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Abstract. Formulation of noniterative mathematical expressions for moist thermodynamics presents a challenge for both nu-

merical and theoretical modellers. This technical note offers a simple and efficient tool for approximating two common ther-

modynamic relationships: temperature T at a given pressure P along a saturated adiabat T (P,θw), as well as its corresponding

inverse form θw(P,T ), where θw is wet-bulb potential temperature. Our method allows direct calculation of T (P,θw) and

θw(P,T ) on a thermodynamic domain bounded by −70 ≤ θw < 40°C, P > 1 kPa and −100 ≤ T < 40°C, P > 1 kPa, respec-5

tively. The proposed parameterizations offer high accuracy (mean absolute errors of 0.017
::::
0.016°C and 0.002°C for T (P,θw)

and θw(P,T ), respectively) on a notably larger thermodynamic region than previously studied. The paper includes a method

summary, as well as a ready-to-use tool to aid atmospheric physicists in their practical applications.

1 Introduction

Saturated thermodynamics commonly present a challenge for theoretical studies because moist convective condensation, such10

as deep cumulus precipitation, often involves pseudoadiabtic (irreversible) processes. The latent heat released during water

vapour condensation is important for estimating thunderstorm intensity and thickness, precipitation amount and phase, global

climate and atmospheric general circulation (Stull, 2017). These processes are governed by nonlinear equations that require

iteration to solve. Numerical weather prediction (NWP) models, hence, suffer from the added computational cost to their

cloud, precipitation, convection and turbulence schemes and parameterizations, because of the iterations required during each15

timestep of the NWP integration.

A common iterative approach, such as described by Caballero (2014), uses step-wise numerical integration along a saturated

adiabat for any constant wet-bulb potential temperature θw. The moist adiabatic lapse rate is derived from conservation of

moist entropy as a function of temperature T and saturated mixing ratio rs, which itself is a nonlinear function of T and

pressure P . To imporove
:::::::
improve efficiency Davies-Jones (2008) proposed a different iterative method, based on inverting20

Bolton’s formula
::::::::::::
(Bolton, 1980) for equivalent potential temperature valid for the pressure range 10 ≤ P ≤ 105 kPa and wet-

bulb potential temperatures −20< θw < 40°C. As a valuable noniterative alternative, Bakhshaii and Stull (2013) offer an

approximate solution devised using gene-expression programming (GEP). They provide two separate sets of equations for

determining T (P,θw) and θw(P,T ), for the domain bounded by −30< θw < 40°C, P > 20 kPa and −60< T < 40°C. The
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complex nature of the problem required their splitting of the modelled region into sub-domains, resulting in error discontinuity.

The method also produced fairly large errors (on the order of a degree
:::::
1-2°C) in the upper atmosphere. Despite the limitations,

to our knowledge Bakhshaii and Stull (2013) is the only existing noniterative solution to approximate saturated pseudoadiabats.

Our current study presents a different approach for directly calculating T (P,θw) and θw(P,T ) offering improved accuracy

for a larger thermodynamic domain. The method, described in Section 2, normalizes the raw data before fitting it with polyno-5

mials. The resultant approximation is evaluated against the "truth" (the iterated solution) and summarized in Sections 3 and 4,

respectively. As Supplementary Material we offer the readers a ready-to-use spreadsheet implementing our methodology.

The goal of this paper is to provide a simple tool that can aid analytical modellers in their theoretical work as well as

numerical modellers in reducing the computational cost of their simulations.

2 Method Description10

2.1 Data

In order to obtain a set of "truth" curves for T (P,θw) we have used an iterative approach to numerically integrate the equation

for dT
dP (Tables 1 and 2) for values in the range of −100 ≤ θw < 100°C between 105 ≥ P > 1 kPa.

:::
The

::::::::
constants

::::
used

::
to

::::::
devise

:::
this

:::::::
solution

:::
are

::::::::
consistent

::::
with

::::::::::::
Bolton (1980)

:
,
:::::
unless

::::::::
otherwise

::::::::
indicated

::
in

:::::
Table

::
1.

:::::
Note,

:::
that

::::::::::
throughout

:::
this

::::::::
technical

::::
note

::
we

::::
will

::::
rely

::
on

::
a
::::::::
common

::::::::::::
meteorological

::::::::::
convention,

:::
by

:::::
which

::::::::
wet-bulb

::::::::
potential

::::::::::
temperature

::
at

:::::::
standard

::::::::
pressure

::
of

::::
10015

:::
kPa

::
is

::::
used

::
to

:::::
label

:::::
moist

:::::::
adiabats.

:::::
Such

:::::::::
references,

::::::
hence,

::::::::
represent

::::::
curves,

:::::
rather

::::
than

::::::::
constants

::::
and

:::
are

::::::
bolded

:::
for

::::::
clarity.

We found that numerical integration along a saturated adiabat θw ::
θw:

from the bottom to the top of the domain required an

increasingly refined pressure step, as all adiabats tend to absolute zero near the top of the atmosphere, and each consecutive

pressure step corresponds to a larger temperature jump. For our numerical integration we used 10−4 kPa step for 105 ≥ P > 10

kPa, 10−5 kPa step for 10 ≥ P > 2 kPa and 10−6 kPa step for 2 ≥ P > 1 kPa. The resulting curves (shown on
::
the

:
thermo20

diagram in Figure 1) are taken as "truth", to which we fit our polynomial-based optimization. The non-iterative approximations

for T (P,θw) and θw(T,θw)
:::::::
θw(P,T ) described below are valid for thermodynamic ranges bounded by −70 ≤ θw < 40°C and

−100 ≤ T < 40°C, respectively.

2.2 Approximating T (P,θw)

While the moist adiabiatic curves θw ::
θw:

in Figure 1 look smooth and fairly similar, it is challenging for most common25

optimization routines to capture all of them with a single analytical expression . To remove some of the inherent nonlinearity

in the data
:::
one

:::::::::
analytical

:::::::::
expression

::::
with

::::
high

::::::::
accuracy.

::::
Due

::
to
::::

the
::::::::
inherently

:::::::::
non-linear

::::::
nature

::
of

:::
the

:::::::
process,

:::::
there

::
is

:::
no

:::::
simple

::::
way

::
to
::::::::
collapse

:::
the

:::::
curves

::::
into

::
a

:::::
single

::::::
shape.

::::::::
However,

::
to

:::
aid

::::::
fitting, we can normalize our curves by dividing each

θw by a reference moist aidiabat θref .
::::::::
modelling

:::
θw::

as
::
a
:::::::
function

::
of

::
a

::::::::
reference

:::::
moist

::::::
adiabat

:::::
θref .

::::
That

::::::
allows

::
us

::
to

::::::
model

::::
only

:::
the

::::::::
deviations

:::::
from

:
a
::::::::
reference

:::::
curve.

:
For our example we used θref = −70

::::
θref::

=
:::
-70°C. This particular choice of θref30

::::
θref:

implies no theoretical importance. It is possible to choose any of the directly calculated normalized adiabats to represent
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θref ::::
θref . Depending on the choice, the resulting transformed adiabats shift around the θref ::::

θref:
unity line. The single

consideration for choosing a particular θref ::::
θref:is the ease and accuracy with which it can be fit by a particular optimization

tool.

We use polynomial fitting to describe T (P ) for the fixed θref ::::
θref . This is convenient, since polynomials are generally well-

behaved .
:::
and

:::
are

:::::::::::::
computationally

:::::
easy

::
to

:::
use.

::
In

:::::::::
particular,

::::
they

:::
are

::::
both

:::::::::
continuous

::::
and

:::::::
smooth,

::::
while

:::::
being

::::
able

::
to

:::::::
capture5

:
a
::::
wide

::::::
variety

:::
of

:::::
curve

::::::
shapes.

:::::::::
Moreover,

::::
they

::::
have

::::
well

::::::::::
understood

::::::::
properties

::::
and

:
a
::::::
simple

:::::
form,

::::::::
allowing

:::
the

:::::
model

::
to

:::
be

:::::
easily

:::::::::::
implemented

:
in
::
a
::::
basic

:::::::::::
spreadsheet. The choice of the degree of polynomial depends on the desired precision level. Since

we are examining a fixed range of temperatures relevant to atmospheric applications, the potentially chaotic
:::::::
extreme

:::::::::
oscillatory

behavior of high-degree polynomials outside of the modelled domain is not a primary concern.
:::
The

:::::
fitted

::::::::::
polynomials

:::::
have

::
no

:::::::::
predictive

:::::
value

::::::
outside

::
of

:::
the

::::::::
modelled

::::::
range

:::
and

:::::
serve

::::::
purely

::
as

:::
an

:::::::::::
interpolation

:::::::
function.

::::::
While

:::
the

:::::
large

::::::
number

:::
of10

:::::::
possible

::::::::
inflection

:::::
points

:::::::::
associated

::::
with

::::
high

::::::
degree

::::::::::
polynomials

::::
may

::
be

:::
of

:
a
:::::::
concern

::::
near

:::
the

:::::
edges

::
of

:::
the

:::::
fitting

:::::::
interval,

::
a

:::::::
problem

::::::
known

::
as

:::::::
Runge’s

:::::::::::
phenomenon

::::::::::::::
(Epperson, 1987)

:
,
:::
the

::::::
current

::::::::
algorithm

:::::
relies

:::
on

:::::::::::
least-squares

::::::
method

:::
to

::::::::
minimize

::
the

:::::
effect

::::
and

::::::
achieve

::
a
::::
high

::::::
quality

:::
fit. For this example, the aim was to ensure that the mean absolute error (MAE) is on the

order of 10−2degrees °C, requiring a 20th degree polynomial to achieve such fit. The true and modelled θref = −70°C can be

seen in Fig. ?? with fit coefficients
:::::::::
coefficients

:::
for

::::
this

:::::::::
polynomial

:::
are

:
provided in Table ??

:
II
:::
in

::::::::::::
Supplementary

:::::::
Material.15

The next step is to choose a single functional form to represent the entire family of the transformed curves
:::
(i.e.

:::
the

:::::
moist

::::::
adiabat

:::::::::
deviations

::::
from

:::::
θref . Each given shape of a particular curve is then controlled by variable parameters of the same

function. A number of simple functions exists that are able to model the above relationship. For this work we tested bi-

exponential, arctan, rational and polynomial functions. Generally, a reasonable
:::
(on

:::
the

:::::
order

::
of

:::::::
1-2°C) fit can be achieved

with both bi-exponential and arctan functions using as little as three variable parameters. While efficient, the results of such20

fit are unlikely to be sufficiently accurate to be useful for real-life modelling applications . Another
::::
and,

::::
more

:::::::::::
importantly,

::::
only

::::::::
constitute

::
a

:::
part

:::
of

:::
the

:::::::
solution.

::::
The

::::::
bigger

:
concern with these choices is thatthe variable parameters are not ,

::::::
unlike

::::::::::
polynomials,

::::
they

::::::::
produce

:::::::
variable

:::::::::
parameters

::::
that

::
do

::::
not

::::::
appear well-behavedfunctions and are hence

:
.
:::::::::::
Discontinuity

::::
and

:::::::::::
asymptomatic

::::::::
behavior

::::::
arising

::::
from

::::
error

:::::::::::
minimization

:::
for

:::
all

::::::::::
transformed

:::::::
adiabats

::::::
renders

:::
the

::::::::
parameter

::::::
curves

::::
very difficult

to model.
::
A

::::::
variety

::
of

::::::::
functions

::::::
would

::
be

:::::::::
necessary

::
to

:::::::
capture

:::
the

::::::::
parameter

::::::::
behavior,

::::::
which

::
in

::::
turn

::
is

:::::
likely

::
to

:::::::
produce

::
a25

:::::::
complex

:::
and

::::::::::::
discontinuous

::::
error

:::::
field,

::::
such

::
as

::::::::
appeared

::
in

::::::::::::::::::::::
Bakhshaii and Stull (2013).

Polynomial fitting doesn’t appear to suffer from such issues. Moreover, the accuracy can be controlled by changing the

degree of the polynomial and, hence, allowing a higher number of variable parameters. In this example, the curves were

modelled using 10th degree polynomials, resulting in 11 variable parameters. Conveniently, and unlike other functional forms

mentioned above, these parameters are also well-behaved. They can, again, be modelled using high-degree polynomials to30

the desired level of accuracy. Results of parameter fitting for this given example were again produced using 20th degree

polynomialsand can be see in Figure ?? ,
:
with fit coefficients provided in Table ??

:
I
:::::::::::::
(Supplementary

::::::::
Material). The resulting

modelled
:::::::::::
(non-iterative)

:
moist adiabats can be seen in Figure 1, compared to the truth

:::::::
(iterated)

:
values.
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2.3 Approximating θw(P,T )

A similar approach can be used to produce a non-iterative approximation for θw(P,T ). To obtain a new set of curves repre-

senting lines of constant temperature
:
T

:
in θw domain, we have used our existing dataset for −100 ≤ θw < 100°C to extract

isotherms on a 0.5°C and 0.1 kPa grid for −100 ≤ T < 40°C and 105 ≥ P > 1 kPa.

Similarly to our earlier approach, we select a single reference curve Tref = T−100◦C ::::::::::::::
Tref = −100◦C and use a high-order5

polynomial to model it as a function of pressure (Figure ??, Table ??
::::
Table

:::
IV

::
in

:::::::::::::
Supplementary

:::::::
Material). We then produce

a set of transformed curves by normalizing the isotherms with Tref:::::::
plotting

:::
the

::::::::
isotherms

::
as
::

a
:::::::
function

:::
of

:::::
Tref . We fit the

transformed curves with 10th degree polynomials, obtaining a dataset for 11 variable parameters. Finally, we use polynomials

to model the variable parameters (Figure ??, Table ??
::::
Table

:::
III

::
in

:::::::::::::
Supplementary

:::::::
Material). The following section discusses

the results and accuracy of our optimization procedure.10

3 Evaluation

To test the accuracy of the proposed method, we compared our modelled curves for T (P,θw) and θw(P,T ) with those obtained

through direct calculation (the "truth" iterative solution). The results of the evaluation for T (P,θw) are shown in Figure 2,

indicating errors on the order of few hundredths of a degree throughout most of the domain. Warmer values near the top of

the domain tend to be modelled least accurately. Mean absolute error (MAE) for the entire modelled thermodynamic region15

is 0.017
:::::
0.016°C. Error contours for θw(P,T ) are shown in Figure 3, with errors on the order of few thousandths of a degree

throughout most of the domain and overall MAE = 0.002°C. Once again, values near the low-pressure limit tend to be least

accurate. Notably, applying the above optimization on a slightly shallower pressure domain of P > 2 kPa, allows to improve

:::::::::::
improvement

::
of the overall MAE for both approximations by an additional order of magnitude.

As mentioned earlier, improved accuracy may also be achieved with the use of even higher degrees of polynomials for20

parameter fits. However, such precision is unlikely to be necessary, as some of the thermodynamic relationships used in the

"truth" iterative computations contain substantially larger errors, than those introduced by the above optimization procedure

(Davies-Jones, 2009; Koutsoyiannis, 2012). Moreover, conventional pseudoadiabatic diagrams, such as those used by U.S.

Air Force (USAF), Environment Canada (EC) and Air Transport Association of America (ATAA), differ
::::
from

::::
each

:::::
other

:
by

nearly 1°C at the 20 kPa pressure level (Bakhshaii and Stull, 2013).
:::
The

:::::::
specific

::::::
choice

:::
of

:::::::::::::
thermodynamic

::::::::
constants

::::
and25

::::::::::
relationships

:::::::::::
undoubtedly

::::::
effects

::
the

:::::::::
definition

::
of

::::::
“truth”

::::
used

::
in

:::
this

::::::
work,

:::::::
however,

:::
has

:::::
little

:::::
effect

::
on

:::
the

::::::
overall

:::::::
validity

::
of

::
the

:::::::::
approach.

::::::
Should

:::::
more

::::::
precise

:::::::
constant

::::::
values

::::::
and/or

:::::::::::::
thermodynamic

::::::::::
relationships

:::::::
become

::::::::::
established

::
in

:::
the

::::::
future,

:::
the

:::::::
proposed

:::::::
method

:::
can

:::
be

:::::::::
re-applied

::
to

:::::::
generate

:::::::
updated

::::::
fitting

:::::::::
coefficients

:::::::
without

::::
loss

::
of

::::::::
accuracy

::::::
(within

:::
the

:::::
limits

:::
of

:::
the

::::::
specific

::::::::::
polynomial

::::::::::
optimization

::::::
routine

::::::
used).

Though the upper 10 kPa of the atmosphere contains the largest errors with our proposed approach, this vertical subrange also30

presents the most significant challenge for direct (iterative) numerical modelling. Accurate numerical computation requires an

increasingly refined vertical step for the top part of the atmosphere. Hence, despite the errors, the proposed approximation offers
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a more accurate solution than one would obtain with direct iterative approach using a somewhat coarse yet computationally

demanding 0.001 kPa pressure step.

While common weather phenomena generally remain in the troposphere, the validity of the current method on a notably

larger vertical domain is particularly useful in the lower latitudes. Deep vertical extent of tropical thunderstorms, hurricanes

and typhoons in combination with the high tropopause altitude in the tropics (10-15 kPa )
:::
(18

:::
km

::
or

:
8
::::
kPa

::::::::::::
(WMO, 2017)

:
)
::
in5

::
the

::::::
tropics

:
contribute to large computational costs of modelling these potentially destructive events.

4 Summary of approach

Individual steps to directly compute T (P,θw) and θw(P,T ) are summarized below. This sample procedure, along with the

required coefficient tables are provided in a ready-to-use form in the attached spreadsheet (Supplementary Material).

Note, that the same coefficients presented in Tables ?? - ?? are rounded to fewer significant digits to fit them and might,10

hence, offer lower accuracy, relative to the full significant digits in the suplementary spreadsheet.

4.1 Computing T (P,θw)

Let n= 0, ...,10 correspond to the index of individual polynomial coefficients and m= 20 be the degree of polynomial fits for

θref (P ) and kn(θw), respectively.

1) Compute coefficients kn(θw) using polynomial coefficients a20, ...,a0 in Table I in Supplementary Material(and Table ??15

here) :

kn(θw) =

m∑
i=0

a(n,m−i)θ
m−i
w (1)

for θw in degrees
:
°C.

2) Compute θref (P ) using polynomial coefficients b20, ..., b0 in Table II in Supplementary Material(and Table ?? here):

θref (P ) =
m∑
j=0

b(m−j)P
m−j (2)20

for P in kPa.
::::
Note,

:::
for

:::::
users

::::::::
preferring

:::::
older

:::::::
pressure

:::::
units:

:
1
::::
kPa

::
=

::
10

:::
mb

::
=

::
10

::::
hPa.

3) Compute T (θref ):

T (P,θw) = T (θref ) =

n∑
h=0

khθ
n−h
ref (3)

where T and θref are in Kelvins, and values of k0,...,n correspond to polynomial coefficients calculated in Step 1.

4.2 Computing θw(P,T )25

Let n= 0, ...,10 correspond to the index of individual polynomial coefficients and m= 20 be the degree of polynomial fits for

Tref (P ) and κn(T ), respectively.
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1) Compute coefficients κn(T ) using polynomial coefficients α20, ...,α0 in Table III in Supplementary Material(Table ??):

κn(T ) =

m∑
i=0

α(n,m−i)T
m−i (4)

for T in degrees
:
°C.

2) Compute Tref (P ) using polynomial coefficients β20, ...,β0 in Table IV in Supplementary Material(Table ??):

Tref (P ) =

m∑
j=0

β(m−j)P
m−j (5)5

for P in kPa.

3) Compute θw(Tref ):

θw(P,T ) = θw(Tref ) =

n∑
h=0

κhT
n−h
ref (6)

where θw and Tref are in degrees
:
°C, and values of κ0,...,n correspond to polynomial coefficients calculated in Step 1.

5 Usage Example10

Meteorologists typically use both θw(P,T ) and T (P,θw) for moist convection such as thunderstorms, frontal clouds, mountain-

wave clouds, and many other phenomena where a saturated air parcel moves vertically. Cloud base of convective clouds marks

the bottom of saturated ascent, and cloud top marks the top.

For example, suppose that the forecast at some tropical weather station is P = 100 kPa, T = 32°C with dewpoint Td = 21°C

(corresponding to a water vapor mixing ratio of approximately r = 16 g kg−1). Further suppose that a force (e.g., buoyancy,15

frontal uplift, or orographic uplift) causes an air parcel with these initial conditions to rise. Initially this air parcel is unsaturated

(not cloudy), so we don’t need to use the polynomial or iterative equations. Instead, simpler non-iterative equations apply for

the thermodynamic state as the parcel rises dry adiabatically. Namely, its temperature cools at the dry adiabatic lapse rate

(9.8°C km−1), and the mixing ratio and potential temperature are constant. This air parcel will become saturated (i.e., cloud

base) at the lifting condensation level (LCL). With this information, other thermodynamic equations (Stull, 2017) can be used20

to find conditions at the LCL: zLCL = 1.375 km, PLCL = 85.4 kPa, and TLCL = 18.5°C.

Given this initial P and T at the LCL, we can use the polynomial equations provided in this paper to compute which moist

adiabat the cloudy air parcel will follow: θw(P,T ) = 24.0°C.

If this cloudy air parcel (still following the θw(P,T ) = 24.0°C adiabat) rises to an altitude where the pressure is P = 24.0

kPa, then we can use the second set of polynomial equations in this paper to find the final temperature of the air parcel at this25

new height: T (P,θw) = −39.8°C.
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6 Discussion and Conclusions

The polynomial method proposed here is accurate, smooth, and computationally efficient. For example, given the cloud base

and cloud top pressures of the previous example, the tally of computer operations to find both the initial and the final tempera-

ture are: 230 additions and subtractions, 2365 multiplies (where rational numbers to integer powers are counted as sequential

multiplies). Compare that to the computation tally for the "truth" iterative solution, requiring a total of 2,750,000 variable5

pressure steps, where each step has: 8 additions and subtractions, 17 multiplies (where rational numbers to integer powers

are counted as sequential multiplies), 9 divides, and 2 math functions (e.g., log, exp, non-integer exponents), totalling to

988,200,000 operations from the bottom to the top of the domain.

Also, for comparison, some numerical weather prediction models use a look-up table to get the average saturated adiabatic

lapse rate ∆θw/∆P as a function of P and T . While this method is fairly fast, it is also less accurate, and approximates the10

saturated lapse rate as a series of short straight-line segments instead of a smooth curve. It also has discontinuous jumps of

saturated lapse rate as T varies along an isobar.

Thus, the polynomial method
:::::
While

::::::::::
interpolating

::::::
values

:::::
from

:::::::
look-up

:::::
tables

::::::::
generally

::::::
results

::
in

:::::::
random

::::::
errors,

:::::::
iterative

:::::::
solutions

::::
with

::
a
::::::
coarse

::::
step

:::::
could

:::::::::
potentially

:::::
suffer

:::::
from

:
a
:::::::::
directional

:::::
drift

:::
due

::
to

:::::::::
numerical

:::::::::
integration

::::::
errors,

::::::
which

::::
may

::::::::
introduce

:
a
:::::::::
consistent

::::
bias

:::
into

::::::
latent

::::::
heating

:::::::
profiles.

:::::::::
Moreover,

::::
near

:::
the

::::
top

::
of

:::
the

:::::::::::
atmosphere,

:::::
where

::::
each

::::::::
pressure

::::
step15

::::::::::
corresponds

::
to

:
a
:::::

large
::::::::::
temperature

:::::
jump

:::::
along

:::
the

:::::
moist

:::::::
adiabats

:::
the

:::::::::
numerical

::::::::
solutions

::::
tend

::
to

:::::::
become

::::::::
unstable.

:::::::
Though

::::
both

::
of

:::::
these

::::::::
concerns

:::
are

::::::::
addressed

:::::
with

:::
the

::::::::
proposed

:::::::
low-cost

::::::::::
polynomial

:::::::
method,

:::
the

:::::::
broader

:::::::::
challenge

::
of

:::
our

:::::::
limited

:::::
overall

:::::::::::::
understanding

::
of

:::::
moist

::::::::::
convection

:::::::
remains.

::::::::
Existing

:::::::::::::
thermodynamic

:::::::::::
relationships

:::
are

:::::
based

:::
on

:::
the

::::::::::
assumption

:::
of

:::::
either

:
a
::::::::
reversible

:::::
moist

::::::::
adiabatic

:::
or

::
an

::::::::::
irreversible

:::::::::::::
pseudoadiabatic

:::::::
process.

:::::
Real

:::::
world

::::::::::
atmospheric

::::::::
processes

:::
are

::::::
likely

::
to

::
be

:
a
:::::::::::
combination

::
of

::::
both

::::::::::::::::::::::::
(Iribarne and Godson, 1981).

::::
The

:::::::::
uncertainty

:::::::::
introduced

:::
by

:::
our

::::::
limited

::::::::::
knowledge

::
of

:::
the

::::
true

::::
state20

::
of

:::::::
saturated

:::
air

::
is

:::::
likely

::
to

::::::
remain

:::
the

::::::
central

:::::::
obstacle

::
in

::::::::
capturing

:::::
moist

::::::::::
convection.

:::
The

::::::::::
polynomial

:::::::
method proposed here provides a computation of high accuracy and smooth variation across the whole

thermodynamic diagram range, at intermediate computation speed compared to the other methods. Moreover, it helps to model

moist thermodynamics on a wider temperature range with roughly two orders of magnitude MAE improvement over the

existing solution.25

In addition to the reduced computational costs of obtaining solutions for T (P,θw) and θw(P,T ) in numerical simulations

and improving accuracy, we hope that our tool will aid analytical modellers in their theoretical work.

7 Tables

:::::
Tables
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Table 1. Table of constants

Constant Description [units]

Rd = 287.058 gas constant for dry air [J K−1 kg−1] (Burns, 2015)

Rv = 461.5 gas constant for water vapour [J K−1 kg−1]

Cpd = 1005.7 specific heat of dry air at constant pressure [J K−1 kg−1]

T0 = 273.15 reference temperature [K]

P0 = 100 reference pressure [kPa]

e0 = 0.611657 Clausius-Clayperon constant [kPa] (Koutsoyiannis, 2012)

ε= Rd
Rv

= 0.6220 ratio of gas constants [kg kg−1]

Table 2. Variable definitions

Variable Description [units]

T [K] ambient temperature

P [kPa] pressure

θw [K] saturated adiabat where the value of T defined at P = P0 is defined as wet-bulb potential temperature

es = e0exp
[
24.921

(
1− T0

T

)](
T0
T

)5.06
[kPa] saturation vapour pressure

Lv = 3.139× 106 − 2336 ∗T [K] latent heat of vapourization (Koutsoyiannis, 2012)

rs = ε es
(P−es)

[kg kg−1] saturation mixing ratio

dT
dP

=

Rd
Cpd

T+ Lv
Cpd

rs

P (1+

L2
v

RvCpd
rs

T2 )

[K kPa−1] change of temperature with pressure along a saturated adiabat, which can be iterated to find T vs. P
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7 Figures

::::::
Figures
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Figure 1. Emagram plot showing select "true" (solid black) and modelled (dashed red) moist adiabats θw (difference not apparent at this

scale). Temperature and pressure domains are restricted for clarity. An emagram (energy mass diagram) is a thermodynamic diagram with

the log of pressure on the vertical axis, plotted with max and min values reversed, so that higher in the diagram corresponds to higher in

the atmosphere, where pressures are lower. The non-iterative results presented in this paper can be plotted on any thermodynamic diagram,

including tephigrams and skew-T diagrams.
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Figure 2. Approximation error between iterated ("truth") and modelled T along moist adiabats θw.
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Figure 3. Approximation error between iterated ("truth") and modelled θw along isotherms T .
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