- Supplement of BrO and Bry profiles over the Western Pacific:
- 2 Relevance of Inorganic Bromine Sources and a Bry Minimum in
- **3 the Aged Tropical Tropopause Layer**
- 4 Glossary of abbreviations and symbols

Abbreviation	Definition		
2D-C	2D-C Hydrometeor Probe		
AMAX-DOAS	Airborne MAX-DOAS		
AMF	Air Mass Factor		
AP1	AMAX-DOAS Acton Pixis covering 330-470 nm		
AP2	AMAX-DOAS Acton Pixis covering 440-700 nm		
ATTREX	Airborne Tropical TRopopause EXperiment		
AWAS	Advanced Whole Air Sampler		
BAe-146	British Aerospace 146 aircraft		
box-AMF	Air Mass Factor computed in Radiative Transfer Model gridbox		
Br	Bromine atom, atomic bromine		
BrCl	Bromine chloride		
BrNO ₂	Bromine nitrite		
BrO	Bromine monoxide		
BrONO ₂	Bromine nitrate		
BrO _x	Active bromine (= Br + BrO)		
Br _y	$Total inorganic bromine (= Br + Br_2 + BrO + BrNO_2 + BrONO_2 + HBr + HOBr + BrCl + IBr)$		
CAST	Coordinated Airborne Studies in the Tropics		
CalNex	California Nexus field campaign		
CAM-Chem	Community Atmospheric Model with Chemistry		
CCD	Charge Coupled Device		
CDP	Cloud Droplet Probe		
CFC-11	Trichlorofluoromethane		
CH ₄	Methane		
CH ₂ Br ₂	Dibromomethane, methylene bromide		
CH ₂ BrCl	Bromochloromethane		
CH ₂ IBr	Briomoiodomethane		
CHBrCl ₂	Bromodichloromethane		
CHBr ₂ Cl	Dibromochloromethane		

CHOCHO Glyoxal CI Confidence Interval CIMS Chemical Ionization Mass Spectrometry CO Carbon monoxide CO ₂ Carbon dioxide CONTRAST CONvective Transport of Active Species in the Tropics CRDS Cavity Ring Down Spectrometer CU University of Colorado dSCD Differential Slant Column Denisty DOAS Differential Optical Absorption Spectroscopy EA Elevation Angle FT Free Troposphere FWHM Full width half maximum GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV) HSRL High Spectral Resolution Lidar	CHBr ₃	Bromoform		
CIMS Chemical Ionization Mass Spectrometry CO Carbon monoxide CO2 Carbon dioxide CONTRAST CONvective TRansport of Active Species in the Tropics CRDS Cavity Ring Down Spectrometer CU University of Colorado dSCD Differential Slant Column Denisty DOAS Differential Optical Absorption Spectroscopy EA Elevation Angle FT Free Troposphere FWHM Full width half maximum GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H2O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	СНОСНО	Glyoxal		
CO Carbon monoxide CO2 Carbon dioxide CONTRAST CONvective TRansport of Active Species in the Tropics CRDS Cavity Ring Down Spectrometer CU University of Colorado dSCD Differential Slant Column Denisty DOAS Differential Optical Absorption Spectroscopy EA Elevation Angle FT Free Troposphere FWHM Full width half maximum GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H2O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	CI	Confidence Interval		
CO2 Carbon dioxide CONTRAST CONvective TRansport of Active Species in the Tropics CRDS Cavity Ring Down Spectrometer CU University of Colorado dSCD Differential Slant Column Denisty DOAS Differential Optical Absorption Spectroscopy EA Elevation Angle FT Free Troposphere FWHM Full width half maximum GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	CIMS	Chemical Ionization Mass Spectrometry		
CONTRAST CONVective TRansport of Active Species in the Tropics CRDS Cavity Ring Down Spectrometer CU University of Colorado dSCD Differential Slant Column Denisty DOAS Differential Optical Absorption Spectroscopy EA Elevation Angle FT Free Troposphere FWHM Full width half maximum GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H;O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	СО	Carbon monoxide		
CRDS Cavity Ring Down Spectrometer CU University of Colorado dSCD Differential Slant Column Denisty DOAS Differential Optical Absorption Spectroscopy EA Elevation Angle FT Free Troposphere FWHM Full width half maximum GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	CO_2	Carbon dioxide		
CU University of Colorado dSCD Differential Slant Column Denisty DOAS Differential Optical Absorption Spectroscopy EA Elevation Angle FT Free Troposphere FWHM Full width half maximum GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	CONTRAST	CONvective TRansport of Active Species in the Tropics		
dSCD Differential Slant Column Denisty DOAS Differential Optical Absorption Spectroscopy EA Elevation Angle FT Free Troposphere FWHM Full width half maximum GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	CRDS	Cavity Ring Down Spectrometer		
DOAS Differential Optical Absorption Spectroscopy EA Elevation Angle FT Free Troposphere FWHM Full width half maximum GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	CU	University of Colorado		
EA Elevation Angle FT Free Troposphere FWHM Full width half maximum GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	dSCD	Differential Slant Column Denisty		
FT Free Troposphere FWHM Full width half maximum GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	DOAS	Differential Optical Absorption Spectroscopy		
FWHM Full width half maximum GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	EA	Elevation Angle		
GC-MS Gas Chromatograph - Mass Spectrometer GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	FT	Free Troposphere		
GEOS CCM Goddard Earth Observing System with Chemistry-Climate Model GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	FWHM	Full width half maximum		
GEOS-Chem Goddard Earth Observing System with Chemistry model GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	GC-MS	Gas Chromatograph - Mass Spectrometer		
GEOS-FP Goddard Earth Observing System Forward-Processing data products GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	GEOS CCM	Goddard Earth Observing System with Chemistry-Climate Model		
GMAO Global Modelling and Assimilation Office GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	GEOS-Chem	Goddard Earth Observing System with Chemistry model		
GT Georgia Institute of Technology GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	GEOS-FP	Goddard Earth Observing System Forward-Processing data products		
GV NCAR/NSF Gulfstream V aircraft (synonym for HIAPER) H ₂ O Water HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	GMAO	Global Modelling and Assimilation Office		
HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	GT	Georgia Institute of Technology		
HARP HIAPER Atmospheric Radiation Package HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	GV	NCAR/NSF Gulfstream V aircraft (synonym for HIAPER)		
HAIS Hyper Aircraft Instrumentation Solicitation HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	H ₂ O	Water		
HBr Hydrogen bromide, hydrobromic acid HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	HARP	HIAPER Atmospheric Radiation Package		
HCR Heterogeneous Chemical Regimes HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	HAIS	Hyper Aircraft Instrumentation Solicitation		
HCHO Formaldehyde HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	HBr	Hydrogen bromide, hydrobromic acid		
HEFT-10 HAIS Experimental Flight Test 2010 HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	HCR	Heterogeneous Chemical Regimes		
HIAPER High-Performance Instrumental Airborne Platform for Environmental Research (synonym for NSF/NCAR GV)	НСНО	Formaldehyde		
NSF/NCAR GV)	HEFT-10	HAIS Experimental Flight Test 2010		
	HIAPER	High-Performance Instrumental Airborne Platform for Environmental Research (synonym for		
HSRL High Spectral Resolution Lidar		NSF/NCAR GV)		
	HSRL	High Spectral Resolution Lidar		
HOBr Hypobromous acid	HOBr	Hypobromous acid		
HO ₂ Hydroperoxy radical	HO ₂	Hydroperoxy radical		
HO _x Hydrogen oxide radicals (= OH + HO ₂)	HO _x	Hydrogen oxide radicals (= OH + HO ₂)		
IBr Iodine bromide	IBr	Iodine bromide		
ISAF In Situ Airborne Formaldehyde	ISAF	In Situ Airborne Formaldehyde		

IO	Iodine monoxide			
J	Photolysis rate			
k	Reaction rate			
LLS	Longer Lived Species (of organohalogens)			
LS	Lower Stratosphere			
MAX-DOAS	Multi AXis - DOAS			
MBL	Marine Boundary Layer			
MU	Manchester University			
NASA	National Aeronautics and Space Administration			
NCAR	National Center for Atmospheric Research			
NIR	Near infrared			
NSF	National Science Foundation (USA)			
NO	Nitrogen monoxide			
NO ₂	Nitrogen dioxide			
NO _x	Active nitrogen oxides (= NO + NO ₂)			
O_3	Ozone			
O_4	Oxygen collision pair (O ₂ -O ₂)			
ОН	Hydroxy radical			
OVOC	Oxygenated Volatile Organic Compound			
PGI	Product Gas Injection (of organohalogens)			
PMT	Photon Multiplier Tube			
ppb	Parts per billion (nmol mol ⁻¹)			
ppm	Parts per million (μmol mol ⁻¹)			
ppt	Parts per trillion (pmol mol ⁻¹)			
QDOAS	DOAS analysis software			
RF	Research flight			
RTM	Radiative Transfer Model			
SA	Surface Area			
SCD	Slant Column Density			
SGI	Source Gas Injection (of organohalogens)			
SSA	Sea-Salt Aerosol			
SZA	Solar Zenith Angle			
TL	Transition Layer			
TOGA	Trace Organic Gas Analyzer			
TTL	Tropical Tropopause Layer			
TTL-LMS	Tropical Tropopause Layer – LowerMost Stratosphere			

tWPO	tropical Western Pacific Ocean			
UHSAS	Ultra-High Sensitivity Aerosol Spectrometer			
UTC	Coordinated Universal Time			
UTLS	Uppper Troposphere - Lower Stratosphere			
VCD	Vertical Column Density			
VCSEL	Vertical Cavity Surface Emitting Laser			
VSLS	Very Short Lived Species (of organohalogens)			
VMR	Volumn Mixing Ratio			
VUV	Vacuum Ultra-Violet			
WS-CRDS	Wavelength-Scanned CRDS			
γ	Surface reaction/uptake probability			
θ	Potential temperatue			
λ	Wavelength			

5

6

Jet Cross Case Studies Description

- Results from two jet cross flights are included in this work, the flight tracks are shown in Fig. 1. The jet location as
- 8 crossed in RF15 is also shown. The location of the jet during RF06 is not fully corroborated by measurements as in
- 9 RF15, but was forecast to be very near the northernmost point of RF06 at 32°N.
- The atmospheric context of RF06 is shown in Fig. S5. The data included for modeling starts at 01:16 UTC on 25
- January, when the aircraft was at 23.65°N, 148.41°E, and 13.1km altitude. The flight path was NNW almost level at
- 12 13.2 km altitude, with small stepwise ascents in the latter portion of the flight. Figure S5 shows that horizontal wind
- increased as the aircraft approached the subtropical jet stream. At 01:35 UTC the aircraft crossed from the convective
- TTL to the aged TTL, changes in CO and θ corroborate those in O₃ and H₂O. The aircraft entered the jet at 13.2 km
- and 28.42°N, horizontal wind peaked just below 70 m s⁻¹. At 02:18 UTC, 32.12°N, 149.90°E, and 13.3 km the GV
- 16 reversed course, heading SSW continuing to climb. Between 03:20 and 04:00 UTC the aircraft flew at a consistent
- 17 altitude between 14.3 km and 14.4 km, traveling through the convective TTL transition. The remainder of the flight
- from 04:00 to 04:56 UTC sampled the more typical convective TTL, including instances of convection.
- 19 Figure 3 shows a number of atmospheric tracers for RF15. The data included for modeling start at 00:26Z on 25
- February, when the aircraft was at 24.01°N, 145.14°E, and 13.1 km altitude. The aircraft traveled almost due north,
- 21 with occasional climbs as geopotential altitude gradually decreased. The tropospheric approach of the jet was similar
- 22 to RF06. The GV transitioned from the convective TTL to the aged TTL at 01:01 UTC, and the jet was first
- 23 encountered at 01:12 UTC, reaching peak windspeed near 80 m s⁻¹. A second component of the jet with the slower
- 24 windspeed (~65 m s⁻¹) was similar to the most stratospheric of the air masses encountered during RF 06: i.e., 100 ppb
- $< O_3 < 200$ ppb, and $H_2O/O_3 \sim 0.02$ ppm/ppb, characteristic of the TTL. At 01:35 UTC, 32.92°N and 12.9 km, O_3
- 26 increased sharply indicating the transition into the stratosphere, and windspeed decreased as the GV crossed into the

27 middleworld LS. Although not shown on Fig. 4, this transition was marked the first time CFC-11 deviated consistently 28 from tropospheric values, indicating long residence at high altitude with photochemical processing of the sampled air 29 masses. At 02:25 UTC the aircraft encountered a second rapid O₃ gradient, traveled to the maximum flight latitude of 30 40.13°N, climbed from 12.6 to 12.9 km, reversed course to due south, and transitioned from the middleworld to the 31 overworld at 02:32 UTC. At 03:26 UTC at 13.5 km and 33.14°N the GV crossed from the overworld back to the aged 32 TTL, skipping the LS middleworld. Nothing analogous to the convective TTL "transition" in RF06 was encountered 33 during RF15. Instead there was a smooth change from the aged TTL to the convective TTL at 4:21 UTC. Instances of 34 convection were first encountered at 04:38 UTC.

Gas Phase Measurements Used to Constrain the Box Model

in altitude, for level flight they were interpolated in time.

35

46

- The measurements used to constrain the box model to infer Br_y from BrO are summarized in Table 1. The handling of AMAX-DOAS data is described in detail in the main text (Sect. 2.1). Other data were used in the following manner with specific exceptions outlined here after. Where data were below detection limit the nominal value of ½ the detection limit was used. With the exception of NO₂ discussed below no parameter impacted Br_y partitioning significantly at the relevant level when near its respective detection limit. Where data was quality flagged it was interpolated across.
- High frequency data ~1 Hz, namely Chemiluminescence (NO, NO₂, and O₃), HARP photolyses, ISAF HCHO, PICARRO CH₄, UHSAS aerosols, Aerolaser VUV fluorescence CO, and state parameters were averaged over the relevant interval. For profiles this was at the 500 m of flight altitude, for level flight relevant periods of ~ 5 minutes. Lower frequency data, namely AWAS and TOGA were interpolated to the mean; for level flight they were interpolated
- 47 Early research flights including the profile case studies had incomplete data coverage. In particular, AWAS data were 48 not available for RF03 and RF04; PICARRO and Aerolaser VUV fluorescence for RF03; and ISAF for a portion of 49 RF04. For AWAS measurements with the exception of ethane TOGA measurements were available which were 50 substituted. For ethane, AWAS ethane was compared to Picarro methane for tropical profiles from RF05, RF06, and RF07 to obtain an average ratio of ethane: methane of 1.59×10^{-4} :1. This ratio was used to obtain an ethane 51 52 concentration from the methane concentration for RF03 and RF04. For RF03 where CO and CH4 were not available 53 the mean profiles for each species from GEOS-Chem were used. For the portion of RF04 where ISAF HCHO is not 54 available, TOGA HCHO is substituted.
- 55 AWAS and TOGA measure some of the same species used in the box model (propane, isobutane, n-butane, and 56 benzene). AWAS data were used for these species for level flight data, where detection limits give more complete 57 coverage in stratospheric air; while TOGA data were used for the profile case studies, where it has a higher frequency 58 and more consistent coverage, further AWAS data is unavailable for RF03 and RF04. The agreement between TOGA 59 and AWAS differs among the species measured, but very rarely exceeds their respective reported errors. CFC-11 and 60 bromocarbon measurements were examined to further understand differences, corroborating the level of agreement 61 for hydrocarbons. The species used in the box model (propane, isobutane, n-butane, and benzene) impact Br_v 62 partitioning via alkylperoxy radicals which do not impact sufficiently by differences to have a significant impact.

- 63 NO₂ can have a significant impact on Br_v partitioning, not only via direct reaction but indirectly through impacts on HO_x. At high altitude, some Chemiluminescence measurements of NO₂ were less than zero. These data were averaged 64 65 with GEOS-Chem NO₂ in order to have a physically meaningful value but remain generally consistent with the 66 observations of NO₂ below the levels elsewhere. Further for the RF15 case study, the Leighton ratio deviates 67 significantly from model predictions, and AMAX-DOAS NO₂ was used to constrain the box model for this flight (Fig. 68 S1). In the TTL, despite different measurement principles, AMAX-DOAS and Chemiluminescence NO2 were roughly 69 consistent and generally elevated relative to box models and global model predictions. In the stratosphere high ambient 70 O₃ may impact Chemiluminescence measurements of NO₂, which deviated further from model predictions. AMAX-
- 71 DOAS NO₂, however, while elevated relative to box models, is roughly consistent with CAM-Chem.

Gas Phase Measurement Techniques

72

73

86

96

Advanced Whole Air Sampler (AWAS)

- 74 The Advanced Whole Air Sampler (AWAS) consists of modules of 12 custom stainless-steel 1.3 L sampling canisters.
- 75 Typically five modules (60 canisters) were collected in a flight, sampling was determined by an inflight operator.
- 76 Sample flow was altitude dependent and varied between 5 slpm and 30 slpm. These samples can then be analyzed for
- a wide variety of hydrocarbons, halocarbons, organonitrates, and other species.
- 78 Samples are analyzed on the ground after flight using a Markes Canister Interface 5 (CIA) and a Unity II system
- 79 connected to an Agilent 5975 GC/MSD. Samples were dried and pre-concentrated on Markes Ozone Precursor Trap
- 80 (Markes UT17O3P-2S). Samples of 800 scc are thermally desorbed at 300 °C and split between two GC, 1) a 30 m x
- 81 0.25 mm x 5 micron Alumina 10 PLOT column (HP-AL/S, Agilent Technologies) followed by a 1 m GasPro with a
- 82 flame ionization detector, and 2) a 20 m x 0.2 mm x 1.12 μm DB-624 column (128-1324, Agilent Technologies) to
- 83 both an electron capture detector and the MSD. Further details on sampling and analysis can be found in Andrews et
- 84 al. (2016) and Navarro et al. (2015). Calibration was done every five samples against a cryogenically collected
- standard which in turn is calibrated by a procedure described in Schauffler et al. (1999).

Chemical Ionization Mass Spectrometer (CIMS)

- 87 The Georgia Tech CIMS (GT CIMS) measured gas phase bromine species (BrO, and HOBr +Br₂), it is more fully 88 described in Chen et al. (2016). In brief the instrument sampled air from outside the GV through a Teflon tube, ionized 89 by water-iodide clusters in a flow tube, ions are further processed in a collisional dissociation chamber (CDC), guided 90 by an octopole field, and then analyzed on a mass spectrometer. Air was sampled at 5.2 standard litres per minute 91 (sLpm). HOBr is known to process to Br₂ on the inlet and the sum of the detected signals is used as a result. Up to 1.7 92 sLpm of this was sampled off the line by an automatic variable orifice with the remainder exhausted to maintain a 93 constant 50 Torr pressure in the flow tube. CH₃I at a few ppm in 2.9 sLpm N₂ buffer gas was flowed over a ²¹⁰Po 94 source to generate iodide and then mixed with 0.1 sLpm humidified N₂ to provide hydrated iodide ions in the flow 95 tube. Gas phase bromine species reacted with these to form clusters. Water was removed from the clusters by the
 - 6

electric field in the CDC which in addition has a vacuum maintained independent of the flow tube. The core ions,

- 97 dehydrated iodide-analyte clusters, were then guided by the octopole then selected and detected on the quadrapole.
- The consistency of detected signals from the bromine isotopes ⁷⁹Br and ⁸¹Br was used as a data quality check.

Chemiluminescence

99

106

- 100 Two instruments measure the trace gasses NO, NO₂, and O₃ using chemiluminescence of the NO+O₃ reaction. The
- first is a two channel detector for NO and NO₂. Air sampled from outside the aircraft is split onto the channels. On
- the NO₂ channel, UV light at 395 nm is used to photolyse NO₂ to NO. Both channels are then reacted with O₃ from
- 103 two ozonizers, PMT detectors measure the emission of the NO₂* product at 600 nm 2800 nm. NO in N₂ is used as a
- 104 calibration gas. The Fast-O₃ detects O₃ using a similar system. Ambiently sampled O₃ is reacted with reagent grade
- (> 99%) NO, and the same product is detected using a PMT.

In Situ Airborne Formaldehyde (ISAF)

- The In Situ Airborne Formaldehyde (ISAF) instrument utilizes laser induced fluorescence (LIF) at 353.16 nm to
- 108 selectively measure formaldehyde in air collected off an inlet. A pulsed tunable fiber laser is rapidly tuned on and off
- of the rotational resonance feature which minimizes interference and serves as a real time monitoring of background.
- 110 The resulting fluorescence is monitored by a PMT. The instrument was calibrated by standard addition of
- formaldehyde before and after the campaign. A more complete description of ISAF is available in Cazorla et al.
- 112 (2015).

113

119

Piccaro CO₂/CH₄ Flight Analyzer

- The Piccaro G1301-c Methane/Carbon Dioxide Analyzer utilizes Wavelength-Scanned Cavity Ring Down
- 115 Spectroscopy (WS-CRDS) driven by an NIR laser. Gas sampled from outside the aircraft is circulated through a cavity
- with an effective path length of 20km. The instrument has been ruggedized for aircraft operation and utilizes a
- patented, high-precision wavelength monitor to minimize interference from other trace gasses. Only methane is used
- in the box model.

Trace Organic Gas Analyzer (TOGA)

- 120 TOGA consists of a custom GC-MS system which measures a variety of species including hydrocarbons, halocarbons,
- and non-acid oxygenated volatile organic compound (OVOC). Samples are collected off the main inlet line at 15 ml
- per minute for 35 seconds through a series of three cold traps, then run on a custom GC with a Restek MXT-624
- column. Effluent from the GC is analyzed on an Agilent Technologies 5973N quadrupole mass spectrometer system
- 124 ruggedized for aircraft use by substitution of the vacuum pump with a Varian Model V301 NAV. Total time to process
- a single sample is 2.0 minutes. Further details on TOGA can be found in Andrews et al. (2016) and Apel et al. (2003,
- 126 2010, and 2015).

VUV Carbon Monoxide

127

131

141

147

148

149

150151

152

153

154

155

156

157

158

159

- 128 The VUV carbon monoxide instrument generates vacuum UV light through RF plasma discharge, this is bandpass
- filtered (8 nm FWHM) around 150 nm to excite CO fluorescence while minimizing interference from water.
- 130 Fluorescence is monitored by PMT. A more complete description of the instrument is available in Gerbig et al. (1999).

Particle Measurements

132 **2D-C Hydrometeor Probe (2D-C)**

- 133 The 2D-C Hydrometeor Probe is customized through installation on high speed electronics and installation of a 64
 134 element photodiode array from a product originally produced by Particle Measuring Systems Inc. An open path
 135 between two arms perpendicular to flight is illuminated and images of individual particles are imaged on the 64
 136 element array. Particles with diameters between 62.5 μm and 1587.5 μm are detected, though the depth of field limits
 137 sensitivity to smaller particles. Furthermore, the arms are known to shatter larger particles, though they have been
 138 designed to minimize this effect. 2D-C images were not directly referenced, rather, a processed data product
 139 classifying particles into 60 size bins was used an indication of cirrus clouds. Calculations of cirrus ice surface area
- were used to inform box model sensitivity studies as discussed in Section 2.3.1.

Cloud Droplet Probe (CDP)

- The Cloud Droplet Probe (CDP) manufactured by Droplet Measurement Technologies, Inc. utilizes forward scattering to detect particles in the range of 2 μm to 50 μm in size. A diode laser is run across an open path perpendicular to
- flight. Particles which pass through the depth of field in the open path are counted and sized into one of 30 bins in the
- size range. A more complete description of the CDP is available in Lance et al. (2010). CDP data was referenced and
- utilized in sensitivity studies but not ultimately utilized in the box model. This is discussed in Section 2.3.1.

Ultra-High Sensitivity Aerosol Spectrometer (UHSAS)

The wing-mounted Ultra-High Sensitivity Aerosol Spectrometer utilizes a laser at 1054 nm to optically detect particles along the GV flight path. The instrument is sensitive to particles in the 0.060 µm to 1.0 µm diameter range and records particles into 99 roughly logarithmic size bins covering this size range. During CONTRAST, however, frequent noise necessitated discarding the smallest twelve bins, making 0.084 nm the effective lower bound of the probe. A more complete description of a ground-based version of the UHSAS may be found in Cai et al. (2008). UHSAS data were used in the box model for all flights to compute aerosol surface area for heterogeneous reactions. Furthermore, sensitivity studies were conducted increasing diameter by a factor of two based on the results of a previous optical closure study (Volkamer et al., 2015); this is further illustrated for the RF03 profile in Fig. S3. Increasing particle size by a factor of two leads to general agreement between AMAX-DOAS retrieved extinction using O₄ and extinction computed from UHSAS using Mie theory above ~3 km. In the boundary layer even increasing particle size and including supermicron particles from the CDP still yields sub-Rayleigh scattering at 360 nm, significantly below the extinction measured by AMAX-DOAS.

Meteorological Parameters

HIAPER Airborne Radiation Package (HARP)

The HIAPER Airborne Radiation Package (HARP) includes CCD spectroradiometers, and irradiance detectors measuring upwelling and downwelling radiation. Detectors are mounted on an actively motion stabilized platform to maintain horizontal stability despite aircraft deviations of up to 5 degrees. Data from the spectroradiometers was used in this work. These measure actinic flux in the range of 280 nm to 680 nm. These are then processed using a modified version of the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to generate photolysis frequencies for a wide variety of species including O₃, NO_y species, small aldehydes and ketones, organonitrates, Br_y species, and Cl_y species. These were used for all photolysis reactions used in the box model. Further details on HARP can be found in Pilewskie et al. (2003) and Shetter and Müller (1999).

Vertical Cavity Surface Emitting Laser (VCSEL) hygrometer

The Vertical Cavity Surface Emitting Laser (VCSEL) a tunable NIR laser based hygrometer measuring absolute water concentration. The instrument achieves a high dynamic range by monitoring two different water absorptions at two similar wavelengths, a 'strong' absorption at 1854.03 nm and a 'weak' one at 1853.37 nm. The cavity has a physical extent of 14.95 cm which is passed 25 times for a path length of 3.74 m. Measurement is typically done by second harmonic detection except in the mid-troposphere where the second harmonic of the strong band is nonlinear and direct absorption is used. Further information on VCSEL is available in Zondlo et al. (2010).

GV State Parameters

The National Science Foundation/National Center for Atmospheric Research Gulfstream V (NSF/NCAR GV) aircraft records a wide variety of state parameters. Some of these such as temperature and pressure were utilized in the box model. Others such as θ and horizontal wind speed were used as context for model results. Finally, in order to match the spatial scale probed by in situ sensors and remote sensors, the median photon sampled by the AMAX-DOAS was calculated by radiative transfer, and the in situ data were averaged, and shifted in time to match DOAS sampled air volumes. For the horizontal case studies – RF06 and RF15 – the lateral wind speed was strong, such that the aircraft heading and the measurement vector are offset by approximately 5°. No further corrections were made to attempt account for this perpendicular offset. However, the air masses probed remotely are blown towards the aircraft, and the time delay at which the in situ data were averaged partially account for this offset.

Supplemental Tables and Figures

188

190

189 Table S1: Parameters input and output for optimal estimation.

Parameter	RF03	RF04	RF07		
p, T, H ₂ O, NO ₂ , O ₃ , O ₄	in situ data where available, model above flight altitude				
Aerosol Properties					
AOD (360 nm)	0.304	0.272	0.231		
g-parameter	0.77 (0-2.4 km), 0.72 (2.4-6.0 km), 0.7 (>6.0 km)				
Single Scattering Albedo	0.98				
Surface Albedo	0.05				
Inversion Properties					
ab initio profile 1.0 ppt constant tropospheric mixing ratio					
ab initio error	2,000%	10,000%	10,000%		
Inversion Grid	500 m (aerosol at 200 m resolution)				
Degrees of Freedom	18.2	17.2	26.9		
Mean Averaging Kernel	0.728	0.953	0.962		

Table S2: Comparisons of partial and total tropospheric HBr VCDs predicted by different models.

Altitude	HBr VCD ×10 ¹²	HBr VCD (GEOS-	HBr VCD (GEOS-	HBr VCD (CAM-
	(box-model -case 1)	Chem no SSA	Chem w/ SSA	chem)
		source)	source)	
MBL	0.0 (0.0, 0.0)	0.1 (0.0, 0.8)	5.2 (0.8, 9.0)	0.8 (0.4, 2.9)
TL	0.0 (0.0, 0.0)	3.1 (1.5, 5.4)	18.9 (9.3, 28.4)	3.1 (1.1, 6.5)
Lower FT	0.0 (0.0, 0.1)	6.2 (3.7, 9.2)	14.6 (7.6, 27.3)	9.0 (3.9, 17.0)
Mid FT	0.3 (0.1, 0.8)	1.5 (0.9, 2.6)	2.3 (1.0, 4.4)	2.7 (0.7, 5.2)
Upper FT	2.7 (2.1, 5.2)	2.2 (1.6, 2.7)	3.4 (2.6, 4.1)	1.0 (0.0, 1.7)
TTL	0.1 (0.0, 0.8)	1.0 (0.6, 1.3)	1.5 (0.9, 1.9)	0.3 (0.0, 0.9)
Troposphere	3.2 (2.1, 6.8)	14.1 (8.3, 22.0)	46.0 (22.2, 75.2)	17.0 (6.2, 34.3)

Values in parentheses are the 1st and 3rd quartile. Global models have much more HBr, especially in the lower atmosphere. This is likely related to the handling of HBr uptake as discussed in the text. The global models also show an HBr minimum in the upper FT and TTL, which is the box model maximum.

Table S3: Summary of BrO and Bry over the tWPO.

196

Region	BrO ppt	Br _y ppt			
		case 0	case 1	case 2	case 3
MBL	1.7 (0.2, 1.0, 3.8, 4.4)	13.8 (2.0, 5.5, 30.2, 35.0)	13.8 (2.0, 5.5, 30.2, 35.0)	13.8 (2.0, 5.5, 30.2, 35.0)	13.8 (2.0, 5.5, 30.2, 35.0)
TL	1.2 (0.3, 0.6, 1.3, 1.8)	5.8 (1.9, 3.4, 8.7, 12.4)	5.8 (1.9, 3.4, 8.7, 12.4)	5.8 (1.9, 3.4, 8.7, 12.4)	5.8 (1.9, 3.4, 8.7, 12.4)
1FT	0.7 (-0.1, 0.4, 0.9, 1.2)	2.8 (0.9, 1.6, 5.0, 6.1)	2.8 (0.9, 1.6, 5.0, 6.1)	2.8 (0.9, 1.6, 5.0, 6.1)	2.8 (0.9, 1.6, 5.0, 6.1)
mFT	0.6 (0.1, 0.5, 1.0, 1.3)	3.6 (0.8, 1.7, 5.1, 6.0)	1.6 (0.8, 1.2, 3.5, 4.1)	1.6 (0.7, 1.2, 3.4, 3.9)	1.6 (0.7, 1.2, 3.4, 3.9)
uFT	0.6 (0.2, 0.3, 0.7, 0.8)	6.2 (2.1, 2.6, 7.6, 10.9)	2.1 (0.8, 1.5, 3.1, 6.2)	1.7 (0.5, 0.7, 2.1, 2.3)	1.7 (0.5, 0.7, 2.1, 2.3)
cTTL	0.9 (0.3, 0.5, 1.1, 1.1)	4.8 (2.9, 4.0, 6.5, 10.5)	3.3 (1.7, 2.6, 4.2, 5.3)	2.6 (1.4, 1.8, 3.1, 3.4)	2.6 (1.4, 1.8, 3.1, 3.4)
aTTL	1.2 (0.7, 0.9, 1.8, 1.9)	2.7 (1.7, 2.1, 3.6, 4.2)	2.7 (1.6, 2.0, 3.5, 4.1)	2.6 (1.6, 2.0, 3.4, 3.9)	2.6 (1.6, 2.0, 3.2, 3.7)
LS	3.1 (2.6, 2.8, 3.2, 3.3)	6.9 (5.5, 6.5, 7.5, 8.2)	6.8 (5.5, 6.4, 7.5, 8.2)	6.9 (5.5, 6.5, 7.5, 8.2)	6.0 (4.9, 5.7, 6.5, 7.0)

Values in table are reported as follows: median, (1st decile, 1st quartile, 3rd quartile, 9th decile). Air masses are classified as elsewhere, see Sects. 3.1 and 3.2.

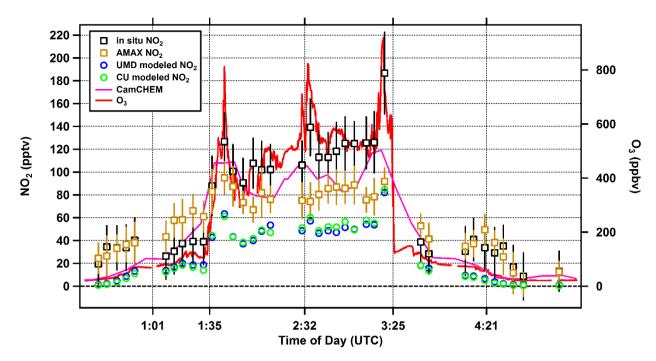


Figure S1: Comparison of NO₂ between (black) in situ NO₂, (gold) DOAS NO₂, (green) NO₂ modeled using the box model constrained by in situ measured NO, (blue) NO₂ modeled by a second box model operated at the University of Maryland, constrained by in situ measured NO. AMAX-DOAS and in-situ NO₂ agree within error bars in the troposphere. However, DOAS is systematically lower than in-situ NO₂ in the stratosphere, where high O₃ is believed to introduce a high bias to the in situ NO₂ measurements; O₃ is shown in red on the right axis. DOAS NO₂ was used to constrain the box model in this case study.

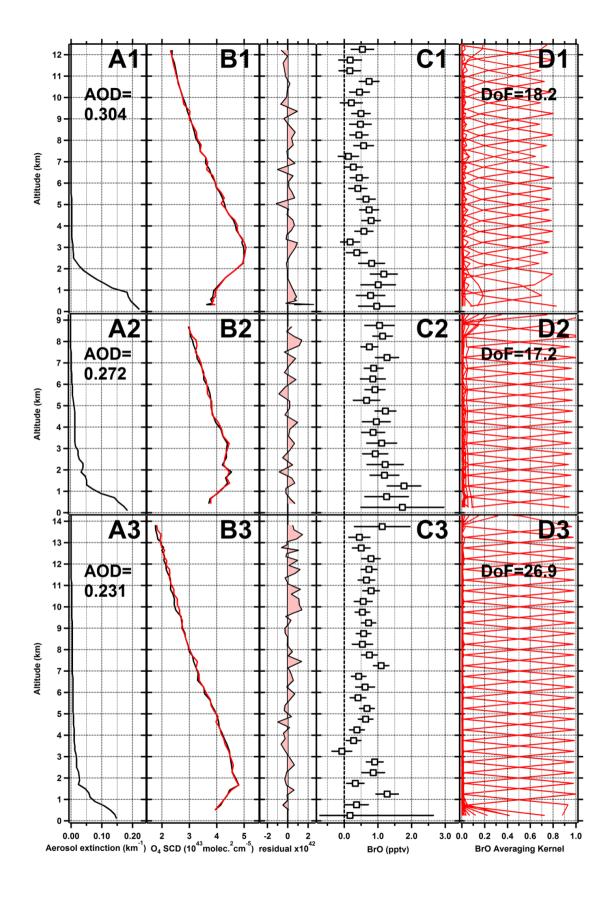


Figure S2: Optimal estimation of BrO profiles for case studies 1) RF03, 2) RF04, 3) RF07. Panels A: the retrieved aerosol extinction profile at 360 nm, the aerosol optical depth is integrated over the column retrieved assuming zero above maximum flight altitude. Panels B: left subpanel in black measured O₄ SCDs, in red modeled O₄ SCDs, right subpanel the residual (modeled-measured), individual residuals are within $\pm 2 \times 10^{42}$. Panels C: The BrO profiles retrieved by optimal estimation, error bars include fit error, and optimal estimation errors. Panels D: averaging kernels for the BrO optimal estimation. Sharp peaks near 1 indicate independent information in each altitude bin. The Degrees of Freedom (DoF) is the trace of the matrix here truncated to flight altitudes.

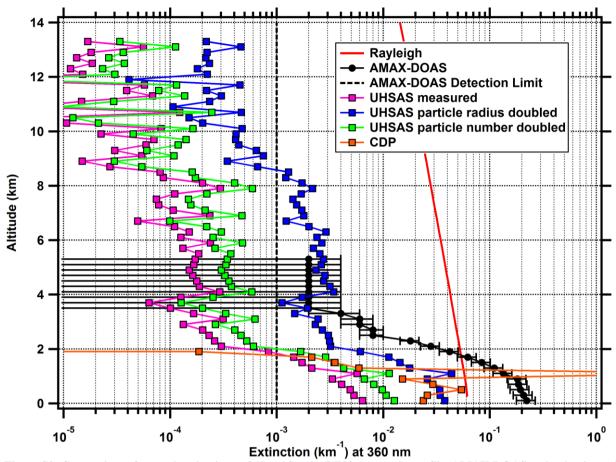


Figure S3: Comparison of aerosol extinction at 360 nm for the RF03 case study profile. AMAX-DOAS extinction is retrieved based on O4 dSCDs. Particle instrument extinctions are determined by using Mie theory with measured particle size distributions and concentrations as input. Consistent with the findings in Volkamer et al. (2015) measured size distributions do not reproduce the observed extinction and are sub-Rayleigh even in the boundary layer. Increasing particle size improves agreement.

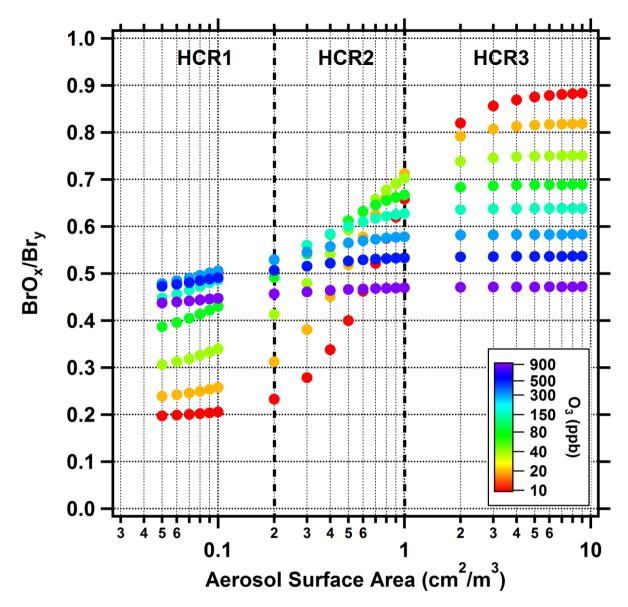


Figure S4: Sensitivity of the BrO_x/Br_y ratio to SA and O_3 , under conditions typical of the upper troposphere. (dashed vertical lines) the heterogeneous chemical regimes (HCR, see Sect. 2.3.1). The decreasing HBr fraction with increasing O_3 is visible in HCR1, and is a result of lower bromine atom concentrations (and thus HBr formation rates). HCR2 exhibits the largest sensitivity at low/moderate O_3 , typical of the upper FT (uFT) and convective TTL (cTTL). In HCR3 the ratio is largely insensitive to SA, but strongly depends on O_3 .

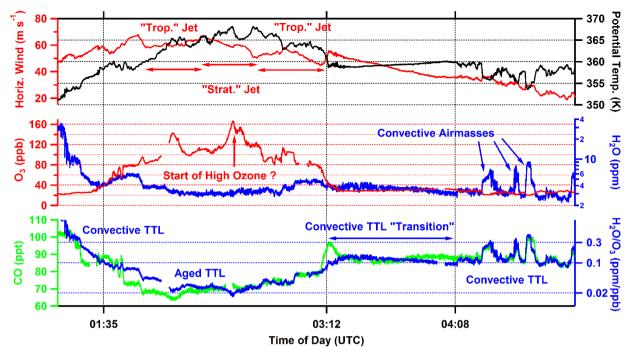


Figure S5: Same as Fig. 3 for RF06.

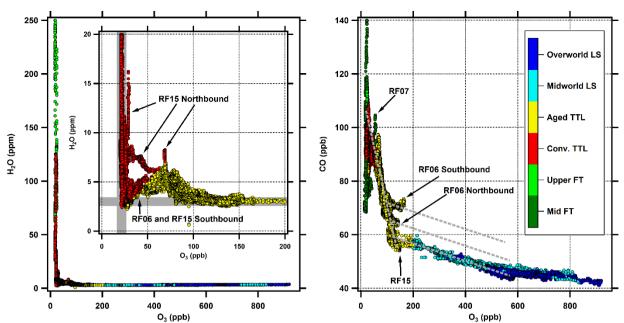


Figure S6: Air mass classification in the context of tracer-tracer classification schemes. Left panel, the scheme from Pan et al., 2014. Air masses that have neither stratospheric H₂O nor tropospheric O₃ (outside the grey regions) are in the TTL. Under such a scheme the convective TTL includes tropospheric air and the aged TTL includes stratospheric air. Right panel, the scheme from Chen et al., 2016, which defines a TTL-LMS transition where the slope between CO and O₃ is -0.4, this generally corresponds to the aged TTL in this work, but also includes portions of the convective TTL and a low altitude filament from RF07. Some aged TTL air masses fall on parallel lines with a CO/O₃ slope of -0.03 consistent with the stratosphere in the Chen et al. scheme.

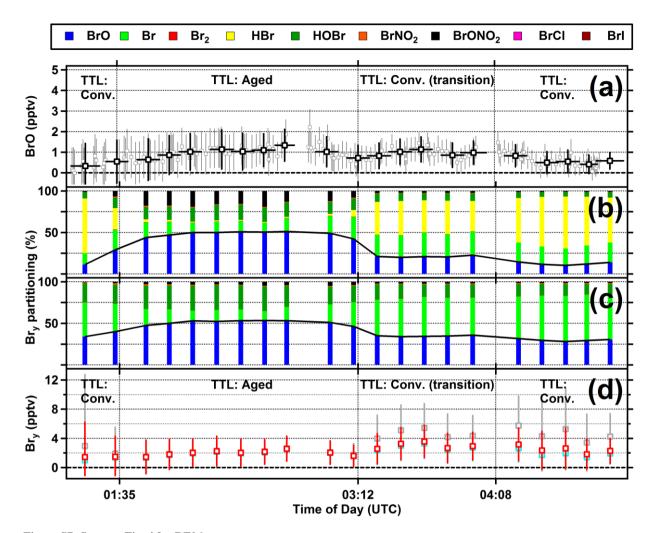


Figure S7: Same as Fig. 4 for RF06.

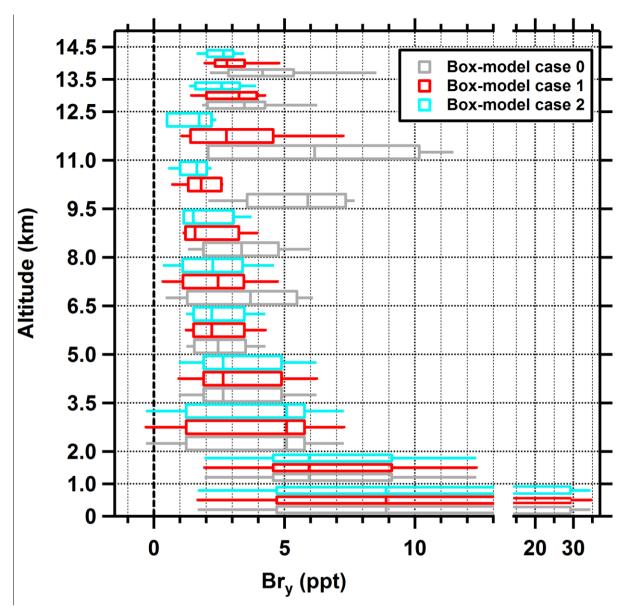


Figure S8: Comparison of modeled Br_y for different box model cases: (grey) case 0, (red) case 1, and (cyan) case 2. Boxes indicate the 25^{th} and 75^{th} percentiles and whiskers indicate the 10^{th} and 90^{th} percentiles. All statistics are computed across the altitudes indicated by the horizontal dashes. The different cases are offset vertically in each box for better visualization.

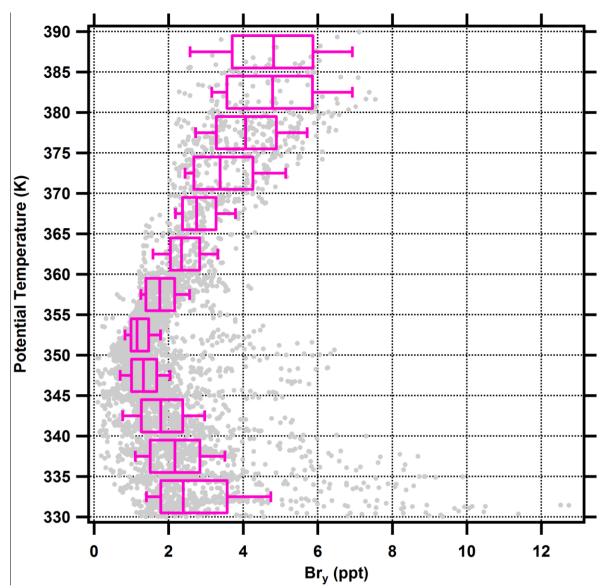


Figure S9: Bry from CAM-chem for the flights discussed in this work. Grey points in background are individual data points from the extraction, red boxes represent medians, 25^{th} and 75^{th} percentiles, whiskers indicate 10^{th} and 90^{th} percentiles. Consistent with the observations, a Bry minimum is found in the UTLS, though unlike the observations, at lower θ . CAM-chem has a median (quartile range) of 1,2 (1.0, 1.5) ppt Bry near 350-355 K, and 2.3 (2.0, 2.8) ppt for 360-365 K. The median and quartile range are consistent with the observed Bry minimum for 360-365 K, but less Bry is predicted at lower θ .

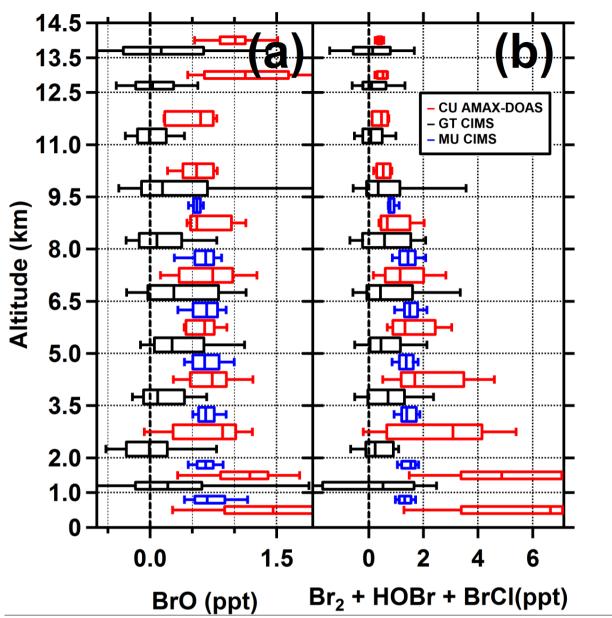


Figure S10: Comparison of bromine measurements by the CU Boulder AMAX-DOAS (blue), Georgia Tech CIMS (Chen et al., 2016) (black) aboard the NSF/NCAR GV during CONTRAST, and the Manchester University CIMS (Le Breton et al., 2017) (red) aboard the FAAM aircraft during CAST. Data are presented as box and whisker plots, where boxes show the interquartile range and median, and whiskers show the 10th and 90th percentile. (a) BrO measurements. Data for the CONTRAST instruments are filtered to exclude stratospheric data (using the LS definition described in the main text). (b) Other Br_y species. Manchester reports Br₂, HOBr, and BrCl separately, these are added and statistics gathered on the resulting sum. Georgia Tech reports a single value for the sum of Br₂ and HOBr. AMAX-DOAS values are inferred using the box model (case 1), and taken as the sum Br₂+HOBr (the model was run with zero chlorine and hence zero BrCl).