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Review of: Investigating the Impacts of Saharan Dust on Tropical Deep Convection 

Using Spectral Bin Microphysics. This is an interesting paper which examine the role 

of dust particles on deep convective clouds by acting as IN. To do so, the authors used 10 

the WRF model in a “real case” configuration coupled with bin microphysics scheme. 

The topic is of great importance and the tools used here are appropriate for making 

progress in understanding of it. However, I do have questions and suggestions for the 

authors: General comments I fill that more details are need in order for the reader to 

be able to fully evaluate the methodology: 15 

 

We thank the referee for their extensive comments and suggestions for improvements to this manuscript. The author 

responses and changes are provided in bold text below.  

 

Do you consider removal of IN by precipitation? Dry deposition? Do you consider 20 

regeneration upon evaporation? Is the domain mean IN concentration constant with 

time? In addition, I guess that you don’t divide the INs to bins, so how do you consider 

their sizes? What is their fall velocity? 

 

The IN variable is calculated prognostically with sources and sinks including advection, removal by heterogeneous ice 25 

nucleation, and regeneration by evaporation. Removal by precipitation and dry deposition is not considered in this 

study. All IN particles are assumed to be equivalent in size to the largest CCN bin for calculations involving IN radii. 

 

We have added the following sentence starting P6, L2: 

 30 

“The prognostic IN variable, like the CCN distribution, does not account for removal of nuclei by precipitation, but 

does allow for regeneration of nuclei by hydrometeor evaporation.” 

 

And the following sentence starting P6,L5: 

 35 

“While IN activation is affected by particle size, we assume all IN are equivalent in radii to the largest CCN bin to 

analyse the effects of the maximum potential ice activation for a given temperature and IN number concentration.”   

 

The same goes for the CCN concentration, do you consider wet deposition? Regeneration 

upon evaporation? During 33 h of simulation with strong rain rates I guess the 40 

CCN concentration could change dramatically. 

 

The CCN distribution, like the IN variable, does not account for removal by precipitation but is resupplied by 

evaporation of drops.  

 45 

Regarding the model resolution, many previous studies have shown sensitivity to the 

resolution in respect to cloud resolving simulations. For example, Lebo and Morrison 

(2015) showed that only in _250m resolution the deep convective clouds’ cores are 
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well resolved. I suspect that 3km resolution for the inner domain is too coarse. Do you 

really need the outer domain to cover such a large area? I suggest to compromise on 

the total area covered by the simulation and go to higher resolution. Maintaining the 

same number of grid point but for smaller area won’t increase the computation cost. 

 5 

The current domain size and grid resolution is intended as a compromise that allows us to reproduce the observed 

effects of Dust on the entire MCS described by Min et al. 2009 and the subsequent associated studies. We agree that 

increasing the model resolution would improve representation of the structures within the deep convective clouds, 

however it has been noted that changes to cloud formation resulting from AIE can also feedback on the larger 

environment and influence subsequent cloud formation. We intend to address these feedbacks more extensively in 10 

future studies. 

 

In many parts of the paper you repeat yourself (I listed a few examples blow but there 

are many more). Moreover, I think that with a bit of editing work this paper can become 

shorter and clearer, maintain its main results. 15 

 

We thank the referee for these suggestions to improve clarity of the paper. We have removed and/or edited the 

repeated text as noted below and where otherwise appropriate.  

 

Specific comments 20 

P2 L17 and 30: you say that dust particles are effective CCNs but later you describe 

totally different effect of dust on deep convective cloud than reported previously. How 

can it be integrated? 

 

Previous studies focusing on CCN activation of aerosols tend to focus on polluted conditions with significantly higher 25 

number concentrations of aerosols than what was measured in the region of interest within this study. While CCN 

activation of dust is likely occurring, the changes to the liquid phase in the observed MCS that result would be less 

significant than the effects on heterogeneous ice formation. However, additional research is planned for the near 

future to study the combined effects of CCN and IN activation of dust in greater detail. 

 30 

We have revised the sentence beginning P2,L30 to: “The reported changes to cloud top distribution and the partition 

between homogeneous and heterogeneous ice formation differ from those described by studies focusing on the CCN 

activation of aerosols suggesting that IN activation of dust was a significant contributor to the observed differences in 

the MCS.” 

 35 

P3 L15-19: This sentence is unclear to me. What is the contradiction here? Since the 

50’s people attributed aerosol effect to changes in droplet size distribution. 

 

These sentences were intended to address that cloud macrophysical properties are affected jointly by 

thermodynamical invigoration and microphysical changes on the hydrometeor PSDs. 40 
 

We have changed the sentence starting P3,L15 from: “Aerosol indirect effect related changes to cloud macrophysics 

are frequently attributed solely to convective invigoration by the increased liquid and/or ice particle number 

concentrations and subsequent changes to diffusional growth processes.” 

 45 

To: “Aerosol indirect effect related changes to large scale cloud geometry are frequently attributed solely to 

thermodynamical invigoration as a result of increased liquid and/or ice particle number concentrations and 

subsequent changes to diffusional growth processes in the convective regime. However, modeling studies have 

suggested that thermodynamic invigoration can be insignificant or even suppressed for clouds with a cold base or for 
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clouds developing in a dry and/or high wind shear environment (Fan et al., 2009, 2012b, 2013; Li et al., 2008b; Khain 

et al., 2005, 2008a; Tao et al., 2007; Lebo et al., 2012; Lebo and Seinfeld, 2011).” 

 

Also the sentence starting P3,L19 was changed from: “Thermodynamic invigoration by increased latent heat release 

did not unanimously occur in the study when polluted conditions were simulated . . . ” 5 

 

 To: “The study noted that thermodynamic invigoration resulting from  . . . ” 

 

P6 L7: How do you determine the rate of IN resupply? 

 10 

We have changed the sentence starting P6,L6 from: “The dust layer is initialized to cover the entire 4
th

 domain at 

model start-up and thereafter is resupplied exclusively from the lateral boundaries of the 4
th

 domain by wind 

advection.” 

 

To: “The dust layer is initialized to cover the entire 4
th

 domain at model start-up. The five outermost grid points are 15 

set to the initial IN number concentration at each model time step to prevent unnatural dilution of the IN supply. IN 

is thereafter transported exclusively from the lateral boundaries of the 4
th

 domain by wind advection for the duration 

of the simulation.” 

 

P8 L1: Isn’t it also proportional to the IN size? 20 

 

We have corrected P8,L1 from: “It is also proportional to the IN number concentration and Brownian diffusivity in 

air.” 

 

To: “It is also proportional to the IN number concentration, IN particle radii, and Brownian diffusivity in air.” 25 
 

P8 L23: How accurate those assumptions? 

 

Our study assumes that all IN particles are a sufficiently large size to activate at the maximum possible number 

concentration for the given environmental conditions. 30 
 

P13 L6: Here you declare stronger outflows from the core to the anvil, but in the 

abstract you wrote: “fewer particles form within and/or are transported into the anvil 

regime.” Isn’t it contradiction? 

 35 

The stronger outflow allows for fewer but larger particles to be transported out of the convective core and into the 

adjoining stratiform/anvil regime before settling out.  

 

The second statement was intended to refer specifically to cloud ice particles near the cloud top which results in the 

warmer shifted cloud top distribution in the dust cases. 40 

 

We have changed the sentences beginning P1,L21 and P12,L20 to indicate that cloud ice particle are being indicated.  

 

P13 L12: Suggest replacing “dynamical intensity” by “meteorological/environmental 

conditions” since dynamics and microphysics could be coupled. 45 

 

We have changes the words as suggested. 

 

P13 L14-16: It is an exact repetition. Pleas delete it. 

 50 
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We have deleted these sentences as suggested. 

 

P13 L29-31: Do you refer to the dusty case here? If yes, it will be nicer to spell this out. 

 

We have changed the sentence starting P13,L29 from: 5 

 

“After the transition to deep convection, the cloud top distribution is shifted to lower altitudes (warmer 

temperatures) between model hours 12 to 24” 

 

To: “After the transition to deep convection, the cloud top distribution in the dust cases  . . . .” 10 
 

P14 L12: I suggest referring here to two resent papers discussing the effect of aerosol 

on the vertical transport of hydrometers: How do changes in warm-phase microphysics 

affect deep convective clouds? Chen et al., 2017, ACP; Aerosol effect on the mobility 

of cloud dropletsâ˘AR´ . Koren et al., 2015, ERL. 15 

 

We have added the following after P14,L12: “Similar increases in vertical transport can also occur due to aerosol 

effects on the liquid phase of DCC increasing particle mobility (Koren et al., 2015; Chen et al., 2017), although in our 

current study, CCN concentrations have not been changed. This suggests that IN concentration may also play a 

complimentary role in cloud top height enhancement in addition to changes CCN number concentration noted by 20 

previous studies. Future work related to the partition between IN and CCN activation in the dust layer will provide 

additional understanding of the interactions between these effects.” 

 

End of P14 and beginning of P15: It is repetition from above. 

 25 

We have removed the repeated sentences. 

 

P16 L3: Suggest mentioning hear that the aerosol effect on clouds also depends on 

the environmental conditions and on the range of aerosol concentration examined. 

 30 

We have changed the sentence beginning P16,L3 from: “However, changes to cloud microphysical processes resulting 

from AIE will modulate these macrophysical properties differently depending on the aerosol ice/liquid nucleation 

activity.” 

 

To: “However, changes to cloud microphysical processes resulting from AIE will modulate these macrophysical 35 

properties differently depending on the aerosol ice/liquid nucleation activity, aerosol number concentration, and 

environmental conditions in which clouds are forming (Khain and Pokrovsky, 2004 Khain et al., 2004, 2005, 2008; 

van den Heever et al., 2006; Fan et al., 2007b; Min et al., 2009; Min and Li, 2010; Li and Min, 2010; Min et al., 2014; 

Altaratz et al., 2014).” 

 40 

 

P17 L29: It is repetition from above. 

 

We have removed the repetition. 

 45 

P18 L15: How do you define rain drops in the bin scheme? 

 

A single size distribution is used to represent both cloud and rain drops. Drops with equivalent radii greater than 20 

micrometers are classified as rain drops. 

 50 
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To clarify this, we have added the following sentences after the sentence starting P18,L15: “As a single size 

distribution is used for liquid drops, rain drops are distinguished from cloud drops by the corresponding bin mass. 

Drop masses with equivalent radii greater than 20 μm are classified as rain drops.” 

 

P19 L14-17: Repetition from above. 5 

 

We have removed the repetition. 

 

 

Figure 11 c and f: Why not presenting super saturation (or saturation deficit) instead of 10 

water vapor concentrations? Since the temperature varies as well (different latent heat 

fluxes) the water vapor does not provide all necessary information. 

 

In the current study we have chosen to focus on the large scale changes and feedbacks on the MCS that result from 

the addition of dust as IN. We have additional studies planned for the near future that will address the more local 15 

inter actions between the thermodynamical and microphysical effects of IN on DCC such as latent heat processes 

which will analyze supersaturation in greater detail. 

 

 

P20 L6 and L10: Here some measure of the variance is needed to evaluate if order of 20 

100m change in mean cloud top is significant. 

 

We have replaced P20,L6 and P20,L10 with: “The time averaged convective core height (cloud tops < 0°C), percent 

change from Clean case, and sample variance between hour 6 and 12 are: Clean (8.91km; +0%; 1.36); D.12 (8.93 km; 

+0.25%; 1.35); D1.2 (9.28 km; +4.2%; 0.89); D12 (9.34 km; +4.8%; 0.76).”  25 

 

And “The average convective core height (cloud tops <0°C), percent change from Clean case, and sample variance 

between hour 12 and 20 are: Clean (12.1 km; +0%; 0.95); D.12 (12.25 km; +1.2%; 0.87); D1.2 (12.04 km; -0.5%; 

0.67); D12 (12.61 km; +4.2%; 0.49).” respectively. 

 30 

P20 L21: Isn’t it also because of the reduction in the available liquid water for freezing? 

 

We have changed the sentence starting P20,L21 from: “Homogeneous ice formation is reduced due to fewer liquid 

drops crossing the -38°C threshold as well as reduced peak supersaturation due to ice growth within the 

heterogeneous regime.”  35 

 

To: “Homogeneous ice formation is reduced due to the lower number concentration of liquid drops crossing the -

38°C threshold as well as reduced peak supersaturation due to ice growth within the heterogeneous regime.” 

 

P21 L15, and L16-17: Repetition. 40 

 

We have removed the repeated sentences. 

 

P22 L17: Is _1% change in precipitation significant compare to the simulations noise? 
In some cases different realizations of the same conditions could have higher different 45 

than that. 

While the total precipitation change in the D.12 case is small compared to the higher IN number cases, changes in the 

convective and stratiform regimes are more substantial. We have run additional simulations with the location of the 

4
th

 domain shifted to different locations (affecting the initial and boundary conditions) and have noted changes of 

similar magnitudes in the D.12 case.   50 
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P22 L19: How do you determine that it is “significantly”? 

 

“significantly” was the wrong choice of words for the intended meaning of this sentence. We have substituted the 5 

word “primarily” for “significantly” in the sentence beginning P22,L19. 

 

P23 L4: “In the first of a two part study”. This is the first time you mention another part 

of this study. What is the second part about? 

 10 

The original second part of the manuscript has been combined into the current one. We have removed the reference 

to this second part. We do have future studies planned to analyze changes to latent heat processes occurring in the 

observed MCS and have added the following note: 

 

After P24,L26: “Additional in-depth study of the interactions between dust related microphysical effects and changes 15 

to latent heat processes has been planned for the near-future to more fully address the interconnected nature of 

thermodynamical and microphysical effects occurring within DCC.” 

 

P23 L18-19: The reasoning here is not clear to me. Is the stronger evaporation of the 

smaller hydrometers results in cooling and stronger downdrafts or vice versa (stronger 20 

downdrafts drive stronger evaporation)? 

 

The figure refers specifically to the convective downdrafts which are triggered by invigorated updrafts. These 

stronger downdrafts result in the stronger evaporation and cooling noted. 

 25 

We have changed the sentence starting P23,L18 from: “The increased downdraft velocity and more numerous small 

particles result in increased evaporation/sublimation and latent cooling (Figure 11).” 

 

To: “The increased downdraft velocity in the convective regime is primarily a consequence of invigorated convective 

updraft intensity which subsequently results in increased evaporation/sublimation of the more numerous small 30 

particles and latent cooling (Figure 11).” 

 

Technical comments 

 

P8 L6: correct (m-3) 35 

 

 We have replaced with (m
-3

) 

 

I suggest to have continues counting to the equations to avoid confusions. 

 40 

Equations have been renumbered sequentially. 

 

P10 L20, L27, L29 and many other places: change “number” to “number concentration”. 

 

We have made the changes as suggested 45 
 

P12 L34: What does “1.e2 um” stand for? 

 

We have replaced with “1.e2* μm” to better indicate the scaled units. 

 50 
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P13 L28: Please correct: “th is”. 

 

We have made the correction. 

 

I suggest organizing the figures in the order they are mentioned in the paper. 5 

 

We have removed the out-of-order figure references to clarify the flow of the paper as necessary. Associated text has 

been modified to account for these changes.  

 

P19 L16: since only one case study is simulated here change “case studies” to “case 10 

study”. 

We have changed the wording as suggested. 
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Abstract. To better understand the impacts of dust aerosols on deep convective cloud (DCC) systems reported by previous 

observational studies, a case study in the tropical eastern Atlantic was investigated using the Weather Research and 

Forecasting (WRF) model coupled with a Spectral Bin Microphysics (SBM) model. A detailed set of ice nucleation 

parameterizations linking ice formation with aerosol particles have been implemented in the SBM. Increasing IN 10 

concentration in the dust cases results in the formation of more numerous small ice particles in the heterogeneous nucleation 

regime (between -5°C and -38°C) compared to the background (Clean) case. Convective updrafts are invigorated by 

increased latent heat release due to depositional growth and riming of these more numerous particles, which results in 

increased overshooting and higher convective core top heights. Competition between the more numerous particles for 

available water vapour during diffusional growth and available smaller crystals/drops during collection reduces particle 15 

growth rates and shifts precipitation formation to higher altitudes in the heterogeneous nucleation regime. Homogeneous ice 

formation is reduced in the dust cases as IN concentration is increased, due to more liquid drops converting to ice by freezing 

or riming before reaching -38°C and reduced peak supersaturation values from increased diffusional growth. Local IN 

activation in the stratiform regime contributes to increased cloudiness in the heterogeneous nucleation regime. A greater 

number of large snow particles form in the dust cases, which are transported from the core into the stratiform regime and 20 

sediment out quickly. Together with reduced homogeneous ice formation, fewer cloud ice particles form within and/or are 

transported into the anvil regime. This shifts the stratiform/anvil cloud occurrence frequency to warmer temperatures and 

reduces anvil cloud extents. Total surface precipitation accumulation is reduced proportionally as IN concentration is 

increased, due to less efficient graupel formation reducing convective rain rates. Stratiform precipitation accumulation is 

increased due to greater snow formation and growth, but does not counteract the reduced convective accumulation. Riming 25 

efficiency in the dust cases is reduced due to smaller cloud ice crystals, resulting in smaller graupel sizes overall. Ice particle 

aggregation occurs earlier in the simulation and over a wider temperature range in the dust cases, which increases snow 

formation in the heterogeneous nucleation regime. Radar reflectivity values are increased in the dust cases at temperatures 

below 0°C in both the convective and stratiform regimes due to more large snow particles. More numerous small ice/graupel 

particles that form in the heterogeneous nucleation regime in the dust cases melt and reduce reflectivity values in the 30 

convective core near the surface, consistent with case study observations. 
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1 Introduction 

Deep convective clouds (DCC) are important sources of precipitation and play a strong role in both regional and global 

circulation, with tropical convection being particularly significant (Arakawa, 2004). The strong updrafts within convective 

clouds can transport small cloud particles to the level of neutral buoyancy where they spread out to form the anvil cloud 

associated with DCC (Folkins, 2002; Mullendore, 2005). The greater area coverage and lifetime persistence of the anvil 5 

cloud compared to the convective core makes the anvil cloud important to global energy balance and radiative transfer. This 

makes the study of deep convective clouds important for current and future climate research (Solomon et al., 2007; 

Rosenfeld et al., 2013). Convective intensity is the primary determiner of the depth, area, and lifetime of the resulting anvil 

clouds (Futyan and Del Genio, 2007). However, observational and numerical studies of aerosol indirect effects (AIE) 

suggest that changes to cloud microphysical processes can significantly modulate these macrophysical qualities (Fan et al. 10 

2007a, 2010a, 2013; Min et al, 2009; Koren et al. 2010a, 2010b; Li et al., 2011; Niu and Li, 2012; Storer et al., 2014; 

Saleeby et al., 2016). AIE on shallow clouds has been extensively studied in the past as noted in the review by Fan et al. 

(2016), but additional research on AIE within deep clouds is still needed. The greater area coverage and lifetime persistence 

of the anvil cloud compared to the convective core makes the anvil cloud, and any changes resulting from AIE, important to 

global energy balance and radiative transfer. This makes the study of deep convective clouds important for current and future 15 

climate research (Solomon et al., 2007; Rosenfeld et al., 2013). 

 

Dust aerosols have been observed at significant concentrations even in remote locations far from their expected source 

regions (Prospero, 1999). They are predominately composed of insoluble silicate particles (Lohmann, 2002) which have 

been established to act as effective ice nuclei (IN, Pruppacher and Klett, 1997; DeMott et al., 2003; Sassen et al., 2003; 20 

Boose et al., 2016) and/or cloud condensation nuclei (CCN; Twohy et al., 2009; Kumar et al., 2011; Karydis et al., 2013). 

The Saharan Air Layer (SAL; Prospero and Carlson, 1970; Carlson and Prospero, 1972) is an elevated layer of dry air 

between 850-500 hPa, often containing lofted dust particles. The SAL has been observed interacting with tropical cloud 

systems, such as tropical cyclones and mesoscale convective systems (MCS), and may impact their intensity and evolution 

(Karyampudi and Carlson, 1988; Dunion and Velden, 2004; Evan et al., 2008; Min et al., 2009: Zhang et al. 2009; Braun 25 

2010; Lau et al., 2010; Carrios and Cotton, 2011; Cotton et al., 2012; Braun et al., 2013). A trans-Atlantic dust outbreak of 

Saharan origin occurring 1-10 March 2004 (Morris et al., 2006) was subjected to a rigorous multi-sensor and multi-platform 

observational analysis (Min et al., 2009; Li et al., 2010; Min and Li, 2010; Li and Min, 2010; Min et al., 2014). The 

interaction of this dust outbreak with a well-developed MCS resulted in strong effects on cloud microphysical processes. 

Small ice particles were abundant in the heterogeneous nucleation regime in the dusty region. The size spectrum of the 30 

vertical precipitation structures was shifted from heavy to light precipitation (Min et al., 2009; Li and Min, 2010). 

Substantial changes to cloud top distributions and precipitation profiles resulted from a change in the partition between 

homogeneous and heterogeneous ice formation processes under dusty conditions. Such macrophysical changes in the cloud 
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systems resulted in substantial thermal infrared radiation cooling of up to 16 Wm
-2

 (Min and Li, 2010). The reported changes 

to cloud top distribution and the partition between homogeneous and heterogeneous ice formation differ from those 

described by studies focusing on the CCN activation of aerosols suggesting that IN activation of dust was a significant 

contributor to the observed differences in the MCS. 

 5 

Observational and modeling studies of DCC have shown different results relating to the effect of aerosol on convection and 

precipitation, indicating that aerosol may either enhance or suppress convection and precipitation depending on aerosol 

concentration and environmental conditions (Khain and Pokrovsky, 2004; Khain et al., 2004, 2005, 2008; van den Heever et 

al., 2006; Fan et al., 2007b; Lee et al., 2008; Min et al., 2009; Min and Li, 2010; Li and Min, 2010; Min et al., 2014; Altaratz 

et al., 2014). Clouds forming in elevated aerosol environments exhibit reduced cloud drop effective radii as a result of a 10 

greater number of smaller drops forming (Andreae et al., 2004; Koren et al., 2005). This can result in less efficient collision-

coalescence processes (Khain et al., 2005) which shifts the formation of precipitation to higher altitudes in the clouds. 

Condensation and evaporation processes are affected by the altered drop size distribution and number concentration, 

resulting in changes to the location and intensity of latent heat release within the cloud (Khain et al., 2005; Rosenfeld et al., 

2008). The higher droplet concentrations induce greater condensation and latent heat release, resulting in stronger convective 15 

updrafts and the formation of taller and wider clouds (Frederick, 2006; Zhang et al., 2007). Increased evaporation of smaller 

drops can result in stronger cold pool formation and enhanced secondary convection (Khain 2009, Lee et al., 2010). 

Conversely, other studies have noted that the formation of larger drops due to enhanced rain drop collision-coalescence 

limits evaporation and weakens the cold pool (Altaratz et al. 2007; Berg et al. 2008; Lerach et al., 2008, Storer et al., 2010; 

Lim et al., 2011; May et al., 2011, Morrison, 2012; Grant and Van Den Heever, 2015).  20 

 

Aerosol indirect effect related changes to large scale cloud geometry are frequently attributed solely to thermodynamical 

invigoration as a result of increased liquid and/or ice particle number concentrations and subsequent changes to diffusional 

growth processes in the convective regime. However, modeling studies have suggested that thermodynamic invigoration can 

be insignificant or even suppressed for clouds with a cold base or for clouds developing in a dry and/or high wind shear 25 

environment (Fan et al., 2009, 2012b, 2013; Lee et al., 2008; Khain et al., 2005, 2008a; Tao et al., 2007; Lebo et al., 2012; 

Lebo and Seinfeld, 2011). Aerosol indirect effect related changes to cloud macrophysics are frequently attributed solely to 

convective invigoration by the increased liquid and/or ice particle number concentrations and subsequent changes to 

diffusional growth processes. However, a study by Fan et al. (2013) involving simulations of DCC in three different regions, 

suggested that the observed taller and wider clouds could be better explained by changes to microphysical properties such as 30 

the particle size distribution. The study noted that thermodynamic invigoration resulting from Thermodynamic invigoration 

by increased latent heat release did not unanimously occur in the study when polluted conditions were simulated, although 

increased cloud fraction and cloud top height were present. The study noted that the reduced hydrometeor sizes in the 
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polluted case allowed greater cloud mass to be detrained from the convective core, and decreased particle fallout speed that 

slows down the cloud anvil dissipation. 

 

Earlier numerical studies of aerosol-cloud interactions tend to focus upon the action of soluble aerosols as CCN, with 

changes to ice formation resulting from the affected liquid processes only (Khain et al., 2005; Fan et al., 2009b, 2012a, 5 

2012b; Storer and van den Heever, 2013; Saleeby et al., 2016). However, DCC can also be sensitive to the aerosols that act 

as IN (Van den Heever, et al., 2006; Ekman et al., 2007; Tao et al., 2012). The study of Van den Heever et al. (2006) 

described the differing impacts of CCN and IN on convective clouds and subsequent anvil development. They found that 

increasing CCN concentration tended to reduce surface precipitation. Increasing IN concentration initially increased surface 

precipitation, but eventually reduced the total to less than the control case by the end of the simulation. Updraft intensity 10 

increased with the increased aerosol concentration due to stronger latent heat release, but anvils were generally smaller and 

more organized. Ekman et al. (2007) studied the sensitivity of a continental storm to IN concentration and found that 

updrafts were enhanced due to added latent heat release from ice crystal depositional growth. The stronger updrafts enhanced 

homogeneous nucleation, increasing anvil cloud coverage and precipitation. Fan et al. (2010a) compared the effects of CCN 

and IN on convection and precipitation and noted that the CCN effect is more evident in changing cloud anvil size, lifetime, 15 

and microphysical properties. IN was shown to have a small effect on convective strength, but the microphysical effects 

could still be significant. However it should be noted that Fan et al. (2010a) did not have a prognostic IN treatment as what 

we have done for this study. 

 

Aerosols such as dust influence the character of individual clouds and storms, but evidence of a systematic effect on storm or 20 

precipitation intensity is still limited and ambiguous. Therefore detailed numerical models are required to understand the 

dynamical and microphysical changes that result in the observed effects of dust on DCC. However, the representation of 

DCC processes relevant to aerosol-cloud interactions is still considered weak, due to some of the fundamental details of 

cloud microphysical processes still being poorly understood. This is particularly true with regards to ice and mixed-phase 

clouds (Boucher et al., 2013). This low confidence is a result of the complex coupling between the processes controlling 25 

cloud and precipitation properties, which cover a wide range of spatial and temporal scales (Tao et al., 2012). Large 

uncertainties also exist in ice nucleation parameterizations within numerical models (DeMott et al., 2010). However, 

comparison of model results with a well observed case study, such as the multi-platform and multi-sensor Min et al. (2009) 

study, can limit the impact of these uncertainties when analysing results from numerical simulations. Ice formation in deep 

convective clouds may result from heterogeneous and/or homogeneous ice nucleation depending on the depth of the cloud 30 

and the chemical composition of the background aerosols. Heterogeneous ice nucleation can occur at temperatures between -

5°C and -38°C via the mechanisms of deposition, immersion, and contact freezing (Vali et al., 1985; Vali et al., 2015) when 

ice nuclei (IN) are present. Homogeneous ice nucleation involves droplet and aerosol haze particle freezing at temperatures 

lower than -38°C (Koop et al., 2000; Mohler et al., 2003; Ren and MacKenzie, 2005). Deep convection frequently shoots 
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liquid drops up to the upper troposphere where the temperature is colder than -38°C, leading to strong homogenous droplet 

freezing. Therefore, a comprehensive handling both heterogeneous and homogeneous ice formation mechanisms must be 

incorporated into numerical simulations to gain a clearer understanding of ice formation in DCC. 

 

Observations suggest that the presence of IN particles such as dust has a significant impact on the microphysical and 5 

macrophysical properties of DCC, but many numerical simulations rely on a relatively simple handling of IN particles and 

the associated heterogeneous ice formation mechanisms. Accurate simulations of ice formation processes in DCC require ice 

nucleation to be directly linked with IN concentration. In this study, we add a prognostic IN variable to allow for the 

transport of IN particles by the wind field and the removal of IN by heterogeneous ice formation. We also update the set of 

heterogeneous and homogenous ice nucleation parameterizations within the WRF-SBM to connect ice nucleation with dust 10 

particles. Heterogeneous ice formation resulting from the updated immersion, contact, and deposition-condensation freezing 

schemes account for the full range of ice formation mechanisms active at temperatures between -5°C and -38°C. Detailed 

information on specific updates made to the model has been provided in section 2. We simulate the observed MCS occurring 

on 08 March 2004 in the tropical eastern Atlantic under background (Clean) and dust affected conditions. The Clean case 

will be used as a baseline to evaluate the model’s skill at reproducing the observed cloud and precipitation fields of DCC not 15 

affected by the observed dust outbreak. The dust cases will test the sensitivity of the baseline case to different number 

concentrations of IN. Comparing the changes experienced by the dust cases with observations will allow us to test the 

sensitivity of various ice formation mechanisms within the MCS to the presence of dust and verify the hypotheses of Min et 

al. (2009) and the later associated studies. Radar reflectivity measurements provide a valuable insight into the microphysical 

impacts of aerosols, such as dust, on DCC when analysed in conjunction with detailed numerical simulation results. 20 

However, radar reflectivity is sensitive to the number concentration, PSD, phase, density, fall rate, and spatial orientation of 

precipitation particles (Ryzhkov et al., 2011). These qualities are difficult to track accurately when a numerical model relies 

on the fixed PSDs frequently used within bulk microphysics schemes. The use of bin microphysics allows for explicit 

calculation of microphysical processes that affect cloud and precipitation formation and growth. In addition, the bin PSDs 

can be directly converted into radar reflectivity values that can be compared with observations. Where appropriate, we have 25 

separated results into convective and stratiform clouds to address the distinct microphysical and macrophysical changes 

occurring within those cloud regimes. 

2 Model Description 

Numerical simulations were undertaken using the WRF version 3.1.1 developed by the National Center for Atmospheric 

Research (NCAR) as described in Skamarock et al. (2008). WRF solves the fully compressible, non-hydrostatic Euler 30 

equations formulated on terrain following hydrostatic-pressure coordinates and the Arakawa C-grid. The model uses Runge-

Kutta second- to sixth-order advection schemes in both horizontal and vertical directions. The fifth-order advection scheme 
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is used in this study. The monotonic technique is employed for advection of scalar and moist variables. The cloud 

microphysical scheme is described below. 

 

2.1 Spectral Bin Microphysics (SBM) 

 5 

The original SBM (Khain et al., 2004) solves a system of kinetic equations for the size distribution functions for 7 

hydrometeor types: water droplets, ice crystals (plate, column, and dendrite), aggregates, graupel, and frozen drops/hail. An 

8th size distribution function exists for CCN. Each size distribution is represented by 33 mass doubling bins, where the mass 

of a particle in each bin is twice the mass of a particle in the preceding bin. A fast version of the SBM (Fast-SBM) with four 

size distributions of water drops, low density ice (ice crystals and aggregates), high density ice (graupel and hail), and 10 

aerosol (CCN) was created in order to substantially reduce the computational costs (Khain et al. 2009, Fan et al 2012a) and 

is the version used in this study. Further details about the mechanics of the SBM are found in Khain et al. (2004) and Fan et 

al. (2012a) and will not be repeated here. 

 

In order to examine IN impacts on clouds and precipitation, an additional prognostic variable for IN particle (dust in this 15 

case) number concentration was added to the model as detailed in Fan et al. (2014). The prognostic IN variable, like the 

CCN distribution, does not account for removal of nuclei by precipitation, but does allow for regeneration of nuclei by 

hydrometeor evaporation. We update the heterogeneous ice nucleation parameterizations in the SBM (as detailed in the 

following section) to connect ice formation with dust particle concentrations. While IN activation is affected by particle size, 

we assume all IN are equivalent in radii to the largest CCN bin to analyse the effects of the maximum potential ice activation 20 

for a given temperature and IN number concentration. In this study, a dust layer located between 1 and 3km has been added 

to the dust case simulations, to reproduce a similar dust layer present in the observed case. The dust layer is initialized to 

cover the entire 4
th

 domain at model start-up. The five outermost grid points are set to the initial IN number concentration at 

each model time step to prevent unnatural dilution of the IN supply. IN is thereafter transported exclusively from the lateral 

boundaries of the 4
th

 domain by wind advection for the duration of the simulation. The dust layer is initialized to cover the 25 

entire 4
th

 domain at model start-up and thereafter is resupplied exclusively from the lateral boundaries of the 4
th

 domain by 

wind advection. The dust in the layer can serve as IN, CCN, or some fractional combination of the two by means of a simple 

partition which is set by the user depending on assumed or measured particle chemistry. This allows us to test the sensitivity 

of clouds within our model to a mixture of nuclei. We have set the dust layer to be IN exclusively in this study. Therefore, 

these dust cases will represent the maximum potential effects on heterogeneous ice formation for a given dust number 30 

concentration. Additional information on the CCN and IN number concentration values used in this study is provided in 

section 3. 

 

2.2 Ice Formation Parameterizations 
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The original SBM (Khain et al. 2004) included both homogeneous and heterogeneous ice formation, but did not directly 

connect ice formation to a prognostic IN variable. Liquid drop freezing for both homogeneous and immersion mechanisms 

was provided by Bigg (1953). Ice formation resulting from condensation and deposition freezing was provided by Meyers et 

al. (1992). Contact freezing was not included in the original SBM. In order to perform a study of aerosol impacts on 5 

heterogeneous ice formation, it is necessary to directly link ice nucleation rates to aerosol properties. The study of Gong et 

al. (2010), and more recently Fan et al. (2014), updated the available homogeneous freezing mechanisms and additionally 

implemented separate parameterizations into the SBM for depositional, contact and immersion freezing, with ice formation 

in each of these schemes directly linked to the prognostic IN variable. In this study, we followed the Bigg (1953) for 

homogeneous freezing of drops. The heterogeneous ice nucleation parameterizations employed are detailed as below. 10 

 

2.2.1 Heterogeneous Ice Nucleation and Freezing Schemes 

 

Currently there is no deposition and condensational nucleation parameterization connecting with aerosol properties and 

developed based on deep convective clouds. As noted in Meyers et al. (1992) it is difficult to distinguish the relative 15 

contributions of depositional and condensational freezing in a parcel, since both form similarly sized small ice crystals, 

despite the different mechanisms of vapour to ice in the former and condensation followed immediately by freezing in the 

latter case. However, studies suggest that small ice crystals formed in the -5°C to -10°C temperature range can have a large 

impact on subsequent ice formation at higher altitudes (Ackerman et al. 2015; Hiron and Flossman, 2015; Lawson et al., 

2015). A depositional-condensational scheme would allow for these small ice crystals to form in this specific temperature 20 

range. To link depositional and condensational freezing with aerosols, we follow the implementation of van den Heever et al. 

(2006), updated from the Meyers et al. (1992) parameterization. The number concentration of ice crystals generated by 

depositional-condensational nucleation (Ndep) is proportional to the IN number concentration (NIN; l
-1

) within the grid cell by 

Eq. (1): 

 25 

Ndep = N𝐼𝑁FM,           (1) 

 

where FM (unitless) is the function of the depositional-condensational nucleation by Meyers et al. (1992) that represents the 

fraction of the maximum available IN (Nid; l
-1

) concentration that may be activated for the given conditions as calculated in 

Eq. (2): 30 

 

Nid = exp{−6.39 + 0.1296[100(Si − 1)]},         (2) 

 



15 

 

with Si being the saturation over ice. The value of FM is equal to 1 for conditions at ice supersaturation of 40%, at which 

point all IN are activated, and is equal to 0 when supersaturation over ice is negative. For other values of ice supersaturation, 

FM is equal to Nid divided by Nid(Si=40%). The initial size of an ice crystal formed by this scheme is assumed to be 2.5 μm in 

radius and is assigned to the smallest ice size bin. 

 5 

As stated above, the immersion freezing mechanism in the original SBM uses the parameterization of Bigg (1953), which is 

temperature-dependent only. To provide an aerosol-based immersion freezing scheme, we have incorporated the 

parameterization of DeMott et al. (2015), which was implemented by Fan et al. (2014) (cited as DeMott et al. (2013) in Fan 

et al. (2014) due to DeMott et al. (2015) not yet being published). The DeMott et al. (2015) immersion freezing number 

concentration is parameterized as in Eq. (3): 10 

 

Nimm = (CF)(NIN)
( α(273.16-Tk)+β)

exp(γ(273.16-Tk)+ δ)       (3) 

 

CF is an instrumental correction factor with a value of 3. Coefficients α, β, γ, and δ are 5.95E-5, 1.25, 0.46, and -11.6, 

respectively, representing mineral dust particles (DeMott et al., 2015) Tk is the cloud temperature in degrees Kelvin, NIN is 15 

the number concentration of total aerosol particles with diameter larger than 0.5 μm, and Nimm is the maximum number 

concentration of immersion ice possible in the given temperature range. Liquid drops are consumed over the size spectrum 

starting with the largest sizes down to the smallest until the minimum of Nimm or drop number concentration is reached. 

According to Yin et al. (2005), drops with a radius smaller than 79.37 μm will be frozen to pristine ice crystals, otherwise 

graupel is formed. 20 

 

We have also adopted the contact freezing parameterization of Muhlbauer and Lohmann (2009), which is based on Cotton et 

al. (1986) and Young (1977). In this parameterization, contact freezing is a result of the collision of supercooled liquid water 

drops and IN due to Brownian motion. The contact freezing rate is therefore proportional to the drops' radius and number 

concentration. It is also proportional to the IN number concentration and Brownian diffusivity in air. Unlike Muhlbauer and 25 

Lohmann (2009) who calculated the freezing rate for the sum of all drops, we perform the calculation in this study for each 

spectral bin of drops. Then, the contact freezing number concentration (Ncnt; l
-1

s
-1

) for each individual size bin is represented 

by Eq. (4): 

 

Ncnt = 4πrcNcDkN𝐼𝑁,           (4) 30 

 

where rC (m) and NC (m
-3

) is radius and number concentration of drops in the individual size bin, respectively. Dk is the dust 

aerosol Brownian diffusivity (m
2
s

-1
), and is parameterized by Eq. (5): 
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Dk =
kBTC

6πηr
,            (5) 

 

Dk is a function of the Boltzmann constant KB=1.28 x 10
-23

 m
2
 kg s

-2
 K

-1
, T is the air temperature, r is the dry dust aerosol 

median radius, η is the viscosity of air and C is the Cunningham slip correction factor. The viscosity of air depends on 

temperature, as calculated by Eq. (6): 5 

 

η = 10−5[1.718 + 4.9x10−3(T − 273.15) − 1.2x10−23(T − 273.15)2],     (6) 

 

The Cunningham slip correction factor is calculated by Eq. (7): 

 10 

C = 1 + 1.26
λ

r

1013.25

p

T

273.15
,          (7) 

 

with the molecular mean free path length of air λ=0.066 μm, r is the dry aerosol radii, and p is the pressure. To simplify the 

calculation, the contact freezing number concentration is the available dust number concentration NIN, with freezing 

efficiency of 1. Upon freezing, drops with a radius smaller than 79.37 μm will be frozen to pristine ice crystals, larger drops 15 

will be frozen as graupel. 

 

It should be noted that currently there is no ice nucleation parameterization specifically developed for DCC, and the 

understanding of ice nucleation for DCC is still very limited. The best we can do for model simulations at this time is to 

employ the currently-available ice nucleation parameterizations for connecting with dust particles, evaluate our baseline 20 

simulation with observations, and carry out model sensitivity tests based on the validated case simulation to understand the 

dust impacts and associated mechanisms.  

 

2.3 Radar Reflectivity Calculations 

 25 

The liquid and frozen hydrometeor PSDs calculated by SBM can be easily converted into radar reflectivity values, providing 

a bridge for the comparison of model simulated microphysical parameters with observable variables. For our study, we 

calculate radar reflectivity directly from the model’s PSD for each of the individual hydrometeor species using the spherical 

particle approximations of the Rayleigh scattering equations suggested by Ryzhkov et al. (2011). Reflectivity is calculated 

for each bin and then summed over the entire PSD to obtain the total for each hydrometeor species (rain; snow; graupel) 30 

which are then combined to obtain the total reflectivity. The general equation for snow and graupel reflectivity is represented 

by Eq. 18: 
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𝑍 = (
𝜌𝑠,𝑔

𝜌𝑖
)

2 |𝐾𝑖|2

|𝐾𝑤|2 ∫ 𝐷6𝑁(𝐷)𝑑𝐷
∞

0
          (18) 

 

Where N(D) is the number concentration per cubic meter of snow(graupel) particles of Diameter (D) in millimetres. Density 

of snow or graupel is represented by ρs,g, while ρi is the density of solid ice. |Ki|
2
 and |Kl|

2
 represent the dielectric factors of 

solid ice and liquid water, respectively. When calculating the reflectivity for liquid drops, the two leading ratios are equal to 5 

1, but otherwise the equation is the same. The density relationship in the leading ratios can be expanded and simplified into a 

constant times the snow(graupel)-liquid density ratio, following Smith (1984) and Fovell and Ogura (1988) as in Eq. 29: 

 

(
𝜌𝑠,𝑔

𝜌𝑖
)

2 |𝐾𝑖|2

|𝐾𝑤|2 = (
𝜌𝑠,𝑔

𝜌𝑙
)

2

(
𝜌𝑙

𝜌𝑖
)

2 |𝐾𝑖|2

|𝐾𝑤|2 = 0.224 (
𝜌𝑠,𝑔

𝜌𝑙
)

2

       (29) 

 10 

Where ρl represents the density of liquid. This is then substituted into Eq. 1 to yield Eq. 310: 

 

𝑍 = 0.224 (
𝜌𝑠,𝑔

𝜌𝑙
)

2

∫ 𝐷6𝑁(𝐷)𝑑𝐷
∞

0
          (310) 

 

The reflectivity values calculated for liquid drops, snow and graupel are then added together to obtain the total reflectivity, 15 

which is converted to dBZ by Eq. 411: 

 

𝑍𝑑𝐵𝑍 =  10 𝐿𝑜𝑔(𝑍𝑡𝑜𝑡𝑎𝑙)           (411) 

 

3 Experiment Design 20 

In our study, we have conducted experiments simulating the 08 March 2004 MCS described in Min et al. (2009), using 

realistic initial and boundary conditions. Four one-way nested domains were used (Figure 1), with horizontal grid resolutions 

of 81km, 27km, 9km, and 3km respectively and 41 vertical levels in each domain. Vertical level grid spacing is coarsest 

(~800m) at the top of the atmosphere, becoming progressively finer near the surface to a minimum of ~30m. The numbers of 

horizontal grid points in each domain are 81x81, 81x81, 81x81, and 150x150, respectively. Initial and boundary conditions 25 

for the first domain are provided by the 1° x 1° 6-hourly National Centers for Environmental Prediction (NCEP) global final 

analysis dataset, with initial conditions for the other three domains being interpolated from the first domain. Due to the SBM 

not being designedbeing too computationally expensive to run at coarse resolutions, the SBM provides microphysics for only 

the 3km resolution domain with bulk microphysics being selected for domains 1-3. The specific WRF parameterizations 

selected for the experiments are detailed in Table 1. Each case was run for 33 model hours, beginning at 18Z 07 March 2004.  30 
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The initial number concentrations of CCN are kept identical between the different cases. Typical marine aerosol number 

concentrations tend to be low, on the order of 300-600 cm
-3

 (O’Dowd et al., 1997; Yoon et al., 2007). Therefore, the CCN 

number concentration is set to a uniform value of 300 cm
-3

 below 2km with the CCN number concentration being reduced 

exponentially from this value as height increases above 2km. The initial IN distribution is set to be vertically uniform at .01 5 

cm
-3

 for the Clean case. The dust cases add an increasing number concentration of IN to the Clean case’s background value 

in a layer located vertically between 1km and 3km, as described by Min et al (2009). The dust layer contributes IN to the 

smallest domain only, as the bulk microphysics used in the larger domains do not directly connect dust with ice formation. 

The dust cases are set with different IN numbers concentrations within the dust layer of 0.12 cm
-3

 (case D.12), 1.2 cm
-3

 (case 

D1.2), and 12 cm
-3

 (case D12), respectively. These values were selected based on aerosol measurements (Table 2) that were 10 

taken during the trans-Atlantic Aerosol and Ocean Science Expeditions (AEROSE) experiment (Morris et al., 2006) for dates 

coinciding with the observational study of the March 2004 dust outbreak detailed in Min et al. (2009). The dust loading was 

assumed to be the difference in the aerosol number concentrations of the dusty and pristine periods. Only aerosol particles 

with a radius greater than 0.5 microns were considered when taking this difference, due to the smaller aerosol sizes being 

more prevalent during the pristine period compared to the dusty period. This size range is consistent with the study of 15 

DeMott et al. (2015) for ice nucleating particles. The resulting dust number concentration was multiplied by an activation 

fraction suggested by Niemand et al. (2012) for Saharan dust to arrive at the number concentration used for case D.12. Other 

studies have suggested that dust related IN number concentrations greater than 1.0 cm
-3

 are possible (DeMott et al., 2003; 

Sassen et al., 2003; Ansmann et al., 2008), so two additional dust cases with IN number concentrations one (D1.2) and two 

(D12) orders of magnitude greater than the initial D.12 case were included in the study. 20 

 

To prevent the CCN and IN fields from being diluted due to the inflow of air from the lateral boundaries, the CCN and IN 

number concentrations of the outer five grid cells (i.e., the boundary points) on each side of domain 4 are set to the initial 

values throughout the integration period. The initial vertical profile of domain averaged relative humidity shows moist 

(>60% RH) air below 6km and drier air (<50% RH) above 6km, while the profiles of horizontal winds evidence weak (<5 25 

m/s) to relatively weak (<10m/s) wind shear below 7 km, following the criteria used by Fan et al. (2009b). After the model’s 

6 hour spin up time, a relatively dry air layer corresponding to the SAL enters the domain via the NCEP-FNL boundary 

conditions and is present for the duration of the simulation. 

 

Additional criteria used to select subsets of the data for the purpose of our analysis are as follows. Cloudiness within an 30 

individual 3D grid cell was determined by the sum of all condensates within it exceeding a 10
-6

 kg/kg threshold value, 

following the definition used in Fan et al. (2013). Cloud top was determined, from the top level of the model down to the 

surface, as the highest level with at least two consecutive levels exceeding the cloudiness threshold, which was intended to 

limit the influence of very thin clouds on the resulting analysis. While this does not take multiple cloud layers into account, it 
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is similar to the top-down view of clouds observed by many satellites. To sort results by precipitation regime, we adapt the 

definitions of Fan et al. (2013) for convective and stratiform precipitation, with each vertical column classified as a single 

precipitation type only. For all precipitating clouds, surface rain rates must exceed 0.05 mm/hr. Convective precipitation is 

classified as precipitating column with vertical motion exceeding a 1m/s threshold and cloud thickness of 8 km or greater. 

Non-convective precipitating columns are classified as stratiform by the presence of ice-phase precipitation in the column. 5 

Non-precipitating columns with a cloud layer thicker than 1km and both cloud top and cloud bottom temperatures colder 

than 0°C are classified as anvil clouds. Precipitating columns with cloud top temperatures warmer than freezing are 

classified as rain producing warm clouds. 

4 Results 

Min et al. (2009) reported a unique case of a mature MCS partially under the effects of a Saharan dust outbreak. They noted 10 

distinct changes to cloud microphysical and macrophysical properties when comparing the dusty and dust-free sectors of the 

MCS. Large-scale meteorological conditions drive the initial cloud formation and growth processes which are then 

modulated by aerosol indirect effects on cloud microphysical processes. Figure 1 describes the locations of the four model 

domains, displaying the Atmospheric Infrared Sounder (AIRS) retrieval (Figure 1a) and the domain 1 model simulated 

precipitable water averaged over the duration of the simulation (Figure 1b). The large scale patterns of precipitable water are 15 

well reproduced by the model, although we note that the magnitude is slightly overestimated over the African continent and 

underestimated over the southern Atlantic compared to observations. Despite this, the magnitude in the location of our 

smallest domain is well reproduced, suggesting that the meteorological conditions in our region of interest are represented 

sufficiently well.  

 20 

4.1 Microphysical and Macrophysical Changes 

 

 

Increasing IN concentration in the dust cases results in greater ice formation and growth within the heterogeneous nucleation 

regime. This affects homogeneous ice formation by reducing the number concentration of liquid drops that reach the -38°C 25 

threshold and also by reduced peak supersaturation values due to the growth of more numerous ice particles within the 

heterogeneous nucleation regime. Figures 2 and 3 depict the vertical cross-section of a specific convective core and its 

associated stratiform/anvil cloud at a single model time step (hour 15) from the Clean and D1.2 cases. The cross-section 

slices are not identically located in the two cases due to small differences in the spatial evolution of the system, but are less 

than 3 grid points apart. In both cases, the slices are similarly located within their respective cloud system and are at similar 30 

stages of evolution. The slices are averaged zonally over 9km to further reduce the effects of spatial variations. The Black 

and dashed blue lines (Figure 2; Figure 3) depict updrafts (> 1m/s) and downdrafts (< -0.1 m/s). The grey dashed line (Figure 
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2; Figure 3) depicts the threshold value of cloudiness suggested by Fan et al. (2013) and shows the change to cloud geometry 

directly. The Clean case (Figure 2a) shows the classic DCC cloud structure of convective core and associated stratiform 

region transitioning into the anvil. The D1.2 case also possesses a similar cloud structure, but with a far smaller anvil cloud, 

which is a result of the changes to the partition between homogeneous and heterogeneous ice formation in the D1.2 case 

(Figure 7). Cloud formation is increased in the heterogeneous nucleation regime (Figure 2d) compared to the Clean case 5 

(Figure 2a). Liquid drops that would otherwise freeze homogeneously at temperatures colder than -38°C are converted to ice 

at warmer temperatures due to increased riming and/or immersion/contact nucleation. In addition, increased ice formation 

and growth within the heterogeneous nucleation regime reduces peak supersaturation values at colder temperatures, limiting 

ice formation in the homogeneous regime. Therefore, fewer cloud ice particles form within and/or are transported into the 

anvil regime which limits its horizontal extent compared to the Clean case. 10 

 

The first column of Figure 2 describes total water content (TWC), while columns 2 and 3 describe rain rate and radar 

reflectivity, respectively. TWC is increased in the dust case (Figure 2d) at temperatures below 0°C compared to the Clean 

case (Figure 2a). The higher TWC in the heterogeneous nucleation regime is accompanied by a correspondingly larger area 

of strong (> 1m/s) vertical motion. This supports the evidence of convective invigoration due to increased latent heat release 15 

in the dust-affected deep, high-IWP clouds reported by Min and Li (2010). Stronger updrafts in the dust cases supply 

sufficient water vapour to support the formation and growth of more numerous particles in the heterogeneous nucleation 

regime and can transport a greater number of large particles to higher altitudes in the convective core and into the adjoining 

stratiform regime. These large particles contribute to the higher rain rate values noted in the D1.2 case (Figure 2e) compared 

to the Clean case. The increased rain rates at temperatures below 0°C also correspond to the increased radar reflectivity 20 

values in the stratiform regime from the convective core almost to the anvil regime near the equator (Figure 2f). Figure 3 

describes the effective radii (Re; 1.e2* μum) of rain drops, graupel, and snow particles in columns 1-3, respectively. Rain 

drop radii are significantly decreased in the heterogeneous nucleation regime (Figure 3g) due to large sized drops freezing by 

immersion/contact nucleation or by collisions with ice particles (riming; Figure 10) leaving smaller drops unfrozen. Graupel 

and snow radii are both decreased at temperatures below 0°C (Figure 3h; Figure 3i). This reduction is most pronounced 25 

within the convective core where competition between more numerous small particles during collision-collection reduces 

growth rates (Figure 9). At temperatures above 0°C, graupel radii is increased in the dust cases due to immersion freezing of 

large rain drops into graupel within the heterogeneous nucleation regime and then falling into warmer temperatures. At 

temperatures below -38°C and in the anvil cloud regime, graupel and snow radii are increased compared to the Clean case. 

This is due to the stronger outflow in the dust cases from the convective core, which transports large precipitation particles 30 

greater distances before they sediment out of the cloud. In addition, precipitation formation is shifted to colder temperatures 

(higher altitudes) in the heterogeneous nucleation regime which increases the number of large particles forming near the 

cloud tops. 
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Aerosol indirect effects on cloud microphysical processes can result in a cloud top distribution that is higher or lower than 

would be expected for a given dynamical intensitymeteorological/environmental conditions. Figure 4 describes the changes 

to cloud top distribution in each of the three dust cases with respect to the Clean case. The cloud top distribution in Figure 4 

combines all cloud types together to describe the overall macrophysical changes due to increasing IN concentration. We 

determine the cloud top by selecting the highest vertical model level in each column that exceeds the 1.e-6 kg/kg cloudiness 5 

threshold value. While this does not take multiple cloud layers into account, it is similar to the top-down view of clouds 

observed by many satellites. Figure 4a describes the time series of cloud top occurrence frequency for the Clean case. The 

percentage at each model time represents the horizontal sum of all cloud tops occurring at a given model level divided by the 

total horizontal and vertical sum of cloud tops occurring at that specific model output time. Figure 4b through Figure 4d 

describes the dust case minus Clean case difference of cloud top percentage. Increasing IN concentration from the D.12 case 10 

value in our simulations results in the overall cloud top height distribution shifting to lower altitudes (warmer temperatures). 

This is consistent with the findings of Min and Li (2010) in which higher AOD values were correlated with warmer cloud 

effective temperature. These macrophysical changes in cloud top distribution were noted to result in a strong cooling effect 

of thermal infrared radiation of up to 16 Wm
-2

. 

 15 

The cloud system transitions from shallow to deep convection between model hours 6 to 12. The majority of cloud tops 

occurring before hour 10 are warmer than -5°C. Therefore, the temperature and supersaturation conditions within these 

clouds are not sufficient for IN to activate and form ice crystals. Hence, the effects of increasing IN are limited during this 

this time period. After the transition to deep convection, the cloud top distribution in the dust cases is shifted to lower 

altitudes (warmer temperatures) between model hours 12 to 24. Cloud tops occur less frequently above 15km and more 20 

frequently between 12 and 13km as a result of the changes in the partition between homogeneous and heterogeneous ice 

formation. This is most pronounced in the D1.2 and D12 cases which both feature significant increases in heterogeneous ice 

formation compared to the Clean case. The numerous ice crystals that form when large concentrations of IN are activated 

compete for available water vapour during diffusional growth. The consumption of the cloud’s available water vapour 

reduces peak supersaturation at colder temperatures and suppresses homogeneous ice nucleation. We note that the shift in 25 

cloud top distribution is not linear with increasing IN number concentration. While both the D1.2 and D12 cases feature 

lowered clouds (hour 12-24), the differences in the D12 case are not as pronounced as in the D1.2 case. This is a result of 

greater number concentrations of small cloud ice particles (Figure 9) from heterogeneous ice formation in the D12 case  

compared to the D1.2 case. The small ice particles remain near the cloud top after larger particles sediment out, yielding a 

higher cloud top distribution relative to the D1.2 case. After model hour 24, the cloud top distribution is significantly 30 

lowered in the D12 case compared to the D1.2 case. The greater condensate mass of the D12 case allow more large snow 

particles to form (Figure 9d), which sediment out more quickly compared to the D1.2 case (Figure 9c). The small IN number 

concentration in the D.12 case results in a cloud top distribution that is different from both the D1.2 and D12 cases. From 

model hours 20 onwards, The D.12-Clean case difference plot suggests that higher cloud tops are occurring compared to the 
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other cases. However, average convective updrafts are slightly weaker during this time period compared to the Clean case 

(Figure 11a). This suggests that cloud microphysical changes are the cause of the higher clouds in the D.12 case. Specifically 

This would indicate that average hydrometeor particle sizes are smaller, allowing for increased vertical transport and slower 

sedimentation rates near the cloud tops. Similar increases in vertical transport can also occur due to aerosol effects on the 

liquid phase of DCC increasing particle mobility (Koren et al., 2015; Chen et al., 2017), although in our current study, CCN 5 

concentrations have not been changed. This suggests that IN concentration may also play a complimentary role in cloud top 

height enhancement in addition to changes CCN number concentration noted by previous studies. Future work related to the 

partition between IN and CCN activation in the dust layer will provide additional understanding of the interactions between 

these effects. The corresponding overall changes to cloud top height (averaged over model hours 6-33) are: Clean (12.64 

km); D.12 (12.79 km, +1.14%); D1.2 (12.33 km, -2.49%); D12 (12.13 km, -4.08%). 10 

 

4.2 Radar Reflectivity CFADs 

 

With advances in observing technology, cloud and precipitation radars are used extensively for studying cloud and 

precipitation formation and microphysical-dynamical interactions. Min et al. (2009) used contoured frequency by altitude 15 

(CFAD) plots to describe the observed changes to convective and stratiform radar reflectivity between the dusty and dust-

free regions. They noted that radar reflectivity at temperatures above 0°C was reduced in the dusty region in both the 

convective and stratiform regimes. At temperatures below 0°C, convective reflectivity was reduced in the dusty regions 

while stratiform reflectivity was increased. Min et al. (2009) performed an additional sensitivity test to differentiate the 

effects of dynamics on hydrometeor growth and precipitation formation from the microphysical effects of dust. The 20 

sensitivity test revealed that, in the absence of dust, relatively stronger convective intensity also resulted in higher stratiform 

reflectivity values. This indicated that the reduced reflectivity in the convective regime and increased stratiform reflectivity 

observed in the dust sector were a result of changes to microphysical processes rather than dynamics. These microphysical 

changes were suggested to be a result of increased heterogeneous ice formation, which delayed the formation of large 

precipitation particles in the convective regime until sufficient growth occurred during transport into the stratiform regime to 25 

pass the minimum reflectivity threshold (Min et al., 2009). 

 

The use of bin microphysics in our WRF-SBM model allows us to simulate radar reflectivity directly from each respective 

hydrometeor’s size distribution. These PSDs evolve naturally within the model during cloud formation, growth/evaporation 

of particles, conversion of cloud mass into precipitation, and eventual removal of precipitation particles by sedimentation. 30 

Therefore, a more accurate depiction of microphysical changes to precipitation formation and the associated changes to radar 

reflectivity is possible in comparison with the fixed hydrometeor PSDs used in bulk radar simulators. To compare the 

observations of Min et al. (2009) with our results, we have recreated similar CFAD plots using model derived reflectivity. 

Figure 5 describes the radar reflectivity CFADs of the convective and stratiform regimes for the Clean and three dust cases. 
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As IN concentration is increased in the simulations, changes in ice formation and growth processes result in decreased 

convective reflectivity at temperatures above 0°C. Likewise, stratiform reflectivity at temperatures below 0°C is increased in 

the dust cases. These changes suggest that increased heterogeneous ice formation is significantly affecting the formation of 

precipitation sized particles consistent with the hypothesis of Min et al. (2009). We note that convective reflectivity at 

temperatures below 0°C and stratiform reflectivity at temperatures above 0°C are both increased in the dust cases compared 5 

to the Clean case. This differs from the reduced reflectivity values reported in Min et al. (2009) and Li and Min (2010) for 

these locations. These differences can be partially explained by greater water vapour content within the dust layer in the 

model simulations compared to the observed SAL. 

 

Measurements from AIRS/AMSU/HSB indicate that the relative humidity in the dust layer is about 20% drier than the 10 

surrounding air. While a dry air layer is present in the WRF’s initial and boundary conditions, the model slightly 

overestimates precipitable water compared to observations (Figure 1). To examine the impacts of dust layer moisture content 

on our case study, we have conducted additional numerical simulations based on the D1.2 case. The dust layers within these 

test cases feature relative humidity values that are 5% drier than the original D1.2 case. The first case (Dry5init) reduces the 

water vapour content in the dust layer over the entire 4
th

 domain at model start-up time. The boundary conditions entering 15 

the 4
th

 domain are unchanged from the original D1.2 case. The second case (Dry5bound, not shown) reduces water vapour 

content at the boundaries of the 4
th

 domain for the duration of the simulation with no changes made to the dust layer’s 

initialized moisture content at model start-up time. Figure 5 describes the convective and stratiform CFADs of the D1.2 and 

Dry5init cases. The first and second columns describe the D1.2 CFAD and the D1.2 minus Clean case difference plots, 

respectively. The third column describes the Dry5init minus Clean case difference plots. Reduced moisture content in the 20 

Dry5init case weakens convective cloud formation, which decreases convective reflectivity overall at temperatures below 

0°C and shifts reflectivity to lower values at temperatures above 0°C. Reflectivity in the stratiform regime is still increased 

compared to the Clean case at temperatures below 0°C, but is also shifted to lower values at temperatures above freezing. 

These changes are very similar to the observed changes of convective and stratiform reflectivity described by Min et al. 

(2009) and Li and Min (2010). The Dry5bound case results in similar changes as those described by the Dry5init case, 25 

although with greater reductions in the convective regime and smaller increases in the stratiform regime as a result of the 

drier boundary air transported into the 4
th

 domain for the duration of the simulation.  

 

4.3 Effects on Primary Ice formation and Hydrometeor Number Concentrations  

 30 

The As noted previously, the convective core is the primary determiner of cloud macrophysical properties such as cloud top 

height and anvil cloud area (Futyan and Del Genio, 2007). However, changes to cloud microphysical processes resulting 

from AIE will modulate these macrophysical properties differently depending on the aerosol ice/liquid nucleation activity, 

aerosol number concentration, and environmental conditions in which clouds are forming (Khain and Pokrovsky, 2004 
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Khain et al., 2004, 2005, 2008; van den Heever et al., 2006; Fan et al., 2007b; Min et al., 2009; Min and Li, 2010; Li and 

Min, 2010; Min et al., 2014; Altaratz et al., 2014). In our numerical simulations, increasing IN in the dust cases increases the 

total number concentration of new ice crystals forming in the heterogeneous nucleation regime between -5°C and -38°C 

(Figure 8b to Figure 8d). This affects the vertical distribution of cloud ice particles by changing the locations of initial ice 

formation and subsequent growth. Figure 7a and Figure 7b describe the vertical distribution of ice particles formed by the 5 

model’s heterogeneous and homogeneous ice formation schemes in the convective and stratiform cloud regimes, 

respectively. The ice formation number concentration at each vertical level is summed horizontally and with respect to time 

for each cloudy pixel in the specified cloud regime and is represented by a log10 value. Figure 7c describes the vertical 

distribution of residual (non-activated) IN number concentration in the convective cloud regime. This value is averaged over 

all convective cloud data points and temporally over the duration of the simulation. Increasing IN concentration in the 10 

convective core results in significant increases in ice formation between -5°C and -15°C. Ice formation in this temperature 

range can deplete available IN (Figure 7c) and reduce heterogeneous ice formation between -15°C and -38°C. This depletion 

effect is substantial between ~7km and 11km in the D.12 and D1.2 cases. When the IN concentration is sufficiently high, 

such as in the D12 case, depletion is not as significant as in the other cases and ice formation is significantly increased over 

the majority of the -5°C to -38°C temperature range. At the -38°C threshold, ice formation number concentration is 15 

progressively reduced as IN number concentration is increased, which suggests that clouds are glaciating at warmer 

temperatures compared to the Clean case. The percentage of ice formed by homogeneous freezing out of total ice formation 

in each of the four cases is: Clean (91.32%); D.12 (91.24%); D1.2 (47.86%); D12 (0.02%). The reduction of homogeneous 

freezing is due both to fewer liquid drops crossing the -38°C threshold (Figure 8j to Figure 8l) and reduced peak 

supersaturations resulting from increased ice growth at temperatures above -38°C. Finally, we note that stratiform ice 20 

formation is also increased in the dust cases compared to the Clean case. The increase, while not as large as in the convective 

core, contributes to increased cloudiness in the stratiform regime between -5°C and -38°C by increasing local concentrations 

of small, slow-falling cloud ice crystals (Figure 12). 

 

Changes to the location and number concentration of initial ice particle formation affect the vertical distribution of ice and 25 

liquid hydrometeors in several ways. Figure 8a to Figure 8d describes the time evolution of convective averaged ice and 

snow particle number concentration. Increasing IN concentration results in a greater number concentration of ice/snow 

particles in the heterogeneous nucleation regime and a corresponding reduction within the cloud column at temperatures 

below -38°C. This indicates that the reduced homogeneous ice formation number concentration noted in Figure 7a is not 

counteracted by the transport of a similar number of particles from temperatures warmer than -38°C. While more particles 30 

are formed in the heterogeneous nucleation regime between -5°C and -38°C compared to the Clean case, there are also more 

opportunities for these particles to collide and be incorporated into larger particles. For example, more frequent riming of ice 

and snow particles in the dust cases increases the formation of graupel (Figure 8e – Figure 8h). More frequent riming in turn 

reduces the average number concentration of liquid drops in the convective regime at temperatures colder than -5°C (Figure 
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8i – Figure 8l). While dust only activates as IN and not CCN in our simulations, average liquid drop number concentration at 

temperatures above -5°C is affected by the more numerous ice particles forming in the heterogeneous nucleation regime and 

subsequently melting after falling into warmer temperatures. Small ice particles melt into small drops that may evaporate, 

while large drops formed from melted snow/graupel may collect smaller drops by collision-coalescence or break up into 

smaller drops themselves. 5 

 

4.4 Effects on Convective PSDs and Collection Processes 

 

Increasing the total number concentration of ice particles formed in the heterogeneous nucleation regime affects the PSD in 

two ways. First, available water vapour is partitioned over a greater number of smaller particles. Second, these smaller 10 

particles are less efficient at colliding with other particles. Both effects reduce the growth rates of the individual particles and 

shift the PSD to smaller particle sizes overall. The SBM allows us to examine the effects of dust on the PSD of the different 

hydrometeors without creating an arbitrary distinction between cloud and precipitation sizes sized particles. Dust related 

changes to the bin PSD of each hydrometeor type are described in Figure 9. The provided radii values of the represented 

hydrometeor species are derived from the pre-calculated bin radii values used by the model, which are based on assumed 15 

particle densities and the mass doubling relationship between the individual bins. Contour values represent log10 values of 

bin number concentration. The difference plots likewise describe the relative change of these log10 values, representing Log10 

(Dust/Clean) values. As dust in our study acts as IN exclusively and not CCN, we focus our discussion on the -5°C to -38°C 

degree range conducive to heterogeneous nucleation and freezing. Since dust in nature can also act as effective CCN and 

may therefore be removed from the system by warm rain processes before freezing occurs, these results should be 20 

interpreted as an upper range of IN effects for a given dust number concentration. 

 

Figure 9a, Figure 9e, and Figure 9i describe time series of the PSD averaged over convective data within the -5°C to -38°C 

temperature range for ice/snow, cloud/rain drops, and graupel. The remaining plots in Figure 9 describe the differences 

between the three dust cases and the Clean case. The addition of IN to the DCC system produces an initial burst of ice 25 

formation covering the range of the PSD. In the D.12 and D1.2 cases, this is followed by a reduction in the small crystals and 

an increase in larger crystals and snow between hours 12 and 24. IN concentration has been depleted during this time period, 

which reduces the formation of small ice crystals. Existing ice crystals grow by particle collection into snow, hence the 

upwards slope in the difference contours between hour 12 and 24. When IN concentration is sufficiently large (D12 case) 

depletion is not as significant (Figure 7) and small ice crystals continue to form over the duration of the simulation. The 30 

liquid PSD describes an enhancement to the largest drop sizes that could be the result of increased collision-coalescence of 

available drops and/or the recirculation of recently melted large ice particles to temperatures below freezing. Stronger 

vertical motion in the dust cases may also transport more large drops from temperatures above 0°C directly. The middle size 

range of the liquid PSD is reduced though the duration of the simulation, corresponding with the enhanced bin population in 



26 

 

the graupel PSD. The formation of graupel in our model occurs by two distinct mechanisms: direct freezing of large liquid 

drops, by the homogeneous or immersion/contact freezing mechanisms, and collisions between liquid and ice particles 

(riming). There is evidence of increased large drop freezing, as seen by the enhancement to the largest bin sizes in the 

graupel PSD. However, the majority of graupel particles are formed by riming, as seen by the similar locations of reduction 

and enhancement between the liquid and graupel PSDs. While riming is more frequent in the dust cases, as evidenced by the 5 

increasing graupel number concentration, the graupel sizes shift smaller. This is a result of both overall smaller ice crystals 

sizes and competition between the individual particles for available liquid drops during riming, reducing growth rates 

(Figure 10).  

 

Particle collection processes are the primary source of precipitation formation due to the more rapid accumulation of mass 10 

compared to purely diffusional growth. In liquid clouds, collision-coalescence processes allow cloud drops to collect into 

rain drops. In ice and mixed phase clouds, ice-ice (aggregation) collisions and ice-liquid (riming) collisions become more 

frequent as total frozen particle number concentration increases. Figure 10 describes the changes to aggregation (row 1), 

riming (row 2), and drop autoconversion (row 3) in the convective regime with respect to time for the Clean and dust cases. 

Drop autoconversion rate (1.e-4 kg
-1

 s
-1

) tracks the formation of rain drops from cloud drops by collision-coalescence 15 

processes. As a single size distribution is used for liquid drops, rain drops are distinguished from cloud drops by the 

corresponding bin mass. Drop masses with equivalent radii greater than 20 μm are classified as rain drops. Aggregate 

number (kg
-1

) tracks the change of ice particles before and after aggregation occurs and is more negative for a more efficient 

process. Riming rate (g kg
-1

 s
-1

) tracks the liquid mass converted to graupel through the riming process and, again, is more 

negative for a more efficient process. These two processes are also affected by the relative availability of liquid and ice 20 

content within the cloud. As riming can only occur where ice and liquid particles coexist, this limits the most significant 

riming to the convective core below the cloud’s glaciation level. Likewise the drop collision-coalescence processes are 

reduced in the heterogeneous nucleation regime in the dust cases due to the conversion of liquid content into ice at 

temperatures below 0°C. In the stratiform regime, relatively little liquid content is transported from the convective core due 

to the majority of freezing occurring in the core itself. Therefore, ice-ice particle interactions are the most common in the 25 

stratiform regime and snow is the predominant precipitation particle type (Stith et al., 2002; Heymsfield et al., 2002; Lawson 

et al., 2010, Gallagher et al., 2012).  

 

In the Clean case the majority of ice forms by homogeneous freezing, which limits significant ice-ice particle interactions in 

the heterogeneous nucleation regime until a significant number of ice particles have fallen down from the homogeneous 30 

freezing regime. The small addition of IN in the D.12 case forms a sufficient number of ice particles to increase aggregation 

activity before hour 18 near the 0°C freezing level, but a noticeable gap at higher altitudes in the heterogeneous nucleation 

regime remains due to more significant homogeneous freezing compared to the other dust cases. Increasing the IN 

concentration further results in maximum values near 0°C and decreasing upwards to colder temperatures. The significantly 
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larger values of aggregation number in the D12 case compared to the other cases (Figure 10a to Figure 10d) is a result of the 

greater number concentration of ice crystals forming at warmer temperatures where particle “sticking” efficiency is higher 

(Hallgren and Hosler, 1960). While aggregation is the primary precipitation process in the stratiform regime, the aggregation 

numbers in this regime are smaller than in the convective regime. This is a result of the significantly greater number 

concentration of ice crystals that form initially in the core and are subsequently collected into snow particles before being 5 

transported into the stratiform regime. 

 

The effect of increased heterogeneous ice formation on the efficiency of riming is tied into both the size and number 

concentration of ice particles that form and the overall availability of liquid water drops. The larger midlevel liquid water 

content in the Clean case results in efficient riming despite the lower ice number in the heterogeneous nucleation regime 10 

compared to the dust cases. Increased ice formation in the heterogeneous nucleation regime increases riming rates near the 

0°C freezing level. This is due to the greater total number concentration of ice particles and the significant presence of liquid 

water content near the melting level. Above 6km in the convective regime, where ice formation becomes significant in the 

dust cases, riming rates become progressively lower as IN number concentration is increased. The smaller sizes of ice 

particles forming in these locations reduce the collision efficiency between ice particles and liquid drops. The reduced 15 

number of available liquid drops in the dust cases also affects riming rates by decreasing the depth of the mixed-phase 

environment in which riming may occur. Changes to drop autoconversion rates are similarly affected by changes to drop 

number concentration and PSD. While the current case studies do not allow for dust particles to activate as both CCN and 

IN, changes to collision-coalescence processes result from changes to ice formation and the subsequent impact on liquid 

water mass both above and below the freezing level. In general the addition of IN to the dust cases results in lower liquid 20 

water content in the heterogeneous nucleation regime due to riming and immersion/contact drop freezing which limits the 

opportunities for collision-coalescence to occur. At altitudes below 6km, collision-coalescence rates are affected by the 

number concentration and PSD of ice particles that melt after falling into above freezing temperatures. We note that higher 

autoconversion numbers occur at temperatures slightly above 0°C between hour 15 and 20 in the D1.2 (row 3c) and D12 

(row 3d) cases. These increases are also visible in the changes to vertical rain rates at these temperatures (Figure 14). 25 

 

 

4.5 Changes to Convective Intensity and Core Top Height 

 

The formation of smaller and more numerous cloud ice particles in the heterogeneous nucleation regime results in increased 30 

latent heat release in the convective core between -5°C and -38°C. This is due to both the diffusional growth of frozen 

particles and latent heat released by the phase change occurring during riming. Diffusional growth is the source of the 

majority of latent heat release and may consume much of the updraft’s available water vapour. Increased latent heat release 

invigorates convective updrafts compared to the clean case. Figure 11a and Figure 11d describe the time evolution of 
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convective regime averaged updraft and downdraft velocity. Figure 11b and Figure 11e (Figure 11c and Figure 11f) describe 

the average latent heat (water vapour mixing ratio) at temperatures < 0°C within the updrafts and downdrafts, respectively. 

As IN concentration is increased, average convective updraft intensity is progressively increased between hour 10 and 20. 

Likewise, updraft latent heat is increased and updraft water vapour content is reduced. This is consistent with increased 

diffusional growth of the more numerous particles that form in the dust cases. Increased convective updraft velocity in the 5 

dust cases results in higher convective core top heights from model hour 6 to about model hour 20. During the transition to 

deep convection between hour 6 and hour 12 the core top height increase is fairly linear for increasing IN concentrations. 

The time averaged convective core height (cloud tops < 0°C), percent change from Clean case, and sample variance between 

hour 6 and 12 are: Clean (8.91km; +0%; 1.36); D.12 (8.93 km; +0.25%; 1.35); D1.2 (9.28 km; +4.2%; 0.89); D12 (9.34 km; 

+4.8%; 0.76). Despite the invigorated updrafts occurring throughout the hour 6 to hour 20 time period, the core cloud top 10 

height is also affected by changes to the ice/snow PSD between hour 12 and hour 20 (Figure 9). The average convective core 

height (cloud tops <0°C), percent change from Clean case, and sample variance between hour 12 and 20 are: Clean (12.1 

km; +0%; 0.95); D.12 (12.25 km; +1.2%; 0.87); D1.2 (12.04 km; -0.5%; 0.67); D12 (12.61 km; +4.2%; 0.49). Note that the 

average core height in the D1.2 case is lower than the Clean case during this time period due to the presence of more large 

and fewer small sized particles (Figure 9c) as a result of the IN depletion described in Figure 57. This limits the number of 15 

particles that remain aloft in the D1.2 case, due to faster sedimentation rates of the large particles. Stronger downdrafts 

occurring between hour 10 and 20 also increase evaporation/sublimation of the more numerous particles in the dust cases. 

This consumes latent heat and increases water vapour content within the convective downdrafts (Figure 11e; Figure 11f). 

 

To summarize, increasing the IN number concentration in the dust cases results in increased ice formation and growth within 20 

the heterogeneous nucleation regime between -5°C and -38°C. Partitioning of available water vapour over more numerous 

particles shifts the PSD of cloud ice crystals to smaller sizes, which grow more slowly. The diffusional growth of these 

particles increases latent heat release in the heterogeneous nucleation regime and invigorates convective updrafts. 

Homogeneous ice formation is reduced due to fewer the lower number concentration of liquid drops crossing the -38°C 

threshold as well as reduced peak supersaturation due to ice growth within the heterogeneous regime. Despite reduced 25 

homogeneous ice formation, invigorated updrafts result in higher convective core cloud tops overall compared to the Clean 

case.  

 

4.6 Effects on Stratiform Cloud Regime  

 30 

The macrophysical and microphysical properties of the stratiform and anvil cloud regime are significantly affected by cloud 

and precipitation formation processes initiated within the convective core and are also affected by changes to local ice 

formation within the stratiform/anvil regime itself. Invigorated updrafts in the dust cases carry a greater number of both large 

and small particles in the convective core to the level of divergence. These particles are then transported by the upper level 
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winds shear into the milder updraft environments of the stratiform regime. The large particles quickly sediment out and the 

smaller particles remain aloft. Figure 12 describes the stratiform ice/snow bin distribution as Figure 9 described the 

convective ice/snow bin distribution. Between hour 6 and hour 12 in the dust cases, the initial burst of ice formed by 

heterogeneous nucleation in the core is transported into the stratiform regime in conjunction with additional local ice 

formation. This results in increased bin populations over much of the ice/snow PSD. After hour 12 until about hour 26, the 5 

formation of small ice particles is reduced due to the depletion of IN by ice formation earlier in the simulation. Snow 

particles formed in the convective core grow to larger sizes during transport into the stratiform regime. This increases the 

relative bin populations at sizes between 1900um and 20000um compared to the convective regime. These large particles 

efficiently capture other smaller particles, resulting in the greater reduction of smaller sized particles in the stratiform PSD 

compared to the convective regime (Figure 9c; Figure 12c). When IN concentrations are not as significantly depleted, such 10 

as in the D12 case, heterogeneous nucleation produces additional small ice crystals throughout the hour 12 to hour 26 period 

(Figure 12d). While larger sized particles continue to form in the D12 case, the location of the most significant enhancement 

to bin population shifts to smaller particle sizes compared to the D1.2 case due to competition between the more numerous 

particles during collection processes.  

 15 

Many hydrometeors in the stratiform and anvil cloud regime were initially formed in the convective core and were 

transported into the stratiform/anvil regime by upper level winds shear. However, increasing IN concentration in the dust 

cases also results in increased heterogeneous ice formation within the stratiform/anvil regime itself (Figure 7b) which affects 

cloudiness. Figure 13 describes the cloud occurrence numbers for the convective, stratiform and non-precipitating anvil 

cloud regimes. Cloudiness is determined by the sum of all condensate mixing ratios within a grid box exceeding 10
-6

 kg/kg. 20 

The vertical distribution of convective cloud occurrence increases between -5°C and -38°C as IN concentration is increased 

in the dust cases. Likewise, stratiform cloud occurrence is increased between -5°C and -38°C due to both increased transport 

from the convective core and increased heterogeneous ice formation within the stratiform regime itself. However the anvil 

cloud is significantly affected by changes in hydrometeor PSDs. A small IN concentration in the dust layer (D.12) results in 

greater anvil cloud occurrence compared to the Clean case. In the D.12 case, due to the limited supply of IN, the formation 25 

of large ice particles is not significantly increased compared to the small ice particles that form. The small ice particles are 

transported greater distances in the updrafts and sediment out slowly, which results in a higher (Figure 4) and broader cloud 

distribution compared to the Clean case. In the D1.2 case, some ice particles are transported from the core and more ice 

particles are formed locally through heterogeneous formation processes with available IN in the stratiform regime. Some of 

the particles grow by collection processes to large sizes (Figure 12c). These large particles sediment out quickly in the 30 

weaker updrafts of the stratiform regime and therefore are not transported into the anvil cloud regime. In conjunction with 

reduced homogeneous ice formation, this results in fewer particles forming locally within and/or being transported into the 

anvil regime. Therefore the stratiform/anvil cloud top distribution in the D1.2 case is lower and narrower compared to the 

Clean case and other dust cases. The D12 case is affected by both the formation of more numerous ice large particles 
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(compared to the D.12 case) and more numerous small ice particles (compared to the D1.2 case). The strong updraft 

intensities in the D12 case transport significant condensate mass into the stratiform regime. The large particles that form in 

the D12 case sediment out quickly, but the small ice particles remain near the cloud tops. This results in a stratiform/anvil 

cloud top distribution that is lower and less broad compared to the Clean and D.12 cases, but is higher and wider than the 

D1.2 case. However, after hour 20 (Figure 12d) the ice particles in the D12 case grow to large sizes and sediment out of the 5 

cloud. This results in the lower stratiform/anvil cloud top height from hour 20 until the end of the simulation compared in the 

D12 case to the D1.2 case (Figure 4).  

 

4.7 Vertical Rain Rates and Surface Accumulation 

 10 

Increasing heterogeneous ice formation by increasing IN concentrations results in larger ice mass near the 0°C temperature 

level, but greater competition between individual particles for water vapour and available small drops/crystals for collection 

shifts the formation of precipitation sized particles to higher altitudes. Smaller particles that sediment out or are transported 

below the melting level are more likely to evaporate below the cloud due to a slower fall speed. These changes result in a 

reduced surface accumulation and enhanced rain rates above the freezing level. Figure 14 describes the accumulated surface 15 

rain rates (Figure 14a, Figure 14b) and rain rate vertical profile differences (Figure 14d, Figure 14e) for convective (column 

1) and stratiform (column 2) regimes. Figure 14c describes the time series of total accumulated surface precipitation, while 

Figure 14f describes the total fraction of precipitation formed at each vertical level, for the Clean and dust cases. In general, 

the addition of IN reduces the average surface rain accumulation for the convective (Figure 14d) rain regime and increases it 

for the stratiform (Figure 14e) rain regime. This is due to the different effects of dust on the primary sources of precipitation 20 

in the two regimes. The percent reduction of total surface precipitation in the dust cases from the Clean case values at the 

end of the simulation are: D.12 (-1.14%); D1.2 (-3.95%); D12 (-6.02%). 

 

Convective rain is significantly affected by changes to graupel formation, which in the dust cases is shifted towards smaller 

sizes (Figure 9). The smaller graupel sizes is a result of decreased riming rates above 6km due to smaller ice particle sizes 25 

and lower liquid water content (Figure 8). By the end of the simulation, convective surface precipitation accumulation is 

reduced from the Clean case as follows: D.12 (-2.3%); D1.2 (-5.5%); D12 (-7.9%). In the stratiform regime precipitation is 

predominantly a result of snow formation. In the dust cases, snow formation is enhanced due to the increased transport of ice 

mass from the convective core and the warmer glaciation temperatures in the convective regime. This initiates the 

aggregation processes earlier in the simulation and at warmer temperatures than in the Clean case (Figure 10). Stratiform 30 

surface precipitation accumulation is increased from the Clean case value as follows: D.12 (+10.1%); D1.2 (+8.2%); D12 

(+13.1%). At altitudes below 6km, collision-coalescence rates are affected by the number concentration and PSD of the 

frozen particles that melt in the above-freezing temperatures. In the convective regime, increased aggregation rates (Figure 

10) and freezing of large drops to graupel (Figure 9) result in higher autoconversion rates in the D12 case compared to the 
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other dust cases between ~1km and the 0°C freezing level when these large particles melt. This partially counteracts the 

reduced rain rates between 4 and 8 km resulting in near surface rain rates that slightly exceed the D1.2 case, although final 

surface accumulation is still lower in the D12 case due to the greater reductions at higher altitudes. 

5 Conclusions 

The MCS occurring on 08 March 2004 in the tropical eastern Atlantic, first described in Min et al. (2009) was simulated 5 

using the WRF model with a spectral-bin microphysical scheme. Ice nucleation parameters within the SBM were updated to 

connect heterogeneous and homogeneous ice formation with IN to investigate the effects of dust acting as IN. In the first of a 

two part study, wWe present the effects of IN activation on ice formation processes and the eventual effects on the large-

scale cloud fields. The hypothesis of Min et al. (2009) suggested that dust particles forming ice at heterogeneous temperature 

ranges (-5°C to -38°C) results in changes to precipitation formation processes and ice particle size distributions shifting to 10 

smaller sizes in the heterogeneous nucleation regime. Lower stratiform/anvil cloud top heights were reported (Min and Li, 

2010), despite the presence of more numerous deep clouds with large IWP which suggests that convective invigoration 

(increased latent heat release; stronger updrafts) is occurring.   

 

Increasing IN number concentration in the dust case simulations results in the formation of a greater number of ice particles 15 

in the convective core between -5°C and -38°C compared to the Clean case (Figure 8). The partitioning of available water 

vapour over the greater number of particles results in smaller ice crystal and graupel sizes in the dust cases (Figure 9). The 

ice particles grow more slowly due to the increased competition between individual particles for available water vapour 

(Figure 11). Latent heat release in the heterogeneous nucleation regime is increased in the dust cases due to diffusional 

growth and liquid-to-ice phase changes during riming of the smaller, more numerous particles. Convective updrafts are 20 

invigorated (Figure 2; Figure 11), resulting in increased overshooting and higher convective core top heights. The increased 

downdraft velocity and more numerous small particlesin the convective regime is primarily a consequence of invigorated 

convective updraft intensity which subsequently results in increased evaporation/sublimation of the more numerous small 

particles and latent cooling (Figure 11).  

 25 

Particle growth resulting from collection processes is also reduced, due to the lower collision efficiency of the smaller 

particle sizes in the dust cases. Therefore precipitation formation is shifted to colder temperatures (higher altitudes) within 

the heterogeneous nucleation regime. When available IN number concentration in the dust cases is depleted, the formation of 

new ice crystals in the heterogeneous nucleation regime is limited. Collection processes remove small ice crystals formed 

earlier in the simulation and increase the formation of large ice/snow particles in both the convective (Figure 9) and 30 

stratiform (Figure 12) regimes. This is most visible in the D1.2 case between hour 12 and hour 18. When few small ice 

particles remain aloft, due to reduced homogeneous ice formation and/or increased particle collection, stratiform/anvil cloud 
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top heights will be lower over the majority of the simulation, as in the D1.2 and D12 cases (Figure 4; Figure 13). When small 

particles are relatively more numerous and the number of large particles is not significantly affected, such as in the D.12 

case, stratiform/anvil cloud top heights are higher than in the Clean case (Figure 4; Figure 13). The small particles in the 

D.12 case are transported to higher altitudes in the convective updrafts and remain aloft for longer times. More numerous but 

smaller graupel particles form in the dust cases (Figure 3; Figure 9) due to the reduced riming efficiency of small ice 5 

particles (Figure 10) and increased competition between the individual frozen particles during riming for available liquid 

drops. The greater heterogeneous ice numbers also increase ice particle aggregation in the -5°C to -38°C temperature range 

(Figure 10), leading to increased snow formation in both the convective and stratiform regimes (Figure 9; Figure 12). 

Growth competition between the more numerous individual particles during riming/aggregation shifts precipitation 

formation to higher altitudes within the heterogeneous nucleation regime. This results in changes to simulated reflectivity 10 

values (Figure 2; Figure 5) which are similar to observed effects on reflectivity (Min et al., 2009; Li and Min, 2010). 

 

 

The impacts of dust as IN on model simulated reflectivity are mostly consistent with observed changes, i.e., dust cases 

producing smaller reflectivity values near the surface and larger values above the freezing level and most significantly in the 15 

stratiform regime (Figure 2; Figure 5). Radar reflectivity in the dust cases is affected by PSDs shifted to smaller sizes, 

reduced particle fall rates, and increased formation of large snow particles. The contribution of graupel and rain drops to 

total reflectivity in the dust cases is reduced due to the shift to smaller particle sizes (Figure 3; Figure 9) and reduced drop 

concentrations (Figure 8), respectively. This decreases dust case reflectivity values at temperatures above 0°C in the 

convective regime (Figure 2, Figure 5). Snow particles have large radii compared to graupel and rain drops of comparable 20 

mass (Figure 3; Figure 9) and have slower fall rates. More numerous large snow particles in the dust cases result in increased 

reflectivity values at temperatures below 0°C (Figure 5), most notably in the stratiform regime where aggregation is the 

dominant precipitation formation process. The dust case reflectivity CFADs differed from observed reflectivity changes in 

the convective regime (>0°C) and in the stratiform regime (>0°C). Specifically, reflectivity in these locations is increased in 

the dust case simulations while observations indicate that reflectivity is reduced. Higher moisture content in the dust layer 25 

compared to the observed test cases was suggested as a possible cause of these differences. Additional test cases based on 

the D1.2 case were simulated to determine the effects of reduced moisture content within the dust layer on model results. 

Reducing dust layer moisture content by 5% (Dry5init case) was sufficient to weaken convective cloud formation and affect 

the resulting reflectivity CFADs (Figure 6) in ways consistent with observed changes (Min et al., 2009; Li and Min, 2010). 

Convective reflectivity (<0°C) and stratiform reflectivity (>0°C) were both reduced compared to the Clean case. Stratiform 30 

reflectivity at temperatures below 0°C was also increased from the Clean case, indicating that microphysical changes to 

cloud and precipitation formation processes are similar to those in the original D1.2 case. Additional in-depth study of the 

interactions between dust related microphysical effects and changes to latent heat processes has been planned for the near-

future to more fully address the interconnected nature of thermodynamical and microphysical effects occurring within DCC.  
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Tables 

Table 1: WRF model parameterizations selected for use in study simulations.  

Selected Weather Research and Forecasting (WRF) model parameterizations  

Parameterization Selected option 

Microphysics Domain 1,2,3: Thompson (Thompson et al., 2008); 

Domain 4: SBM (cited in text) 

Cumulus Domain 1,2: Kain-Fritsch (Kain, 2004) 

LW Radiation Rapid Radiative Transfer Model (Mlawer et al., 1997) 

SW Radiation Dudhia scheme (Dudhia, 1989) 

PBL MYNN2(Nakanishi and Niino, 2006) 

Surface layer MM5 similarity (Zhang and Anthes, 1982) 

Land surface RUC LSM (Smirnova et al., 1997) 

Table 2: Ship observed aerosol number concentrations from the AEROSE campaign corresponding to the March 2004 

Saharan dust outbreak. 15 

March 2004 Ship Observed Aerosol Number 

Radius  0.3-0.5 0.5-1 1-5 5-10 10-25 25 micron 

Dust-free 108.6 10.5 2.36 0.1029 3.00E-4 5.50E-8 cm
-3 

Dust 87.32 34.7 7.557 0.3537 1.45E-3 7.41E-6 cm
-3 
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Figures 

 

Figure 1: (a) AIRS total precipitable water averaged 07-09 March2004, boxes denoting location of the three nested domains. 

(b) Domain 1 model output precipitable water averaged 07-09 March2004. 5 
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Figure 2: Zonally averaged longitude slice plot of similar DCC structures within the Clean (row 1) and D1.2 (row 2) cases. 

Shaded colours: total water content (TWC; column 1), vertical rain rate (column 2), and radar reflectivity (column 3); Line 

contours, all columns: vertical motion (solid black >1m/s; dashed blue <-0.1m/s); cloudiness threshold (dashed grey, >1e-6 

kg/kg).  5 
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Figure 3: Slice plots representing same DCC as in Figure 1 for Clean (row 1) and D1.2 (row 2) cases. Shaded colours: rain 

drop effective radii (Re; column 1), graupel Re (column 2), and snow Re (column 3); Line contours, all columns: vertical 

motion (solid black >1m/s; dashed blue <-0.1m/s); cloudiness threshold (dashed grey, >1e-6 kg/kg).Figure 3: Slice plots 

representing same DCC as in Figure 2 for the Clean case (row 1), D1.2 case (row 2), and D1.2-Clean difference (row 3). 5 

Shaded colours: rain drop effective radii (Re; column 1), graupel Re (column 2), and snow Re (column 3); Line contours, all 

columns: vertical motion (solid black >1m/s; dashed blue <-0.1m/s); cloudiness threshold (dashed grey, >1e-6 kg/kg). 
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Figure 4: Time series of percentage of cloud tops occurring at each altitude for the (a) Clean case and the associated dust 

case minus Clean case differences plots for the (b) D.12 - Clean, (c) D1.2 - Clean, and (d) D12 - Clean cases. 
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Figure 5: Contoured frequency by altitude diagrams (CFAD) of model simulated convective (tow row) and stratiform 

(bottom row) reflectivity. Columns: Clean, D.12-Clean, D1.2-Clean, D12-Clean cases, respectively.Figure 5: Contoured 

frequency by altitude diagrams (CFAD) of model simulated convective (top row) and stratiform (bottom row) reflectivity. 5 
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Columns: Clean case, D.12-Clean, D1.2-Clean, D12-Clean differences, respectively. Black contour line in difference plots 

represents the Clean case 2% contour value. 

 

 

 5 

Figure 6: Contoured frequency by altitude diagrams (CFAD) of model simulated convective (tow row) and stratiform 

(bottom row) radar reflectivity. Columns: D1.2 case CFAD; D1.2-Clean case difference; Dry5init-Clean case difference. 

Dry5init case is based on the D1.2 case, but the dust layer is set to be 5% dryer at model start up. Boundary conditions are 

unchanged from the D1.2 case. Black contour line in difference plots represents the Clean case 2% contour value. 

 10 
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Figure 7: Vertical profile of combined heterogeneous and homogenous ice formation number (Log10, cm-3) summed 

horizontally and over the duration of the simulation for convective (a) and stratiform (b) clouds, respectively. Convective 

cloud averaged and time averaged vertical profile of residual (non-activated, in-cloud) IN number concentration (Log10, cm-

3). Colours represent Clean (black), D.12 (blue), D1.2 (red), and D12 (green) cases, respectively.  5 

 

 

Figure 8: Convective cloud averaged profiles (Height vs time) and dust case minus Clean case difference plots of ice 

number concentration (top row), graupel number concentration (middle row), and liquid number concentration (Bottom 

row). Columns: Clean (a,e,i), D.12 - Clean (b,f,j), D1.2 - Clean (c,g,k), and D12 - Clean (d,h,l) cases. 10 
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Figure 9: Time series and dust case minus Clean case difference plots of: ice/snow bin particle size distribution (PSD; top 

row), liquid bin PSD (middle row), and graupel bin PSD (Bottom row); averaged over the convective regime in the 

temperature range of -5°C to -38°C. Contours represent log10 values of bin population. Columns: Clean (a,e,i), D.12 - Clean 5 

(b,f,j), D1.2 - Clean (c,g,k), and D12 - Clean (d,h,l) cases. 
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Figure 10: Time series of convective averaged aggregate number (row 1), riming rate (row 2), and drop autoconversion 

(collision-coalescence) number. Columns: Clean, D.12, D1.2, and D12 cases, respectively. 
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Figure 11: Top row: time series of average convective updraft intensity. Time series of average latent heat (K/hr) within 

convective updrafts (<0°C). Time series of average water vapour content (g/kg) within convective updrafts (<0°C). Bottom 

row: as top row, averaged over convective downdrafts. Colours represent Clean (black), D.12 (blue), D1.2 (red), and D12 

(green) cases, respectively. 5 
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Figure 12: Time series and dust case minus Clean case difference plots of: ice/snow bin particle size distribution (PSD); 

averaged over the stratiform regime in the temperature range of -5°C to -38°C. Contours represent log10 values of bin 

population. 

 5 
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Figure 13: Occurrence frequency of cloudy data points over total simulation time for convective (a), stratiform (b), anvil 

(non-precipitating, c) and stratiform plus anvil (S+A, d) clouds. Colours represent Clean (black), D.12 (blue), D1.2 (red), and 

D12 (green) cases, respectively. 
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Figure 14: (a) and (b) Time series of accumulated surface precipitation for convective and stratiform data respectively. (c) 

Total accumulated surface precipitation for the clean and dust cases. (d) and (e) dust case minus Clean case time averaged 

vertical rain rates for convective and stratiform precipitation, respectively. (f) Fraction of total precipitation formed at each 

vertical level. Colours represent: Clean (black), D.12 (blue), D1.2 (red), D12 (green) cases, respectively. 5 

 


