Table S10

Cluster	ID	molecule	Common name	Precursor	Measured ambient concentrations of SOA compounds (ng/m ³).	Estimated SOA <i>class</i> concentratio ns (ng/m ³) in ambient air.	% compound in SOA mass (w/w) in reaction chamber conditions.	Calculated ambient concentratio ns of SOA compounds (ng/m ³). ⊥
0	mtr_11		terpenylic acid	α-pinene and other monoterpenes	6 – 15 ^{1, 2}			
1	lmp_17		phenanthrene-1,4- dione	phenanthrene	0.3 – 1 ³			
	lmp_02		naphthoquinone	naphthalene	0.06 – 0.15 ³			
2	ara_05		N'-nitrosoanatabine	nicotine	0.16 - 0.18 4			

	ara_02		4- (methylnitrosoamino)- 1-(3-pyridyl)-1- butanone	nicotine	0.29 – 0.57 4			
3	lmp_21		9-nitrophenanthrene	phenanthrene	0.003 – 0.019 ^{5,6}			
	lmp_23	;	1-nitro-pyrene	pyrene	0.005 – 0.016 ^{5,6}			
	lmp_10	of the second se	4-nitro-naphthol	naphthalene		171 – 276 (total naphthalene SOA) ⁷ §	0.4% ⁸	~ 0.7 -1
	lmp_11	CH CH		naphthalene		171 – 276 (total naphthalene SOA) ⁷ §	0.39% 8	~ 0.7 -1
7	alb_09			1,3,5- trimethyl- benzene (TMB)		37 (total TMB SOA) ⁹ *	$\sim 5\%$ ¹⁰ ϕ	~ 2

8	alb_10	H ₃ C CH ₃ C		1,3,5- trimethyl- benzene (TMB)		37 (total TMB SOA) ⁹ *	$\sim 2\%$ ¹⁰ φ	~ 0.7
	alb_8			1,3,5- trimethyl- benzene (TMB)		37 (total TMB SOA) ⁹ *	~ 55% ¹⁰ ф	~ 20
9_2	lmp_12			naphthalene		171 – 276 (total naphthalene SOA) ⁷ §	0.07% ⁸	~ 0.1 - 0.2
9_3	dic_01	ноон	glyoxal	dicarbonyls	0.8 – 2.7 ^{11, 12}			

 \perp Calculated ambient concentrations of SOA compounds are provided when direct field observations are not available, by multiplying compound SOA mass fractions determined in reaction chamber experiments (second column from the right) with estimated SOA *class* concentrations (ng/m³) determined in ambient air by organic source apportionment methods (third column from the right).

§Total naphthalene SOA concentrations were derived using a molecular tracer method.

*Total TMB SOA concentrations were estimated from the calculated SOA formation yields expressed as $\mu g/m^3$ of SOA mass per ppm of carbon monoxide (CO) (Table 4 in Yuan et al. 2013, low-NOx conditions) multiplied by a campaign-average CO concentration of 0.55 ppm.

φ Total TMB SOA Compound SOA fractions (Figure 9 in the paper of Ruggeri et al. 2016) result from the application of a gas-phase VOC oxidation model (Master Chemical Mechanism v3.2) coupled to a partitioning model (SIMPOL 1).

References:

- 1. Kristensen et al., Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols, Atmos. Chem. Phys., 13, 3763–3776, 2013;
- 2. Brüggemann et al., Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F-BEACh 2014 field study, Atmos. Chem. Phys., 17, 1453–1469, 2017;
- 3. Chung et al., Aerosol-borne quinones and reactive oxygen species generation by particulate matter extracts, Environ. Sci. Technol., 40, 4880-4886. 2006;
- 4. Farren et al., Estimated exposure risks from carcinogenic nitrosamines in urban airborne particulate matter, Environ. Sci. Technol., 49, 9648–9656, 2015;
- 5. Di Filippo et al., Air pollutants and the characterization of the organic content of aerosol particles in a mixed industrial/semi-rural area in central Italy, J. Environ. Monit., 9, 275–282, 2007;
- 6. Huang et al., Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China, Atmos. Poll. Res., 5, 210 218, 2014;
- 7. Lewandowski et al., Secondary organic aerosol characterization at field sites across the United States during the spring-summer period, Int. J. Environ. Anal. Chem., 93, 1084 – 1103, 2013;
- 8. Kautzman et al., Chemical composition of gas- and aerosol-phase products from the photooxidation of naphthalene, J. Phys. Chem. A, 114, 913–934, 2010;
- 9. Yuan et al., VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China, Atmos. Chem. Phys., 13, 8815–8832, 2013;
- 10. Ruggeri et al., Model–measurement comparison of functional group abundance in α-pinene and 1,3,5-trimethylbenzene secondary organic aerosol formation, Atmos. Chem. Phys., 16, 8729–8747, 2016;
- 11. Ho et al., Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China, J. Geophys. Res. A, 112, D22S27, doi:10.1029/2006JD008011, 2007;
- 12. Kampf et al., Development and validation of a selective HPLC-ESI-MS/MS method for the quantification of glyoxal and methylglyoxal in atmospheric aerosols (PM2.5), Anal. Bioanal. Chem., 401, 3115–3124, 2011.