties in the signals of these 14CO2 fluxes may cause some impact on the 

interpretation of FFCO2 using atmospheric 14CO2 samples indeed, but also that this 

impact is below 1 ppm and thus smaller than the components of observation errors, 

e.g. measurement error (1 ppm), representation error (0.17-2.56 ppm) and transport 

error (0.52-4.15 ppm) in the paper. In this context, we assume that the influence of the 

uncertainties in 14CO2 fluxes other than the dilution of 14C in CO2 by fossil fuel 

emissions on the inversion of fossil fuel emission should be relatively weak. Our 

estimate of URs and MRs could be slightly over-estimated due to the ignorance of 

other sources of uncertainties from other 14CO2 fluxes. But this study aims at 

understanding how the inversion system behaves when dealing with uncertainties in 

the FFCO2 emissions versus observation errors, about how the variation of the UR as 

a function of regions, of level of emissions, of the density of networks, rather than 

about providing absolute values of UR that would apply when conducting real-data 

applications. Further investigations accounting for uncertainties in other 14CO2 fluxes 

will be needed to refine those numbers.  

We will better explain the assumptions underlying the conversion of 14CO2 into 

FFCO2 gradients with a 1 ppm uncertainty given that we work with an OSSE 

framework (i.e. it does not mean that the nuclear plant, cosmogenic and biosphere 

fluxes themselves have been ignored). We will add some discussions in Sect. 4.2 to 

recall the fact that the uncertainties associated with the signals from 14CO2 fluxes 

other than the dilution of 14C in CO2 by fossil fuel emissions are expected to be 

relatively small compared to the uncertainties in the atmospheric 14CO2 caused by 

fossil fuel emissions and by other types of observation errors. We will also add some 

discussions in Sect. 4.2 to emphasize that this study aims at providing some 

understanding of the system behavior rather than a precise quantification of UR that 

would apply when conducting real data applications. Lastly, we will add in the 

manuscript that future studies will be needed to quantify the impact from uncertainties 

in the nuclear plant emissions, cosmogenic production, biogenic fluxes, etc., on the 

inversion of FFCO2 emissions. 
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2. Line 145: The authors say that the inversion interpret the gradient between JFJ and 

other sites. I do not understand how that is implemented. Is it that JFJ is the only 

background site in the network, and hence the inversion implicitly interprets gradients 

w.r.t. JFJ (much as a global CO2 inversion might interpret everything w.r.t. MLO and 

SPO)? Or is it that the pseudo-obs are fed in after explicitly subtracting the JFJ time 

series, in which case the model’s observation operator looks like “site – JFJ” at each 

individual site? Basically, the authors say in words that they interpret the gradient w.r.t. 

JFJ, but I do not understand how that is implemented in practice. 

Response: 

 Our implementation corresponds to the second option explained by the reviewer, 

i.e. the pseudo-observation are differences between the data at other sites and at JFJ 

for a given time, and the observation operator relates the fluxes to “site minus JFJ” 

gradients. To clarify this, we will revise the sentence in lines 160 and 249 to explicitly 

explain that the “observations” yo are FFCO2 gradients to JFJ. 

 

3. Line 201: I’m having trouble deciphering the meaning of “mismatch reduction”, 

and its bounds and limits. Instead of describing it in words after equation (4), could 

the authors please write down the mathematical expressions for εa and εb? Since I did 

not know what those ε’s were, I also could not interpret maps of MR (e.g., Figure 4). 

In particular, I did not understand what negative vs positive MR meant. 

Response: 

The “misfits” (i.e. the “mismatch” in the reviewer’s comment) that are considered 

for the “misfit reduction” are the differences between the prior or posterior and “true” 

estimates of the emission budgets. For a given region i and month m in the control 

vector x, the prior misfit xb
i,m-xt

i,m is denoted εb
i,m and the posterior misfit xa

i,m-xt
i,m is 

denoted εa
i,m. We compute a misfit reduction for each region-month emission budget 

as the relative difference between the prior and posterior misfits: 

MRi,m=1-εa
i,m/εb

i,m 

We only have one practical realization for xb, yo and xa and thus a single 

realization of the misfits for each month and region. However, we want to have a 

statistical assessment of the performance of the inversion system based on the misfits 

that could be compared to the scores of uncertainty reduction. Therefore, we also 

consider the typical MR at the 1-month scale for a given region i which is the relative 

difference between the quadratic mean of the monthly prior misfits and the quadratic 

mean of the monthly posterior misfits.  



 
In all cases MR values could theoretically range between –infinity and 1. When, 

on average, the posterior emission estimates are closer to the synthetic truth than the 

prior estimates, the MR is positive (the inversion reduces the misfits). Conversely, 

when the posterior emission estimates are further from the synthetic truth than the 

prior estimates, the MR is negative (the inversion increases the misfits). MR is null 

when the posterior misfits are as large as the prior misfits, i.e. the inversion do not 

decrease or increase the misfits. We will revise the sentences in line 209-213 and add 

two equations for the computation of UR and MR at monthly scale. 

 

Minor comments 

1. Line 151: For NET233, each grid box is supposed to have one urban and one rural 

site. I’m not sure that’s a good strategy. Wouldn’t it be better to designate urban/rural 

depending on the nearest NET43 site? I mean, there could easily be grid boxes where 

it was more realistic to put two rural or two urban sites. 

Response: 

The design of NET233 was not intended to be optimal. We wanted to conduct a 

test with many sites whose distribution would be homogeneous and cover all the 

control regions. In this case, the variations of UR from one region to the other one are 

a direct consequence of variations in the emission uncertainties, and not as a 

consequence of the variations in the network density. Putting most of the sites near the 

areas with the highest emissions could have larger URs than spreading them 

homogeneously across Europe, but will not distinguish the role of network density 

and the role of emissions uncertainties themselves in the variations of the UR from 

one region to the other one. 

Even though the distribution of the emissions is highly heterogeneous in Europe, 

the grid cells of the transport model used in this study have a 3.75º×2.5º resolution (i.e. 

they cover areas that are much larger than megacities like London or Paris), so that we 

can assume that nearly all pixels have both rural and urban locations.  

 We will clarify the rational for the NET233 network in Sect. 2.1. 

 

2. Line 233: In the ICOS protocol, are the two-week samples going to be filled 

continuously, or are they only going to integrate mid-afternoon (or nighttime) air? 

That would very much change the sensitivity of the observations to FF CO2, and the 

impact of transport errors. 

Response: 

 The present protocol for almost all of the ICOS 14CO2 sites is to fill continuously 

two-week samples. And some sites fill continuously daily/weekly atmospheric 14CO2. 

However, the option of intermittent filling of air samples is feasible in practice and 

has been used (Levin et al., 2008; Turnbull et al., 2016). On the other hand, the 

state-of-the-art transport models used for atmospheric inversion studies have still 



difficulties in simulating the vertical mixing during night-time and in the morning. So 

we prefer to consider this option of two-week afternoon sampling in the OSSE. We 

keep in mind the fact that using samples filled continuously over two weeks instead of 

during the afternoon only would definitely change the transport condition and 

sensitivity of the observation to FFCO2, and thus may give different values of UR and 

MR. But we assume that it should change the result in a quantitative but not 

qualitative way. 

 We will revise the sentence in lines 233-235 to mention that intermittent filling of 

air samples is practically feasible so that our definition of the observations in this 

study can be seen as a compromise between the current requirement of state-of-the-art 

inversion systems and current measurement practices.  
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3. Line 237: Are the authors assuming that two week average Δ14CO2 will translate 

into two week average FF CO2? What the two week average Δ14CO2 represents 

depends on the method of collection; an open tray will fix CO2 proportional to the 

partial pressure of CO2, while a bubbled trap will fix all the CO2 in the ingested air. 

The former represents average FF CO2 weighted by the total CO2 mole fraction, while 

the latter represents average FF CO2 over two weeks. Which one applies for the ICOS 

protocol? 

Response: 

 The sampling technology (https://www.icos-cal.eu/crl/radiocarbon_samples) that 

ICOS utilize for two-week integrated samples follows the method developed in the 

1970s (Levin et al., 1980). The sampling system is equipped with a small aquarium 

pump, which actively collects about 15 m3 of air during the two week period. CO2 is 

collected by chemical absorption in CO2-free NaOH solution in the so-called 

Raschig-tube samplers. In this context, the FFCO2 represents the average FFCO2 over 

two weeks (the second way that the reviewer mentioned). 

 We will clarify the fact that our definition of FFCO2 corresponds to the average 

afternoon FFCO2 over the course of two weeks here. 
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4. Line 253: Did the authors model a diurnal cycle in FF CO2 emissions? According 

to Nassar et al. (2013), the diurnal cycle can be fairly large over populated areas. 

Along with the selective mid-afternoon sampling used by the authors, the impact 

could be sizeable. 



Response: 

 We fully account for the diurnal cycle of emissions in our computations. The 

synthetic truth of the OSSEs and the synthetic FFCO2 observations are modelled 

using the emission map IER-EDG, which is an hourly emission products and has a 

clear diurnal cycle in the emissions. However, the emission map used to compute the 

observation operator is PKU-CO2 version 1 (Wang et al., 2013), which is an annual 

product and which does not have temporal profiles, so that there is no diurnal/seasonal 

cycle in Hdistr
PKU. The mismatch between the temporal profiles of synthetic true 

emission and Hdistr
PKU contribute to the so-called aggregation error (Wang et al., 2017). 

As shown in Table S3, the typical aggregation error is only 0.17-0.30 ppm, indicating 

that such difference only has a small impact on the simulated FFCO2 signals. 

Furthermore, the inversion results indicate that the inversion can significantly reduce 

the uncertainties and misfits of the estimate of monthly emission budgets for large 

regions, even if using flat temporal profiles for the emissions while the truth is 

modeled with diurnal, weekly and seasonal temporal profiles for the emissions. One 

explanation is that the two-week mean afternoon samplings integrate the signal from 

both daytime and nighttime emissions across Europe due to the atmospheric transport.  
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5. Line 264: Does “practical” refer to the operator used to generate 

pseudo-observations from the “true” fluxes? 

Response: 

 No, Hprac means this operator is a practical representation of the flux distribution 

and atmospheric transport that is used in the inversion system, while HOSSE is the 

theoretical “true” operator used to generate pseudo-observations for OSSEs. We 

explained in line 264 the Hprac= Hsamp
coloc Htransp

LMDZ Hdistr
PKU and we also wrote in 

line 364 “The synthetic observations are generated using xIER-EDG and the operator 

HOSSE=Hsamp
colocHtransp

LMDZHdistr
IER-EDG, which relies on the same Hsamp

coloc and Htransp 

operators as the Hprac observation operator used in the inversion system.” So the 

difference between the practical operator Hprac and HOSSE is their last sub-operators 

Hdistr
PKU and Hdistr

IER-EDG, respectively. We will clarify such a use of the “practical” 

term to name Hprac in Sect. 2.2.2. 

 

6. Line 296: Is the covariance model global, or is this done only over Europe? 

Response: 

 This covariance model (which ignores the spatial correlations) is applied for the 

estimate of the prior uncertainty variance and temporal correlations for each of the 



control regions over the globe. We will revise the sentence in lines 295-296 to 

emphasize the fact that it is applied to all regions over the globe, not only to regions in 

Europe. 

 

7. Line 363: Can the authors explain how they obtained the IER hourly inventory? I 

tried to download it from their website, but given that each month had to be separately 

downloaded, that was very inconvenient. An email to the contact person listed on the 

website bounced, so that was a dead end too. 

Response: 

 We downloaded the “global fossil fuel emissions” under the “product” tab month 

by month. These files are hourly emissions for each month and for three emission 

heights. We summed the emissions at different emission heights together (our 

simulation of FFCO2 assumes that all the emissions are emitted at surface). In this 

case, we obtained twelve files of global hourly emission fields for one year and each 

file corresponds to one month.  

 

8. Line 366: This will only get at the random error in transport, not any systematic 

error in transport modeling. Have the authors tried quantifying the impact of 

systematic errors in LMDZ, say by using 222Rn or SF6? 

Response: 

We prefer to consider that errors can have long spatial and temporal scales rather 

than a “systematic” component, since what the people usually call biases or 

systematic errors vary in time and can be difficult to predict and diagnose. The 

inversion system integrate such temporal and spatial consistency of the errors through 

the temporal and spatial correlations in R. 

The assessment of the model errors over long temporal scales, e.g. by using real 

tracer data was out of the scope of this study and of that of Wang et al. (2017). It has 

been the topic of numerous model inter-comparison studies in the past including 

LMDZ such as Peylin et al. (2011) and Patra et al. (2011). Locatelli (2015) also 

studied in details the transport errors by LMDZ. These studies show that the skills of 

LMDZ are in line with state-of-the-art transport models and there is no evidence that 

LMDZ has a systematic error compared to other transport models. Furthermore, our 

aim here is not to assign transport errors for the specific transport model we use, but 

rather for a typical global transport model in order to produce general results.  

The structure of the transport error is hard to assess for a specific transport 

models. Some studies have made some attempts to characterize it, but have come to 

different conclusions. For example, Lin and Gerbig (2005) determined the correlation 

timescale to be 2-3 hours for U-/V- winds. Broquet et al. (2011) analyzed the 

distribution of differences between the simulated and measured atmospheric mole 

fractions of 222Rn (Radon). Temporal auto-correlations with 3 to 6-hour timescales are 

found in Broquet et al. (2011) based on such an analysis. Lauvaux et al. (2009) 

estimated the potential of the temporal correlations for transport error based on an 

ensemble of perturbations of the simulation of atmospheric transport. They found 

there are negative correlation between the atmospheric CO2 mole fractions in the day 



and the night and the correlations (of the errors) with a lag time of 1 day are close to 0 

for midafternoon data (Fig. 4a in Lauvaux et al., 2009). Miller et al. (2015) 

investigated the magnitude of temporally covarying atmospheric transport errors and 

found that removing temporal covariances in the transport would underestimate the 

transport error at the monthly scale, but their study did not try to use any function to 

describe the temporal auto-correlations so that their results are difficult to generalize.  

Most of these studies found temporal error correlations that are generally smaller 

than 1 day. If considering daily to monthly concentration averages, such a correlation 

should increase (if the transport error is a combination of error components at high 

and low frequencies). However, these various studies prove that the correlations in the 

transport error are challenging to estimate and the majority of existing inversion 

studies do not account for such potential correlations in atmospheric transport 

modeling (Peylin et al., 2013; Chevallier et al., 2010; Kadygrov et al., 2015; Peters et 

al., 2007; Gurney et al., 2008; Niwa et al., 2012). So, we keep the traditional 

assumption. We will add a discussion about the temporal auto-correlation of the 

transport error in Sect. 2.2.2, when introducing the configuration of transport error. 
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9. Line 367: I know it is usual practice in the OSSE world to perturb the 

measurements according to the error statistics of R, but I have never understood why, 

unless it is done in an ensemble of multiple realizations of the measurements. In an 

ensemble of inversions with different measurements from the same network, it makes 

perfect sense to produce those measurements using perturbations according to R, 

since the resulting spread in the flux estimates then gives the uncertainty due to R. 

However, for a single inversion, perturbing the measurements according to R only 

ensures that the posterior will be different from the “true” flux, without any way to 

infer the significance of that difference. As in, how do the authors know that the MR’s 

they estimate are not because in the one realization of the measurements they used, 

some of them just happened to be skewed in one direction? This is especially a 

concern for the NET17 network, since there are so few measurements, with scant 

opportunity to average over the perturbations. 

Response: 

We carefully analyzed and discussed the UR and MR results keeping in mind and 

explicitly recalling the problems of working with a single realization of yo and xb. The 

risk of under- or over-estimating the posterior error in the emission budgets when 

using one realization only for the prior and measurement errors is the reason why we 

compute the “statistics of misfits” at the monthly scale and the “MR for monthly 

emissions” (see our answer to major question 3). By assuming that the monthly 

misfits all follow the same distribution, we roughly consider that we have an 

ensemble of twelve realizations of monthly inversions for which the average-based 

MR give a reliable indicator or the error reduction that should not be significantly 

skewed by sampling errors. 

Of note is also that even when considering NET17 and a 2-week sampling 

strategy, we have 416 data over the year and thus 416 realizations of perturbations to 

individual observations. Finally, the scores of UR should definitely be considered as 

the reference indicators of the inversion behavior, and the MR are mainly analyzed to 

provide confidence in these UR, as explained in Sect. 2.2.1. 

The perturbation of the observation according to R even when a single realization 

of the observation and prior errors is considered is a common practice in inversion 

because, we believe, this is what still makes most sense if having to assess the 



uncertainty reduction using a single inversion. In other words, we do not have a 

simple idea of perturbation that would make the single realization more adapted for 

assessing the typical impact of the errors. 

 We will revise the paragraphs in Sect. 2.2.1 to clarify the use of one realization of 

observations. 

 

References: 
Basu, S., Miller, J. B. and Lehman, S.: Separation of biospheric and fossil fuel fluxes of CO2 by 

atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations, Atmos. 
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10. Line 374 and Figure 4: The authors solve for monthly emissions over a year, but 

report a single UR/MR map of monthly emissions. Is this the RMS of UR/MR values 

over 12 months, or the UR/MR calculated from the RMS of the posterior errors, or...? 

As in, can the authors give a mathematical expression of what is being shown in 

Figure 4 as the “monthly” UR/MR, in terms of their control vector and/or covariance 

matrix? 

Response: 

 This is related to the major comment #3. We computed the quadratic mean of the 

twelve values of monthly uncertainties and misfits to derive the so-called “average 

monthly URs and MRs”. As stated in the response to the major comment #3, we will 

add two equations to show that we compute the UR and MR “at monthly scale” based 

on the quadratic mean of twelve monthly values across one year. 

 

11. Line 381: I think the reference to Figure 4(d) should actually be to 4(e). Likewise, 

in line 384, the refences should be to 4(e) and 4(g). 

Response: 

 The reviewer is right. In line 381, the reference to figure is Fig. 4e and on line 

384, the reference to figure is Fig. 4e and 4g. We are sorry about these mistakes. We 

went through the paper again carefully and feel that there are not such mistakes 

anymore. 

 

12. Line 409: “... the posterior misfits are even larger than the prior misfits.” Why 

does the inversion allow this? For stations within the blue regions, is this obvious 

from looking at the atmospheric FF CO2 time series, that post-optimization the time 

series is further away from the pseudo-data than pre-optimization? I suspect the 

perturbed measurements are to blame (see earlier comment). 

Response: 

 The primary reason for getting posterior misfits in the emissions that are larger 

than the prior misfits in the emissions is connected to the fact that the prior 

uncertainty matrix B of the inversion system does not match the statistics of the actual 

errors in the prior estimate of emissions: 

1) As demonstrated by Wang et al. (2017), the signature of the errors in the prior 

estimates in the FFCO2 emissions has a smaller amplitude than the observation errors 

and the ability to filter this information for a proper correction of the emissions 



strongly relies on the knowledge of the prior uncertainty covariance. If B misses the 

amplitude, temporal and spatial correlations of the actual errors, the system can easily 

translate observation errors into its corrections to the emissions. While decreasing the 

differences between the simulated FFCO2 concentration time series and the 

atmospheric data, it would increase the misfits to the true emissions. 

2) Some of the region-months are poorly constrained by the observations due to 

the network distribution and to the meteorological conditions (even when using 

NET233), and the corrections to emissions from a poorly constrained region-months 

is imposed by the extrapolation of the corrections to other region-months following 

the patterns of B. If those patterns are wrong (typically, if spatial correlations in B for 

the errors of two neighbor regions are negative while the spatial correlations between 

the actual errors of these regions are positive), the system could apply corrections 

with a wrong sign or amplitude to the poorly observed region-months, which can 

easily lead to an average increase of the errors for such regions. The problem is 

similar when the network can constrain the sum of the budgets for several 

region-month but not these region month individually (due to being too coarse). In 

this case, if the structure of B is wrong, the repartition of the constraints from the 

observations between these different region-months could be erroneous. 

The fact that the aggregation error has a non-Gaussian and biased distribution 

while the inversion system believe it is Gaussian and unbiased can also feed the 

generation of negative MR as well as problems of sampling errors when computing 

scores of MR as suggested by the reviewer. However we believe that the impact of 

these additional factors is relatively small because when the setup of B matches well 

(even though not perfectly) with that of the actual prior errors, we have very few 

negative MRs. 

We will rewrite Sect. 4.3, lines 541-555 to present the inconsistencies between 

UR and MR and discuss the possible causes of the negative scores of MR. 
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13. Line 417: The correlation is not between uncertainties, but between corrections 

from the prior emission. 

Response: 

 We do not agree with the reviewer. Fig. 6 shows the correlations in the B and A 

covariance matrices. Since B and A characterize the uncertainties in the prior and 

posterior estimates, the correlations in both B and A are indeed between uncertainties 

rather than corrections. 

Following Eq. (2) in the main text, the correction for x is actually 

AHTR-1(yo–Hxb), so that the covariance matrix for the corrections is 

AHTR-1(HBHT+R)R-1HA, and the correlations correspond to this matrix are between 

corrections. 



 

14. Line 455: I’m surprised at the low UR for the NET233 network. Why are there so 

many white areas (low UR) still? 

Response: 

 This is related to the fact that the signals from the uncertainties in the prior 

estimate of emissions are well below the observation errors in these regions and that 

the observation errors have similar error structures (temporal and spatial correlations) 

to the signals of uncertainties in the prior estimate of emissions, as discussed in Sect. 

4.2 (line 516-520). This demonstrates that the proper account for representation and 

aggregation errors avoid overestimating the potential of the atmospheric inversion in 

OSSES when using a coarse resolution transport model. We will emphasize this by 

updating the discussions. 

 

15. Line 484: In real trend detection situations, the transport will vary year by year, as 

will the disequilibrium and nuclear fluxes of 14C. Can the authors estimate how big an 

impact this will have on the trend detection? 

Response: 

There is not a strong reason to think that there could be some major change in the 

uncertainties in the estimate of nuclear and disequilibrium fluxes of 14C from year to 

year, which is what really matters on the inversion results (rather than changes in the 

absolute value for these fluxes), as discussed in the response to the first major 

comments. This response also indicates that we assume that such uncertainties should 

have a relatively weak impact on the inversion results. 

The transport conditions (and thus H and the uncertainties in the transport 

modeling in R) may vary significantly from year to year which could lead to 

variations of the sensitivity of the observations to the emissions and variations of the 

scores of uncertainty reduction. We could even observe trends in the transport 

conditions over several years (e.g. the shallowing of the PBL between the 1990s and 

the 2000s by Aulagnier et al., 2009; Ramonet et al., 2010). However, the impact of the 

resulting changes in atmospheric transport condition on the UR and posterior 

uncertainties, and thus on our computation of the trend detectability is difficult to 

anticipate. We assume that this should not result in a behavior that is different from 

the one described by our computation with constant posterior uncertainties from year 

to year (it should change the result in a quantitative but not qualitative way). 

Conducting tests with varying posterior uncertainties would thus fall out of the scope 

of our assessment of the typical uncertainties in trends for a typical uncertainty in 

annual emissions, and we thus think that it is not worth investigating it.  

We will add some discussions to admit that the changing transport may have an 

impact on the trend detection but quantifying this impact would require detailed 

studies and further investigation. 
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16. Line 499: As far as I can tell, Basu et al. (2016) did not estimate UR. 

Response: 

 Basu et al. (2016) did not estimate UR, but they analyzed the misfits between the 

inversion-estimated fluxes and true fluxes such as when we analyze scores of MR. 

The text assumed that the “error reduction” can be characterized by either UR or MR. 

We will revise the sentence here to avoid the confusion. 

 

17. Line 531: The authors seem to suggest that the boundary condition – a bane of 

most regional inversions – does not affect their flux and uncertainty estimates. Is this 

because everything is referenced to JFJ? 

Response: 

 Our simulation indicated that the reason why, in this study, the uncertainties in the 

emissions remote from Europe (i.e. what would feed the boundary conditions in a 

regional model) does not significantly impact the FFCO2 inversion in Europe is the 

atmospheric diffusion of the FFCO2 signal associated with these uncertainties. The 

high emitting regions outside Europe (USA, China) are far from the European 

continent. The diffused signals from these regions does not yield large gradients 

between the European sites which are mainly due to the emissions from European 

continent. Therefore, these signals should not impact the inversion of fluxes within 

Europe. Assimilating gradients to JFJ definitely helps the system understand that a 

large scale signal over Europe should not be connected to European emissions, but 

inversions system assimilating FFCO2 data at individual site could also naturally 

avoid to correct for emissions between the measurements sites based on such a large 

scale signal. 

The boundary conditions for traditional regional inversion of natural CO2 fluxes 

assimilating total CO2 concentrations which only target at natural CO2 fluxes can be 

more critical, since there are large fluxes from Atlantic Ocean and other adjacent 

continents like Asian Russia which can cause significant spatial patterns between 

European sites. But still, some studies, such as that of Lauvaux et al. (2008) showed 

that the influence of the boundary conditions is not significant in their regional 

inversion of the natural CO2 fluxes in the South West of France.  

At last, we keep in mind the fact that if the inversion would account for 

uncertainties in the biogenic and ocean 14CO2 fluxes, the situation could be different 

and could pose problems for the boundary conditions of the regional scale systems. 

There could be large 14CO2 fluxes from Atlantic Ocean and other adjacent continents 

like Asian Russia which can cause significant spatial patterns of 14CO2 within Europe. 

This will be better discussed in Sect. 4.2. 
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18. Eqs. C-3 and C-4: I believe there are errors in these two formulae. If  is 

obtained by minimizing the cost function J 

                                             (1) 

where R = cov( ) (R in their case contains the posterior error estimates on fluxes), 

then the optimal estimate of  and the corresponding covariance are 

 

 

Response: 

 The reviewer is right if cov(Y) (in the review’s equations, it’s R) is not diagonal 

or if the diagonal terms (variances of the variables in y vector) are not equal. In fact, 

the last equation proposed by the reviewer can be further simplified to: 

 

The equation we wrote as Eqs. C-3 and C-4 only applies when cov(Y) is diagonal 

and the terms in y all have equal variance, that is cov(Y)=σ2I where σ2 is the variance 

for all variables and I is an identity matrix. The equivalence between our equations 

and those proposed by the reviewer can be proved: 

cov(p)=(XTX)-1XTcov(Y)X(XTX)-1=(XTX)-1XTσ2IX(XTX)-1 

=σ2(XTX)-1XTX(XTX)-1=σ2(XTX)-1=(XTσ-2IX)-1=[XTcov(Y)-1X]-1 

In this sense, the equations proposed by the reviewer is more generalized. In this 

paper, we indeed used the cov(Y) in the equal variance case, so that the computation 

and results of the paper are correct. 

In order to avoid any confusion, we will add the equations proposed by the 

reviewer. 

 

19. Table 2: In columns 2 and 3, I believe rows 3 and 4 have been flipped. 

Response: 

The reviewer is right. We correct this mistake accordingly. 

 

20. Figure 2(a): Am I supposed to see 56 colors in the world map? I don’t. I think the 

problem is that the country and state boundaries overlap with the region boundaries. I 

would suggest, at least in the world map, only showing the region boundaries from the 

control vector and eliminating the country and state boundaries. 

Response: 

 Here, we do not use 56 colors in the map actually because it is hard to find 56 

colors that are visibly differentiable. In fact, we repeatedly use 12 colors for 



non-adjacent regions. For example, the Northern Europe, Middle East, one region in 

the USA and one region in China are all red. But because they are in different 

continents, so that they represent four different regions. We will change Figure 2 by 

removing the lines country and state boundaries, as the reviewer suggested, and will 

also mention the fact we repeatedly use 12 colors for non-adjacent regions in the 

caption. 


