
1 

 

Top-down constraints on global N2O emissions at optimal resolution: 

application of a new dimension reduction technique 

Kelley C. Wells1, Dylan B. Millet1, Nicolas Bousserez2, Daven K. Henze2, Timothy J. Griffis1, 

Sreelekha Chaliyakunnel1, Edward J. Dlugokencky3, Eri Saikawa4, Gao Xiang5, Ronald G. Prinn6, 

Simon O’Doherty7, Dickon Young7, Ray F. Weiss8, Geoff S. Dutton3,9, James W. Elkins3, Paul B. 5 

Krummel10, Ray Langenfelds10, and L. Paul Steele10  

1Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA 
2Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, USA 
3Earth System Research Laboratory, NOAA, Boulder, Colorado, USA 
4Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA 10 
5Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, 

Massachusetts, USA 
6Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 
7School of Chemistry, University of Bristol, Bristol, UK 
8Scripps Institute of Oceanography, University of California San Diego, La Jolla, California, USA 15 
9CIRES, University of Colorado at Boulder, Boulder, Colorado, USA 
10Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia 

Correspondence to: Dylan B. Millet (dbm@umn.edu) 

Abstract. We present top-down constraints on global monthly N2O emissions for 2011 from a multi-inversion approach and 

an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies 20 

to test how well current observations can constrain the spatial distribution of global N2O emissions. The strategies include: 

(1) a standard 4D-Var inversion at native model resolution (4° × 5°), (2) an inversion for six continental and three ocean 

regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular 

value decomposition (SVD). The optimized global flux ranges from 15.9 Tg N yr-1 (SVD-based inversion) to 17.5-17.7 Tg N 

yr-1 (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N2O background 25 

measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a 

greater contribution to the global N2O flux than is predicted by the prior bottom-up inventories, likely due to underestimated 

agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics, and find that 

predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak 

consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the 30 

inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively 

test the impact of initial conditions on the analysis and recommend formally optimizing the initial N2O distribution to avoid 

biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission 

information from N2O observations: by defining the optimal resolution of the solution based on the information content of 
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the inversion, it provides spatial information that is lost when aggregating to political or geographic regions, while also 

provding more temporal information than a standard 4D-Var inversion.   

1 Introduction 

Nitrous oxide (N2O) is a long-lived greenhouse gas ( ~122-131 years; Volk et al., 1997; Prather et al., 2012) with 

substantial impacts on both climate and stratospheric chemistry. It has a global warming potential far exceeding that of CO2 5 

(265× on a 100-year timescale; Myhre et al., 2013), and its emissions weighted by ozone depletion potential currently exceed 

those of all other substances (Ravishankara et al., 2009). The global N2O source is reasonably well constrained (15.7 to 20.1 

Tg N yr-1 for years 1999-2009; Prather et al., 2012; Saikawa et al., 2014; Thompson et al., 2014a; Thompson et al., 2014c) 

by its atmospheric abundance and estimated lifetime. However, attribution of this source to specific regions and sectors has 

been hindered by the sparse global observing network and by the weak variability in N2O mixing ratios (e.g., Wells et al., 10 

2015). Quantitative interpretation of atmospheric N2O measurements in terms of globally resolved emissions thus first 

requires a rigorous assessment of how results hinge on the modeling framework employed. Here, we apply a hierarchy of 

model resolutions, including a new method that formally defines the state vector for optimization based on the information 

content of the observations, in a global inverse modeling framework to address this need. We use this model hierarchy with a 

global suite of observations to: i) quantify the spatial and seasonal distribution of N2O emissions for 2011, ii) examine what 15 

features of these results are robust across model configurations, and iii) assess the implications for current understanding of 

the N2O budget and future research needs.  

The primary sources of atmospheric N2O are microbial denitrification and nitrification, which lead to N2O production in 

soils (Firestone and Davidson, 1989), ocean waters (Elkins et al., 1978; Cohen and Gordon, 1979), and in streams, rivers, 

and lakes (Seitzinger and Kroeze, 1998; Beaulieu et al., 2011). Global mean N2O mixing ratios rose by 0.85 ± 0.1 ppb yr-1 20 

from 2001-2015 (based on NOAA surface measurements) primarily due to increased use of inorganic fertilizers and manure 

(Galloway et al., 2008; Davidson, 2009; Park et al., 2012) and the nonlinear response of N2O emissions to N inputs in some 

agricultural systems (Shcherbak et al., 2014). Estimates for the global agricultural flux range from 4.3-6.3 Tg N yr-1 (Mosier 

et al., 1998; Crutzen et al., 2008; Davidson, 2009): this includes emissions occurring on-field (i.e. ‘direct’ emissions from 

fertilized fields), downstream ( ‘indirect’ emissions from N leaching and runoff, and from deposition of volatilized NOx and 25 

NH3), and from manure management. These sources are all subject to large uncertainties. For example, by assuming a linear 

flux response to fertilizer application, one can either under- or overestimate emissions depending on the application rate 

(Shcherbak et al., 2014; Gerber et al., 2016). Recent work also suggests that the indirect N2O flux could be 2.6-9 times larger 

than is presently accounted for in bottom-up estimates (Griffis et al., 2013; Turner et al., 2015), which would imply an 

underestimate of the agricultural contribution to the overall N2O budget. Non-agricultural soils and oceans are thought to 30 

contribute an additional 7.4-11 Tg N yr-1 (Saikawa et al., 2013) and 1.2-6.8 Tg N yr-1 (Nevison et al., 1995; Jin and Gruber, 
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2003; Manizza et al., 2012), respectively, to the global N2O source. Industrial, transportation, and biomass burning emissions 

also exist but are thought to be relatively minor, totaling 1.2-1.8 Tg N yr-1 (Prather et al., 2001). 

Because microbial nitrification and denitrification, and the subsequent soil-atmosphere N2O flux, depend strongly on factors 

such as soil moisture, temperature, physical characteristics, and N availability (e.g., Potter et al., 1996; Bouwman, 1998; Kim 

et al., 2012; Bouwman et al., 2013; Butterbach-Bahl et al., 2013; Griffis et al., 2017), N2O emissions can exhibit major 5 

temporal and spatial variability. For example, Wagner-Riddle et al. (2017) found that short-duration freeze-thaw cycles can 

account for 35-65% of the annual direct N2O emissions from seasonally frozen croplands, and that neglecting this 

contribution would lead to a 17-28% underestimate of the global N2O source (direct+indirect) from agricultural soils. This 

type of variability poses a major challenge to bottom-up and top-down efforts to quantify N2O surface fluxes and attribute 

them to specific times, locations, and mechanisms. The relatively sparse coverage of measurement sites and low atmospheric 10 

variability (because of the long N2O lifetime, surface mixing ratios typically vary by < 10 ppb on a ~325 ppb background) 

compound the challenge, and limit the spatial and temporal resolution at which emission fluxes can be inferred (Wells et al., 

2015). As a result, global N2O inversions often employ some aggregation strategy to optimize emissions for a small set of 

geographic regions (e.g., Hirsch et al., 2006; Huang et al., 2008; Saikawa et al., 2014). However, in the past this aggregation 

has been done based on physical or political boundaries rather than by formally determining the degrees of freedom (DOFs) 15 

in the inverse system – which leads to aggregation errors and sub-optimal results. Work on CO2 inversions has also 

highlighted this issue (e.g., Kaminski et al., 2001) and the resulting importance of determining the proper state vector size for 

optimal results (Bocquet et al., 2011). 

Another key challenge is that because of the long N2O lifetime, inaccuracies in model initial conditions can lead to large 

biases in the subsequent optimized emissions (Thompson et al., 2014c). Past global N2O inversion studies have established 20 

the initial conditions in a variety of ways: from a forward model spin-up that is then evaluated against observations (e.g., 

Huang et al., 2008); by including the initial condition as a separate adjustable parameter in the source optimization (e.g., 

Saikawa et al., 2014; Thompson et al., 2014a); or from interpolation of atmospheric observations (e.g., Wells et al., 2015). 

To our knowledge there has not yet been a detailed evaluation of these different methods and their impacts on N2O source 

inversions. Such information is needed to establish the degree to which uncertainties in the initial conditions can propagate 25 

to errors in the optimized N2O emission estimates. 

In this paper, we address the above uncertainties in a quantitative way using a multi-inversion hierarchy to derive top-down 

constraints on N2O emissions for 2011. We use the adjoint of the GEOS-Chem chemical transport model (CTM) to solve for 

monthly fluxes at the model grid box scale as well as at geographically aggregated continental scales. We compare these 

results with those obtained using a new dimension reduction technique based on the SVD of the so-called prior-30 

preconditioned Hessian of the 4D-Var cost function (Bousserez and Henze, 2017).  This new SVD-based approach allows us 

to solve for fluxes at optimal spatiotemporal resolution, as defined by the information content of the N2O observations – thus 

maximizing the DOFs for the inversion and avoiding any need for spatial aggregation based on geography or source type. It 

also offers significant time savings over standard grid-based 4D-Var approaches, due to the use of efficient randomized SVD 
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algorithms (Halko et al., 2011). The initial conditions for the above inversions are constructed in a variety of ways, and we 

use observations and model simulations to assess their accuracy and associated impacts on optimized N2O fluxes. We then 

evaluate these optimized emissions using independent airborne measurements and interpret the results in terms of underlying 

emission processes, with specific emphasis on the role of model resolution in affecting the solution, and on those features 

that appear most robust (and most uncertain) across model configurations. 5 

2 Methods 

2.1 GEOS-Chem N2O simulation 

The N2O simulation employed here, previously described by Wells et al. (2015), is based on the GEOS-Chem CTM 

(www.geos-chem.org) with GEOS-5 assimilated meteorological data from the NASA Goddard Earth Observing System. We 

use a horizontal resolution of 4° × 5° with 47 vertical levels from the surface to 0.01 hPa, and time steps of 30 minutes for 10 

transport and 60 minutes for emissions and chemistry. The simulation period spans April 2010-April 2012 (the start date is 

selected to match the initiation of N2O measurements at the KCMP tall tower site discussed later). 

A priori N2O emissions for anthropogenic, non-agricultural sources (including industrial processes, transportation, 

residential, and wastewater emissions) are from the Emission Database for Global Atmospheric Research (EDGARv4.2; 

http://edgar.jrc.ed.europa.eu), which are provided annually and total 1.7 Tg N yr-1 for 2008. Monthly N2O emissions from 15 

non-agricultural soils are from CLMCN-N2O as described by Saikawa et al. (2013), and total 7.5 Tg N yr-1 for 2011. These 

emissions have been shown to accurately capture the magnitude and seasonality of soil emissions in the Amazon, but 

exhibited less skill in reproducing the observed seasonal cycle in northern midlatitudes (based on data from New Hampshire; 

Saikawa et al., 2013). The magnitude of these emissions varies depending on the meteorological forcing dataset used; 

forcings used here are from the MIT Integrated Global System Model (IGSM) fully coupled transient 20 th century climate 20 

integration (Sokolov et al., 2009).  Adding these to the annual EDGARv4.2 direct and indirect (leaching and runoff) 

agricultural emissions (3.5 Tg N yr-1), indirect emissions from NOx and NH3 deposition (0.4 Tg N yr-1), and emissions from 

manure management (0.2 Tg N yr-1), leads to an a priori global soil N2O source of 11.6 Tg N yr-1 for 2011. Biomass burning 

emissions are computed monthly based on the Global Fire Emissions Database version 3 (GFED3; van der Werf et al., 

2010), totaling 0.6 Tg N yr-1, while monthly oceanic N2O emissions are from Jin and Gruber (2003) and total 3.5 Tg N yr-1. 25 

The global annual a priori N2O flux for 2011 is then 17.4 Tg N yr-1, in the range of recent top-down estimates (16.1 to 18.7 

Tg N yr-1 for years 2006-2008; Saikawa et al., 2014; Thompson et al., 2014c). Stratospheric loss of N2O via photolysis and 

reaction with O(1D) is calculated from 3-D loss frequencies archived monthly from Global Modeling Initiative (GMI) 

simulations driven by MERRA meteorological fields; the resulting N2O lifetime is ~127 years (note that the value depends 

on the initial spatial distribution of N2O in the model).  30 

The long N2O lifetime necessitates accurate characterization of initial conditions to avoid biasing the optimized fluxes (e.g., 

Thompson et al., 2014c). In our work, we construct six sets of initial conditions from global N2O observations and evaluate 
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the corresponding impacts on the inferred fluxes. Initial condition fields are constructed based on either data interpolation or 

4D-Var optimization, with details discussed in Section 3. 

2.2 Inversion frameworks 

We employ three inversion methods with varying resolution to solve for monthly N2O emissions over two years (April 2010 

– April 2012) based on global surface observations. The first of these is a 4-D Var inversion that iteratively optimizes 5 

emissions on the native model grid (here 4 × 5) using gradients computed with the GEOS-Chem adjoint model. This has 

the advantage of avoiding any aggregation errors associated with traditional clustering methods. However, our previous 

work (Wells et al., 2015) has shown that the degrees of freedom for atmospheric N2O inversions is typically much less than 

the native model grid dimension, and furthermore that native resolution optimizations have limited ability to resolve any 

temporal (e.g., seasonal) N2O emission biases. We therefore apply two alternate approaches to reduce the dimension of the 10 

inverse problem: 1) a 4D-Var inversion solving for emissions on aggregated, geographically-defined land and ocean regions, 

and 2) a 4D-Var inversion solving for emissions on a reduced emission basis set defined using an SVD-based information 

content analysis. In all three frameworks we consider two emission sectors (terrestrial and oceanic), and optimize monthly 

fluxes. We present details for each of the three frameworks in the following sections. 

2.2.1 Standard 4D-Var inversion 15 

Our standard inversion is a 4D-Var optimization in which the state vector contains scaling factors for monthly N2O 

emissions at 4° × 5°.  The optimal set of emission scaling factors is obtained by minimizing the cost function, J(x), which is 

a scalar containing contributions from the error-weighted model-measurement mismatch and the departure from the a priori 

values: 

𝐽(𝒙) =
1

2
∑ (𝒉(𝒙) − 𝒚)𝑇𝐒𝑦

−1(𝒉(𝒙) − 𝒚) +
1

2
(𝒙 − 𝒙𝑎)𝑇𝐒𝑎

−1(𝒙 − 𝒙𝑎)𝒉(𝒙)∈Ω  ,     20 

 (1) 

where x is a vector of the parameters to be optimized (in this case, emission scaling factors), xa contains the a priori values of 

those parameters, y is a set of observed N2O mixing ratios, h(x) is a vector containing the simulated mixing ratios at the time 

and location of each observation, Sy and Sa are the observational and a priori error covariance matrices, and Ω represents the 

time-space domain of the observations.  25 

We use a quasi-Newton routine (Zhu et al.,1994; Byrd et al., 1995) to iteratively converge to min(J(x)). At each iteration, we 

use the adjoint of GEOS-Chem to compute the gradient of J(x) with respect to the emission scaling factor, and employ a 

lower bound of zero and an upper bound of 10 based on our earlier work (Wells et al., 2015). This approach therefore 

implicitly assumes that the sign of the a priori flux (which can be negative over the ocean) is correct for each model grid 

square. The GEOS-Chem adjoint has previously been applied to a wide range of inverse problems for atmospheric 30 

composition, including constraining sources and sinks of long-lived greenhouse gases such as CO2 (Deng et al., 2014; Liu et 
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al., 2014; Deng et al., 2015, Liu et al., 2015), methane (Wecht et al., 2014; Turner et al., 2015), and N2O (Wells et al., 2015), 

as well as aerosols and reactive trace gases (e.g., Henze et al., 2007; Kopacz et al., 2009; Wells et al., 2014). 

A priori uncertainties are assumed to be 100% for both land and ocean emissions, with off-diagonal terms assuming 

correlation length scales of 500 and 1000 km, respectively, following prior work by Thompson et al. (2011; 2014a). 

Observational errors are calculated as the quadratic sum of measurement uncertainty (~0.4 ppb for most sites, see Section 5 

2.4) and model transport uncertainty, with the latter estimated from the 3-D model variance in N2O mixing ratios in the grid 

boxes surrounding any given observation (resulting in a mean uncertainty ~0.2 ppb at the surface). The corresponding mean 

observational uncertainty is ~0.45 ppb, with maximum values ~4 ppb. The solution presented here was calculated using 40 

iterations, after which the cost function change per iteration is <1% and the total cost function reduction is ~65% (Fig. S2). 

2.2.2 Continental-scale inversion 10 

While the above approach avoids any aggregation error, the existing observational network provides insufficient information 

to constrain N2O emissions in every 4° × 5° model grid square. Therefore, in an alternate inversion, we reduce the dimension 

of the inverse problem by solving for emission scaling factors on six continental (North America, South America, Europe, 

Africa, Asia, Oceania) and three ocean regions (northern oceans: 30° – 90° N, tropical oceans: 30° S – 30° N, and southern 

oceans: 30° – 90° S). Regions are mapped in Fig. S1 and are similar to those used in the TransCom N2O model 15 

intercomparison study (Thompson et al., 2014b; 2014c), except with one rather than two Asian regions. While this inversion 

could readily be carried out analytically rather than numerically (owing to its small dimension) we instead use 4D-Var for 

consistency and to impose the same scaling factor bounds (0-10) as in the standard inversion. We thus use the GEOS-Chem 

adjoint to calculate the cost function gradient (∇𝒙𝐽(𝒙)) aggregated over the 9 predefined regions. We then iteratively 

minimize J(x), achieving a cost function change of < 1% per iteration (and total reduction of ~55%) after 28 iterations (Fig. 20 

S2). 

2.2.3 SVD-based inversion 

As an advance over standard aggregation methods such as the one described above, we also apply a new, efficient SVD-

based information content analysis technique that maximizes the degrees of freedom of the inverse system while permitting 

us to solve for N2O fluxes in a fast iterative framework. The method, based on synthesis and advancement of recent work in 25 

this area (Flath et al., 2011; Bui-Thanh et al., 2012; Spantini et al., 2015) by Bousserez and Henze (2017), uses an optimal 

low-rank projection of the inverse problem that maximizes the observational constraints. Specifically, for a given dimension 

k, the optimal reduced space (Spantini et al., 2015; Bousserez and Henze, 2017) is spanned by the first k eigenvectors of the 

prior-preconditioned Hessian G (Flath et al., 2011): 

𝐆 ≡ 𝐒𝑎

1

2 𝐇𝑇𝐒𝑦
−1𝐇𝐒𝑎

1

2 = 𝐕𝚲𝐕𝑇,          (2) 30 
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where H is the tangent linear of the forward model, V is a matrix whose columns are the eigenvectors of G, and Λ is a 

diagonal matrix containing the eigenvalues of G. The following analytical approximation can then be used: 

𝐒𝑜𝑝𝑡 = 𝐒𝑎 − 𝐒𝑎

1

2 (∑
𝜆𝑖

𝜆𝑖+1
𝒗𝑖𝒗𝑖

𝑇𝑘
𝑖=1 ) 𝐒𝑎

1

2 ,         (3) 

where Sopt is the posterior error covariance matrix, while vi,i=1,..,k and i,i=1,..,k are the eigenvectors and eigenvalues of G. This 

expression gives, in some sense, the lowest error rank-k approximation of Sopt (see Bousserez and Henze (2017) for details). 5 

The eigenvectors vi can be interpreted as the most constrained modes in flux space, i.e. flux patterns that are independently 

constrained by the observations (Cui et al., 2014; Bousserez and Henze, 2017). These eigenvectors of the prior-

preconditioned Hessian are efficiently calculated using a fully-parallelized randomized algorithm (Halko et al., 2011), as in 

Bui-Thanh et al. (2012) and Bousserez and Henze (2017). We use k=350 here, which employs nearly all modes with 

eigenvalues greater than 1.0 (Fig. S3), as modes with eigenvalues below this threshold are informed mainly by the prior. 10 

From Sopt we can obtain the inversion averaging kernel, which gives a measure of how well emissions are constrained in a 

given location, as follows: 

𝐀𝐊 = 𝐈 − 𝐒𝑜𝑝𝑡𝐒𝑎,           (4) 

where I is the identity matrix and Sa is the a priori error covariance matrix. Optimized solutions in areas where the diagonal 

of AK is close to 1.0 are well-constrained by the observations. The trace of the averaging kernel gives the total degrees of 15 

freedom, i.e. the number of independent pieces of information that can be obtained in the inversion framework.  

The posterior mean estimate of x can also be directly calculated from analytical formulas using the eigenvectors of G 

(Spantini et al., 2015; Bouserez and Henze, 2017). However, to impose a positivity constraint on the emissions, we rely here 

on the variational minimization framework as in the standard 4D-Var case. In order to leverage the use of the optimal basis 

set, we project both the cost function and its gradient onto the principal modes to obtain a reduced analytical formulation. 20 

The analytical expression for the reduced cost function (derivation presented in Appendix A) is: 

𝐽(𝒙) ≈
1

2
(𝒙 − 𝒙𝑎)𝑇𝐒𝑎

−
1

2 ∑ 𝒗𝑖𝒗𝑖
𝑇𝐒𝑎

−
1

2(𝒙 − 𝒙𝑎)𝑘
𝑖=1 +

1

2
(𝒉(𝒙𝑎) − 𝒚)𝑇𝐒𝑦

−1(𝒉(𝒙𝑎) − 𝒚) +
1

2
(𝒙 − 𝒙𝑎)𝑇𝐒𝑎

−
1

2 ∑ 𝜆𝑖𝒗𝑖𝒗𝑖
𝑇𝐒𝑎

−
1

2(𝒙 −𝑘
𝑖=1

𝒙𝑎) +
1

2
(𝒉(𝒙𝑎) − 𝒚)𝑇𝐒𝑦

−
1

2 ∑ 𝜆
𝑖

1

2𝒘𝑖𝒗𝑖
𝑇𝐒𝑎

−
1

2(𝒙 − 𝒙𝑎)𝑘
𝑖=1 +

1

2
(𝒙 − 𝒙𝑎)𝑇𝐒𝑎

−
1

2 ∑ 𝜆
𝑖

1

2𝒗𝑖𝒘𝑖
𝑇𝑘

𝑖=1 𝐒𝑦

−
1

2(𝒉(𝒙𝑎) − 𝒚),  (5) 

while the analytical approximation for the cost function gradient is: 

∇𝐽(𝒙) ≈ 𝐒𝑎

−
1

2 ∑ 𝒗𝑖𝒗𝑖
𝑇𝐒𝑎

−
1

2(𝒙 − 𝒙𝑎)𝑘
𝑖=1 + 𝐒𝑎

−
1

2 ∑ 𝜆𝑖𝒗𝑖𝒗𝑖
𝑇𝐒𝑎

−
1

2(𝒙 − 𝒙𝑎)𝑘
𝑖=1 + 𝐒𝑎

−
1

2 ∑ 𝜆
𝑖

1

2𝒗𝑖𝒘𝑖
𝑇𝑘

𝑖=1 𝐒𝑦

−
1

2(𝒉(𝒙𝑎) − 𝒚),  (6) 25 

where k=350 is the number of modes retained in the approximation. Here, h(xa) are the model mixing ratios corresponding to 

the a priori emissions and wi are the eigenvectors in observation space: 

𝒘𝑖 =
1

√𝜆𝑖
𝐒𝑦

−
1

2𝐇𝐒𝑎

1

2 𝒗𝑖.           (7) 

Because the cost function and gradient depend only on the a priori model-measurement difference, the a priori and 

observational error covariances, and the eigenvectors of G (which are computed only once), this iterative inversion offers 30 

significant time savings, particularly for models with a low level of parallelization. Monthly N2O emission scaling factors for 
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the 2-year analysis window are derived in approximately 6 hours, versus over 100 hours for the standard and continental-

scale inversions, and nearly all the computation time in the former case is spent on calculating the eigenvectors of G. The 

solution for the SVD-based inversion (with a projected cost function change of < 1% per iteration) is obtained after 60 

iterations (Fig. S2). The full cost function reduction (calculated from a forward model run) is ~25% for this solution, 

whereas we achieve the minimum in the full cost function at a much earlier iteration (see Fig. S2). The divergence in the 5 

behavior of the projected and full cost function after this point may suggest that the weaker modes included here are not as 

well-approximated by the randomized SVD calculation as the dominant modes. An objective criteria for determining the 

error in the randomized SVD is the subject of a work in progress. 

2.3 Atmospheric N2O observations 

Atmospheric N2O observations used in our analysis include a global ensemble of surface measurements as well as airborne 10 

data from the HIAPER Pole-to-Pole Observations (HIPPO) campaigns (Wofsy, 2011).  Because we found in our prior work 

that the surface dataset provides the strongest constraint on the spatial distribution of N2O emissions (Wells et al., 2015), we 

employ these in the inversion and reserve the airborne data for a posteriori evaluation.  

Fig. 1 shows a map of the surface measurement sites used in this study. The surface measurements consist primarily of 

discrete air-filled flasks from NOAA's Cooperative Global Air Sampling Network (CCGG) program (Dlugokencky et al., 15 

1994); we also include flask-based air samples from the Commonwealth Scientific and Industrial Research Organisation 

(CSIRO) network, the Environment Canada (EC) network, and a National Institute of Water and Atmospheric research 

(NIWA) site. We assume a measurement uncertainty of 0.4 ppb at all flask sampling sites based on recommendations from 

the data providers. In addition to the flask-based air samples, we use high-frequency N2O measurements (discrete hourly or 

hourly averaged) from the NOAA Chromatograph for Atmospheric Trace Species (CATS) network (Hall et al., 2007), the 20 

Advanced Global Atmospheric Gases Experiment (AGAGE) network (Prinn et al., 2000), and the University of Minnesota 

tall tower (KCMP tall tower; Griffis et al., 2013; Chen et al., 2016). The hourly measurement uncertainty at these sites is 

approximately 0.3 ppb, 0.6 ppb, and 1 ppb, respectively.  

Small calibration offsets between measurement networks can significantly impact N2O inversions due to its low ambient 

variability relative to background mixing ratios. To address this, we adjust here the AGAGE and EC data to the same NOAA 25 

2006A scale used by the NOAA CCGG, CATS, CSIRO, NIWA, and KCMP measurements. For AGAGE, we calculate an 

adjustment factor based on co-located CCGG flask-based air samples taken within 15 minutes of an in situ measurement at 

five sites: CGO (Cape Grim, Australia), MHD (Mace Head, Ireland), RPB (Ragged Point, Barbados), SMO (Tutuila, 

American Samoa), and THD (Trinidad Head, California). The mean CCGG:AGAGE ratio at these sites from 2010 to 2012 is 

1.00037, and we apply this adjustment to all AGAGE data. For EC, we calculate an adjustment factor based on co-located 30 

NOAA flask-based air measurements at ALT (Alert, Nunavut). The mean NOAA:EC ratio during our analysis period is 

1.00017, and we use this adjustment factor across the EC network. While calibration scale offsets can be concentration- and 

time-dependent, our relatively short (2-year) analysis window avoids the need for any temporally resolved measurement 
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adjustments. Prior to our analysis we also screen for outliers by omitting any measurements more than two standard 

deviations (calculated on a running basis with a 30-day time window for flask-based air measurements and a 24-hour time 

window for in situ observations) away from its nearest neighbor.  

For a posteriori evaluation of the inverse modeling results we employ airborne measurements from the HIPPO campaigns 

(Wofsy, 2011), which featured pole-to-pole sampling and regular vertical profiling from approximately 300 to 8500 m 5 

altitude, with some profiles extending to 14000 m. Figure 1 shows flight tracks for the two deployments occurring during our 

simulation period and used here: HIPPO IV (June-July 2011) and HIPPO V (August-September 2011). The aircraft payload 

included high-frequency N2O measurements by quantum cascade laser spectroscopy (QCLS; Kort et al., 2011). To ensure 

calibration consistency we apply an offset adjustment to these data for each deployment based on concurrent flask-based air 

samples, which are anchored to the NOAA 2006A scale. 10 

3 Inversion sensitivity to initial conditions for N2O 

Because of the ~127 year atmospheric lifetime for N2O, any bias in the model initial conditions can persist throughout the 

analysis period and lead to substantial errors in top-down emission estimates (Thompson et al., 2014c). In this section, we 

evaluate six alternate approaches to generating initial N2O mass fields for the start date of our inversions (1 April 2010), their 

impact on the derived fluxes, and their overall suitability for inverse modeling.  15 

The six treatments are summarized in Table 1. Three involve interpolation of surface observations from the NOAA, 

AGAGE, CSIRO, EC, and NIWA networks for alternate time windows (MarZonal, AprZonal, AprKriging), two involve 4D-

Var adjoint optimization of the initial mass field based on those same observations plus those from KCMP tall tower 

(AprOpt, FebOpt), and one involves optimization of the initial mass field based on observations from remote sites 

(RemoteOpt). Interpolation of observations offers the advantage of avoiding any model information that may bias the initial 20 

state, whereas a 4D-Var optimization of the initial conditions allows us to exploit subsequent atmospheric transport to inform 

the initial state in locations without N2O observations. The first three approaches employ either linear interpolation of 

zonally-averaged surface measurements or Kriging, and use observations from March 2010 (with subsequent one month 

model spin-up) or from 25 March to 7 April 2010 (with no subsequent spin-up). In each case, the resulting surface mixing 

ratios of N2O (mapped in Fig. S4) are assigned to all vertical levels in the troposphere; initial N2O mixing ratios above 100 25 

hPa are based on interpolated mean profiles from the EOS Aura Microwave Limb Sounder (MLS; Lambert et al., 2007). 

Where necessary, N2O mixing ratios above the tropopause but below 100 hPa are linearly interpolated between the 

tropospheric and MLS values.  

The three tests in which the initial conditions are optimized by 4D-Var use a time window of February-March 2010, April-

May 2010, or January-June 2010 to solve for the initial N2O mass field on 1 April 2010. Two of these assimilate all surface 30 

observations while one employs only data from remote sites. Below, we evaluate each of the six initial condition treatments 
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against observations at the beginning of the simulation period (1-7 April 2010) and perform a standard 4D-Var optimization 

of N2O emissions to quantify the sensitivity of the inferred fluxes to the selected initial conditions. 

Table 2 shows initial bias statistics with respect to all surface observations and by hemisphere for each initial condition 

treatment. Of the interpolation approaches, the MarZonal setup has the poorest performance, with an overly strong 

interhemispheric gradient (the model is biased high in the Northern Hemisphere and low in the Southern Hemisphere) and 5 

the largest initial model:measurement bias at all sites. In this case, the 1-month model spinup, meant to smooth out any 

artificial N2O gradients from the interpolation, is counterproductive as it allows model emission biases to accumulate prior to 

the inversion. The interpolation methods without subsequent spinup (AprZonal, AprKriging) perform better in terms of 

initial model:measurement bias – in the global mean and in each individual hemisphere  We see the same general behavior 

when using 4D-Var to optimize the initial conditions, with the no-spinup AprOpt approach providing the lowest initial 10 

model:measurement bias (and least spread in bias) across all of the six methods tested. Using only data from remote sites 

(RemoteOpt) in the initial field optimization leads to a negative model bias, on average, in both hemispheres. 

The bias statistics above can only test the realism of the initial N2O fields in those locations where there are observations, 

and say nothing about any potential bias in the large majority of model grid squares that lack observations. On the other 

hand, by carrying out a full forward model run based on each of those initial conditions, we can exploit atmospheric 15 

transport to more fully assess the fidelity of the initial N2O mass field based on the evolution of model:measurement biases 

at the various observation sites.  

Fig. 2 shows monthly-mean model-measurement residuals (averaged for Northern and Southern Hemisphere sites) for a full 

two-year forward simulation using the a priori emissions for each of the above initial mass fields. While most of the initial 

conditions exhibit minimal bias at the start of the simulation, some develop large biases over time. As a result, the 20 

corresponding a posteriori global flux obtained in a 4D-Var source inversion (values shown inset in Fig. 2) varies 

considerably depending on the initial N2O field, with the flux adjustment even changing sign: a posteriori values range from 

16.1 to 21.4 Tg N yr-1, i.e. from a ~7% reduction to a 23% increase in the prior flux. We see in Fig. 2 that the direction of the 

global flux adjustment corresponds to the trend in the model-measurement residuals. For example, with the MarZonal initial 

conditions, a significant negative trend in the residuals drives a global flux increase relative to the a priori, despite the fact 25 

that this case exhibits a positive mean bias with respect to the observations at the outset (Table 2). Such a trend in the 

model:measurement residuals could theoretically arise from the accumulation of model source/sink errors over the course of 

the simulation. However, our a priori flux and lifetime are broadly consistent with independent observational constraints 

(Prather et al., 2012), whereas an annual N2O source of 20+ Tg N would yield a higher-than-observed atmospheric growth 

rate. A biased initial mass field is thus the more tenable explanation for the negative model:measurement residual trend. 30 

Overall, the three simulations using initial conditions optimized by 4D-Var yield a relatively small trend in the model-

measurement N2O residuals, as does the AprZonal simulation, arguing for a more realistic initial N2O distribution in these 

cases. While the a posteriori flux between them varies, differences are less than 10% of the a priori flux. Because the AprOpt 

initial conditions exhibit the lowest initial bias, along with the lack of a trend in the residual timeline, we choose this method 
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to construct the initial conditions for the N2O inversions presented here. Likewise, for future work on N2O and other long-

lived species, we recommend constructing the initial conditions by 4D-Var assimilation of observations at the outset of the 

inversion period. Because they are used for initial condition optimization, the April-May 2010 surface observations are 

excluded from the subsequent source inversions. 

4 Inversion evaluation and results 5 

Figure 3 shows maps of our derived annual a posteriori N2O emissions from the standard, continental-scale, and SVD-based 

inversion for 2011, along with bar charts of the 2011 annual flux for the nine regions considered in the continental-scale 

inversion (numerical values listed in Table 3). A priori emissions, along with a posteriori emission increments (a posteriori-a 

priori difference) are also included for comparison. We focus on 2011 results to minimize any residual bias from the initial 

conditions. Focusing on 2011 also excludes the last three months of the inversion window when the adjoint forcing weakens 10 

due to the long lifetime of N2O (Wells et al., 2015).  

The optimized global fluxes, listed inset in each map in Fig. 3, range from 15.9 Tg N yr-1 for the SVD-based inversion to 

17.5 – 17.7 Tg N yr-1 for the standard and continental-scale inversions, with some similar spatial patterns and some 

discrepancies that we explore further in Section 4.3. The SVD-based global flux agrees well with that implied by the N2O 

lifetime and global burden for 2010 (15.7 ± 1.1 Tg N yr-1; Prather et al., 2012). It also gives a better comparison to HIPPO 15 

IV and V measurements in the southern extratropics and to HIPPO V in the northern extratropics (see below). However, all 

three a posteriori global annual fluxes are close to or within the range of recent inverse studies (16.1-18.7 Tg N yr-1). Below 

we evaluate our inversion results using aircraft and surface observations before interpreting them in terms of the information 

they provide on N2O emission processes. 

4.1 A posteriori evaluation of N2O emissions 20 

We apply the HIPPO IV and V airborne measurements described in Section 2.4 (and mapped in Fig. 1) to evaluate the a 

posteriori fluxes from our different inversion methods, and assess which method yields the most realistic depiction of true 

N2O fluxes. Figure 4 shows average vertical profiles of the model-measurement N2O difference for these deployments in the 

a priori and the three inverse estimates as a function of latitude. Initially, the model vertical profile is biased high throughout 

the troposphere in the northern mid-to-high latitudes; this bias is larger during HIPPO V than HIPPO IV due to a seasonal 25 

bias in model emissions that is further discussed in Section 4.4. In the southern mid-to-high latitudes the model is also biased 

high through most of the troposphere. In most cases in Fig. 4 we see that the model-measurement difference trends negative 

with height in the troposphere, which may reflect a model underestimate of the convective transport of N2O emissions (Kort 

et al., 2011). Large biases above 400 hPa in HIPPO IV (30° to 90° N) and HIPPO V (30° to 90° S) are driven by high 

latitude observations in which the aircraft is sampling below the model tropopause but above the actual tropopause, and 30 

highlight the difficulty in modeling the N2O vertical profile at these altitudes. 
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All three inversions significantly reduce the 30° to 90° N bias seen for both HIPPO campaigns; the SVD-based approach 

provides the fullest correction during HIPPO V, while slightly overcorrecting the HIPPO IV bias. However, the high bias 

from 30° to 90° S is only reduced in the SVD-based inversion, despite the fact that the continental-scale inversion has the 

lowest a posteriori emissions in this latitude range (Table 3). The lower global flux obtained with the SVD-based approach 

(Fig. 3 and Table 3) is thus the reason for this correction, implying that the global annual a priori flux (from all sources 5 

combined) may be too high. We note that a slight low bias does emerge in the tropics in the SVD-based approach, where 

observational constraints are low. 

4.2 Averaging kernel 

The information from the randomized-SVD algorithm can be used to directly calculate the inversion averaging kernel (AK) 

and posterior error via Eqs. (3) and (4), giving valuable information on the spatial distribution of emission constraints 10 

provided by the N2O observing network. Figure 5 shows the diagonal of the AK for N2O emissions in April 2011 (results for 

other months are very similar). AK diagonal values near 1.0 indicate emission locations that are well-constrained by 

observations, while AK diagonal values close to 0 indicate emission locations that lack a direct constraint.  

AK diagonal values for monthly N2O emissions are highest in the US and Europe where the observational coverage is most 

extensive, with values up to 0.7 in locations where hourly observations are available. Weaker constraints are achieved in 15 

East Asia and some tropical and Australian grid boxes, with AK values ranging from 0.01-0.4. AK values throughout most 

of the Tropics, Southern Hemisphere, Canada, and northern Asia reveal almost no direct observational constraints on 

monthly emissions in these regions. 

The number of pieces of information that can be independently resolved (DOFs) in any inversion can be determined from the 

trace of the AK. Here, the DOFs are ~315 for the full two-year inversion. A key advantage of the SVD-based approach is 20 

that it solves for only those spatiotemporal flux patterns that can be constrained by the observations: i.e., the dimension of 

the solution is consistent with the DOFs of the inversion. On the other hand, the standard inversion attempts to resolve 

79,466 free variables, ~250 more than can legitimately be constrained, while the continental-scale inversion yields fewer 

pieces of information (216) than are obtainable. The latter point confirms that the observations can in fact resolve some 

finer-scale spatial and temporal information on N2O emissions in the regions where AK values are highest. 25 

4.3 Regional annual N2O emissions 

In this section we interpret the inversion results by region in terms of their implications for present understanding of N2O 

emission processes. We focus on the spatial information obtained from the standard and SVD-based inversions and on those 

features that are most robust across these inversion frameworks.  
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4.3.1 North America 

A posteriori emissions from North America range from 1.24-1.78 Tg N yr-1, with a slight increase (11%) inferred relative to 

the a priori inventory for the continental-scale inversion versus a 20-23% decrease for the standard and SVD-based 

inversion. The latter values are quite close to a recent estimate from Saikawa et al. (2014) for 2008 (1.2 ± 0.2 Tg N yr-1). 

Both the standard and SVD-based inversions call for a large increase (2-3×) in emissions from the US corn belt (Fig. 3), one 5 

of the most intensively managed agricultural regions of the world. The magnitude of this upward adjustment supports 

emission underestimates previously found for this region (Kort et al., 2008; Miller et al., 2012; Griffis et al., 2013), and 

which has been attributed to underrepresentation of indirect N2O emissions following leaching and runoff from agricultural 

soils (Turner et al., 2015; Chen et al., 2016). However, other processes could also contribute, such as freeze-thaw emissions 

or direct emissions after spring fertilizer application. The timing of these processes, and that of peak stream flow, correspond 10 

to the dominant modes of ambient N2O variability observed in this region (Griffis et al., 2017). Finally, we find that 

emissions decrease relative to the a priori estimate in the western US and Canada (in both the standard and SVD inversions), 

where natural soil emissions may be too high in the CLMCN-N2O inventory (Saikawa et al., 2014) used here, and where 

recent work argues that direct agricultural emissions are overestimated using a standard linear emission model (Gerber et al., 

2016) 15 

4.3.2 South America 

A posteriori emissions from South America range from 3.28-3.68 Tg N yr-1, increasing 6-19% over the a priori. These values 

are 40-60% larger than the median inferred by Thompson et al. (2014c) for 2006-2008 (2.33 Tg N yr-1); however, due to 

weak observational constraints (Fig. 5) we find that the results here are quite sensitive to the inversion framework used. For 

example, including fewer modes in the SVD-based solution yields an even higher a posteriori flux in this region, and the 20 

spatial distribution of emissions differs substantially between the standard and SVD-based solutions. Saikawa et al. (2014) 

do note a large recent increase in nitrogen fertilizer consumption over this region (49% from 1995-2008), which may help 

explain the larger a posteriori flux seen here, although N fertilizer use in this region was only 7% of the global total in 2011 

(International Fertilizer Association, 2016). 

4.3.3 Europe 25 

All three inversions point to a significant model overestimate of European N2O emissions, with a posteriori fluxes that are 

38% (standard inversion; optimized flux 1.05 Tg N yr-1) to 75% (SVD-based inversion; optimized flux 0.43 Tg N yr-1) lower 

than the a priori. These optimized fluxes are in better agreement with the other top-down flux estimates for Europe (both for 

2006) of 1.19 Tg N yr-1 (Corazza et al., 2011) and 0.93 ±0.12 Tg N yr-1 (Saikawa et al., 2014). The European source derived 

in the SVD-based and continental-scale inversions (0.43-0.57 Tg N yr-1) represents ~3% of the global flux found in each 30 

case, which agrees with the result from Huang et al. (2008). We find the largest emission reductions over western and central 
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Europe, suggesting an overestimate of soil and non-agricultural anthropogenic sources in the EDGARv4.2 inventory used 

here. While non-agricultural anthropogenic sources make up only ~10% of the global a priori N2O flux, they comprise ~30% 

of the European a priori model emissions. Based on the spatial distribution of the adjustments derived in the inversions, we 

find that both of these sources (soils, non-agricultural anthropogenic) have a comparable high bias (from 40-70% as 

indicated by the standard and SVD-based inversions, respectively) in the a priori inventories over Europe. 5 

4.3.4 Africa 

Annual emissions from Africa range from 2.85-2.97 Tg N yr-1 in all three inversions, an 8-12% increase from the prior flux. 

Our a posteriori values are closer to the median optimized African flux found by Thompson et al. (2014c) for 2006-2008 

(3.36 Tg N yr-1) than is the a priori; however, the lack of direct observational constraints for this region (Fig. 5) prevent any 

definitive conclusion. As in South America, the SVD-based result here is quite sensitive to the number of modes used, with 10 

emission increments differing in sign for some months. The spatial distribution between the standard and SVD-based 

solutions also differs, with the former preserving the a priori distribution and the latter placing more of the flux in equatorial 

Africa. 

4.3.5 Asia 

Over Asia the a posteriori flux ranges from 3.82 Tg N yr-1 (9% decrease from the a priori) to 4.59 Tg N yr-1 (10% increase). 15 

The full-dimensional and SVD-based inversions both call for a reduction in model emissions for northern China and Russia 

and an increase to the south. Consistent a posteriori spatial patterns emerge in the latter region, with large emission increases 

over the prior for the Indo-Gangetic Plain (IGP) of India, Southeast Asia, and Eastern China. Our flux estimates are towards 

the higher end of the wide range of estimates for North + South Asia (2.87-4.48 Tg N yr-1) reported by Thompson et al. 

(2014c) for 2006-2008; that study concludes that observational constraints are low in this region, which is generally 20 

consistent with our findings (Fig. 5). Saikawa et al. (2014) find that agricultural N2O emissions are increasing in South Asia, 

and that is consistent with our higher flux for 2011 compared to the Thompson et al. (2014c) median value for 2006-2008. 

58% of global N fertilizer consumption occurred in South and East Asia in 2011 (International Fertilizer Association, 2016); 

it is possible that direct, on-field N2O emissions here are underestimated with N inputs exceeding crop demands (Shcherbak 

et al, 2014). Indeed, a recent bottom-up estimate derives a direct emission response for China that is 42% larger than the 25 

global average (Gerber et al., 2016). Over northern Asia our results point to an overestimate of natural soil emissions (as this 

is the dominant regional source in the model); a similar overestimate was inferred by Saikawa et al. (2014). 

4.3.6 Oceania 

The emission estimates for Oceania range from 0.64 Tg N yr-1 (16% decrease from the prior) to 0.84 Tg N yr-1 (10% 

increase). Observational constraints are low in this region (outside of Cape Grim, where a measurement site exists, Fig. 5) 30 

and results depend strongly on the a priori. The weak emission reduction in the continental-scale inversion (Table 3) could 
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also reflect a model overestimate of the southern ocean source, as the sparse observations make it difficult to separate land 

versus ocean emissions here.  

4.3.7 Ocean emissions 

We obtain an annual flux ranging from 0.07-0.52 Tg N yr-1 for northern oceans (30° – 90° N), 2.19-2.99 Tg N yr-1 for 

tropical oceans (30° S – 30° N), and 0.39-0.70 Tg N yr-1 for southern oceans (30° – 90° S). In all cases, our results indicate 5 

an emission increase for tropical oceans emissions (of 9-47%) and a decrease for northern (20-90%) and southern (11-51%) 

oceans relative to the a priori Jin and Gruber (2003) inventory. The wide range of values reflects the limited degree to which 

the surface observing network can constrain ocean emissions. However, the standard and SVD-based inversions both point 

to a model overestimate in the North Atlantic where downwind observations in Europe have some power to resolve monthly 

emissions.  10 

The direction of the oceanic emission changes is consistent with the findings of Thompson et al. (2014c); however, our 

oceanic fluxes are lower than obtained in that study (1.08, 3.66, and 1.20 Tg N yr-1 for northern, tropical, and southern 

oceans, respectively). Compared to Thompson et al. (2014c), results obtained here (3.38-3.45 Tg N yr-1) are closer to the 

most recent best estimate of the oceanic source derived from observations of the air-sea N2O gradient (2.4 ± 0.8 Tg N yr-1; 

Buitenhuis et al., 2017), albeit still higher. We find that ocean emissions make up ~20% of the global N2O flux (in both the a 15 

priori and a posteriori estimates), lower than found in some inverse studies (31-38%; Saikawa et al., 2014; Thompson et al., 

2014c) but consistent with Huang et al. (2008) (~23%).  

4.3.7 Summary of regional scale results 

Among the most robust spatial features of our results across all the inversion frameworks employed is an increase in annual 

N2O emissions over the a priori in the tropics (particularly 0°-30° N), and a decrease at higher latitudes for both ocean and 20 

terrestrial sources. While the total Asian flux differs between the full-dimensional and SVD-based inversion, both solutions 

indicate a model overestimate in northern Asia and an underestimate in Southeast Asia. Furthermore, while the inversions 

disagree on whether the a priori emissions are too high or too low over North America as a whole, both the full-dimensional 

and SVD-based inversions increase the prior N2O emissions over the US corn belt and reduce them over the western US and 

Canada. This suggests that while the a priori emissions may be too high in northern mid-to-high latitudes overall (which we 25 

attribute to overly-high natural soil emissions in the model, as well as non-agricultural anthropogenic emissions in regions 

such as Europe, and a possible overestimate of direct emissions in drier regions) they are underestimated for fertilized 

agricultural soils in the US Corn Belt and likely also in Asia. 
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4.4 Seasonality of N2O emissions 

4.4.1 A priori seasonality 

Figure 2 shows that the a priori model bias in atmospheric N2O varies strongly as a function of season in the Northern 

Hemisphere, implying a corresponding seasonal bias in the bottom-up emissions driving the model. Because the 

EDGARv4.2 emissions used here are annual, the seasonality in our prior emissions over land is dominated by the natural soil 5 

source. Here, we compare the temporal constraints afforded by the different inversions, focusing again on the most robust 

features across the inversions, after first examining the seasonality differences between modeled and measured N2O mixing 

ratios. 

Figure 6 shows two-year timelines of monthly-averaged a priori modeled and measured N2O mixing ratios along with the 

corresponding model-measurement residual for all surface measurement sites. The modeled N2O from 30° – 90° N is 10 

characterized by a November – December peak, and a May – June minimum. This is out of phase with the measurements, 

which have a minimum around August – September and a peak in February – March. Several other CTMs in a recent 

intercomparison (Thompson et al., 2014b; 2014c) likewise produce a seasonal minimum that is too early compared to 

observations, which that study suggests may reflect an overestimate of the impact of N2O-depleted stratospheric air on 

surface mixing ratios. Our previous work indicates that surface N2O mixing ratios are not sensitive to biases in the 15 

magnitude of the stratospheric sink on the timescale of our inversion (Wells et al., 2015), while Thompson et al. (2011) find 

that errors in modeled stratosphere-troposphere exchange can bias inferred regional emissions by up to 25%, particularly 

over the North Atlantic and Europe. We thus focus here on inferred seasonal changes that are significantly larger than 25% 

and most robust to any potential errors in modeled stratosphere-troposphere exchange.  

Measured mixing ratios at the KCMP tall tower site in Minnesota are significantly higher than other Northern Hemisphere 20 

sites. As a result, it is one of the few sites where negative model-measurement residuals persist through most of the two-year 

inversion period. Located in an agricultural region composed mainly of drained lands, the low model bias is consistent with 

previous findings of a missing or strongly underestimated agricultural N2O source tied to indirect emissions (Griffis et al., 

2013; Chen et al., 2016). 

4.4.2 Seasonality of N2O inversion results 25 

Figure 7 contains 2011 timelines of the monthly a priori and a posteriori emissions for the three inversion methods over the 

same continental and ocean regions considered above. Both North American and European a posteriori emissions are 

characterized by a shift from a summertime (June-July) to springtime peak in emissions (March-April), with the North 

American results exhibiting separate spring and summer peaks (plus an October enhancement in the SVD-based inversion). 

The a posteriori seasonality over Asia is nearly reversed from the a priori, with dual emission peaks in spring (March-May) 30 

and fall (September-October). This double maximum is consistent with past work and coincides with the approximate start 

and end times of the Asian monsoon (Thompson et al., 2014c). Over South America and Africa we find that the a posteriori 
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seasonality depends more strongly on the inversion method used, reflecting the low observational constraints in these regions 

(Fig. 5). Tropical ocean emissions increase primarily during summer and fall when emissions are at their peak, though the 

magnitude varies across inversion frameworks. Emissions decrease strongly for the northern oceans (though they were not 

large to begin with) for the continental and SVD-based inversions, but with no shift in seasonality. Seasonal emission 

adjustments are small over the southern oceans and Oceania, where constraints are weak. 5 

The shift toward earlier springtime emissions in the Northern Hemisphere is one robust feature across our inversions. 

Thompson et al. (2014c) arrived at the same finding, and argued that it reflects the dependence of N2O emissions on soil 

moisture and temperature, as drier soils later in summer may limit N2O fluxes. However, other factors are also likely to 

contribute. Emissions associated with freeze-thaw cycles can lead to elevated springtime N2O fluxes at these mid- to high-

latitudes (e.g., Wagner-Riddle et al., 2017), while higher springtime emissions are also consistent with the timing of fertilizer 10 

application and indirect N2O emissions due to leaching and runoff when streamflow is at its peak (Chen et al., 2016; Griffis 

et al., 2017). The separate spring and summer emission peaks seen over North America in 2011 may reflect the respective 

influences of indirect and direct emissions, which have been shown (Chen et al., 2016) to peak earlier (indirect emissions) 

and later (direct emissions) in the growing season. Fall fertilizer application is also common in the US Corn Belt—more than 

one third of corn farmers in Minnesota do their main N application during this time (Beirman et al., 2012)—which could 15 

explain the October peak in the SVD-based results, and provide a source of nitrogen that would be released in the early 

spring thaw and subsequent runoff period. 

We see in Fig. 7 that the seasonal adjustments are larger in the continental and SVD-based inversion than the standard 4D-

Var, particularly in regions where direct observational constraints are low. In our previous work (Wells et al., 2015) we 

highlighted the difficulty in correcting seasonal biases when solving for monthly N2O emissions on a grid box scale. The 20 

SVD-based approach thus provides a major advantage in this context, by reducing the dimensions of the inverse problem and 

allowing us to better resolve temporal features that inform our understanding of N2O emission processes. 

5 Conclusions and implications for the N2O budget 

In this paper we employed three inversion frameworks to derive top-down constraints on global monthly N2O emissions for 

2011. The inverse frameworks included: (1) a standard 4D-Var inversion at 4° × 5°, (2) a 4D-Var inversion solving for 25 

fluxes on six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a new dimension reduction 

technique using efficient randomized SVD algorithms. The latter technique is an advance over typical aggregation schemes:   

it defines the optimal resolution of the solution according to the information afforded by the observations; is maximizes the 

DOFs of the inverse system; and offers major time savings compared to other iterative inversion methods. 

Over many regions, our inversion results are broadly consistent with other recent inversion studies, though the range of 30 

derived flux values and seasonalities from poorly-observed regions highlights the ill-posed nature of the inverse problem for 



18 

 

N2O. Based on the most robust features across our three different inversion frameworks, we can draw the following 

conclusions about the global N2O budget and underlying emission processes: 

• The global annual N2O flux is likely somewhat high in the bottom-up inventory used here, as the lower value (15.9 

Tg N yr-1) derived in the SVD-based inversion gives a better representation of the N2O background in the 

extratropics while also being more consistent with the current best estimate from a 0-D consideration of the global 5 

burden and lifetime of N2O (Prather et al., 2012). 

• Our inversion results indicate that a greater fraction of the global N2O flux is emitted from the tropics than the a 

priori inventories would suggest. This points to an overestimate of natural soil (and perhaps industrial/residential) 

emissions in the Northern Hemisphere, and to an underestimate of agricultural (and likely oceanic) emissions in the 

tropics. The former hypothesis would be consistent with the 2-fold reduction in the industrial N2O source for 10 

EDGAR versions subsequent to that used here. 

• In the Northern Hemisphere midlatitudes, N2O emissions peak in the springtime (March-April) This seasonality is 

supported by other recent studies and corresponds to the period of higher soil moisture, peak streamflow, thawing of 

frozen soils, and with the timing of fertilizer application. 

• We find that N2O emissions from agricultural soils are underestimated in the US Corn belt and likely also in Asia. 15 

We attribute this to an underestimate of indirect agricultural emissions due to leaching and runoff, freeze-thaw 

emissions in early spring, and the direct on-field source when N inputs exceed crop demands. Annual emissions 

over the US Corn Belt are underestimated by 2-3× in the a priori inventories; the standard and SVD-based 

inversions used here both increase emissions from this region throughout the growing period (March – September). 

Based on our analysis of alternate initial conditions for atmospheric N2O, and their corresponding effects on derived fluxes, 20 

we recommend formally optimizing the initial mass field (either alone or in tandem with the emissions optimization) rather 

than interpolating N2O observations or using an unconstrained model spinup. The impacts can be substantial: for the 

sensitivity tests used here, a posteriori global fluxes ranged by ~25% (16.1 – 21.4 Tg N yr-1) across different treatments of 

the initial N2O mass.  

Finally, the SVD-based inverse approach used here offers a powerful framework for maximizing the emission information 25 

derived from atmospheric observations of N2O in an efficient, timely manner, particularly for models with a low level of 

parallelization. The approach provides valuable spatially-resolved information that is lost when solving for fluxes over ad-

hoc continental-scale regions, while also providing a much stronger ability to resolve broad temporal features than is 

possible with a standard 4D-Var inversion at the model grid resolution. Such information is key to furthering our 

understanding of N2O emission processes based on top-down analyses. 30 
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Code availability 

The N2O version of the GEOS-Chem adjoint code is available via the GEOS-Chem adjoint repository. Instructions for 

obtaining access to the code can be found at http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint. 

Appendix A: Proof for cost function projection formula 

𝐽(𝒙) =
1

2
(𝒉(𝒙) − 𝒚)𝑇𝐒𝑦

−1(𝒉(𝒙) − 𝒚) +
1

2
(𝒙 − 𝒙𝑎)𝑇𝐒𝑎

−1(𝒙 − 𝒙𝑎),      (A1) 5 

and 

𝒉(𝒙) = 𝒉(𝒙𝑎) + 𝐇(𝒙 − 𝒙𝑎).           (A2) 

Therefore,  

(𝒉(𝒙) − 𝒚)𝑇𝐒𝑦
−1(𝒉(𝒙) − 𝒚) = (𝒉(𝒙𝑎) + 𝐇(𝒙 − 𝒙𝑎) − 𝒚)𝑇𝐒𝑦

−1(𝒉(𝒙𝑎) + 𝐇(𝒙 − 𝒙𝑎) − 𝒚) = (𝒉(𝒙𝑎) + 𝐒𝑦
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−
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1

2 𝐒𝑎

−
1

2(𝒙 − 𝒙𝑎) − 𝒚).       (A3) 10 

Then we develop 𝐒𝑦

−
1

2𝐇𝐒𝑎

1

2 = ∑ 𝜆
𝑖

1

2𝒘𝑖𝒗𝑖
𝑇𝑛

𝑖=1 , where n is the dimension of the state vector, and project the control variable onto 

the optimal basis {𝐒𝑎

1

2 𝒗𝑖 , 𝑖 = 1, … , 𝑘} using the projector 𝜋 = 𝐒𝑎

1
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1

2𝑘
𝑖=1 , which yields: 
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and 15 
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Inserting Eqs. (A4) and (A5) in Eq. (A1), one obtains: 
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Differentiating Eq. (A6), one obtains: 20 
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Test Name Observational time range Sites Estimation method Spin-up 

MarZonal 1 – 31 March 2010 All Zonal average, linear interp One month 

AprZonal 25 March – 7 April 2010 All Zonal average, linear interp None 

AprKriging 25 March – 7 April 2010 All Kriging None 

AprOpt 1 April – 31 May 2010 All 4D-Var None 

FebOpt 1 February – 31 March 2010 All 4D-Var Two months 

RemoteOpt 1 January – 30 June 2010 Remotea 4D-Var Three months 

Table 1: The six initial conditions (for 1 April 2010) tested for N2O, including the time range of observations used, observation sites 

included, interpolation or optimization method used, and length of spin-up. 10 

aRemote sites include NOAA CCGG sites AZR, CBA, CGO, CHR, CRZ, DRP, GIC, GMI, HBA, ICE, IZO, MID, MLO, 

PSA, SEY, SHM, SUM, SYO, as well as ship-based measurements taken in the Pacific (POC).  
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Test Name  Bias: All Sites (ppb) Bias: Northern Hemisphere 

Sites (ppb) 

Bias: Southern Hemisphere 

Sites (ppb) 

 25th Median 75th 25th Median 75th 25th Median 75th 

MarZonal -0.21 0.30 0.71 0.11 0.46 0.86 -0.66 -0.36 -0.15 

AprZonal -0.13 0.20 0.62 -0.03 0.32 0.73 -0.38 -0.12 0.10 

AprKriging -0.29 0.06 0.42 -0.31 0.02 0.39 -0.20 0.14 0.49 

AprOpt -0.21 0.01 0.21 -0.22 0.01 0.20 -0.21 0.01 0.22 

FebOpt -0.29 0.06 0.48 -0.42 -0.03 0.37 -0.16 0.14 0.39 

RemoteOpt -0.48 -0.14 0.22 -0.44 -0.09 0.33 -0.58  -0.30 -0.04 

Table 2: Initial bias statistics for each of the six initial conditions with respect to observations at all sites, Northern Hemisphere 

sites, and Southern Hemisphere sites. Statistics are calculated for the first week of the simulation (1-7 April 2010). 10 
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Region A priori emissions A posteriori emissions 

Standard 4D-Var 

inversion 

Continental-scale 

inversion 

SVD-based 

inversion 

North America  1.61 1.30 1.78 1.24 

South America  3.09 3.68 3.58 3.28 

Europe 1.70 1.05 0.57 0.43 

Africa  2.65 2.97 2.92 2.85 

Asia  4.18 4.47 4.59 3.81 

Oceania 0.76 0.79 0.64 0.84 

Northern oceans (30° - 90° N) 0.66 0.52 0.07 0.15 

Tropical oceans (30° S - 30° N) 2.03 2.19 2.99 2.70 

Southern oceans (30° - 90° S) 0.79 0.70 0.39 0.53 

Global 17.4 17.7 17.5 15.9 

Table 3: 2011 N2O emissions (Tg N yr-1) over six continental and three oceanic regions for the a priori database, and a posteriori 10 
results for the three inversion frameworks used here. 
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Figure 1: Global surface observing network for atmospheric N2O. Shown are surface discrete measurement locations for the 

NOAA Carbon Cycle and Greenhouse Gases (CCGG) network, the Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) network, the National Institute of Water and Atmospheric Research (NIWA) network, and the 

Environment Canada (EC) network, as well as semi-continuous measurement locations in the NOAA Chromatograph for 5 
Atmospheric Trace Species (CATS) network, the Advanced Global Atmospheric Gases Experiment (AGAGE) network, and the 

KCMP tall tower site. Also shown are flight tracks from the HIPPO IV and V deployments. 
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Figure 2: Impact of initial conditions on a two-year (April 2010 to April 2012) N2O simulation and inversion. Shown are timelines 

of the model-measurement residuals for a two-year forward-model simulation initialized using each of the six initial conditions 

listed in Table 1. The solid line represents the mean and the dashed lines represent the standard deviation about the mean for 

Northern Hemisphere (red) and Southern Hemisphere sites (green). The final 2011 a posteriori global flux for each simulation 5 
derived using a standard 4D-Var inversion is noted at the bottom of each panel. 
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Figure 3: (a) Left panels: 2011 annual N2O emissions for the a priori database and a posteriori results for each of the inversion 

frameworks used here (standard 4D-Var, continental-scale inversion, SVD-based inversion). Global fluxes are shown inset in each 

map. Right panels: Annual posterior emission increments relative to the a priori database for each inversion framework. (b) 2011 

annual N2O flux over six continental and three oceanic regions for the a priori database (black), and the a posteriori median from 5 
the three inversion frameworks (red). Error bars denote the range of a posteriori values for each region. 
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Figure 4: A posteriori evaluation of N2O inversion results using HIPPO data (not themselves used in the inversion). Shown are 

mean vertical profiles of the model-measurement difference for HIPPO IV (14 June-11 July 2011, left column) and HIPPO V (9 

August-9 September 2011, right column) as a function of latitude. A priori results are shown in black and a posteriori results in 5 
red (standard 4D-Var inversion), green (continental inversion), and gold (SVD-based inversion).  
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Figure 5: Averaging kernel diagonal values for April 2011 in the SVD-based inversion, calculated from Eq. (4). 
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Figure 6: Two-year timelines of monthly-averaged a priori modeled and measured N2O mixing ratios, and the resulting model-

measurement residuals, for individual measurement sites as a function of latitude. The solid black line in the top panels shows 

results for the KCMP tall tower site in MN, USA. 
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Figure 7: Monthly N2O emissions for 2011 over six continental and three oceanic regions. Shown is the a priori database (black) 

and a posteriori results for the standard 4D-Var inversion (red), the continental-scale inversion (green), and the SVD-based 

inversion (gold). 
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