Supplement of Quantifying black carbon light absorption enhancement by a novel statistical approach

3

4 Cheng Wu^{1,2}, Dui Wu^{1,2,3}, Jian Zhen Yu^{4,5,6}

- 5
- 6 [1] Institute of Mass Spectrometer and Atmospheric Environment, Jinan University,7 Guangzhou 510632, China
- 8 [2] Guangdong Provincial Engineering Research Center for on-line source apportionment
 9 system of air pollution, Guangzhou 510632, China
- 10 [3] Institute of Tropical and Marine Meteorology, China Meteorological Administration,
- 11 Guangzhou 510080, China
- 12 [4] Division of Environment, Hong Kong University of Science and Technology, Clear Water
- 13 Bay, Hong Kong, China
- 14 [5] Atmospheric Research Centre, Fok Ying Tung Graduate School, Hong Kong University
- 15 of Science and Technology, Nansha, China
- 16 [6] Department of Chemistry, Hong Kong University of Science and Technology, Clear Water
- 17 Bay, Hong Kong, China
- 18 Corresponding to: Cheng Wu (wucheng.vip@foxmail.com) and Jian Zhen Yu (jian.yu@ust.hk)
- 19
- 20

21

22 This SI contains five tables and nineteen figures.

23

24 Uncertainty of E_{abs} estimation

25 The uncertainty of E_{abs} estimation depends on uncertainty propagation from MAE uncertainty,

26 which can be calculated from (Harris, 2010):

27
$$MAE_{Unc} = MAE \times \sqrt{\left(\frac{\sigma_{abs,Unc}}{\sigma_{abs}}\right)^2 + \left(\frac{EC_{Unc}}{EC}\right)^2}$$
 S1

28

$$E_{abs,Unc} = E_{abs} \times \sqrt{\left(\frac{MAE_{Unc}}{MAE}\right)^2 + \left(\frac{MAE_{p,Unc}}{MAE_p}\right)^2}$$
S2

29

30 Descriptions of customized programs used in this study for data analysis and

31 visualization

32 Several computer programs were developed to meet specific research purpose in this study. All

the programs are based on Igor Pro (www.wavemetrics.com) that provides a friendly GUI. Brief

- 34 descriptions are given below.
- 35

36 MRS program (Igor Pro based)

37 The program (Figure S15) is written in Igro Pro (WaveMetrics, Inc. Lake Oswego, OR, USA)

38 to feasible MRS calculation via a user-friendly GUI. The MRS application is not limited in

39 SOC estimation, but can also be extended to other applications (e.g. E_{abs} estimation) as long as

- 40 a reliable tracer is available.
- MRS calculation can be done by different temporal cycles (batch calculation): by year, by
 vear&season, by season, by year&month, by month, by year&month&hour. Data filter is also
- 42 year&season, by season, by year&month, by month, by year43 available to calculate MRS on a specific subset of data.
- 44 The program is available from <u>https://sites.google.com/site/wuchengust</u>.
- 45

46 Mie program and source code written in Igor Pro

A computer program (Figure S16) written in Igro Pro (WaveMetrics, Inc. Lake Oswego, OR,
USA) for Mie scattering calculation. Both BHMIE and BHCOAT (coated particles)

- 49 algorithms(Bohren and Huffman, 1983) are included. The program is also capable of batch
- 50 calculation for both algorithms. Available from <u>https://sites.google.com/site/wuchengust</u>.

51

52 Aethalometer data processing program (Igor Pro based)

53 This handy tool (Figure S17) can perform different corrections (e.g. Weingartner, Virkkula) on 54 Aethalometer data. Raw Aethalometer data suffers from several artifacts including filter matrix 55 effect (multiple scattering), loading effect (shadowing) and scattering effect. Careful 56 corrections are needed for reporting light absorption coefficient from attenuation measurement. 57 This Igor based program can directly import Aethalometer raw data and perform corrections 58 (algorithm can be selected by user). Results can be exported to .csv files. Extra information 59 including statistics of sensor voltage from each channel, sampling flow rate, etc are plotted for 60 a quick OA/OC check. Available from https://sites.google.com/site/wuchengust.

61

62 Histbox program (Igor Pro based)

A handy tool (Figure S18) to generate histogram and box plots with many powerful features.
Data can be sorted by different time scale and batch plotting is available. Available from
https://sites.google.com/site/www.hengust.

- 65 <u>https://sites.google.com/site/wuchengust</u>.
- 66

67 Scatter plot program

68 Scatter plot (Figure S19) is a handy tool to maximize the efficiency of data visualization in

69 atmospheric science. The program includes Deming, WODR and York algorithm for linear 70 regression, which consider uncertainties in both X and Y, that is more realistic for atmospheric

70 regression, which consider uncertainties in both X and T, that is more realistic for atmospheric 71 applications. It is Igor based, and packed with lots of useful features for data analysis and graph

72 plotting, including batch plotting, data masking via GUI, color coding in Z axis, data filtering

- 73 and grouping. Available from <u>https://sites.google.com/site/wuchengust</u>.
- 74

75

76 **Reference**

- 77 Andreae, M. O., Schmid, O., Yang, H., Chand, D., Yu, J. Z., Zeng, L. M., and Zhang, Y. H.:
- 78 Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou,
- 79 China, Atmos. Environ., 42, 6335-6350, doi: 10.1016/j.atmosenv.2008.01.030, 2008.
- 80 Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, Wiley,
- 81 New York, xiv, 530 p. pp., 1983.
- 82 Chan, T. W., Brook, J. R., Smallwood, G. J., and Lu, G.: Time-resolved measurements of black
- carbon light absorption enhancement in urban and near-urban locations of southern Ontario,
 Canada, Atmos. Chem. Phys., 11, 10407-10432, 2011.
- 85 Chow, J. C., Watson, J. G., Doraiswamy, P., Chen, L. W. A., Sodeman, D. A., Lowenthal, D.
- 86 H., Park, K., Arnott, W. P., and Motallebi, N.: Aerosol light absorption, black carbon, and
- elemental carbon at the Fresno Supersite, California, Atmos Res, 93, 874-887, doi: DOI
 10.1016/j.atmosres.2009.04.010, 2009.
- 88 10.1010/J.auiiosies.2009.04.010, 2009.
- 89 Chuang, P. Y., Duvall, R. M., Bae, M. S., Jefferson, A., Schauer, J. J., Yang, H., Yu, J. Z., and
- 90 Kim, J.: Observations of elemental carbon and absorption during ACE-Asia and implications
- for aerosol radiative properties and climate forcing, J. Geophys. Res., 108, 8634, doi: Doi
 10.1029/2002jd003254, 2003.
- $92 \quad 10.1029/2002 Ju005254, 2005.$
- 93 Doran, J. C., Barnard, J. C., Arnott, W. P., Cary, R., Coulter, R., Fast, J. D., Kassianov, E. I.,
- 94 Kleinman, L., Laulainen, N. S., Martin, T., Paredes-Miranda, G., Pekour, M. S., Shaw, W. J.,
- Smith, D. F., Springston, S. R., and Yu, X. Y.: The T1-T2 study: evolution of aerosol properties
 downwind of Mexico City, Atmos. Chem. Phys., 7, 1585-1598, doi: 10.5194/acp-7-1585-2007,
- 97 2007.
- 98 Harris, D. C.: Quantitative chemical analysis, 8th ed., W.H. Freeman and Co., New York, 2010.
- 99 Knox, A., Evans, G. J., Brook, J. R., Yao, X., Jeong, C. H., Godri, K. J., Sabaliauskas, K., and
- 100 Slowik, J. G.: Mass Absorption Cross-Section of Ambient Black Carbon Aerosol in Relation
- 101 to Chemical Age, Aerosol. Sci. Technol., 43, 522-532, doi: Doi 10.1080/02786820902777207,
- 102 2009.
- Lack, D. A. and Cappa, C. D.: Impact of brown and clear carbon on light absorption
 enhancement, single scatter albedo and absorption wavelength dependence of black carbon,
 Atmos. Chem. Phys., 10, 4207-4220, doi: DOI 10.5194/acp-10-4207-2010, 2010.
- 106 Lan, Z.-J., Huang, X.-F., Yu, K.-Y., Sun, T.-L., Zeng, L.-W., and Hu, M.: Light absorption of
- 107 black carbon aerosol and its enhancement by mixing state in an urban atmosphere in South
- 108 China, Atmos. Environ., 69, 118-123, doi: <u>http://dx.doi.org/10.1016/j.atmosenv.2012.12.009</u>, 2012
- 109 2013.
- 110 Liu, D., Flynn, M., Gysel, M., Targino, A., Crawford, I., Bower, K., Choularton, T., Jurányi,
- 111 Z., Steinbacher, M., Hüglin, C., Curtius, J., Kampus, M., Petzold, A., Weingartner, E.,
- 112 Baltensperger, U., and Coe, H.: Single particle characterization of black carbon aerosols at a
- tropospheric alpine site in Switzerland, Atmos. Chem. Phys., 10, 7389-7407, doi: 10.5194/acp-
- 114 10-7389-2010, 2010.
- 115 Mayol-Bracero, O. L., Gabriel, R., Andreae, M. O., Kirchstetter, T. W., Novakov, T., Ogren,
- 116 J., Sheridan, P., and Streets, D. G.: Carbonaceous aerosols over the Indian Ocean during the
- 117 Indian Ocean Experiment (INDOEX): Chemical characterization, optical properties, and
- 118 probable sources, J. Geophys. Res., 107, 8030, doi: Doi 10.1029/2000jd000039, 2002.
- 119 Moosmuller, H., Chakrabarty, R. K., Ehlers, K. M., and Arnott, W. P.: Absorption Angstrom
- 120 coefficient, brown carbon, and aerosols: basic concepts, bulk matter, and spherical particles,
- 121 Atmos. Chem. Phys., 11, 1217-1225, doi: DOI 10.5194/acp-11-1217-2011, 2011.
- 122 Pandolfi, M., Cusack, M., Alastuey, A., and Querol, X.: Variability of aerosol optical properties
- 123 in the Western Mediterranean Basin, Atmos. Chem. Phys., 11, 8189-8203, doi: DOI
- 124 10.5194/acp-11-8189-2011, 2011.

- 125 Thompson, J. E., Hayes, P. L., Jimenez, K. A. J. L., Zhang, X., Liu, J., Weber, R. J., and Buseck,
- P. R.: Aerosol Optical Properties at Pasadena, CA During CalNex 2010, Atmos Environ, doi:
 10.1016/j.atmosenv.2012.03.011, 2012.
- 128 Wang, Q., Huang, R., Zhao, Z., Cao, J., Ni, H., Tie, X., Zhu, C., Shen, Z., Wang, M., and Dai,
- 129 W.: Effects of photochemical oxidation on the mixing state and light absorption of black carbon
- 130 in the urban atmosphere of China, Environmental Research Letters, 12, 044012, 2017.
- 131 Wang, Q. Y., Huang, R. J., Cao, J. J., Han, Y. M., Wang, G. H., Li, G. H., Wang, Y. C., Dai,
- 132 W. T., Zhang, R. J., and Zhou, Y. Q.: Mixing State of Black Carbon Aerosol in a Heavily
- 133 Polluted Urban Area of China: Implications for Light Absorption Enhancement, Aerosol. Sci.
- 134 Technol., 48, 689-697, doi: 10.1080/02786826.2014.917758, 2014.
- 135 Xu, J., Bergin, M. H., Yu, X., Liu, G., Zhao, J., Carrico, C. M., and Baumann, K.: Measurement
- of aerosol chemical, physical and radiative properties in the Yangtze delta region of China,Atmos. Environ., 36, 161-173, 2002.
- 138 Yang, M., Howell, S. G., Zhuang, J., and Huebert, B. J.: Attribution of aerosol light absorption
- 139 to black carbon, brown carbon, and dust in China interpretations of atmospheric measurements
- 140 during EAST-AIRE, Atmos. Chem. Phys., 9, 2035-2050, 2009.
- 141

142

						•			estimated	observed MAE ($n^2 g^{-1}$)	
Location	Туре	Sampling Duration	Inlet	λ (nm)	σ _{abs} Instrument	σ _{abs} EC determination Instrument protocol		EC mass (µg m ⁻³)	MAE _p * (m ² g ⁻¹)	arithmetic mean ±1 S.D.	Gaussian fit	Reference
Guangzhou, China	Suburban	2012.2-2013.1	PM _{2.5}	550	AE	NIOSH_TOT	42.20±29.41	2.63±2.27	13*	19.02±6.60	16.16	This study
Shenzhen, China	Urban	2011.8-9	PM _{2.5}	532	PAS	LII	25.4±19.0	4.0±3.1	/	6.5±0.5[6.29±0.48]	/	(Lan et al., 2013)
Xi'an, China	Urban	2012.12-2013.1	PM _{2.5}	870	PAS	LII	/	8.8±7.3	7.17[11.34]	/	7.62[12.05]	(Wang et al., 2014)
Xi'an, China	Urban	2013.2	PM _{2.5}	532	PAS	LII				14.6±5.6	12.7	(Wang et al., 2017)
Guangzhou, China	Urban	2004.10	PM _{2.5}	532	PAS	NIOSH_TOT	91±60	7.1	7.7[7.44]	/	/	(Andreae et al., 2008)
Fresno, USA	Urban	2005.8-9	PM _{2.5}	532	PAS	IMPROVE_A_TOR NIOSH TOT	5.06	1.01 0.58	/	6.1±2.5[5.9±2.42] 9.3±2.4[8.99±2.32]	/	(Chow et al., 2009)
T1, Mexico city,	Suburban	2006.3	PM _{2.5}	870	PAS	NIOSH TOT	/	/	/	9.2~9.7***[14.55~15.34]	/	(Doran et al., 2007)
Mexico Pasadena, USA	Urban	2010.5-6	PM _{2.5}	532	AM	NIOSH_TOT	3.8±3.4	0.6~0.7	5.7[5.51]	/	/	(Thompson et al., 2012)
Toronto, Canada	Urban	2006.12-2007.1	PM _{2.5}	760	PAS	NIOSH_TOT	/	/	6.9~9.1** [9.53~12.57]	9.3~9.9[12.85~13.68]	/	(Knox et al., 2009)
Toronto, Canada	Suburban						3~6	0.10~0.14	/	30~43[42.6~61.06]	/	
Windsor, Canada	Urban	2007.8	PM _{2.5}	781	PAS	LII	4.4±2.9	0.27±0.23	/	16±1[22.72±1.42]	/	(Chan et al., 2011)
Ottawa, Canada	Urban						26±17	1.7±0.9	/	15±3[21.3±4.26]	/	
Beijing, China	Rural	2005.3	/	550	AE	NIOSH_TOT	/	/	9.5	11.3	/	(Yang et al., 2009)
Montseny, Spin	Rural (Mediterranean)	2009.11-2010.10	PM_{10}	637	MAAP	NIOSH_TOT	2.8±2.2	/	10.4[12.04]	/	/	(Pandolfi et al., 2011)
Jungfraujoch, Switzerland	Rural (high alpine)	2007.2-3	/	637	MAAP	LII	/	/	/	10.2±3.2[11.81±3.71]	/	(Liu et al., 2010)
Lin'an, China	Rural	1999.11	PM _{2.5}	550	PSAP	NIOSH_TOT	23±14	3.4±1.7	/	8.6±7.0	/	(Xu et al., 2002)
Jeju Island, Korea	Coastal Rural, (East China Sea)	2001.4	PM10	550	PSAP	NIOSH_TOT	/	/	/	12.6±2.6	/	(Chuang et al., 2003)
Maldives	Oceanic rural	1999.2-3	PM ₃	550	PSAP	EGA	62±34	2.5±1.4	6.6	8.1	/	(Mayol-Bracero et al., 2002)

Table S1. Comparison of Mass absorption efficiency (MAE) at various locations. For literature MAE values at different wavelengths rather than 550nm, an estimated MAE₅₅₀ is given in the brackets following equations given by Moosmuller et al. (2011) assuming AAE of 1.

*Determined by Minimium R Squared method; ** Median values;

AE:Aethalometer ; PAS photo acoustic spectrometer; MAAP: Multi Angle Absorption Photometer; PSAP: particle soot absorption photometer; AM: albedo meter; LII: Laser induced incandescence

Month	95th	75th	50th	25th	5th	Mean	Max	Min	S.D.	Ν
Feb-2012	31.29	22.04	18.12	15.74	13.90	19.72	47.73	8.50	5.78	533
Mar-2012	28.33	19.80	17.48	15.92	13.77	18.78	45.56	10.98	4.92	663
Apr-2012	33.06	22.66	18.24	16.11	13.85	20.21	48.29	6.01	6.23	595
May-2012	33.74	23.35	19.61	17.17	14.73	21.22	48.40	6.33	5.99	533
Jun-2012	39.73	27.17	21.76	18.72	15.04	23.70	49.07	5.62	7.37	333
Jul-2012	35.96	24.62	19.12	15.64	12.71	21.14	49.63	9.23	7.65	609
Aug-2012	42.94	27.99	22.01	16.24	12.55	23.50	49.95	9.75	8.98	556
Sep-2012	33.15	21.11	17.61	15.25	12.99	19.31	49.54	10.39	6.18	684
Oct-2012	20.72	15.84	13.95	12.60	11.18	14.70	34.09	7.34	3.21	715
Nov-2012	28.64	18.67	15.53	13.72	11.95	17.18	48.41	8.34	5.58	506
Dec-2012	29.92	19.32	15.74	13.67	11.78	17.39	48.73	9.33	5.86	591
Jan-2013	21.60	16.24	14.48	13.03	11.79	15.33	48.48	7.16	3.97	709

Table S2. Statistics of monthly MAE550nm

Table S3. Statistics of monthly AAE470-660

Month	95th	75th	50th	25th	5th	Mean	Max	Min	S.D.	Ν
Feb-2012	1.41	1.25	1.17	1.09	0.94	1.17	1.70	0.78	0.14	533
Mar-2012	1.31	1.17	1.08	1.00	0.92	1.09	1.45	0.68	0.12	663
Apr-2012	1.16	1.07	1.01	0.95	0.83	1.00	1.35	0.56	0.10	587
May-2012	1.11	1.03	0.99	0.93	0.85	0.98	1.21	0.50	0.09	530
Jun-2012	1.17	1.09	1.03	0.97	0.88	1.02	1.29	0.39	0.10	333
Jul-2012	1.19	1.09	1.03	0.97	0.84	1.03	1.38	0.47	0.11	604
Aug-2012	1.16	1.08	1.03	0.97	0.88	1.02	1.30	0.64	0.08	556
Sep-2012	1.21	1.11	1.04	0.98	0.90	1.05	1.37	0.68	0.10	684
Oct-2012	1.25	1.15	1.07	1.01	0.93	1.08	1.36	0.84	0.10	715
Nov-2012	1.22	1.14	1.09	1.03	0.97	1.09	1.45	0.88	0.08	506
Dec-2012	1.31	1.21	1.15	1.09	0.99	1.15	1.41	0.92	0.09	591
Jan-2013	1.36	1.25	1.17	1.11	1.00	1.18	1.63	0.90	0.11	709

Month	95th	75th	50th	25th	5th	Mean	Max	Min	S.D.	Ν
Feb-2012	0.91	0.89	0.87	0.84	0.79	0.86	0.94	0.65	0.04	530
Mar-2012	0.91	0.89	0.86	0.83	0.77	0.85	0.95	0.42	0.05	660
Apr-2012	0.92	0.89	0.86	0.83	0.76	0.85	0.94	0.45	0.06	552
May-2012	0.92	0.90	0.87	0.83	0.74	0.85	0.94	0.45	0.06	532
Jun-2012	0.92	0.89	0.86	0.81	0.74	0.85	0.95	0.64	0.06	328
Jul-2012	0.91	0.87	0.83	0.79	0.71	0.83	0.95	0.57	0.06	602
Aug-2012	0.94	0.92	0.89	0.85	0.79	0.88	0.96	0.67	0.05	547
Sep-2012	0.94	0.91	0.88	0.84	0.75	0.87	0.96	0.55	0.06	682
Oct-2012	0.94	0.93	0.91	0.89	0.84	0.90	0.96	0.66	0.03	715
Nov-2012	0.91	0.89	0.87	0.83	0.75	0.85	0.94	0.18	0.06	506
Dec-2012	0.91	0.89	0.86	0.82	0.74	0.85	0.94	0.66	0.05	591
Jan-2013	0.91	0.89	0.87	0.85	0.79	0.86	0.93	0.64	0.04	709

Table S4. Statistics of monthly SSA

Table S5. Statistics of monthly E_{abs550}

Month	95th	75th	50th	25th	5th	Mean	Max	Min	S.D.	Ν
Feb-2012	2.24	1.57	1.29	1.12	0.99	1.41	3.41	0.61	0.41	533
Mar-2012	1.76	1.23	1.09	0.99	0.86	1.17	2.83	0.68	0.31	663
Apr-2012	2.45	1.68	1.35	1.19	1.03	1.50	3.58	0.44	0.46	595
May-2012	2.50	1.73	1.45	1.27	1.09	1.57	3.58	0.47	0.44	533
Jun-2012	2.74	1.87	1.50	1.29	1.04	1.63	3.38	0.39	0.51	333
Jul-2012	2.95	2.02	1.57	1.28	1.04	1.73	4.07	0.76	0.63	609
Aug-2012	3.61	2.35	1.85	1.36	1.05	1.97	4.20	0.82	0.75	556
Sep-2012	2.53	1.61	1.34	1.16	0.99	1.47	3.78	0.79	0.47	684
Oct-2012	1.87	1.43	1.26	1.14	1.01	1.32	3.07	0.66	0.29	715
Nov-2012	2.31	1.51	1.25	1.11	0.96	1.39	3.90	0.67	0.45	506
Dec-2012	2.54	1.64	1.33	1.16	1.00	1.47	4.13	0.79	0.50	591
Jan-2013	1.83	1.38	1.23	1.10	1.00	1.30	4.11	0.61	0.34	709

Figure S1. Mie simulated AAE $_{470-660}$ of a bare soot particle as a function of diameter with a Refractive index of 1.85 - 0.71i.

Figure S2. Mie simulated size dependency of soot particles SSA at wavelength 550 nm. (a)Combination of different shell (y axis) and core diameters (x axis). The color coding represents the SSA of a particle with specific core and shell size; (b) Cross-sections views of (a). The color coding represents different D_{core} in the range of 50 – 300 nm. (c)Combination of different shell (y axis) and core diameters (x axis). The color coding represents the E_{abs} of a particle with specific core and shell size; (d) Cross-sections views of (c). The color coding represents different diameters of soot core in the range of 50 – 300 nm.

Figure S3. Mie simulated mass absorption efficiency (MAE_p) of a bare soot particle as a function of diameter at a wavelength of 550nm. Refractive index is 1.85 - 0.71i and density varied from 1.6 to 1.9 g cm⁻³.

Figure S4 Mie simulated mass absorption efficiency (MAE) of a bare soot particle as a function of diameter at a wavelength of 550nm. Refractive index is 1.85 - 0.71i and density is 1.9 g cm^{-3} for soot core. Refractive index for clear coating is 1.55. Refractive index for brown coating is wavelength dependent adopted from Lack and Cappa (Lack and Cappa, 2010).

Figure S5. Measured annual statistics of AAE₄₇₀₋₆₆₀, and SSA. (a) Annual frequency distribution of AAE at 550 nm. (b) Annual frequency distribution of SSA. The blue and red line represent normal and lognormal fitting curve respectively.

Figure S6. Spectrum annual average E_{abs} from 370 to 950 nm.

Figure S7. Measured monthly variations of SSA.

Figure S8. Hourly back trajectories for the past 72 hours calculated using NOAA's HYSPLIT model from Feb 2012 to Jan 2013. The color coding represents different months.

Figure S9. Total spatial variance (TSV) as a function of number of clusters in back trajectories clustering analysis.

Figure S10. (a) Monthly contribution of each cluster. (b) Monthly E_{abs550} of each cluster.

Figure S11. Monthly variations of K⁺/EC ratio from 2012 Feb to 2013 Jan at NC site.

Figure S12. Correlations of AAE with K⁺/EC ratio (biomass burning indicator). (a) AAE from 370 - 470 nm. (b) AAE from 470 - 660 nm.

Figure S13. Annual frequency distribution of LWC/non-EC $PM_{2.5}$ mass fraction.

Figure S14. Size range of soot particles constrained by E_{abs} and $AAE_{470-660}$ from measurements.

Figure S15. MRS program written in Igro Pro (WaveMetrics, Inc. Lake Oswego, OR, USA). Available from <u>https://sites.google.com/site/wuchengust</u>.

Figure S16. Mie program written in Igro Pro (WaveMetrics, Inc. Lake Oswego, OR, USA). Available from <u>https://sites.google.com/site/wuchengust</u>.

AE Progra	imed by V	Nu Ch	eng A	ethal	ome	ter Do	ata F	roce	essor	ſ		
ail: wuo	cheng.vip@	₽foxm	ail.com	http	s://sites.goo	ogle.com/site	/wuchengu	st		_	ine an	
Last u	pdate: 201	17-02-1	O Clos	se all Tables	Close a	ll Graphs	Re-Plot	Plot Optio	n Noraml ~			Torres .
nput	QA/QC	Co	rrection1	Correction	2 Readn	ne						and the second se
ta For	mat type	1 ~	AE Model	7 λ 🗸	Num of fi	iles loaded [1	1	Num of rows	loaded 956	58		
Clear I	Input	BC ma	x limit (ug/ı	m3) 50 😫	BC min lin	nit (ug/m3) 0	🏮 Ma	ax Flow 6	Min Flo	w 0 单	Loa	d raw D
	RO			1/1/2012	00:05:00							D
Row	RawDataTir	meline	RawAEdata[][0 RawAEdata[][1	RawAEdata[][2	RawAEdata[][3]	RawAEdata[][4	RawAEdata[][5	RawAEdata[][6	RawAEdata[][7	RawAEdata[][8	RawAEdate
			0	1	2	3	4	5	6	7	8	9
0	1/1/2012 0	0:05:00	1161	4 10432	9792	9758	9598	9087	8712	3.9	0.0213	0.
1	1/1/2012 0	0:10:00	1098	9 9944	9363	9325	9210	8847	8301	3.9	0.0213	0.
2	1/1/2012 0	0:15:00	1059	7 9717	9119	9119	9102	8586	8219	3.9	0.0213	0.
3	1/1/2012 0	0:20:00	1040	4 9577	8971	8998	8979	8557	8158	3.9	0.0213	0.
4	1/1/2012 0	0:25:00	1018	1 9448	8964	8939	8917	8587	8214	3.9	0.0213	0.
5	1/1/2012 0	0:30:00	994	8 9258	8823	8830	8812	8498	8155	3.9	0.0213	0.
6	1/1/2012 0	0:35:00	963	7 9071	8650	8670	8571	8334	7924	3.9	0.0213	0.
7	1/1/2012 0	0:40:00	936	1 8866	8390	8448	8515	8110	7869	3.9	0.0213	0.
8	1/1/2012 0	0:45:00	912	0 8704	8305	8379	8413	8188	7725	3.9	0.0213	0.
9	1/1/2012 0	0:50:00	893	4 8568	8192	8274	8319	8071	7750	3.9	0.0213	0.
10	1/1/2012 0	0:55:00	881	5 8440	8101	8223	8260	8095	7840	3.9	0.0213	0.
11	1/1/2012 0	1:00:00	875	5 8476	8124	8239	8367	8118	7747	3.9	0.0213	0.
12	1/1/2012 0	1.05:00	863	5 8398	8096	8169	8150	8102	7868	3.9	0.0213	0.
13	1/1/2012 0	1:10:00	861	0 8432	8112	8282	8403	8257	7974	3.9	0.0213	0
14	1/1/2012 0	1.15:00	864	r 0461	0186	8305	0444	0369	5118	3.9	0.0213	0.
15	1/1/2012 0	1:20:00	000	0 0425 E 9300	0140	8302	8413	8292	1919	3.9	0.0213	0.
16	1/1/2012 0	1.25.00	856	6382	6280	0509	0483	0050	0252	3.9	0.0213	
												>
Gener	al setting	5			Export set	tings	Box	plot setting	s		W	eingartn
Auto C	onc. Axis		Title : site	B	C unit ugn-	3 🗸	Font S	ize 15 单	1	Tick Size 6		
nc. Ax	is Min (ug	/m3) 0	¢		Prepare dat	a export	Box	Plot min&m	ax Upper v	whisker 0.9	5 🛊 🗠	lue 3.48
nc Axi	is Max (uo	(m3)	100		Even entitlede		Box at	0.5	lowery	whickor 0.0	f va	ue 1.11

Figure S17. Aethalometer data processing program written in Igro Pro (WaveMetrics, Inc. Lake Oswego, OR, USA). Available from <u>https://sites.google.com/site/wuchengust</u>.

Figure S18. Histbox program written in Igro Pro (WaveMetrics, Inc. Lake Oswego, OR, USA). Available from <u>https://sites.google.com/site/wuchengust</u>.

Figure S19. Scatter plot program written in Igro Pro (WaveMetrics, Inc. Lake Oswego, OR, USA). Available from https://sites.google.com/site/wuchengust.