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1 RESPONSE TO COMMENTS

1 Response to Comments

We thank the anonymous referee #2 for his or her time and effort to review our
manuscript again and we appreciate the comment. In this response, we copied
the comment in blue color and included a marked-up manuscript version.

e The manuscript is now easier to read and understand, from this point
of view I think it is ready for publication. The authors disagree with
my specific comments (Page 6 line 27 and Page 8 line 2) concerning ZV
and later n. I think their statement on the first two lines of p9 of the
revised manuscript is telling: “With this definition, only a fraction 1/n3
of the released water vapor from the droplet will affect the coupling value
inside the artificial spherical shell.” I agree with this sentence and see
my contention that the introduction of V' is a complication that makes
the mathematical model harder to understand and interpret confirmed by
the authors themselves. It they would just confine themselves to having
a free parameter between 0 and 1 (1/n3) and using this sentence as a
definition I think their work would be clearer. In my view mathemati-
cal modelling should be done with a minimum of free parameters and
in particular artificial algebraic relations between parameters are very
unhelpful, because they obscure model structure by creating the illusion
of additional dimensionless quantities, which are rightly a fundamental
tool for understanding models in fluid dynamics and thermodynamics.
It is indeed true that the factor % amounts to a fitting parameter. In
order to make this aspect clearer to the reader, we added another sentence
emphasizing this fact and therefore following the suggestion of the referee
and the editor.
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Abstract. Growth of small cloud droplets and ice crystals is dominated by diffusion of water vapor. Usually, Maxwell’s
approach of growth for isolated particles is used in describing this process. However, recent investigations show that local
interactions between particles can change diffusion properties of cloud particles. In this study we develop an approach for
including these local interactions into a bulk model approach. For this purpose, a simplified framework of local interaction
is proposed and governing equations are derived from this setup. The new model is tested against direct simulations and
incorporated into a parcel model framework. Using the parcel model, possible implications of the new model approach on
clouds are investigated. The results indicate that for specific scenarios the lifetime of cloud droplets in subsaturated air may be
longer, e.g. for an initially water supersaturated air parcel within a downdraft. These effects might have impact on mixed-phase

clouds, e.g. in terms of riming efficiencies.

1 Introduction

Only recently, spatial distribution of hydrometeors, i.e. cloud droplets and ice crystals, has attained great attention in the
context of small-scale turbulence in clouds. From idealized numerical simulations as well as experiments in cloud chambers
one realized that hydrometeors may cluster in some regions of the clouds while other regions are relatively void (Shaw et al.,
1998; Wood et al., 2005). Clustered hydrometeors influence each other in their diffusional growth by modifying the local field
of supersaturation (see Castellano and Avila, 2011, for the case of droplet clusters). Although the existence of such clusters
in real clouds remains quite controversial at the moment (Kostinski and Shaw, 2001; Vaillancourt and Yau, 2000; Devenish
et al., 2012), it raises the question about their importance on the evolution of a whole cloud. The studies by Vaillancourt et al.
(2001) and Vaillancourt et al. (2002) argue from direct numerical simulations, that local effects due to clustered cloud droplets
in warm clouds may indeed modify diffusional growth of individual droplets but are not visible in the overall droplet spectrum.
For typical turbulent situations occurring at cloud edge, Celani et al. (2005) and Celani et al. (2007) found much stronger
influences of the local effects, although they probably excluded the mean growth of the droplets (Grabowski and Wang, 2013).
However, the treatment of diffusional growth in all numerical cloud models relies on the diffusional growth theory developed
by Maxwell and therefore assumes nearby hydrometeors not to affect each other regarding their diffusional growth behavior
(see for example Rogers and Yau, 1989; Lamb and Verlinde, 2011; Wang, 2013; Maxwell, 1877).

In a mixed-phase cloud the picture may change dramatically since an ice crystal has a much more severe impact on the

droplets in its vicinity: it may accelerate the evaporation of nearby droplets by growing at their expense. This local interaction
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Figure 1. Schematic of the water vapor density field around an ice crystal with various environmental water vapor values p,, .. Water vapor
density at the ice crystal surface is assumed to equal the ice saturation density. In all cases, the ice crystal deforms the water vapor field
locally within a ball of radius Rg. If a droplet has distance smaller than Rr from the ice crystal, its growth behavior is determined by the

local value of water density instead of the environmental value py,oo.-
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is not new and commonly referred to as the Wegener-Bergeron-Findeisen process (Wegener, 1911; Bergeron, 1949; Findeisen,
1938). Note that the Wegener-Bergeron-Findeisen process is different from the Ostwald ripening, where bigger particles grow
at the expense of smaller particles due to the curvature dependency of the saturation pressure (“Gibbs-Thomson effect”, see for
example Lamb and Verlinde, 2011, chapter 3.4.1). Although the Wegener-Bergeron-Findeisen process is by definition a local
process, numerical models do not represent it as such, since Maxwell’s theory is applied and all hydrometeors grow according
to the environmental rather than the local conditions. In Baumgartner and Spichtinger (2017b), we investigated the impacts
of local interactions by diffusion between an ice crystal and surrounding droplets qualitatively using a reference model which
resolves the hydrometeors as well as the vapor and temperature fields. For convenience, we put the results from Baumgartner
and Spichtinger (2017b) into a “guiding schematic”, illustrating the local water vapor field configurations, see figure 1. If a
droplet has distance smaller than Rg from the ice crystal, only the local value of water vapor density is seen by the droplet and
therefore dictates its diffusional growth behavior. If the local droplet number is high enough, they influence the ice crystal and
may even disconnect its growth behavior from the environmental conditions. In both cases, Maxwellian growth theory is not
applicable. Apart from numerical simulations, the question of solvability of the underlying governing equations is addressed
in Baumgartner and Spichtinger (2017a); for a reduced model problem existence and uniqueness of solutions could be proven.

In this study, we focus on a theoretical description of local interactions between an ice crystal and nearby droplets suited to
be incorporated into a bulk-microphysical formulation. This study is organized as follows: section 2 contains a derivation and
a discussion of the model equations. In section 3 we describe the incorporation of the new model into a simple parcel model in

order to assess possible implications on a whole cloud. Finally we end with a summary and concluding remarks in section 4.

2 Derivation of the Model Equations

This section is dedicated to the description and derivation of the model equations describing local interactions between an ice
particle and surrounding cloud droplets. Subsection 2.1 contains the derivation. We comment on the choice of the involved
parameters in subsection 2.2 and afterwards present a model simplification in subsection 2.3 while subsection 2.4 contains a

general discussion of the suggested model equations.
2.1 Local Ice-Droplet System
2.1.1 Description

As a conceptual model for a local configuration of an ice crystal and a droplet, we consider the schematic shown in figure 2.
A spherical ice crystal with radius R; is located in the center. Water vapor density and temperature at the surface of the ice
crystal are denoted by p, ;, T;, respectively. A droplet with radius r4 is located at distance R, from the ice crystal center. We
henceforth call R, the “coupling distance” of the ice crystal-droplet interaction. Let p,, 4, T,; denote water vapor density and
temperature at the surface of the droplet, respectively. Radius R denotes the “radius of influence” of the ice crystal, defined

as the radius, where the ice crystal deforms the surrounding fields of water vapor and temperature in a non-negligible manner.
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Figure 2. Conceptual model of local ice-droplet system. In the center is an ice crystal with radius R; and at distance R. from the ice crystal
is a cloud droplet with radius r4. The presence of the ice crystal gives rise to an influence sphere with radius Rg around the ice crystal.

Distance R. is the coupling distance, where the diffusional growth of the hydrometeors is coupled.

We will discuss a possible choice of the radius of influence in section 2.2.2, where we regard the vapour field as deformed in a
non-negligible manner, if the relative deviation of the local value and the ambient value exceeds 0.1 %. The radius of influence
gives rise to a “sphere of influence” around the ice crystal, wherein its influence on the fields for water vapor and temperature
cannot be ignored. The values for water vapor density and temperature at the boundary of the influence sphere around the ice
crystal are given by the environmental values p,, ~, and T,. The corresponding values at coupling distance R, are denoted by
Pv,« and T'.. We will describe the local coupling of both hydrometeors with the help of the values p, ., T, so we call them the
“coupling values”. Within this study, we denote variables referring to properties of the ice crystal with uppercase letters and
variables referring to the droplet with lowercase letters.

In this study, we assume always spherical shape of the ice crystals and a negligible relative sedimentation velocity between
the ice crystal and the neighboring droplet. Both assumptions are modelling assumptions. The assumption of a spherical ice
crystal influences the growth behaviour of the ice crystal as well as the growth behaviour of the surrounding droplet, see
appendix A for an example. Including the effect of ice crystal shape on the diffusional growth of the surrounding droplet is
beyond the scope of this study and would require precise informations about the position of the droplet relative to the ice
crystal, which is not available in models. In order to include the effect of the ice crystal shape on its own growth by diffusion,
we could replace the growth equation (5a) by a variant using the ice crystal capacity (Lamb and Verlinde, 2011, Chapter 8.3.1).
Moreover, we could also replace the Maxwellian growth equation for the ice crystal by the model given in Chen and Lamb

(1994) to model changes in ice crystal shape. Both modifications could improve the representation of the ice crystal growth,
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but also lead to an inconsistency in the model because in the following we need the assumption of spherical symmetricity.
Therefore we stick to the simpler growth equations.

As mentioned above, we consider water vapor and temperature fields as spherically symmetric inside the influence sphere
as is done in Maxwellian growth theory. This assumption is not fully consistent with the schematic in figure 2, since spherical
symmetry is not able to account for a spatial localized droplet as depicted in the schematic. Assuming spherical symmetric
fields means that the droplet is replaced by a continuous source or sink for water vapor and temperature along the sphere with
radius R.. This point of view also allows the generalization to the case of multiple droplets by appropriately changing the
strength of the source or the sink.

As was done for the ice crystal, we may analogously define a sphere of influence for the droplet with corresponding radius
of influence 7. In order to use Maxwellian growth theory to describe droplet growth, we have to specify the values for water
vapor density and temperature at the radius of influence r . We will use the coupling values p,, , and T as the environmental
values in the droplet growth equation, i.e. as the values at the radius of influence 7. With this choice, droplet growth responds
to the coupling values.

The idea of the model is as follows. The ice crystal first establishes fields for water vapor and temperature as if it were
isolated, yielding values at the coupling distance .. These fields are given by the equilibrium fields for water vapor and
temperature around the ice crystal and serve as background fields, see equation (1). Since the droplet is located at coupling
distance R,, the coupling values p,, ., T\ define the ambient values for its diffusional growth. We establish an equation for the
coupling values (see equations (7) and (6)), causing the droplet to grow or evaporate. This growth or evaporation feeds back to
the coupling values and will in turn influence the growth behavior of the ice crystal.

In the following, we will derive the model equations, resulting finally in the ODE system (19), consisting of the growth
equations for the ice crystal (equations (19a) and (19b)), the growth equations of the droplet (equations (19c) and (19d)) and

the evolution equations for the coupling values (equations (19¢) and (19f)).
2.1.2 Derivation

The spherical symmetric solutions of the Laplace equations Ap,, =0 and AT = 0 for p,, and T inside the influence sphere of

the ice crystal, describing the water vapor density and temperature field, are given by

— pv,ooRE - pv,iRi (pv,i - pv,oo)RzRE l

pulR) = 22— T (1)
TowRrg—TiR; (T;,—Ts)RiREp 1

T(R)= - 1b

(B) Rg — R; Rg—-R; R (Ib)

where R is the radial distance from the ice crystal center. Equations (1) define the unperturbed background fields for an isolated

ice crystal, representing the spatial thermodynamic equilibrium. The corresponding solutions inside the influence sphere of the
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droplet are

5 () = PooTE ~ Pudld | (Pv,a = pos)TETa 1

po(T) ) (2a)
TE —Tq e — T4 r

~ Terg —Tyr Ti—Trgrgl

Try= =E dd+(d Jrera 1 (2b)

TE —Td e —Tq T

where r is the radial distance from the droplet center. Proceeding as in the derivation of the Maxwellian growth equations, we

obtain from (2) the following equations for the change in droplet mass and temperature

d v,x — Pu
T 47TadD07"drEp’7p’d o
d P
de 47T7"d’]”E (
—_ = L'UT D v,x — Muv KT*fT >’ 3b
&~ macoi(Ta) (g —ra) \FroTa)@aDo(pus = pua) + Ko(T: — Ta) .

where m, denotes the droplet mass, T, the droplet temperature, oy the accommodation coefficient (Davis, 2006), Dy the
diffusivity of air, K the thermal conductivity of air, c,; the specific heat capacity of liquid water and L;,, the latent heat of
vaporization. Using representation (2) of the water vapor field, the rate .J; of water vapor exchange through the ball by with

radius rg around the droplet is given by

~ v,k — Mo 1 d
Jg=— / DoV, Ndo = —DyLox—Pueddyp2 - Cd )
T —Tq TE [0 %] dt
)
where IV denotes the outer normal vector at the surface 0bg.
The growth equations for the ice crystal are given by
dMi Pu,x — Pu,i
=Adna;DoR; R ————, 5
a et TR, (52)
dT; 4TtR;R
= P DoLin(T)(pu, = pui) + Ko(T. ~ ) ) 5b
. Micp,im)(zz*mi)(“ 0Lio(T)(pue = poi) + Ko(T. ~ ) (5b)

where M; denotes the ice crystal mass, T; the ice crystal temperature, «; the accommodation coefficient, ¢, ; the specific heat
of ice and L;, the latent heat for sublimation. Note that in equations (3) and (5) the coupling values p,, ., T\ show up to allow
the coupling of the diffusional growth of the hydrometeors.

After the description of the respective growth equations, we proceed to the coupling values. We define

T
T.(t):=T(R,) and consequently ddt = ;(T(RQ), (6)

with T' being the unperturbed background temperature field of the ice crystal from equation (1). As in Maxwellian growth
theory, in definition (6) we assume temperature fluctuations to balance quickly and not to affect the droplet growth. We define
the evolution equation for the coupling value p, . as

dpy

=1+ 1, + 1 7
a 1+ 1lo+ 13 @)

being the sum of three terms I, I, I3, representing three different physical processes:
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Figure 3. Illustration of the spherical shell, obtained by extending the surface of the sphere with interaction radius R. around the ice
crystal. Within the gray shaded area, representing the volume Vs of the spherical shell, we assume a uniform distribution of water vapor and

temperature.

— I; models the time evolution of the unperturbed water vapor field of the ice crystal,
— I, takes the influence of the droplet on the coupling water vapor density into account,
— I3 describes the relaxation of the coupling value back to the value of the thermodynamic equilibrium p,, (R.).

The first term I; takes the unperturbed background value p, (R, ) of an isolated ice crystal into account. As rate of change

for this value, we define

d
I = dt(pv(R*)). (8)

If no droplet is present, we will have I5 = I3 = 0 in equation (7) and definition (8) simply ensures p,, « to equal the background
value p, (Ry).

The second term I considers the change of water vapor density due to droplet growth or evaporation. The rate of water
vapor exchange J; of the droplet is given in equation (4). The released water vapor is assumed to diffuse in unit time into some
volume V, to be defined later, leading to the water vapor exchange rate # Due to the assumed spherical symmetry, using the
exchange rate % directly amounts to assuming the sphere with radius R, around the ice crystal as being filled up with droplets
and their influence spheres, resulting in a strong overestimation of the droplet effect, so we have to rescale this rate. Assume
the sphere with radius R, around the ice crystal as being extended to a spherical shell with thickness 27 as in figure 3. This

spherical shell is only introduced for the derivation of the coupling density equation (7). The value

P 37 (R +78)° = (R —75)°)  (Ru+7p)*— (R, —1p)° 9
T 3T N r3 ©)
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measures the number of droplet influence spheres fitting inside the spherical shell. We take this value of Z to rescale the
exchange rate and define the new value of I3 as g—g’, In reality, influence spheres of droplets may also overlap, leading to
another local competition for water vapor between the droplets and a larger value for Z. However, our choice assumes a local
well-mixed droplet distribution around the ice crystal and we neglect a possible local competition between the droplets. If we
consider not only a single droplet but in total N; droplets inside the influence sphere of the ice crystal, we finally define the
exchange rate as

Jd Nd dmd
I, := N, = —_— 10
2 Y7V T agZV dt (10)

where we used equation (4). This rate actually neglects local interactions and competitions between the droplets inside the

influence sphere of the ice crystal and assumes all droplets as identical.
Finally, the third term I3 accounts for the relaxation of the coupling value for water vapor density p, . to p,(R.), provided

by the background field and representing thermodynamic equilibrium. Motivated by Fick’s law of diffusion, let

P — po(Bi) 21 Posx— Po(Ry)
Dy do=—-4rR;Dy——————= 11

/ R — R, T Rg— R, (11)
be the rate of water vapor exchange from ball B, to the outside, where B, denotes the ball with coupling radius R, around the

ice crystal. The change of the coupling vapor density is therefore given by

Iy = /DP”* ””(R)dg L _ 3p, L pee—pu(Re) (12)

9B,
Definition (12) represents a possible choice for the relaxation rate, but should ideally be reviewed with the help of measure-
ments.

Altogether, substituting equations (8), (10) and (12) into (7) yields
de,* o d < (R )> Jd 3DO Pu,x _pv(R*) - d( (R )) Nd dmd 3DO Pou,x — pv(R*) (13)

- — J =
a TNV TR Rp-R. @ 0gZV di R, Rp-R,
for the rate of change of coupling water vapor density.

To define the volume V' in equation (10), we first give an alternate interpretation of the rate < with the help of the artificial

spherical shell from figure 3. Let

4 . .
Vg = gn((R*ME)L (R.—1g)%) (14)
denote the volume of the artificial spherical shell. Using equation (9), the rate may be rewritten as
Ja  Ja 37r7“?]1J

15
v Vs V 5)

The first factor represents the rate if all exchanged water vapor would modify the vapor density inside the spherical shell, where
we assume water vapor and temperature as uniform. The second factor amounts to a scaling of the first factor. Since V' is the

volume into which water vapor diffuses in unit time, we define it as a scaled influence sphere around the droplet as

4 3 4
V= §7r(m“E)‘3 = gwng’r% (16)
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‘i—; ;. With this definition, only a fraction - of the released

water vapor from the droplet will affect the coupling value inside the artificial spherical shell. The choice of the parameter n

with the scaled influence radius nrg, leading to the rate é]—é, =

Ja 1

will be discussed in subsection 2.2.4 below. Although we tried to give some interpretation of the product - and particularl
the factor i this scaling factor may also be interpreted as a free parameter of our model without a specific physical meaning.

For the radii of influence Rg, rg we define

RE = R1+ll, (1721)
rE i =7q+ g (17b)

for some positive constants /;, ;. Likewise, we define the coupling radius by
R, =R;+1p (18)

with 0 < [y < [;. With these definitions we can state the complete ODE system as

M4 a Dy g e~ Pt (19)
dt¢ TE —Tq
de 47TT‘dTE
N, Do Ly, (T, v,x — Pu Ko(Ts - T ) 19b
&t~ ey (Ta)(rm —7a) (ad 0L1o(Ta) (P« — po,a) + Ko d)) (19b)
M, * — Pu,i
O = droy DR R L P, (190
dT, A7 R;R. '
— = iDoLio (T5)(pv,s — po,i) + Ko(Tx = T3) ), 19d
& = Ve TR =T (Lo LT o = o) + Ko(T. = T)) (19d)
dpv* d Jd 3D0 pv*_pv(R*)
— = — v * Ni— — . ) 1
a dt <” (R )> TNV TR, Rp_R. (19)
dT., d
=—(T(R,) ). 19
i = g (rn) 19

Substituting R, from (18) into the field representations in equation (1) yields an expression of p, (R.) and T'(R,.), allowing

to compute the required derivatives. Keeping equations (17) and (18) in mind, we arrive at

d R R\ dpy,eo R; R dpy,; vi—Pvoo [ RE+R; RiR dR;
(pu(R*)> B (1_ ) Puoe | <E_1> Pui | Pvi = Pv, (E B E_1>

at " Rp-Ri R.) dt " Rp-R: \R. dt ' Rp-R; R. R2 at
(20)
and
d Ry R\dT.. R (Rs \dT, Ti—Tw (Re+R: RRs _\ dR,
SRy )= (o) Hee T (2B - ~1 .
dt( ( )> RERi< R*) a +RER1-(R* ) at +RER¢( R. 2 ) at
(21)

The derivative of the ice crystal radius may be calculated using the equation for the mass of a spherical ice crystal M; =
37pi(T;) R? with ice density p;, yielding
dR; 1 dM; ;Do Ry po — poi

de :47TpZ(T1)R12 dt _pz(Tz) Rl R*—Rz

(22)
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where we neglected the derivative of the ice density p;.
Neglecting chemical composition and curvature effects of the ice crystal, we approximate the saturation vapor density p, ;
at the surface by

s (23)
where p; ot denotes the saturation vapor pressure over a plane ice surface. Using the Clausius-Clapeyron equation (Lamb and
Verlinde, 2011, equations (4.35) and (4.36)), we obtain the temporal derivative

M - d (pi,sat(Ti)> dT; B pz‘,sat(Ti) (Liv(Ti) _ 1) dT;

dt ~ dt\ R,T; R,T; dt

(24)

At R,T2

2.2 Choice of Parameters

In this subsection we discuss a possible choice of the parameters I;, l4, lg, Vg and n from equations (17), (18), (19e), (16),
respectively. We estimate possible values for these parameters using typical environmental conditions in a mixed-phase cloud
with ambient temperature T,,, = —15°C, ambient pressure p,, = 650hPa, ambient saturation ratio S, = 1.01, ice crystal

radius R; = 100 um and droplet radius r4 = 10 um.
2.2.1 Parameter for Droplet Distance

Parameter [ in equation (18) defines the distance from the droplet center to the ice crystal surface. To estimate this parameter,
we assume a perfectly regular distribution of droplets at the vertices of a cubic lattice with N’ = 1000cm 2 = 10 m ™3 droplets
inside the cloud volume. This droplet number is higher than typical observed values, but since our focus is on local droplet
accumulations around ice crystals, we use this higher value. Let

lpm L (25)

VN —1m-!

denote the edge length of a cuboid in the lattice. If the ice crystal is located in the center of such a cuboid, the distance from
the midpoint of the ice crystal to the midpoint of the nearest droplet is given by @l K, yielding an estimate for R, = R; 4 lo.
Substituting values, we arrive at [ ~ 7.67 - 10™% m = 767 um being approximately 7.5 times ice radii, so Iy = 7.5R;.

2.2.2 Parameter for Radii of the Influence Spheres

To estimate the distance parameter /;, determining the radius of the influence sphere of the ice crystal, we use the representation

Ri(pv,oo - Pv,i)
R

of the water vapor field obtained from Maxwellian growth theory. Let £ > 0 denote a chosen maximal relative deviation of

pv(R) = Pv,c0 — (26)
pv(R) from the environmental value p, ~, we seek the radius Ry such that

lpo(R) — Pv,00 ‘

Pv,00

<¢ 27)

10
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is satisfied for R > Rp. Substituting (26) into (27) yields the condition

R;
fpv,oo

|pv,oo - pv,il S RE (28)

Neglecting effects of chemical substances and curvature, we estimate the surface water vapor density as p,, ; = p%g“)

Using a maximal relative deviation & = 103, we arrive at /; ~ 0.0144 m being approximately 144 ice radii, so I; = 144R;.
Using the same approach for the droplets, we obtain [; =~ 8.9 - 10~°m being approximately 9 droplet radii, so Iy = 9ry. We
chose £ = 102 as the maximal relative deviation, because the relative deviations
[Pv00 = pvil g 1Pvco = Pl (29)

P00 Puv,c0
are already of the order 1.4 - 10! and 102, respectively, for the conditions stated at the beginning of the subsection. For the
case of a droplet, Reiss and La Mer (1950) and Reiss (1951) suggest a value of ten times droplet diameter for the radius of

influence. With our choice of the relative deviation, we obtain the same order of magnitude.
2.2.3 Number Parameter

In order to estimate a typical droplet number N, within the influence sphere around the ice crystal, we employ the typical
droplet number concentration A/ = 70cm ™3 in mixed-phase clouds (Korolev et al., 2003; Zhao and Lei, 2014). Using I; =

144 R;, we obtain a droplet number
4 3 4 3

Not all of these droplets are precisely at coupling distance R, from the midpoint of the ice crystal and the influence of droplets
decreases with increasing distance from ice crystal center. Qualitatively, only the droplets closest to the ice crystal influence its
growth behavior significantly, see Baumgartner and Spichtinger (2017b, their figure 6). We employ the conservative assumption

H:‘;,* have larger influence on the ice crystal and consequently define the droplet

that all droplets with distances smaller than

number N, as

A (R4 4 (145

motivating the choice Ny = 40. We remark that this droplet number is highly variable in real clouds due to turbulent effects
or sedimentation of the ice crystal. If one knew an expression, describing the change of droplet number inside the influence

sphere, one could also use a variable number instead of a constant.
2.2.4 Distribution Parameter

Parameter n in equation (16) is a critical parameter of the whole model, since it determines directly the strength of the in-
teraction between the ice crystal and the droplet. According to the interpretation given above, it describes which fraction of

released water vapor from an evaporating droplet is incorporated into the artificial spherical shell around the ice crystal and

11
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Figure 4. Comparison of the temporal evolution of hydrometeor masses obtained with the new model from equation (19) with parameter
value n = 1.8 (dashed) and the reference model (solid) for the case of Nq = 14 droplets per influence sphere. Ambient saturation ratios are

Soc = 0.86 (red), Seo = 0.99 (blue) and Soc = 1.01 (green).

consequently influences the growth of the ice crystal, see equation (15). If n = 1, all released water vapor is incorporated in
the artificial spherical shell. If n > 1, only a fraction of % is incorporated, and the remaining water vapor is released to the
atmosphere. In this study, we use a value n = 1.8, obtained with the help of direct numerical simulations using the reference
model described in Baumgartner and Spichtinger (2017b), since the authors are not aware of any direct measurements.

We compare the temporal evolution of the ice crystal and droplet mass obtained from the reference model with results of the
model presented in section 2.1 using the two droplet numbers N, = 14 and N4 = 38. The choice of these droplet numbers is
due to the existence of Lebedev quadrature formulas, because those quadrature points allow a nearly uniform distribution along
a sphere (Lebedev, 1976). For calculations with the reference model, we distributed the droplets along a sphere with radius
7.5R; around the ice crystal. We conducted several simulations using the new model with different values for the parameter n.
Figures 4 and 5 show the accordance of droplet and ice crystal mass evelutions-evolution for our final parameter value n = 1.8
at ambient saturation ratios So, = 0.86, Ssc = 0.99 and S, = 1.01 for the two droplet numbers Ny = 14 and N, = 38. The
solid and dashed curves agree well although the droplet masses are slightly underestimated and the ice crystal mass is slightly
overestimated.

Although not shown, numerical experiments with other values of the parameter n show, that we can achieve better agreement
of either the ice mass or droplet curves, but not for both simultaneously. Moreover, our choice n = 1.8 also shows satisfactory

results in other mass and humidity regimes.
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Figure 5. As in figure 4, but for the case of Ny = 38 droplets per influence sphere.

2.3 Simplifications

The model in equation (19) consists of many equations, especially it keeps track of the temperature of the individual hydrom-
eteors. In Maxwellian growth theory, the equation for the temperature of a hydrometeor is eliminated. We can simplify the
model equations (19) in a similar way. Proceeding as in the derivation of the Maxwellian growth equations, we can eliminate
the temperature equations of the hydrometeors. The modified equations for the hydrometeor masses are then given by
d 4

mq _ T TdTE (S* _1) ::Gl TrarE (S* _1)

dt le(TOO) o 1 le(TOO) + R, T TE —T4q TE —Td (32)
RyTeo KoTw QdDOPl,sat(Too)

for droplet mass and

dM; Ar R;R,

e (LMTOO) _ 1) Lo(To) | _ RT. R, R
Ry T KoTwo aiDopi sat (Too)

R;R,
(Sii—1)=: Gim (Ski—1) (33)

PRy Too poe RoToc
. and . Poslloloo
DPi,sat (Too) S*’l Di,sat (Too) ’

saturation vapor pressure over a plane surface of liquid water. In addition, we neglect the temperature equation (19f) for

for ice crystal mass with the saturation ratios S, = respectively, where p; ot denotes the
the coupling temperature 7 in the governing system (19). Since T} also appears in the calculation of the unperturbed value
pv(R,) through the equilibrium vapor density at the ice crystal surface, we have to modify its calculation from equation (1). We
simplify the vapor density field from equation (1) by considering the case R — 0o, representing the observation R; < Rg.

The vapor density at the ice crystal surface is approximated as in (23), yielding

Ri 7,58 Too Rz
o pose+ <?M() _ pv,oo> i (34)

Po(B) 2 py,co + (Po,i = Pu,oo) R. R, T R,
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Using the Clausius-Clapeyron equation and (22), we compute the required time derivative of (34) as

d Rz d v,00 Rz d 7,58 Too 7,58 Too R*_R’L dRz
(pv(R*)>z( _) Poce <p, o )>+<p, i )_pwo>

dt R.,) dt " R.dt\ R,Ts RyTwo R dt
<1 o ]%z) dpv,oo &pigat(Too) <Lw(Too) o 1> dToo + (pi,sat(Too) N ) R* _Ri sz

R, dt R. R,T2Z R, Too dt R, T 47pi(Too)RZRZ dt -
(35)

Accepting those further approximations, we arrive at the simplified system
d:ir;d Eyes T;dib;d (S, —1), (36a)
dCJl\tﬁ e R]jii%;%i (Seim1), (36b)
dg{;* _ % (pv ( R*)> B aindV dgzd B 320 py,;2 E— fl}f*)’ (36¢)

where only the three prognostic variables mq, M; and p,, . are left. For a bulk model parameterisation, we would add just one

additional equation.
2.4 Discussion of the Model Ansatz

Already Srivastava (1989) criticized the use of Maxwellian growth theory for the description of droplet growth by diffusion. He
advocated the use of local quantities instead of the environmental conditions, since water vapor density is spatially variable and
the droplet growth heavily depends on its precise value. By using local variables, one can take those variations into account and
compute growth rates of hydrometeors more accurately. He connected the local value for vapor density to the environmental
value through a relaxation of local conditions to the environmental conditions, similarly as we did in equation (12) for I3.
Srivastava proposed to consider local volumes around every hydrometeor and to compute its individual growth rate by using
the local vapor density. We adopted this approach in our model by introducing the “spheres of influence”. Similar ideas were
employed in Marshall and Langleben (1954), where the authors also consider a local volume around an ice crystal. In contrast
to our formulation, they assume a continuous droplet distribution inside the local volume. Their method avoids additional
growth equations for the nearby droplets. Our approach combines ideas of both former studies, where we focused on a model
formulation which only incorporates values that are typically known in a numerical cloud model.

In subsection 2.2, we estimated possible values for the parameters of our model. To our best knowledge, there are no direct
measurements of the local interactions of a single ice crystal with surrounding droplets available, so we cannot compare our
parameter choice with real measurements. Instead we can consider two separate extreme cases, since equation (19e) for the
coupling water vapor density has the generic representation

dpv % d Nd dmd
1 — = T v * - 1 U, * v * 7
P t<p (R )) VAl P O(p , P (R )) (3 )

for a constant C' > 0. In our model derivation, we set C' := %. The two extreme cases are constructed by choosing

C =0 or C' — o0. In the first case C' = 0, relaxation of the coupling value p, . to the equilibrium value p, (R, ) is neglected
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and therefore p,, . is solely changed by the growth or evaporation of the hydrometeors. The second case C' — oo corresponds to
an instantaneous relaxation to equilibrium. This is basically the same behavior as in the classical treatment using Maxwellian
growth theory. We emphasize that both extreme cases are rather nonphysical, but they may serve to assess the possible strength
of the local interactions. However, we believe that ansatz (37) is able to capture the essential behavior, possibly after considering
ﬁ as a single coefficient which is to be determined with the help of measurements.

We believe that the most promising measurement technology to constrain the parameters in our model is holography, be-
cause it is able to measure the spatial distribution and the size of hydrometeors within an air volume (Fugal and Shaw, 2009;
Schlenczek et al., 2017; Beals et al., 2015). Moreover, if it will be possible to track an individual air volume with holographic
imaging, one could possibly infer values for our model constants from the size evolutions of the hydrometeors.

In subsection 2.2.3 we discussed the choice of the number N, of droplets within the influence sphere of the ice crystals.
Imaging the influence sphere around the ice crystal as an object moving with the ice crystal, clearly the number of droplets
inside this region should change as the ice crystal moves through a cloudy volume. If we could establish an equation for %,
the number N, of droplets within the influence sphere could be made dynamic. Such an equation should account not only for
the movement of the ice crystal through the cloudy volume but also for the influence of turbulence on the local droplet number.
Note that the concept of an influence sphere around the ice crystal remains meaningful for moving ice crystals. The presence of
the ice crystal distorts the local water vapor and temperature field and thus defines its influence sphere. As is well known from

Maxwellian growth theory, the fields around the ice crystal attain very rapidly their steady-state (Lamb and Verlinde, 2011,
Chapter 8.2.2), so we can define the influence sphere with the help of the steady-state field.

3 Incorporation into a Parcel Model

In this section, we incorporate the new model of section 2 into a parcel model. Let p, and T, denote pressure and temperature
of the air parcel. We divide the total water mass contained in the air parcel into the mass of water vapor M,,, the mass of liquid
water M and the mass of ice Mj... In addition, the air parcel contains a mass M, of dry air. Since the air parcel is assumed

as thermodynamically closed, the mass M, of dry air and the total water mass M, + M; + M;.. are constant. Instead of the

_ M,
= M,

masses, we consider the mixing-ratios g : for x € {v, [, ice}.

3.1 Description of the Parcel Model
Variations in pressure p, are governed by the equation

dpee  dpec dz Poo

— _—g— 38
dt dz dt gRToow’ (38)

obtained by applying the equation for hydrostatic equilibrium. Coordinate z denotes the height, g the acceleration of gravity,

w the vertical velocity and R the gas constant for moist air, given by

) 1—¢ Qv
R:=R, |1 39
( - € 1+QU> 59
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where ¢ := % and R,, R, denote the gas constants for dry air and water vapor, respectively. A change in the air parcel
temperature T, has two contributions. The first contribution comes from the adiabatic vertical motion of the air parcel and is
given by (for example Wang, 2013, chapter 12)

dT

= —— 4

adiabatic Cp

where the specific heat capacity of moist air is given by (Rogers and Yau, 1989, chapter 2)

_ Cp.w D)
=cCpall P 41
R ( * <Cp7a ) 1 ‘HJU) “D

and ¢, 4, ¢y, denote the specific heat capacity of dry and moist air, respectively. If condensation of water vapor takes place,

we have to include latent heat effects. Let wy, be a hydrometeor, then its temperature 7T} changes as

ar, . d
ot —Lﬂ+ /KVT Ndo, (42)

Owp
where my, is the mass of hydrometeor wy,, L the latent heat of a phase change, K the thermal conductivity of air and N the outer

normal to the surface of the hydrometeor wy. The surface integral in (42) accounts for heat conduction from the hydrometeor

to the air parcel. The amount of heat —dQconduction, delivered from the single hydrometeor wy, to the air parcel, is given by

the rate
d conduction
,M: /KVT~Nda. (43)
dt
Owp
This amount of heat changes the temperature T, of the air parcel according to ¢, (M,, + M, ) dT» = —dQconduction- Inserting

(43) and summing over all hydrometeors yields the rate

dT
dt

1

- - KVT -Ndo (44)
e |
( N kawk

latent

of latent heating. Combining both contributions (40) and (44) yields the final rate of the temperature change

g 1
B D S KVT. N
& (M, +M,) / do (45)

C
latent P
aw k

AT,  dTs
dt ~ dt

dT
dt

adiabatic

where the sum expands over all hydrometeors. In the literature, one finds a slightly different equation, where the surface integral

dmk

is replaced by —L

(for example Pruppacher and Klett, 1997, equation 12.15). Assuming all hydrometeors to have reached
their equilibrium temperature, as is done in classical Maxwellian growth theory, the time derivative on the left hand side of
(42) vanishes and equation (45) reduces to the equation from literature.

We further divide the liquid water mass M, contained in the air parcel into the mass M, of all droplets located in an
influence sphere of some ice crystal and the mass M of all droplets outside of every ice crystal influence sphere. From now

on, we assume a monodisperse mass distributions for the ice crystals with number concentration N, for the droplets inside

16



10

15

20

the ice crystal influence spheres with number concentration N;../Ng (number of ice influence spheres containing Ny droplets
each) and and for the droplets outside of every ice crystal influence sphere with number concentration /9. Therefore, the total
droplet number concentration in the air parcel is NVjce Ng +N. 4 (number per kilogram of dry air). Because of the assumption of

monodisperse size distributions, each ice particle has mass M;, each droplet inside an influence sphere has mass m/, and each
My

droplet outside of every influence sphere has mass m. Defining the liquid water mixing-ratios g} := %’ and g7 := -

, We
obtain the relations

Gice = MceMi» and q = (Jzo + qll = N;m?l + Nd-/\[icemfi (46)

where Ny is the number of droplets inside the influence sphere of an ice crystal. As for the liquid water mass, we divide the
corresponding droplet temperatures in 77, 7. and the droplet radii in 79, 7.
Using this notation and the assumption of spherical droplets, we can evaluate the surface integrals in (45) to obtain
% - —%w - M (N;Ma47rrgK0(Too —T9)
4 NyNieo Modrrs Ko (Too — T3 + N Modn Ry Ko (T Ti)>
g 47Ky

T o G, +M)( irile = 1) (47)
+Nnder( -1y )"’MceR ( Tz))

Y, Ko _ o

= g (M T

+ NndeTZ(Too - Té) +MceRi(Too - Tz)) )

where R; denotes the radius of an ice crystal. The mixing-ratio for water vapor is determined by the conservation of mass and

reads
dq, dg dqgf  dgice dmd dm?,  dM;
= — - =-N7 ice | V. . 48
dt a @ ar - Mg MNe (Nt g (49)
The equations for the other mixing-ratios are given by
ince _ sz
dt - Mce W, (4921)
dgy dmg
=Nj—* 49b
dg} dm),
— = NgMNice—5. 4
q aNic T (49¢)

3.2 Results

Using the parcel model we carry out several simulations, where we vary the coupling distance R, = R; + [y through parameter
lo, the number of droplets inside the influence sphere of the ice crystals N4, the ambient saturation ratio S, and the vertical

velocity w of the air parcel, see table 1. The choice of the saturation ratios is motivated by the three regimes in figure 1.
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Table 1. Different parameter values used for the air parcel simulations. The initial ice crystal radius is R; = 100 um for every simulation.

lo 5R; 15R; 30R; 50R; 100R; | Length parameter for ice—droplet distance
Ng 40 100 200 500 Number of droplets per ice crystal influence sphere
Soo 0.847 0.932 1.01 Ambient saturation ratio with respect to liquid water
Soo,i 0.98 1.079 1.169 Ambient saturation ratio with respect to ice

Oms™' —1ms ' I1ms™! Vertical velocity of the air parcel

The initial values for ambient temperature and pressure are 7., = —15°C and p., = 650hPa, respectively, resembling
typical environmental conditions for a mixed-phase cloud. Reliable values for the droplet number N, inside every influence
sphere of the ice crystals are difficult to estimate, since this depends heavily on small-scale turbulence. Therefore, any of the
estimated values in subsection 2.2.3 between Ny = 30 and N4 = 800 is possible, explaining the choices in table 1.

Previous studies indicate a large scattering of the microphysical parameters, especially in liquid water content (LWC) and
ice water content (IWC) (for example Fleishauer et al., 2002; Hobbs et al., 2001; Pinto et al., 2001; Noh et al., 2013; Zhao and
Lei, 2014; Lloyd et al., 2015; Verlinde et al., 2007). We use the typical values LWC = 0.045gm 2 (Korolev et al., 2003) and
IWC = 0.013gm 3 (Fleishauer et al., 2002). A typical droplet radius is given by 10pum. Variability in size of the ice crystals
is much larger, but on average, pristine ice crystals in mixed-phase clouds tend to be smaller than in ice clouds (Korolev et al.,
2003) and we use again a value of 100 um as initial radius.

In the subsequent sections, we present simulation results ordered by vertical velocity. All figures contain three curves: the
red curve represents the solution of the new system (19), the cyan and blue curve represent the solutions of the same system,
where the equation for the coupling water vapor density (19e) is replaced by (37) with C' =0 and C — oo, respectively.
Consequently, those two curves correspond to the extreme cases without local relaxation to equilibrium (case C'=0) and
instantaneous relaxation to equilibrium (case C' — c0). The spreading between the two curves show the spectrum of possible

values for different choices of the parameter C.

3.2.1 Vertical Velocity w = 0ms™—?!

In Baumgartner and Spichtinger (2017b), the authors documented the largest effect of surrounding droplets on ice growth in
an ice subsaturated environment, because the evaporating droplets can deliver enough water vapor towards the ice crystal to
produce a local supersaturation with respect to ice, allowing the crystal to grow instead of evaporate. With the new model,
we also observe a similar behavior. Consider for example the case of N4 = 40 droplets per influence sphere of any ice crystal
with the small droplet distance lo = 5R; = 5-100um from the ice crystal and ambient saturation ratio S, = 0.847, being
subsaturated with respect to ice and water. The first row in figure 6 shows the temporal evolution of ice mixing-ratio ¢; and
liquid water mixing-ratio ¢;. We observe an increasing ice mixing-ratio g;, showing the aforementioned local interaction. As

long as not all droplets inside the influence spheres are evaporated, the red curve for ice mixing-ratio on the left of the upper
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Figure 6. Temporal evolution of ice mixing-ratio (left) and liquid water mixing-ratio (right) for the parcel model simulations with w =

Oms™". Parameters for the first row are Ny = 40 droplets in each influence sphere of the ice crystals at initial ambient saturation ratio

Soc = 0.847 and droplet distance /o = 5R;. The second and third row both have N4 = 500 droplets per influence sphere at S = 1.01,

while the droplet distance is lo = 30R; for the second row and o = 5R; for the third row. Note the different scaling of the axes.
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Figure 7. Temporal evolution of the air parcel temperature T, with w = Oms™*, Ny = 500 per influence sphere of the ice crystals at initial

ambient saturation ratio S.o = 1.01 with droplet distance lo = 30R; (left) and o = 5R; (right). Note the different scaling of the axes.

row in figure 6 coincides with the cyan curve, indicating the extreme case without local relaxation. This means the evaporating
droplets inside the influence sphere of the ice crystal provide enough water vapor to mostly compensate diffusion of water vapor
to the environment. The red curve in the left panel of the upper row in figure 6 shows the temporal evolution of liquid water
mixing-ratio g;. At the first kink of this curve (at about ¢ = 11s), all droplets outside of the influence spheres are evaporated
(g7 = 0) and at the second kink (at about ¢ = 26s) also the droplets inside the influence spheres are evaporated, indicating
q = q¢ = g} = 0. Although the environment is subsaturated with respect to ice, the evaporating ice crystals alleviate the local
subsaturation, allowing the droplets inside the influence spheres to exist slightly longer, see case (c) in the schematic figure 1.
The kink in the red curve for ice-mixing ratio in the upper left panel in figure 6 at about ¢ = 26s marks the time instant where
all droplets are evaporated. From this time on, the local source for water vapor vanishes and the ice crystals grow slower. Note
that the evaporated droplets provided enough water vapor to the whole air parcel to cause an ice supersaturated environment,
see figure B1 in the appendix, explaining why the ice crystals continue to grow although the air parcel was initially subsaturated
with respect to ice.

Changing the environmental conditions to water supersaturation with S., = 1.01, local effects on the mixing-ratios are
almost not visible. Only for small distances as [p = 5R; of the droplets in the influence spheres from the ice crystals or very
high droplet numbers Ny, an effect on the mixing-ratios is observed; for the case of a droplet-ice distance of [y = 30R;
and droplet number N4 = 500, see the middle row in figure 6. The more interesting variable in this humidity regime is the

temperature 7T, of the air parcel, shown in the left panel of figure 7 for the aforementioned case. Compared to the classical
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treatment, including the local effects yields a slightly warmer air parcel. The heating is caused by the release of latent heat of
the growing hydrometeors. It persists after 100s where the droplet mass starts to decrease and the evaporating droplets tend to
cool the air parcel (right figure in the middle row of figure 6). Therefore, the observed heating is due to the growth of the ice
crystals and should increase for increasing ice growth rate.

This motivates to consider the case of a small droplet—ice distance /[y = 5R; and high droplet number N, = 500 at ambient
saturation ratio S,, = 1.01. The effect on the air parcel temperature T, for this case is shown in the right panel of figure 7.
The lower row in figure 6 an increase in ice mixing-ratio and a decrease in liquid water mixing-ratio already after a short time.
This again confirms that the observed heating of the air parcel is caused by an increased growth rate of the ice crystals. The
increase of the ice crystal growth rate is influenced by the number N, of droplets within the influence sphere and the ambient
saturation ratio. If the air parcel is initially supersaturated with respect to water, the ice crystal induces a local subsaturation
with respect to water and the droplets inside the influence sphere start to evaporate, see case (a) in the schematic in figure 1.
Evaporation of nearby droplets enhances the local water vapor density and consequently also the ice growth rate. If the air
parcel is initially subsaturated with respect to water, the droplets inside the influence sphere of an ice crystal see two sinks of
water vapor, namely the ice crystal and the environment, see case (b) in the schematic figure 1. The released water vapor of
an evaporating droplet is therefore partially delivered to the ice crystal as well as the environment and the growth rate of the
ice crystal is less amplified. Consequently, we expect a larger effect of the local interactions on the air parcel temperature with

initially water supersaturated conditions.
3.2.2 Vertical Velocity w = —1ms—*!

In a descending air parcel, saturation ratio decreases monotonically due to the adiabatic heating, causing an initially supersat-
urated air parcel to become subsaturated after a short time. According to the discussion in the previous subsection, we expect
only negligible influence of the local effects on the temperature 77, of the air parcel. This was confirmed by our conducted
simulations.

Contrary to the case of vanishing vertical velocity discussed in the previous subsection, local effects are clearly visible in
the mixing-ratios for an initially supersaturated air parcel. In the following, we show two examples, the first with a small
droplet—ice distance and droplet number, the second with an increased droplet—ice distance and droplet number.

As the first example we choose a droplet—ice distance [y = 5R;, droplet number N, = 200 and initial ambient saturation
ratio So, = 1.01. The temporal evolution of the mixing-ratios is shown in the upper row in figure 8. From the ice mixing-ratio
curve in the left panel in figure 8 it is evident, that ice crystals evaporate much slower in comparison with the classical case
without local interactions (blue curve). Also the droplets inside the influence spheres of ice crystals can exist longer compared
to the classical case, see the right panel of the upper row in figure 8. The droplets inside the influence sphere evaporate slower
because their released water vapor raises the local coupling value p,, . and consequently slows down further evaporation. This
explains the first kink at about ¢ = 105s of the red curve in the right upper panel in figure 8, where all outer droplets are
evaporated. The second kink at about t = 197s marks the complete evaporation of all droplets. In this example, the droplets

in the influence sphere exist up to 100s longer than the droplets outside. As is indicated by the cyan curve, the time span may
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Figure 8. Temporal evolution of ice mixing-ratio (left) and liquid water mixing-ratio (right) for the parcel model simulations with w =
—1ms~! at initial ambient saturation ratio S, = 1.01. Upper row shows the case with Ny = 200 droplets in each influence sphere of the ice
crystals and droplet distance [o = 5R;. Lower row shows the case with Ny = 500 and droplet distance [ = 30R;. Note the different scaling

of the axes.
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even be longer if the local relaxation rate C' is smaller. From the upper left panel in figure 8 we additionally observe that the
red curve for ice mixing-ratio does not deviate significantly from the extreme case without local relaxation (cyan curve), until
all droplets in the air parcel are evaporated (at about ¢ = 197s). Therefore, a smaller local relaxation rate increases the time
until the red curve deviates from the cyan curve.

In the second example with a moderate droplet—ice distance [y = 30R;, ambient saturation ratio So, = 1.01 and Nz = 500
droplets, we observe similar effects as before, see lower row in figure 8. Using the larger droplet—ice distance it is important to
have more droplets inside the influence spheres to compensate for the larger distance in order to observe a similar effect of the
local interactions. In this case, the delay in the complete evaporation of the droplets inside the influence spheres is about 50s,
see the lower right panel in figure 8, where the first kink is at about ¢ = 105s and the second kink at about ¢t = 166s.

The longest delay of about 180s in the evaporation of the droplets was found in the simulations using the small droplet—ice

distance lp = 5R; and initial saturation ratios S, € {0.932, 1.01} (not shown).

3.2.3 Vertical Velocity w = 1ms~?!

For updrafts, a significant effect of local interactions on the mixing-ratios was not observed in our conducted simulations.
Even in a massively water subsaturated regime S, = 0.847 with small droplet—ice distance [y = 5R; and high droplet number
Ny = 500, where we expect the largest effect of the local interactions, an effect of the local interactions on the ice mixing-ratio
was only minor, see the upper left panel in figure 9. Because of the ascend, the air parcel cools and the saturation ratio increases.
Remarkably in this simulation, the droplets inside the influence spheres of the ice crystals managed to survive the timespan until
the air parcel got saturated, whereas all droplets outside the influence spheres and in the classical treatment without the local
interactions evaporated earlier, see the upper right panel in figure 9. The air parcel got saturated with respect to water at about
200s, see figure 10. From the same figure it is evident, that the saturation ratio increased towards unrealistically high values of
about 10 % after 350s, because we neglected activation of new droplets in our simulations. In reality, such high supersaturations
are efficiently removed by activation and further diffusional growth of new droplets (Lamb and Verlinde, 2011, chapter 10).
However, considering only the simulations where the saturation ratio stayed within a reasonable realistic range, we show as
an example the case with initial water supersaturation and saturation ratio S, = 1.01, droplet distance [y = 5R; and N4 = 500
droplets per influence sphere. The temporal evolution of the mixing-ratios is shown in the lower row in figure 9. Compared
to the classical case, the ice growth rate is slightly increased. This increase is sufficient to raise the temperature 71, of the air
parcel by approximately 0.25 K over the classical case, see the left panel in figure 11. The right panel in this figure confirms that
the ambient saturation ratio stayed within a realistic range. From all conducted simulations with vertical velocity w = 1ms™!,

this was the most pronounced effect on air parcel temperature.

4 Conclusions

In this study, we considered the modelling of local interactions between hydrometeors, specifically the case of an ice crystal

and surrounding cloud droplets. We were interested in capturing the impact of locality on the diffusional growth of the hydrom-
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Figure 9. Temporal evolution of ice mixing-ratio (left) and liquid water mixing-ratio (right) for the parcel model simulation with w =
1, ms™*, Ng = 500 droplets in each influence sphere of the ice crystals and droplet distance lo = 5R;. Upper row is at ambient saturation

ratio Soc = 0.847 and lower row at So. = 1.01. Note the different scaling of the axes.
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Figure 10. Temporal evolution of saturation ratio So, with respect to water for the same simulation as in the upper row of figure 9 with

ambient saturation ratio So, = 0.847.
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Figure 11. Temporal evolution of air parcel temperature 7o, and saturation ratio So with respect to water for the same simulation as in the

lower row in figure 9 with droplet distance lo = 5 R;.
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Table 2. Summary of the observed effects within the conducted air parcel simulations.

‘ Stationary

Updraft

Downdraft ‘

‘ Parameter Ny

‘ Increasing droplet number per ice influence sphere leads to more pronounced effects. ‘

‘ Parameter g

‘ Decreasing ice—droplet distance leads to more pronounced effects. ‘

Effect on mixing-ratios gice and ¢q;

Observed in water subsatu-

rated environment

Mostly no effect, but compare
the case shown in the upper

row of figure 9.

Delay in the evaporation;
most pronounced for initial
saturation ratios Soc ~ 1 and

Soo > 1.

Effect on air parcel temperature 75,

Observed in water supersat-
urated environment; air par-

cel is warmer compared to the

Effects visible; air parcel is
warmer compared to the clas-

sical case.

Not observed.

classical case.

eteors. In contrast to the study by Baumgartner and Spichtinger (2017b), we suggested a formulation of the local interaction
which may be suited to incorporate into a bulk microphysics model. Since this formulation allows a more physically consistent
representation of the interaction between ice crystals and cloud droplets, the model may improve the representation of the
Wegener-Bergeron-Findeisen process. Apart from the derivation of the model, we incorporated the suggested model into an air
parcel framework in order to assess the impact of local interactions on a mixed-phase cloud.

A summary of the observed effects and trends within our conducted simulations is given in table 2. The dependence on the
system parameters N4 and [y, documented in the first two rows of table 2 was to be expected by construction of the model
in section 2 and is independent of the choice of the other parameters. All simulations were carried out with initial radius
R; =100pm for the ice crystal and 74 = 10um for the cloud droplets. Other choices for the initial radii will modify the rate
of change in mass of the hydrometeors and therefore the overall intensity and duration of local effects but not the qualitative
influence of the parameters N4 and .

The effect of the local interactions is primarily controlled by the droplet—ice distance and the number of droplets in the
influence spheres of the ice crystals. An enhancement of the local effects on the mixing-ratios is possible through a descending
air parcel being initially close to saturation or supersaturated with respect to water. This conclusion is consistent with the
theoretical study of Korolev (2008). In this study, various growth regimes of hydrometeors in a mixed-phase cloud were
identified and connected to vertical velocities. In order to identify the different regimes, the author also employed a parcel model
with monodisperse size distributions of the hydrometeors, but excluded local interactions. It was shown, that the Wegener-

Bergeron-Findeisen process is only active in downdrafts and has its maximal efficiency for vertical velocities around w =
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0Oms~!. Although these findings were obtained with an idealized air parcel model, they seem to be valid in general, because
similar observations were made in large-eddy simulations of real clouds (Fan et al., 2011).

The heating of the air parcel through local interactions observed in our study is due to an enhanced growth rate of the ice
crystals, therefore the strength of the temperature effect additionally depends on the number of ice crystals inside the air parcel.
As detailed before, the ice crystal growth rate also depends on the number Ny of droplets inside the influence spheres and the
droplet—ice distance [y. If the air parcel has a non-vanishing vertical velocity, local interactions may influence the air parcel
temperature only in the case of an ascending parcel, for high droplet numbers inside the influence spheres and small droplet—ice
distances.

One may speculate about the influence of a temperature change of the air parcel on its buoyancy which depends directly
on the temperature of the parcel (Rogers and Yau, 1989, chapter 3). An additional heating of an air parcel with zero vertical
velocity may trigger a vertical motion in an unstable stratification.

Although air parcel models are widely used, they might over- or underestimate the strength of observed effects. Therefore
one should include the suggested local-interaction model into a large-eddy model framework and again analyze the influence
of the local interactions seen in this study with the more realistic model, which is left for future work.

In this study we only considered local interactions regarding the diffusional growth of the ice crystal and surrounding cloud
droplets. Another aspect of hydrometeors with only small distances is an enhanced collision probability. It is known that
small scale turbulence enhances collision probability. In our context, an enhanced collision probability means an enhanced
probability for riming of the ice crystals. In addition, the observed delays in the evaporation of the cloud droplets may also

contribute to an increase in riming efficiencies.

Appendix A

In this appendix, we show an example of the effect of ice crystal shape on the diffusional growth behaviour of surrounding
droplets by using the reference model described in Baumgartner and Spichtinger (2017b). The model is a direct numerical
simulation model and resolves the involved hydrometeors as well as the water vapor and temperature field. We simulate a case
as depicted in the schematic 2 where the ice crystal now has ellipsoidal shape with major axis length 150 ym and minor axis
length 10pum. The ice crystal is placed in the center of a cubic computational domain with edge length 6000 um. We place
38 droplets with radius 10 um along the Lebedev quadrature points (Lebedev, 1976) and distance R, = 600um, matching the
case lop = 5R; used in the air parcel simulations in subsection 3.2. The simulation time is 5s. Figure A1 shows contour lines
of supersaturation with respect to water along a slice at height z = 0 through the computational domain. It is seen that the ice
crystal is visible as a strong sink for water vapor, but the contour lines appear as almost spherical in some distance of the ice
crystal.

Figure A2 shows the temporal evolution of the droplet masses. In the left panel, the corresponding curves of all 38 droplets
are shown and a different growth behaviour is obvious. In the right panel of figure A2, only the temporal evolution of the

four marked droplets in figure Al are shown. The droplets with coordinates (£600um,0,0) are closest to the ice crystal and
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Figure A1. Contour lines of the supersaturation with respect to water around the ice crystal at time instant 5s. Although the computational
domain is a cuboid with edge length 6000 um, the figure shows only a reduced cuboid with edge length 2000 pm centered around the ice
crystal. The black dots show the positions of the droplets with coordinates (£600um,0,0) and (0,£600um, 0).

evaporate (red curves) while the droplets with coordinates (0, 2600 um, 0) have largest distance from the ice crystal surface and
grow (blue curves), i.e. they show different growth behaviour. According to these considerations it is obvious, that including
this effect requires precise informations not only about the shape of the ice crystal but also about the relative positions of
the droplets with respect to the ice crystal surface. Such informations are not available in numerical models and therefore we

neglect this dependence.

Appendix B

Figure B1 shows the temporal evolution of the saturation ratio S ; with respect to ice for the first simulation in subsection
3.2.1 with vanishing velocity, Ny = 40 droplets per ice crystal influence sphere and droplet distance [y = 5R;. Although the
air parcel is initially subsaturated with respect to ice, the evaporating droplets release enough water vapor to the air parcel to

cause an ice supersaturated environment.
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Figure A2. Temporal evolution of the droplet masses. Left panel shows the droplet masses of all 38 droplets. Right panel shows the droplet
masses of the droplets with coordinates (£600um, 0,0) (red curves) and (0,£600um,0) (blue curves).

Ice saturation ratio S,

1.02 f
1.01 H
85
“ 100

0.99
—— No relaxation (C = 0)
= Classical (C — o)

0.98 — Local interaction.(eq. 19) |

0 100 200 300 400 500 600
Time (s)

Figure B1. Temporal evolution of saturation ratio S ; with respect to ice for the same simulation as in the upper panel in figure 6.
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