1	Supplement information
2	Open burning of rice, corn and wheat straw: primary emissions,
3	photochemical aging, and secondary organic aerosol formation
4	Zheng Fang ^{1,3} , Wei Deng ^{1,3} , Yanli Zhang ^{1,2} , Xiang Ding ¹ , Mingjin Tang ¹ , Tengyu Liu ¹ ,
5	Qihou Hu ¹ , Ming Zhu ^{1,3} , Zhaoyi Wang ^{1,3} , Weiqiang Yang ^{1,3} , Zhonghui Huang ^{1,3} , Wei
6	Song ^{1,2} , Xinhui Bi ¹ , Jianmin Chen ⁴ , Yele Sun ⁵ , Christian George ⁶ , Xinming Wang ^{1,2,*}
7	
8	¹ State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of
9	Environment Protection and Resources Utilization, Guangzhou Institute of
10	Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
11	² Center for Excellence in Regional Atmospheric Environment, Institute of Urban
12	Environment, Chinese Academy of Sciences, Xiamen 361021, China
13	³ University of Chinese Academy of Sciences, Beijing 100049, China
14	⁴ Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,
15	Department of Environmental Science & Engineering, Fudan University, Shanghai
16	200433, China
17	⁵ Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,
18	China
19	⁶ Institut de Recherches sur la Catalyse et l'Environment de Lyon (IRCELYON), CNRS,
20	UMR5256, Villeurbanne F-69626, France
21	
22	Correspondence to: X. Wang (wangxm@gig.ac.cn)

No. Species	EF (g kg ⁻¹)			No. Species	EF (g kg ⁻¹)		
	Rice	Corn	Wheat	_	Rice	Corn	Wheat
1 ethene	1.316±0.492	0.540±0.484	0.777±0.666	35 methyl-cyclopentane	0.003±0.004	0.001 ± 0.001	0.001±0.001
2 acetylene	0.958 ± 0.328	0.149 ± 0.108	0.293 ± 0.294	36 2,4-dimethylpentane	0.001 ± 0.002	ND^{a}	ND
3 propene	0.315 ± 0.323	0.342±0.295	0.332 ± 0.272	37 cyclohexane	0.020 ± 0.042	0.001 ± 0.001	ND
4 1-butene	0.045 ± 0.018	0.027 ± 0.029	0.044 ± 0.071	38 2-methyl-hexane	0.002 ± 0.004	ND	0.001 ± 0.001
5 1,3-butadiene	0.030 ± 0.038	0.116±0.110	0.104 ± 0.080	39 2,3-dimethyl-pentane	0.001 ± 0.004	ND	ND
6 trans-2-butene	0.016 ± 0.005	0.035 ± 0.031	0.040 ± 0.038	40 3-methyl-hexane	0.006 ± 0.009	0.001 ± 0.002	ND
7 cis-2-butene	0.013 ± 0.004	0.025 ± 0.022	0.030 ± 0.028	41 2,2,4-trimethyl-pentane	0.002 ± 0.003	ND	ND
8 3-methyl-1-butene	0.007 ± 0.003	0.009 ± 0.009	0.008 ± 0.006	42 n-heptane	0.037 ± 0.058	0.003 ± 0.004	0.003±0.002
9 1-pentene	0.017 ± 0.011	0.029 ± 0.031	0.021±0.025	43 methyl-cyclohexane	0.003 ± 0.006	ND	ND
10 2-methyl-1-butene	0.012 ± 0.008	0.004 ± 0.002	0.013±0.011	44 2,3,4-trimethyl-pentane	0.000 ± 0.001	ND	ND
11 isoprene	0.096 ± 0.101	0.026±0.035	0.060 ± 0.045	45 2-methyl-heptane	0.011±0.025	0.001 ± 0.001	ND
12 trans-2-pentene	0.010 ± 0.011	0.012±0.010	0.016±0.013	46 3-methyl-heptane	0.001 ± 0.001	ND	ND
13 cis-2-pentene	0.010 ± 0.005	0.007 ± 0.006	0.007±0.006	47 n-octane	0.005 ± 0.005	0.002 ± 0.003	0.002±0.002
14 2-methyl-2-butene	0.018±0.021	0.013±0.012	0.015±0.012	48 n-nonane	0.015±0.024	0.002 ± 0.003	0.002±0.001
15 cyclopentene	0.005 ± 0.007	0.008 ± 0.007	0.008 ± 0.007	49 n-decane	0.005 ± 0.006	0.004 ± 0.005	ND
16 4-methyl-1-pentene	0.003 ± 0.004	0.002±0.003	0.001 ± 0.001	50 n-undecane	ND	0.007 ± 0.012	ND
17 1-hexene	0.007 ± 0.004	0.016±0.025	ND	51 benzene	0.567±0.172	0.163±0.124	0.249±0.200
18 trans-2-hexene	ND	0.003 ± 0.005	ND	52 toluene	0.206 ± 0.148	0.142 ± 0.186	0.134±0.099
19 cis-2-hexene	0.001 ± 0.003	0.001 ± 0.001	0.001 ± 0.001	53 ethyl-benzene	0.027 ± 0.017	0.016 ± 0.024	0.012 ± 0.009
20 3-hexene	0.002 ± 0.003	0.002 ± 0.002	0.001 ± 0.002	54 m/p-xylene	0.045 ± 0.043	0.020 ± 0.029	0.030±0.023
21 a-pinene	0.008 ± 0.022	ND	ND	55 styrene	0.095 ± 0.033	0.035 ± 0.031	0.029±0.021
22 b-pinene	0.011 ± 0.019	ND	ND	56 o-xylene	0.016 ± 0.014	0.008 ± 0.011	0.008 ± 0.006
23 ethane	0.492 ± 0.603	0.452 ± 0.357	0.586 ± 0.615	57 isopropylbenzene	0.003 ± 0.004	0.001 ± 0.001	0.001±0.001
24 propane	0.171±0.196	0.127±0.127	0.103±0.155	58 n-propylbenzene	0.003 ± 0.003	0.003 ± 0.004	0.002±0.001
25 isobutane	0.052 ± 0.043	0.011 ± 0.011	0.004 ± 0.007	59 m-ethyltoluene	0.005 ± 0.003	0.003 ± 0.003	0.005 ± 0.004
26 n-butane	0.062 ± 0.060	0.034 ± 0.030	0.078 ± 0.129	60 p-ethyltoluene	0.005 ± 0.004	0.002 ± 0.003	0.003±0.003
27 isopentane	0.036 ± 0.051	0.015±0.016	0.031±0.035	61 1,3,5-trimethyl-benzene	0.003 ± 0.004	0.001 ± 0.002	0.002±0.003
28 n-pentane	0.016 ± 0.008	0.011 ± 0.014	0.006 ± 0.009	62 o-ethyltoluene	0.003 ± 0.002	0.002 ± 0.003	0.002 ± 0.002
29 2,2-dimethyl-butane	0.004 ± 0.007	ND	ND	63 1,2,4-trimethylbenzene	0.006 ± 0.006	0.004 ± 0.006	0.006±0.006
30 cyclopentane	ND	0.001 ± 0.001	0.002 ± 0.004	64 1,2,3-trimethylbenzene	0.039 ± 0.086	0.007 ± 0.010	0.005 ± 0.005
31 2,3-dimethylbutane	ND	ND	0.001 ± 0.001	65 m-diethylbenzene	0.003 ± 0.005	0.001 ± 0.001	0.001±0.001
32 2-methylpentane	0.008 ± 0.011	0.002±0.002	0.001 ± 0.001	66 p-diethylbenzene	0.004 ± 0.007	0.002 ± 0.002	0.001 ± 0.001
33 3-methylpentane	0.006 ± 0.007	0.008 ± 0.014	ND	67 o-diethylbenzene	0.002 ± 0.004	0.001 ± 0.001	ND
34 n-hexane	0.120 ± 0.175	0.001 ± 0.002	0.001 ± 0.001				

Table S1. Emission factors for the non-methane hydrocarbons (NMHCs) species from the straw burning.

(^a ND=not deteced)

Table S2. Secondary organic aerosol yields reported in literature and used in our work for

compound	yields reported in l	iterature		yield used in our work		
	yield reference	seed ^a	yield range ^b	applied	lower	upper
				yield ^c	bound	bound
acrolein	Chhabra et al.,	yes	0.022	0.026	0.022	0.035
	2011					
	Chan et al.,	yes	0.022-0.035			
	2010					
furan	Gómez Alvarez	no	0.019-0.072	0.019	0.019	0.072
	et al., 2009					
crotonaldehyde or	Chhabra et al.,	yes	0.02	0.02	0.019	0.194
methacrolein ^d	2011					
	Chan et al.,	yes	0.019-0.194			
	2010					
	Chhabra et al.,	yes	0.02			
	2011					
	Chan et al.,	yes	0.019-0.044			
	2010					
benzene	Ng et al., 2007	yes	0.28-0.37	0.33	0.28	0.37
	Nakao et al.,	no	0.19-0.28			
	2011					
	Borras and		0.016-0.097			
	Tortajada-	no				
	Genaro, 2012					
2/3-methylfuran	Gómez Alvarez	no	0.055-0.085	0.085	0.055	0.085
	et al., 2009					
	Chan et al.,	yes	0.008-0.391			
	2010					

26 different precursors.

compound	literature data			application of yield data		
	yield reference	seed ^a	yield range ^b	applied yield ^c	lower bound	upper bound
toluene	Chhabra et al.,	yes	0.11-0.36	0.26	0.08	0.66
	2011					
	Ng et al., 2007	yes	0.08-0.31			
	Nakao et al.,	no	0.17-0.23			
	2011					
	Hildebrandt et al., 2009	yes	0.26-0.66			
phenol	Yee et al., 2013	yes	0.24-0.54	0.38	0.13	0.54
	Nakao et al.,	no	0.38-0.45			
	2011					
	Borras and	no	0.13-0.18			
	Tortajada-					
	Genaro, 2012					
	Chhabra et al., 2011	yes	0.34-0.38			
2,4-/2,5-				0.38	0.13	0.54
dimethylfuran ^e						
styrene ^f				0.22	0.04	0.4
benzaldehyde ^g				0.38	0.27	0.49
m-xylene	Chhabra et al.,	yes	0.06-0.4	0.22	0.04	0.4
	2011					
	Ng et al., 2007	yes	0.04-0.38			
	Nakao et al.,	no	0.1-0.32			
	2011					
o/m-cresol	Nakao et al.,	no	0.27-0.49	0.38	0.27	0.49
	2011					
catechol	Nakao et al.,	no	0.39	0.53	0.39	0.53
or benzenediol	2011					
	Borras and	no	0.45-0.53			
	Tortajada-					
	Genaro, 2012					
dimethylphenol	Nakao et al.,	no	0.13-0.9	0.52	0.13	0.9
	2011					
guaiacol	Yee et al., 2013	yes	0.35-0.5	0.4	0.35	0.5
	Chhabra et al.,	yes	0.36-0.39			

Table S2. Secondary organic aerosol yields reported in literature and used in our work for different precursors (continued).

32	Table S2. Secondary organic aerosol yields reported in literature and used in our work for
33	different precursors (continued).

compound	literature data			application of yield data		
	yield reference	seed ^a	yield range ^b	applied	lower	upper
				yield ^c	bound	bound
	Chhabra et al.,	yes	0.36-0.39			
	2011					
naphthalene	Chhabra et al.,	yes	0.33-0.67	0.36	0.11	0.74
	2011					
	Chan et al.,	yes	0.2-0.74			
	2009					
	Shakya and	no	0.11-0.12			
	Griffin, 2010					
1/2-	Chan et al.,	yes	0.19-0.71	0.45	0.19	0.71
methylnaphthalene	2009					
	Shakya and	no	0.04-0.15			
	Griffin, 2010					
acenaphthalene	Shakya and	no	0.03-0.04	0.03	0.03	0.04
	Griffin, 2010					
acenaphthene	Shakya and	no	0.04-0.05	0.05	0.04	0.05
	Griffin, 2010					
1,2-	Chan et al.,	yes	0.31	0.31	0.31	0.31
dimethylnaphthalene	2009					

34 (a Yields obtained without seed aerosol are not taken into account if yields obtained with seed aerosol are available; 35 b the yields at the maximum and minimum NOx/NMOGs ratios are determined to be the boundary values; c if the 36 NO_x/NMOGs ratio in this study (1.2±0.9) are within the range in the corresponding literature, the average value 37 of boundary values is used, or the yield at NO_x/NMOGs ratio closer to this study is used; besides, yields obtained 38 from different studies were averaged; d averaged SOA yields were applied for isomers since they cannot be 39 resolved by PTR-TOF-MS; e because of lack of available reported value, 2,4-/2,5-dimethylfuran is assumed to 40 have the same SOA yield as phenol; f styrene is assumed to have the same SOA yield as m-xylene; g benzaldehyde 41 is assumed to have the same SOA yield as o/m-cresol)

42

45 Figure S1 Pearson coefficients of correlations between the modified combustion efficiency
46 (MCE) and individual NMHC concentrations. The number order of NMHC species is the same
47 as Table S1.

48

49 Figure S2 Correlations of modified combustion efficacy (MCE) with emission factors (EFs)

50 for (a) particulate matter and (b) primary organic carbon.

51 **Reference**

- Borras, E., and Tortajada-Genaro, L. A.: Secondary organic aerosol formation from the photo oxidation of benzene, Atmos. Environ., 47, 154-163, doi:10.1016/j.atmosenv.2011.11.020,
 2012.
- Chan, A. W. H., Kautzman, K. E., Chhabra, P. S., Surratt, J. D., Chan, M. N., Crounse, J. D.,
 Kürten, A., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol
 formation from photooxidation of naphthalene and alkylnaphthalenes: implications for
 oxidation of intermediate volatility organic compounds (IVOCs), Atmos. Chem. Phys., 9,
 3049-3060, doi:10.5194/acp-9-3049-2009, 2009.
- Chan, A. W. H., Chan, M. N., Surratt, J. D., and Chhabra, P. S.: Role of aldehyde chemistry
 and NOx concentrations in secondary organic aerosol formation, Atmos. Chem. Phys., 10,
 7169-7188, doi:10.5194/acp-10-7169-2010, 2010.
- Chhabra, P. S., Ng, N. L., Canagaratna, M. R., Corrigan, A. L., Russell, L. M., Worsnop, D. R.,
 Flagan, R. C., and Seinfeld, J. H.: Elemental composition and oxidation of chamber
 organic aerosol, Atmos. Chem. Phys., 11, 8827-8845, doi:10.5194/acp-11-8827-2011,
 2011.
- Christian, T. J., Yokelson, R. J., Cardenas, B., Molina, L. T., Engling, G., and Hsu, S. C.: Trace
 gas and particle emissions from domestic and industrial biofuel use and garbage burning
 in central Mexico, Atmos. Chem. Phys., 10, 565-584, doi:10.5194/acp-10-565-2010, 2010.
- Gómez Alvarez, E., Borras, E., Viidanoja, J., and Hjorth, J.: Unsaturated dicarbonyl products
 from the OH-initiated photo-oxidation of furan, 2-methylfuran and 3-methylfuran, Atmos.
 Environ., 43, 1603-1612, doi:10.1016/j.atmosenv.2008.12.019, 2009.
- Hildebrandt, L., Donahue, N. M., and Pandis, S. N.: High formation of secondary organic
 aerosol from the photo-oxidation of toluene, Atmos. Chem. Phys., 9, 2973-2986,
 doi:10.5194/acp-9-2973-2009, 2009.
- 76 Kim Oanh, N. T., Tipayarom, A., Bich, T. L., Tipayarom, D., Simpson, C. D., Hardie, D., and 77 Sally Liu, L. J.: Characterization of gaseous and semi-volatile organic compounds emitted 78 from field burning of rice straw, Atmos. Environ., 119, 182-191, 79 doi:10.1016/j.atmosenv.2015.08.005, 2015.
- Li, C., Hu, Y., Zhang, F., Chen, J., Ma, Z., Ye, X., Yang, X., Wang, L., Tang, X., Zhang, R., Mu,
 M., Wang, G., Kan, H., Wang, X., and Mellouki, A.: Multi-pollutant emissions from the
 burning of major agricultural residues in China and the related health-economic effects,
 Atmos. Chem. Phys., 17, 4957-4988, doi:10.5194/acp-17-4957-2017, 2017.
- Li, X. G., Wang, S. X., Duan, L., Hao, J., Li, C., Chen, Y. S., and Yang, L.: Particulate and trace
 gas emissions from open burning of wheat straw and corn stover in China, Environ. Sci.
 Technol., 41, 6052-6058, doi:10.1021/es0705137, 2007.
- Nakao, S., Clark, C., Tang, P., Sato, K., and Iii, D. C.: Secondary organic aerosol formation
 from phenolic compounds in the absence of NOx, Atmos. Chem. Phys., 11, 2025-2055,
 doi:10.5194/acp-11-10649-2011, 2011.
- Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.:
 Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem.
 Phys., 7, 3909-3922, doi:10.5194/acp-7-3909-2007, 2007.
- 93 Ni, H. Y., Han, Y. M., Cao, J. J., Chen, L. W. A., Tian, J., Wang, X. L., Chow, J. C., Watson, J.

- G., Wang, Q. Y., Wang, P., Li, H., and Huang, R. J.: Emission characteristics of
 carbonaceous particles and trace gases from open burning of crop residues in China,
 Atmos. Environ., 123, 399-406, doi:10.1016/j.atmosenv.2015.05.007, 2015.
- Shakya, K. M., and Griffin, R. J.: Secondary Organic Aerosol from Photooxidation of
 Polycyclic Aromatic Hydrocarbons, Environ. Sci. Technol., 44, 8134-8139,
 doi:10.1021/es1019417, 2010.
- Yee, L. D., Kautzman, K. E., Loza, C. L., Schilling, K. A., Coggon, M. M., Chhabra, P. S.,
 Chan, M. N., Chan, A. W. H., Hersey, S. P., Crounse, J. D., Wennberg, P. O., Flagan, R.
 C., and Seinfeld, J. H.: Secondary organic aerosol formation from biomass burning
 intermediates: phenol and methoxyphenols, Atmos. Chem. Phys., 13, 8019-8043,
 doi:10.5194/acp-13-8019-2013, 2013.
- Yokelson, R. J., Burling, I. R., Urbanski, S. P., Atlas, E. L., Adachi, K., Buseck, P. R.,
 Wiedinmyer, C., Akagi, S. K., Toohey, D. W., and Wold, C. E.: Trace gas and particle
 emissions from open biomass burning in Mexico, Atmos Chem Phys, 11, 6787-6808,
 doi:10.5194/acp-11-6787-2011, 2011.