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Abstract.

Atmospheric moisture-related information estimated from Global Navigation Satellite System (GNSS) ground-based re-

ceiver stations by the Nordic GNSS Analysis Centre (NGAA) have been used within a state-of-the-art km-scale numerical

weather prediction system. Different processing techniques have been implemented to derive the the moisture-related GNSS

information in the form of Zenith Total Delays (ZTD) and these are described and compared. In addition full scale data assimi-

lation and modelling experiments have been carried out to investigate the impact of utilizing moisture-related GNSS data from

the NGAA processing centre on a numerical weather prediction NWP model initial state and on the following forecast quality.

The sensitivity of results to aspects of the data processing, station density, bias-correction and data assimilation have been

investigated. Results show a benefit on forecast quality of using GNSS ZTD as an additional observation type. The results also

show a sensitivity to thinning distance applied for GNSS ZTD observations but not to modifications to the number of predictors

used in the variational bias correction applied. In addition, it is demonstrated that the assimilation of GNSS ZTD can benefit

from more general data assimilation enhancements and that there is an interaction of GNSS ZTD with other types of observa-

tions used in the data assimilation. Future plans include further investigation of optimal thinning distances and application of

more advanced data assimilation techniques.

1 Introduction

Data assimilation in Numerical Weather Prediction (NWP) optimally blends observations with an atmospheric model in order

to obtain the spatial distribution of atmospheric variables and to produce the best possible model initial state. It was early

realized that the forecast quality is strongly dependent on an accurate description of the initial state (Lorenz, 1965). There are

strong requirements on the infrastructure and computing power for today’s state-of-the-art high resolution modelling systems.

As model resolutions increase it is increasingly important to utilize observations with high spatial and temporal resolution to

initialize mesoscale phenomena, such as convective storms and sea breezes.

The meteorological weather services of Sweden, Norway and Finland recently joined forces around a common operational

km-scale forecasting system named MetCoOp (Muller et al., 2017). The forecast model used within MetCoOp is developed in

the framework of the shared Aire Limitée Adaptation dynamique Developpement InterNational (ALADIN)- High Resolution
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Limited Area Model (HIRLAM) NWP system. This system can be run with different configurations and in MetCoOp the

HIRLAM-ALADIN Regional Meso-scale Operational NWP In the Europe Application of Research to Operations at Mesoscale

(HARMONIE-AROME) is used (Bengtsson et al., 2017). The main components of the ALADIN-HIRLAM NWP system are

surface data assimilation, upper-air data assimilation and the forecast model for the forward time integration.

The only direct humidity measurements used in the MetCoOp upper-air analysis are provided by vertical profile measure-

ments from radiosondes. In addition, humidity-related information is provided by radar measurements (Ridal and Dahlbom,

2017), by satellite-based information and by moisture-related observations from the Global Navigation Satellite System (GNSS)

Zenith Total Delay (ZTD). Satellite observations are coupled to the moisture through the dependence of the radiative trans-

fer at the top of the atmosphere on the atmospheric moisture distribution. The disadvantage of all of these humidity-related

observation types, except GNSS ZTD, is that they are only available at particular times of the day (radiosonde and satellite

measurements) or their availability is dependent on weather situation (radar measurements). GNSS ZTD estimates, on the other

hand, are available at all times with a high temporal resolution (15 minutes), for all weather situations. The ZTD is in fact an

estimation, but for simplicity we hereafter refer to it as an observation. Moisture-related observations in the form of GNSS ZTD

are a relatively new source of mesoscale atmospheric humidity information. ZTD observations obtained from the network of

ground-based GNSS receivers contain horizontally dense information on the total columnar amount of water vapour (TCWV).

A number of assimilation studies have shown a positive impact of GNSS ZTD observations on NWP systems at a horizontal

model grid resolution of the order of 10 km (De Pondeca and Zou, 2001; Vedel and Huang, 2004; Cucurull et al., 2004; Poli

et al., 2007; Macpherson et al., 2008; Yan et al., 2009a, b; Boniface et al., 2009; Benjamin et al., 2010; Shoji et al., 2011;

Bennitt and Jupp, 2012; Desroziers et al., 2012). The importance of combining the GNSS data with other types of observa-

tions has been highlighted in several studies (Cucurull et al., 2004; Desroziers et al., 2012; Sánchez-Arriola and Navascués ,

2007; Sánchez-Arriola et al., 2006). Some encouraging results from assimilation of these observations at a km-scale horizon-

tal resolution have been obtained (Seity et al., 2011; de Haan, 2013; Sánchez-Arriola et al., 2016) and GNSS ZTD from 28

receiver stations are assimilated operationally in MetCoOp. These 28 receiver stations have been selected from the rather few

receiver stations over the MetCoOp domain. Often these are supersites, processed by several centres for comparison purposes.

MetCoOp operationally uses data processed by the Met Office processing centre in the United Kingdom (METO) and by the

Royal Observatory processing centre of Belgium (ROBH).

The EUMETNET GPS Water Vapour Program (E-GVAP) is a collaborative effort between the European geodetic commu-

nity and several European national meteorological institutes. The purpose of E-GVAP is to provide atmospheric water vapour

observations for use in operational meteorology. ZTD observations obtained from the E-GVAP network of ground-based GNSS

receivers contain horizontally dense information and are available with a temporal resolution of up to five minutes and there-

fore have the potential to provide humidity related data for km-scale short-range weather forecasting. To stimulate further

enhancements in the preprocessing and use of GNSS ZTD observations in NWP and nowcasting applications, in particular

when forecasting severe weather, a European COST Action (ES1206) has been ongoing between 2013 and 2017. One outcome

of the action was a recent review of the current state of the art and future prospects of the ground-based GNSS meteorology in

Europe (Guerova et al., 2016). The action resulted furthermore in revitalization of the Nordic GNSS Analysis Centre (NGAA),
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now located at Lantmäteriet in Sweden, where GNSS data are processed for a large number of receiver stations, mainly from

the Nordic countries. The dense network of GNSS ZTD observations provide an attractive source of supplementary humidity

information to the MetCoOp modelling system.

Like all other types of measurements, the GNSS ZTD observations are associated with errors that need to be properly

characterized. It has earlier been demonstrated that adaption of variational bias correction (Dee, 2005) to be used together

with GNSS ZTD data was successful for handling systematic observation errors (Sánchez-Arriola et al., 2016). The sources

of bias in the ZTD observation data with respect to the ZTD model data may be due to several reasons, such as GNSS data-

processing algorithms (use of mapping functions, formulation of hydrostatic delay, errors in the conversion of ray path to

zenith delay) and systematic errors in both the model fields and the ZTD observation operator. In particular, a low model top

will generally result in a systematically too-low model equivalent of the GNSS ZTD observations. In Sánchez-Arriola et al.

only one predictor was used in the variational bias correction. Earlier, Storto and Randriamampianina (2010) have studied the

behaviour of a non-adaptive multilinear bias correction scheme inspired by the one proposed by Harris and Kelly (2001) and

found a benefit in using more than one predictor. The question is whether an adoptive bias correction scheme like the one used

by Sánchez-Arriola et al. would also benefit from using more predictors.

Due to the measurement and processing techniques GNSS observations are very likely to have correlated errors. The dif-

ficulties of spatially and temporally correlated observation errors have generally been circumvented in data assimilation by

applying thinning of data, or through observation processing algorithms that are assumed to remove the observation error cor-

relations (Stewart et al., 2013). Methods have been developed to account for serially correlated errors (Järvinen et al., 1999)

but there is certainly room for improvement regarding spatially correlated errors, although some general research within this

area has been carried out (Lin et al., 2000; Liu and Rabier, 2002; Bormann and Bauer, 2010; Stewart et al., 2013). Some

studies have focused on GNSS ZTD observations (Kleijer, 2001; Stoew, 2004; Eresmaa and Järvinen, 2005), but the handling

of the correlated observation errors is still an active area of research.

GNSS ZTD observations processed by the NGAA centre have been used within the MetCoOp forecasting system, aiming

at improving short-range forecasts of, in particular, moisture, clouds and precipitation. Two different GNSS ZTD process-

ing techniques applied at NGAA are described, compared and evaluated. The sensitivity of the results to various aspects of

the GNSS ZTD observation handling and data assimilation is investigated. The evaluation includes both statistics based on

extended parallel experiments and on an individual case study.

The paper is organized as follows. The GNSS data processing is the topic of Section 2. In Section 3 the NWP modelling

system is described. Section 4 deals with the design of parallel data assimilation experiments and their corresponding results

are presented in Section 5. Finally, conclusions are presented in Section 6 together with some future plans.

2 GNSS data processing

Since June 2016 Lantmäteriet (Swedish Mapping, Cadastre and Land Registration Authority) became NGAA, one of the

analysis centres in E-GVAP and is in charge of the data processing for the GNSS stations in Sweden, Finland, Norway, Denmark
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and some IGS stations in order to provide near real-time (NRT) ZTDs. For a E-GVAP data processing the NRT product means

that the estimated ZTD for the previous hour needs to be ready within 45 minutes. NGAA includes in total approximately

700 stations and currently provides two NRT ZTD products (NGA1 and NGA2). The NGA1 product is obtained from the

Bernese v5.2 (Dach et al., 2007) network solution while NGA2 is given by the GIPSY/OASIS II v.6.2 (Webb and Zumberge,

1993) data processing using the Precise Point Positioning (PPP) strategy (Zumberge et al., 1997). In a network solution there

is no need for the precise clock product for the GNSS satellites due to the differential observables. However, the computing

time will be exponentially increased as the number of GNSS stations in the data processing increases while the station related

errors are correlated to each other. In a PPP processing, each time only the data from one GNSS station is processed, meaning

that station-related errors are independent from others. However, a high quality of the satellite clock product is critical for the

accuracy of a PPP data processing. More details about the two types of data processing can be found in sections 2.2 and 2.3.

2.1 Post-data processing

In order to obtain the best accuracy on the estimated hourly ZTD, the coordinates of the stations need to be fixed in NRT

data processing. The fixed coordinates are provided by a post-data processing which is carried out once per day. Due to the

latent time of the final orbit products, the post-data processing takes place for the day two weeks back (14 days). The estimated

coordinates will be averaged together with the coordinates estimated for the previous six days. The weekly averaged coordinates

will be used as the fixed coordinates for hourly NRT data processing. Although for each station the fixed coordinates are the

ones estimated for a day two weeks back, the maximum difference in the height component is less than 1 mm if no significant

movements happened at the station, e.g., an earthquake, in the previous 14 days. Such a small difference will only have an

insignificant impact (smaller than 0.3 mm) on the estimated ZTD.

In the post-data processing the acquired GPS phase-delay measurements are used to form ionospheric free linear combina-

tions (LC) that are analysed by Bernese v5.2 using a network solution to estimate station coordinates together with tropospheric

parameters. We used the final GPS orbit products provided by CODE ftp.unibe.ch and included an ocean tide loading correction

using the FES2004 model (Lyard et al., 2006). The absolute calibration of the Phase Centre Variations (PCV) for all antennas

(IGS14.atx) was implemented (Schmid et al., 2007). The tropospheric estimates are updated every two hours, while one-hour

estimates are given for the station coordinates. A 10◦ elevation cut-off angle is used and the slant delays are mapped to the

zenith using the Vienna Mapping Function 1 (VMF1) (Boehm et al., 2006).

2.2 NGA1 dataset

The NGA1 product is obtained from a Bernese hourly data processing running in near real-time and using the fixed station

coordinates. We use the ultra-rapid GPS orbit products provided by CODE ftp.unibe.ch. The ocean tide loading correction

(FES2004) and the antenna PCV absolute calibration are implemented. The tropospheric estimates are updated every 15 min-

utes and a 10◦ elevation cut-off angle is used with a Global Mapping Function (GMF) (Boehm et al., 2005). The NGA1 product

is currently under the operational status with a time delay of 45 minutes.
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2.3 NGA2 dataset

The NGA2 product is obtained from GIPSY NRT data processing where the GPS data were analysed by GIPSY-OASIS v6.2

using the PPP strategy with the fixed station coordinates. Currently we use the ultra-rapid GPS orbit and clock products pro-

vided by JPL sideshow.jpl.nasa.gov/pub/JPL_GPS_Product/Ultra. The same set-ups are used for the GIPSY data processing,

i.e., FES2004 model, antenna PCV absolute calibration, a 10◦ elevation cut-off angle, and a GMF. The tropospheric esti-

mates are updated every 5 minutes. In addition the single receiver phase ambiguity resolution is also implemented (Bertiger

et al., 2010). The NGA2 product is now under a test mode due to a longer time delay of about 1.5 hours for fetching the JPL

ultra-rapid orbit and clock products.

2.4 Comparing the datasets

Due to the long time delay in the NGA2 data the NGA1 is the dataset that is sent to E-GVAP for redistribution between member

countries. At E-GVAP it is still in test mode, but this will change to operational in the near future. At the E-GVAP website all

stations are validated against an NWP model run carried out at the Royal Netherlands Meteorological Institute (KNMI). This

comparison against the model should not be taken as a validation of truth, but it makes it possible to compare the results from

different processing centres calculating ZTD for the same stations. A number of stations around Europe have been selected

for comparison to be supersites, which are processed by all centres that are part of E-GVAP. In Figure 1 an example of such a

comparison, taken from http://egvap.dmi.dk/, is shown for the station Onsala in southern Sweden. It can be seen that NGA1

compares well with most of the other centres.

In Figure 2 the two solutions from NGAA are also assessed with respect to the ZTDs estimated by post-processing using

the IGS final satellite orbits and clock products. The data are from the receiver in Ballerup (BUDP) just outside Copenhagen.

The figure shows that the Bernese network solution (NGA1) and the GIPSY PPP solution (NGA2) have similar results with

mean differences of -0.5 mm and -0.1 mm, respectively, while the corresponding standard deviations are 4.2 mm and 4.9 mm.

Interesting to note are the increased ZTD values around 22-25 June (see Figure 3) when a major convective storm passed over

south-western Denmark and the southern part of Sweden. This will be discussed further in the case study in section 5.4.

3 The NWP modelling system

The main components of the MetCoOp ALADIN-HIRLAM NWP system are surface data assimilation, upper-air data assimi-

lation and the forecast model.

The forecast model configuration, e.g. dynamical core and physical parameterizations, are described in detail in Seity et al.

(2011) and Bengtsson et al. (2017). It has a spectral representation with a non-hydrostatic formulation. Stratiform and deep

convective clouds are explicitly represented, while for shallow convection a sub-grid parameterization is applied using the

EDMF (Eddy Diffusitivity Mass Flux) scheme. The representation of the turbulence in the planetary boundary layer is based

on a prognostic Turbulent Kinetic Energy (TKE) equation combined with a diagnostic mixing length (Cuxart et al., 2000).
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Figure 1. Example of validation of ZTD (upper panel) and integrated water vapour (lower panel) from a week in March 2017 for station

Onsala, Sweden. Statistics for different processing centres compared to a NWP run is shown in the Table. The data are taken from the

E-GVAP web-site.

Figure 2. Time series of ZTD for June 2016 for the NGA1 (blue) and NGA2 (red) solutions together with the ones obtained from post-

processing (green circles). The data are from the Ballerup (Copenhagen) station in Denmark. The x-axis shows the days in June, whereas the

y-axis shows the ZTD in mm.

The radiative transfer of the short-wave spectrum is described with six spectral bands (Fouquart and Bonnel, 1980) and the

long-wave radiation is modeled in accordance with Mlawer et al. (1997). Surface processes are modeled using SURFEX
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Figure 3. Time series of ZTD for 22nd to 24th of June 2016 for the NGA1 (blue) and NGA2 (red) solutions together with the ones obtained

from a post-processing (green circles). The data are from the Ballerup (Copenhagen) station in Denmark. The x-axis shows the days in June

while the y-axis shows the ZTD in mm.

(Masson et al., 2013). Lateral boundary conditions were provided by 6 hourly ECMWF operational forecasts with a one-hour

time resolution. In addition, a spectral large scale mixing of the background state, the 3 h HARMONIE forecast, fields with

the lateral boundary ECMWF fields was applied. In this way we hoped to benefit from the high-quality large scale information

from the ECMWF global forecasts in the regional MetCoOp data assimilation.

In the MetCoOp setup there are 750 × 960 horizontal grid-points at each of the 65 vertical levels extending up to 10 hPa,

which approximately corresponds to a height of 32 kms in the atmosphere. The horizontal grid distance is 2.5 km. The model

domain is illustrated by the black frames in Figure 4. In the surface data assimilation synop observations of temperature and

relative humidity at the vertical level of two meters were utilized. In addition sea surface temperature and sea ice concen-

tration from an oceanographic model were used. In the MetCoOp upper-air data assimilation conventional types of in-situ

measurements were used and these include radiosonde, pilot-balloon wind, SYNOP, ship, and aircraft measurements. In addi-

tion radiances from the AMSU-A, AMSU-B/MHS and IASI instruments onboard polar-orbiting satellites were used, as well

as surface winds from the Advanced Scatterometer (ASCAT) instrument. Furthermore, humidity observations from networks

of ground-based weather radars and GNSS receiver stations were used. The radar reflectivity is not directly assimilated into the

model since there is a complicated, nonlinear relation between the model variables and reflectivity. This includes parameteri-

zations of microphysical processes and non-Gaussian error distributions. Instead a vertical moisture profile is retrieved through

a one-dimensional (1D) Bayesian retrieval based on a comparison between observed and simulated reflectivities (Caumont

et al., 2010; Wattrelot et al., 2014). Observations used were obtained from the Global Telecommunications System (GTS),

the EUMETSAT Advanced Retransmission Service (EARS), the advanced weather radar network for the Baltic Sea Region

(BALTRAD) data hub and the E-GVAP retransmission service.
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The surface data assimilation uses an optimal interpolation scheme (Giard and Bazile, 2000). In the current study a 3-

dimensional variational upper-air data assimilation (3D-Var) scheme (Fischer et al., 2006) was applied within a 3 h data

assimilation cycle. The climatological background error statistics used in the current study were derived from an ensemble of

MetCoOp forecast differences obtained through downscaling of the European Centre for Medium-Range Weather Prediction

(ECMWF) Ensemble Data Assimilation (EDA)-based forecast fields. The ECMWF EDA-based forecast fields were horizon-

tally and vertically interpolated to the HARMONIE AROME 2.5 configuration geometry and used as initial conditions for

high-resolution nonhydrostatic model runs. The ECMWF EDA uses a T399 horizontal resolution and 91 vertical levels. Then

the evolved high-resolution ensemble was scaled to be consistent with the amplitude of the 3 h forecast error for HARMONIE-

AROME. The values applied correspond roughly to a GNSS ZTD background-error standard deviation. Recently ECMWF

have increased the horizontal resolution of the EDA system to T639 and demonstrated clear improvements from this change of

resolution (Holm et al., 2016). One could expect that re-derivation of the MetCoOp forecast differences utilizing the enhanced

ECMWF EDA system would lead to improved MetCoOp background error statistics and thus an improved data assimila-

tion system. We have therefore re-calculated the background error statistics utilizing the enhanced ECMWF EDA system and

carried out sensitivity experiments with the new background error statistics. Results are presented in section 5 as an exam-

ple of how GNSS ZTD data assimilation can gain from more general data assimilation improvements. The background error

statistics are specified for assimilation control variables. These are vorticity, unbalanced divergence, unbalanced temperature,

unbalanced surface pressure and unbalanced specific humidity (Derber and Bouttier, 1999; Berre, 2000). Important upper-air

data assimilation observation handling components are the modelling of observation counterparts with an observation oper-

ator, quality control, thinning, bias correction and error specification. The observation operator projects the model state onto

the GNSS ZTD observation. Since a variational framework is used, non-linear as well as the corresponding tangent-linear and

adjoint versions of the observation operator are needed. The ZTD observation operator (H), given a station location (including

altitude), calculates the model-equivalent of the GNSS ZTD by integrating the model-calculated refractivity vertically from the

station height to the model top, as described in Poli et al. (2007). In the MetCoOp system, following the ideas of Vedel et al.

(2001), we have extended the observation operator with the possibility of accounting for the contribution to the ZTD by the

part of the atmosphere above the model top. Details of the observation handling within the data assimilation with emphasis on

GNSS ZTD is given in Sánchez-Arriola et al. (2016).

The GNSS ZTD observation errors of the observations accepted for the data assimilation were assumed to have a Gaussian

error distribution with an observation error standard deviation of 12 mm. This observation error standard deviation was derived

from observation minus background and observation minus analysis departures, and it was empirically adjusted so that roughly

the same weight was given to the observation and to the background. Objective methods such as the one proposed by Desroziers

et al. (2005) could in future be tried instead to tune the observation error variance.
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There is also an additional quality control within the assimilation. The purpose of this quality control is to remove observa-

tions affected by gross errors and a central part is the background check. The observation, yi, is rejected if it does not satisfy

the following inequality:

([H(xb)]i − yi)
2/σ2

b,i > L×λ, (1)

where λ= 1+σ2
o,i/σ

2
b,i, L is the rejection limit and [H(xb)]i denotes the projection of the model state on observation i. In the

background-guess check, the background- and observation-error standard deviation were set to 10 mm and 12 mm, consistent

with the values used in 3D-Var. The rejection limit for GNSS ZTD observations in the HARMONIE system was set to 4. This

value resulted in a relatively strict background quality control of GNSS ZTD observations.

To alleviate the effects on the initial state of spatially correlated observation errors caused by for example, orographic effects,

we applied a spatial thinning of GNSS ZTD observations. The default thinning distance was on the order of 80-100 km. The

thinning distance was used when selection receiver stations so that receiver stations closer to each other than 80-100 km were

not used. This thinning distance was also rather empirically determined. The thinning is applied in the form of a static whitelist

based on studies of data availability and statistics of observation minus background equivalent statistics from a spin-up period.

Thus the thinning is static so that each data assimilation cycle of observations from the same set of GNSS ZTD receiver stations

are used. A study of the sensitivity of reducing the thinning distance can be found in section 5. A next step would be to apply

objective methods such as the one proposed by Bormann and Bauer (2010) and, instead of tuning the thinning distance, the

observation error covariance could be modelled.

Systematic errors in the GNSS ZTD data were handled by an adaptive variational bias correction (VarBC). Within VarBC

the bias was represented by coefficients for the selected predictors. These predictors were estimated within the variational

data assimilation process simultaneously as deriving the assimilation control vector for the model state while minimizing the

cost function (Dee and Uppala, 2009; Sánchez-Arriola et al., 2016). The bias correction was carried out individually for each

receiver station and in the default version only one predictor, in the form of an offset value, was used. However, there is also

the possibility of introducing more predictors, like 1000-300 hPa thickness and TCWV. The sensitivity to introducing extra

predictors is investigated in section 5.

4 Experimental design

In order to investigate the potential benefit in the MetCoOp system of utilizing NGAA GNSS ZTD a number of parallel data

assimilation and forecast experiments have been carried out. Furthermore the parallel experiments aimed at investigating the

sensitivity of the GNSS ZTD data assimilation to various aspects of the data assimilation. A copy of the MetCoOp operational

configuration was run with a 3 h data-assimilation cycle for the period 1-30 June 2016 and with a one-month spin-up period

before that. This particular month was chosen because it was characterized by several heavy precipitation events. We expect

that additional moisture-related observations should be particularly beneficial for prediction of such weather situations. We ran
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short-range forecasts every 3 h to provide the background for the next analysis, and we launched forecasts up to 36 h 4 times

per day, from 00, 06, 12 and 18 UTC. In total there were four data assimilation studies (A-D), each involving two or more

parallel data assimilation experiments. These parallel experiments are abbreviated as follows:

A Assessing the impact of assimilating GNSS ZTD from the NGAA processing centre.

1 Observation usage as in MetCoOp operational, including GNSS ZTD from ROBH, and METO processing centres.

2 Observation usage as in MetCoOp operational, except that GNSS ZTD observation usage was extended to include

also receiver stations from the NGAA processing centre, processed with the Bernese approach.

3 Observation usage as in MetCoOp operational, except that GNSS ZTD observation usage was extended to include

also receiver stations from the NGAA processing centre, processed with the GIPSY approach.

B Assessing the impact of different VarBC predictor choices.

1 Observation usage as in A2 above, i.e. utilizing one predictor in the form of an offset value for the GNSS ZTD

variational bias correction.

2 Observation usage as in A2 above, except that the variational bias correction was extended to two predictors: offset

value and 1000-300 hPa thickness.

3 Observation usage as in A2 above, except that the variational bias correction was extended to two predictors: offset

value and TCWV.

C Assessing the impact of modifying thinning distances for GNSS ZTD.

1 Observation usage as in A2, i.e. utilizing one predictor in the form of an offset value for the GNSS ZTD variational

bias correction and a GNSS ZTD thinning distance on the order of 100 km.

2 Observation usage as in A2, except that a GNSS ZTD thinning distance on the order of 40 km was used.

D Assessing the potential benefit of general data assimilation improvements on GNSS ZTD utilization for NWP.

1 Observation usage as in A2, i.e. utilizing one predictor in the form of an offset value for the GNSS ZTD variational

bias correction and a GNSS ZTD thinning distance on the order of 100 km.

2 Observation usage as in A2, except that an improved B matrix was used.

The MetCoOp model domain and the GNSS ZTD observation usage in the operational set-up and in the NGAA ZTD

observation usage when applying different thinning distances are illustrated in Figure 4 where the left panel shows experiment

A1, the middle panel A2 (and A3,B1,B2,B3,C1,D1,D2) and the right panel shows experiment C2. Note that in all experiments

of studies A,C, and D only one predictor in the form of an offset value was used. In all experiments in studies B and D a 100

km thinning distance was used. All experiments in studies A,B and C used the operationally used B matrix and all experiments

in studies B, C and D used the NGA1 data set, processed with the Bernese approach.
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Figure 4. MetCoOp model domain (black frame) and GNSS ZTD observation usage for operational MetCoOp (left), NGAA usage with

80-100 km thinning distance (middle) and NGAA usage with 40 km thinning distance (right).

5 Results

5.1 Verification methods

To evaluate the relative quality of the analyses and subsequent forecasts from the different parallel experiments, we verified

them against radiosonde and SYNOP observations within the model domain. The verification was carried out for weather

parameters at the surface level and for the upper-air parameters, wind, temperature, and humidity. The model data used in the

statistics were the analyses and forecasts of up to 24 h. Special emphasis was put on verification of humidity and precipitation.

In addition we used the degrees of freedom for signal (DFS) to study the relative impact of observations in the assimilation

system (Chapnik et al., 2006). DFS is the derivative of the analysis increments in observation space with respect to the

observations used in the analysis system. As proposed by Chapnik et al. (2006) DFS can be computed through a randomization

technique:

DFS =
∂Hxb

∂y
≈ (ỹ−y)R−1(Hx̃a −Hxb)− (Hxa −Hxb), (2)

where y is the vector of the observations, ỹ is the vector of perturbed observations, R is the observation-error covariance

matrix, H is the tangent-linear observation operator for each observation type, xa and xb are the analysis and the background

state, respectively, and x̃a is the analysis produced with perturbed observations. The previous formulation can be applied to

any subset of observations (Randriamampianina et al., 2011). The absolute DFS represent the information brought into the

analyses by the different observation types, in terms of amount, distribution, instrumental accuracy and observation operator

definition. They offer an insight into the actual weight given to the observations within the analysis system in terms of self-

sensitivity of the observations (i.e. sensitivity at location of observation). However, they do not provide any information on the

spatial- or cross-correlations between the observations and the analysis. There is also a possibility of estimating the DFS per

observation through calculation of relative DFS, by normalizing the absolute DFS by the amount of the observations belonging

to a specific subset. Here we have, however, chosen to focus on absolute DFS.
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Figure 5. Degree of Freedom of Signal sub-divided into various observation types for the four experiments A1, A2, C2 and D2. Results were

based on data from eight different data assimilation cycles.

The different kinds of objective statistical verifications described above were also complemented with a more subjective

verification for an individual case study.

5.2 Impact on analyses

For the DFS computation eight cases four days apart were chosen: 0000 UTC (2 June), 0300 UTC (6 June), 0600 UTC (10

June), 0900 UTC (14 June), 1200 UTC (18 June), 1500 UTC (22 June), 1800 UTC (26 June) and 2100 UTC (30 June). The

cases were chosen to reduce the interdependency between the initial conditions, and to obtain data from data assimilation

cycles covering different times of the day.

In Figure 5 the DFS calculated separately for different observation types and parameters are shown. The values represent

the sum over the observations belonging to the same subset of Eq. 2 calculated for each individual observation. Results are

shown for the four experiments A1, A2, C2 and D2. The rest of the experiments all have DFS similar to A2 and are therefore

not shown. Comparing the DFS of A1, A2 and C2 showed that the contribution from GNZZ ZTD increased with an increasing

number of GNSS ZTD observations. A clear interaction with moisture-related observations from IASI and radar can also be

seen. The larger DFS of GNSS ZTD after increasing the number of GNSS observations was associated with an increase in DFS

from radar-based humidities and a decrease in DFS from the IASI instrument, providing satellite-based humidity information.

It is also evident by comparing A2 and D2 that by improving the background error statistics that the DFS for GNSS ZTD and

also of other observations can be increased. From DFS scores not shown, the impact on analysis from NGA1 and NGA2 was

very small and the impact on DFS for GNSS ZTD of introducing more predictors in the variational bias correction of GNSS

ZTD was also very limited.
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Figure 6. Bias and standard deviation of +12 h relative humidity (unit: %) forecasts as function of vertical level for verification against

radiosonde observations. Scores are for experiments A1 (red), A2 (blue) and A3 (green).

5.3 Statistical verification of forecasts

In Figure 6 the scores for verification of +12 and +24 h relative humidity forecasts of the experiments A1- A3 against radiosonde

observations within the domain are shown for different vertical levels. A small positive impact on forecasts can be seen from

utilizing NGAA ZTD observations. The positive impact was slightly more pronounced when the NGAA observations were in

the form of the NGA1 dataset. For variables other than humidity, the impact on the forecast quality was small (not shown).

The impact of utilizing two predictors in the the variational bias correction of GNSS ZTD is small, not only in terms of

DFS. As another example, Figure 7 shows, for one particular receiver station (Onsala), a one-month time-series during the

experiment GNSS ZTD of background state equivalent (FG), analysis (AN), observed value before bias correction (OBS

RAW) and observed value after bias correction (OBS) for the three different experiments B1- B3. It can be seen that the bias

correction worked properly, managing to correct for the systematic difference between the raw observation and the model

state equivalents. On the other hand, it was evident that the time-evolution of the bias-corrected observations was very similar

between the three different runs. The difference between introducing the second predictor in the form of 1000-300 hPa thickness

or TCWV was very small.

The small impact of introducing additional predictors in the adaptive bias correction was confirmed also by forecast verifi-

cation scores. Figure 8 illustrates the impact on +12 and +24 h relative humidity forecasts, for verification against radiosonde

observations. As for forecasts of other variables (not shown), the impact on relative humidity forecast quality of introducing

more predictors was small.

The sensitivity of modifying the thinning distance applied to GNSS ZTD observations is illustrated in Figure 9. From the

left part of the Figure it can be seen that in terms of standard deviation the impact was rather small except for improved

humidity forecasts at the lowest levels when reducing the thinning distance from 80-100 km to 40 km. The right part of the
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Figure 7. One-month time-series of GNSS ZTD (unit: m) from the Onsala receiver station. Analysed (black), background (blue), observation

after bias correction (green) and observation before bias correction (red).

Figure 8. Bias and standard deviation of +12 and +24 h relative humidity (unit: %) forecasts as a function of vertical level for verification

against radiosonde observations. Scores are for experiments B1 (red), B2 (blue) and B3 (green).

Figure shows that this improvement was present at forecast ranges up to 36 hours. In terms of bias, on the other hand, it can be

seen from the left Figure that there was an increased positive humidity bias throughout the lower troposphere with reduction

of the thinning distance. Again, for forecasts of other variables the impact was small (not shown). An increased humidity

bias when reducing the thinning distance was noticed also by Sánchez-Arriola et al. (2016) and it was speculated whether

the lack of high resolution complementary unbiased humidity information of nearby GNSS ZTD receiver stations affect each

other during the spin-up phase of predictor coefficients. They only used conventional types of observations in addition to the

GNSS ZTD observations. Our study confirmed that the increased bias when reducing the thinning distance was present also

when a substantial amount of humidity-related remote sensing observations, such as AMSU-B/MHS, IASI and radar derived
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Figure 9. Bias and standard deviation of +12 and +24 h relative humidity (unit: %) forecasts as function of vertical level for verification

against radiosonde observations. Scores are for experiments C1 (red) and C2 (blue).

humidities, were assimilated in addition to GNSS ZTD. It should be kept in mind, however, that none of these data sources

are assumed to be bias free. For AMSU-B/MHS and IASI a variational bias correction was applied and for radar-derived

moisture information a pre-processing utilization of the model background field was applied (Wattrelot et al., 2014; Caumont

et al., 2010). Our results from section 5.2 hint that there was a relation between IASI, radar and the GNSS ZTD impact when

modifying the GNSS ZTD thinning distance. However, the interaction of reduction of thinning distances and increased bias

needs to be better understood before one can fully benefit from reducing the GNSS ZTD thinning distance. This is one of the

aims for future in-depth studies with the MetCoOp data assimilation system.

In addition to improvement of the low level humidity forecasts when reducing the thinning distance to 40 km a slight

improvement was seen in forecasts of cloud cover and more pronounced improvements in precipitation forecasts, as illustrated

in Figure 10, in terms of the Kuiper skill score. It should, however, be kept in mind that there are some known problems related

to precipitation and cloud measurements (Rodda and Dixon, 2012; Wagner and Kleiss , 2016). Thus, despite the increased

bias in humidity related to the reduction in thinning distance, the improvements in terms of standard deviations for humidity

forecasts resulted also in improvement in the humidity-related variables of cloud and precipitation. The question whether

improvements could also be seen in an individual case is addressed in section 5.4.

When investigating the improvements to the system that can be brought by adding new observations and by refinements in

the observation handling it is also useful to get an idea of how much the extraction of information from the new observations,

as well as from all the other observations, can be improved by general data assimilation improvements. In our case, the

general data assimilation improvements were given by an improved representation of background error statistics. The improved

background error statistics had a positive impact on the forecasts, shown in Figure 11 for temperature and relative humidity

scores. A positive impact was found also on surface pressure forecasts and wind forecasts (not shown).
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Figure 10. Kuiper skill score for 12 h accumulated precipitation (left) and +6 and +18 h cloud forecasts (right) for verification against

SYNOP stations in the domain.

General data assimilation improvements, like the improved B matrix presented here, influenced more aspects and obser-

vations of the data assimilation system than just GNSS ZTD observations. It is important to keep in mind that such general

improvements can also be supportive in obtaining more useful information from both newly introduced observation types as

well as those that have been in use for some time.

5.4 Case study

To investigate whether the modification of thinning distance has any noticeable effect on individual weather situations we

looked into one particular case in more detail. The individual case selected was a heavy precipitation that took place over

south-western Denmark and the southern part of Sweden during the night/early morning between 24-25 of June 2016. The

upper row of Figure 12 shows the radar-derived gauge-adjusted 3 h accumulated precipitation between 23 UTC 24 June and

02 UTC 25 June as well as between 02.00 UTC and 05 UTC 25 June. The middle and lower panels show accumulated

precipitation forecasts for the runs with 80-100 km and 40 km thinning distance, respectively. For this particular case both

of the runs had a phase/timing error of roughly one hour. Therefore, to reduce the effect of the phase/timing error on the

verification, the accumulation interval for the precipitation of the forecasts was shifted one hour in time relative to the radar

derived precipitation. For the forecasts the accumulation interval was between 00 and 03 UTC 25 June as well as between 03 to

06 UTC 25 June. Between 00 and 03 UTC the forecasts of the two runs were rather similar, but as the system moved toward the

north-east more of the intensity and structure in accordance with observations was retained in the run, with the 40 km thinning

distance, although, despite the phase correction, there was a small error in position between 03 and 06 UTC. Figure 13 shows

3 h accumulated precipitation from rain gauges for which nonzero precipitation was registered for this particular case. Due

to the phase error mentioned in the forecasts we have again chosen to show the accumulation both from 20160624 23 UTC

(left panel) and from 20160625 02 UTC (right panel), that was shifted one hour in time as compared with the forecasted
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Figure 11. Bias and standard deviation of temperature (unit: K) and relative humidity (unit: %) as function of forecast range. Scores for

temperature (left column) and relative humidity (right column) at the vertical levels of 300 hpa (upper) and 850 hPa (lower). Scores are for

experiments D1 (red) and D2.

accumulated precipitation in Figure 12. By comparing Figures 12 and 13 one can see that also rain-gauge observations support

the fact that the forecast of the run with 40 km thinning distance was better.

6 Conclusions

The processing of GNSS ZTD data from the newly vitalised NGAA processing centre has been described in detail. It is shown

that these data have the capability to enhance the NWP forecasts, in particular for humidity when introduced, in addition to

other observations, in the HARMONIE-AROME model. The sensitivity of the forecasts to the two solutions of estimating

ZTD provided and to various settings in the GNSS ZTD data processing has been investigated. The two different methods of
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estimating ZTD generated very similar results and the impact on the forecasts was therefore also very small. It was also found

that the results were rather insensitive to the number of predictors used in the variational bias control. In this study only two

predictors were tested at the same time. It might be useful as a next step to test more than two and also try other paramaters,

e.g. surface pressure. In contrast to the small impact from the VarBC predictors the results were rather sensitive to the choice

of thinning distance applied. There are potential improvements from reducing the thinning distance of the ZTD observations

to make use of more data, but there are also related issues. Reducing the thinning distance resulted in increased humidity

forecast biases in the lower troposphere. This may have been due to increased influence from correlation errors; this needs to

be investigated further to find the best trade-off between the number of observations and the influences of error correlations.

In general the horizontal observation error correlations need to be investigated further, for example by applying techniques

proposed by Bormann and Bauer (2010) and in further step modelled correlations.

The assimilation of GNSS ZTD in NWP can benefit from more general data assimilation improvements, such as enhanced

description of statistical information or improved data assimilation algorithms. In this paper this was highlighted by providing

an example in the form of an additional run carried out with what we think is an enhanced description of the background error

statistics. Clearly the enhanced description resulted in better use of the GNSS ZTD observations in the NWP system. It is

important however, to keep in mind that such general data assimilation aspects not only influence the GNSS ZTD observation

usage but also all other observations. In addition, further developments of the data assimilation algorithms, e.g. the impact on

utilization of GNSS ZTD observation in a 4-dimensional variational data assimilation, will be investigated.
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Figure 12. Radar-based accumulated precipitation (upper row, unit mm/3h) between 20160624 23 UTC and 20160625 02 UTC (left) as well

as between 02 UTC and 05 UTC 20160625 (right). Forecasted accumulated precipitation (unit: mm/3h) based on C1 (middle row ) and C2

(lower row) between 00 and 03 UTC as well as between 03 UTC and 06 UTC 20160625. The forecasts were initiated from 20160624 12

UTC. 23



Figure 13. Rain gauge observed 3 h accumulated precipitation (unit mm/3h) from accumulation period starting at 20160624 23 UTC (left)

and 20160625 02 UTC (right).
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