
Thank you for your helpful comments. We have made some changes in light of these. 

- Limitation of significance as only one site
Please see response to reviewer #1, which addresses this issue. 

- Abstract: It would be useful to add a sentence mentioning the biases for the surface fluxes as you did 
for the TOA

We have added sentence: “At the surface the daily average bias is 12(13)Wm-2 for the longwave 
downwelling (upwelling) longwave radiation flux, and -21(-13) Wm-2 for the shortwave downwelling 
(upwelling) radiation flux.” 

- Lines 9-13: The observed discrepancies in the radiation fluxes, particularly during the dry period, are 
also attributed to the misrepresentation of aerosol fields in the model since it is utilized a climatology 
instead of a dynamic approach. 

We have added a slightly modified sentence: “We also attribute observed discrepancies in the radiation 
fluxes, particularly during the dry season, to the misrepresentation of aerosol fields in the model from 
use of a climatology instead of a dynamic approach.”

- Line 16: Replace “A proportion of incoming...” with “A proportion of the incoming...”.

Done

- Introduction: A short paragraph must be added describing how meteorological variables (e.g. 
humidity), clouds, aerosols and surface albedo can affect the SW and LW radiation in the Earth-
Atmosphere system. This will provide a link with the discussion in the Results section.

We have added a sentence mentioning that we have these data from the AMF, as the effects of these 
variables on radiation is discussed in further detail in section 2.1: “Data collected during this campaign 
consists of not only high frequency surface radiation measurements, but also coincident measurements 
of atmospheric variables relevant to the study of radiation transfer, including aerosol optical depth, 
atmospheric humidity, 2 m air temperature and data from sonde ascents.” 

- Line 45: I don’t think that this sentence is useful there. It is better to move it in the relevant part 
(Section 4.1) of the manuscript.

“Appendix A shows a comparison of radiation fluxes in 43r1 and ERA-Interim.” has been removed. 

- Lines 53-58: This part of the text can be extended by adding 2-3 sentences providing some 
information regarding the progression of the West African monsoon (this can be mentioned also in lines
88-91) as well as the seasonal variation of aerosols’ regime aerosols’ type and intensity).

The West African monsoon in particular is discussed in further detail further down in the same 
paragraph, where we believe it is better suited. However, this section has been slightly expanded from: 
“Regional dust storms and biomass burning plumes significantly impact the energy budget (Slingo et 
al., 2006; McFarlane et al., 2007), and the annual progression of the West African monsoon (WAM) 
imposes a strong seasonal cycle on radiation fluxes due to the onset of the wet season (Slingo et al., 
2008).” 



To: “Regional dust storms and biomass burning plumes significantly impact the energy budget (Slingo 
et al., 2006; McFarlane et al., 2007), with dry season aerosol loading composed of varying proportions 
of mineral dust and biomass burning aerosol from agricultural fires (Johnson et al., 2008). Additionally,
the annual progression of the Intertropical Front (ITF) drives the West African monsoon (WAM) and 
imposes a strong seasonal cycle on radiation fluxes due to the onset of the wet season from 
approximately April-October (Slingo et al., 2008).” 

- Line 65: Why is specified only for the Sahel and not for the Earth-Atmosphere system?

We have amended this from “Figure 1 is used to present the key features of radiative transfer over the 
Sahel.” 
To: “Figure 1 is used to present the key features of radiative transfer of the Earth-Atmosphere system, 
with the following section outlining key aspects of this in Niamey.” 

- Lines 68-71: This sentence causes some misunderstandings and is better to remove it. Under clear-sky
conditions the impact of aerosols and gases on the SW radiation is more important compared to water 
vapour which plays a key role at longer wavelengths as you are correctly stating in Line 82.

This has been removed: “Under clear-sky conditions, water vapour plays the dominant role in 
modulating the tropospheric absorption of solar radiation (1a) and hence the seasonal variability in the 
amount of direct solar radiation reaching the surface (2a).” 
And the next sentence has been edited to: “When water vapour (1a), cloud (1b) or aerosol (1c) is 
present, a significant fraction of the incident solar beam will be absorbed or scattered. Some of the 
scattered radiation will be scattered down to the surface as ‘diffuse’ solar radiation (2a,2b,2c).” 

- Line 80: Figure 1 describes the key features of radiative transfer within the EarthAtmosphere system 
and not only for Niamey. Your description is generic and should not be restricted for a specific location 
(Niamey).

We have changed this from: “Longwave radiation fluxes also depend on the meteorological conditions 
at Niamey.” to: “Longwave radiation fluxes also depend on the meteorological conditions.”

- Lines 99-101: Due to clouds the RSR also increases attributed to the reflection of the incoming solar 
radiation.

We have changed this from: “This results in decreases in DSR and increases in DLR due to 
atmospheric warming.” 
To: “This results in decreases in DSR, increases in RSR and increases in DLR due to atmospheric 
warming.”

- Lines 139-140: In Table 1 are listed only the non-radiative data. You should add also the radiative 
variables.

These have been added.

- Lines 161-162: The uncertainties of AMF variables are not provided in Table 1. Which are the 
uncertainties for the IWP and LWP?



The uncertainties for the AMF variables have been added to Table 1, and the mean uncertainty of IWP 
and LWP from CMSAF have been added to the text: “while those in IWP and LWP are provided by 
CMSAF and have an annual mean of 0.021 and 0.015 kgm-2 respectively”

- Line 170: This sentence can be removed.

We have removed: The extent of the interpolation required is indicated in Figs. 2,3 and 4. And added a 
line into Fig. 2 caption: “Lines become dashed when values are from  interpolation (see Sec. 3)” 

- Line 213: Remove “the” after “than”.

Done 

- Line 221: Replace “However, the the majority” with “However, the majority”.

Done

- Lines 229-230: During wet season, the simulated DLR and ULR reveal higher temporal variability 
compared to observations. More specifically, during the first half of the wet season (days 100-200), the 
model underestimates DLR and ULR while the opposite is found between days 200 and 300. 
Therefore, the zero and negligible biases for DLR and ULR, respectively, result from the 
counterbalance of the negative and positive model discrepancies and do not indicate a good 
performance of the model since the temporal variability is not captured.

We have extended the sentence “Wet season average bias in DLR and ULR is small at 0 and 1 Wm-2, 
respectively” by adding “, though this is due to cancellation of the model underestimation of DLR and 
ULR in the first part of the wet season (days 126–200) with the overestimation in the second part of the
wet season (days 200–300).” 

- Lines 232-235: Please rephrase this part of the text.

This was originally: “Figure 4 indicates that radiative fluxes can be affected by nonradiative processes. 
Figure 4 shows observed and modelled 2 m air temperature, TCWV, LHF, SHF, aerosol optical depth 
(AOD) and IWP and LWP. Tables 2 and Table 3 present mean statistics corresponding to radiative and 
non-radiative variables, respectively.” 

Which we have changed to: “Figure 4 presents observed and modelled 2 m air temperature, TCWV, 
LHF, SHF, aerosol optical depth (AOD) and IWP and LWP, with mean statistics shown in Table 3.”

- Lines 259-261: I would say that negative biases are found between 500 - 700 hPa and positive 
between 200 - 400 hPa.

We have amended to these ranges 

- Line 270: Remove the blank.

Done 



- Line 293: The discrepancies are not defined as observations - model throughout the analysis? Why in 
Sections 4.2.1 (Surface downwelling shortwave radiation) and 4.2.2 (Surface upwelling shortwave 
radiation) are defined as model-observations?

This is a mistake, these have all been corrected to observation – model discrepancy and are now 
consistent with the Figures.

- Lines 311-312: Replace “0.29-0.14” with “0.14-0.29”.

Done 

- Lines 373: When you are referring to the total downwelling radiation do you mean the net radiation at
TOA? If so, then the term total downwelling radiation is not correct.

This has been changed, also the caption to Fig. 6 

- You should re-organize the order of the tables and figures in the manuscript. More specifically, tables 
must be presented first (after references) and then the figures.

Done



Thank you for the useful comments, which we respond to here, as well listing the ways in which we 
have amended the manuscript. 

Major comments 1. Evaluating the performance of a global model at a single station is not a common 
method for extracting robust results and limiting the study in Niamey limits also the significance of this
work. You should present and discuss also the comparison with other measuring sites preferably at 
areas with different climate properties. 

This work focuses on the particular challenges of modelling radiative processes in the Sahel region, 
using the unique combination of measurements from the AMF and GERB/SEVIRI to allow the 
radiation budget at the surface and TOA to be coupled and, critically, interpreted, via the use of 
ancillary measurements, at high temporal resolution. Regarding the robustness of the results, it is worth
noting that the Niamey site was specifically chosen by the ARM programme as being representative of 
the wider Sahelian behavior (Miller and Slingo, 2007) and that observations from this single location 
have been used to evaluate global climate model performance in the past (e.g. Miller et al., 2012). 

More practically, databases such as the one exploited here are exceptionally rare: to the best of our 
knowledge there are only four other locations globally where the opportunity to combine AMF and 
GERB/SEVIRI data currently exists. As evidenced by the careful analysis here, adding just these sites 
would constitute a significant amount of extra work and lead to an unwieldy final manuscript. 
Performing a similar analysis over different locations that experience very different climate conditions 
would be a natural and interesting extension of this work. However this is not the goal of this paper. 

A paragraph has been added to clarify our goals and choice of site in the Introduction: “The 
combination of data available from the AMF and GERB/SEVIRI provide a valuable insight into 
radiative processes in a region where surface measurements are scarce. In particular, the high temporal 
frequency of the data allows us to look in detail at the relationships and dependencies between key 
variables. It is worth noting that although this study is necessarily limited to the one measurement site 
at Niamey, this location was chosen carefully in order to sample the range of climatic conditions 
typically experienced across the wider Sahelian region (Miller and Slingo, 2007).” 

2. The considerations about the constant positive bias in modeled albedo are in my opinion some of the 
most important findings of this work. Following my previous consideration, it is possible that such 
albedo bias is also present in different areas worldwide. Improving the surface / soil model in the model
(possibly incorporating NDVI observations) could probably improve the overall model performance 
since a more physically based representation of surface fluxes will also affect cloud formation 
(hopefully towards the correct direction). As a first step I would encourage that you perform a test run 
with the modified albedo in 43r1 (as you present in section 4.2.2) and see how this will affect the 
model results.

We agree with the reviewer that the surface albedo bias is an interesting result. It is obviously also 
possible that similar biases exist elsewhere although arid and semi-arid regions are known to present a 
particular challenge for regional and global models (see for example Milton et al., 2008, Greuell et al., 
2011). We also completely agree regarding the potential implications. However, simply inserting a 
modified albedo for one grid location into the ECMWF operational model is not viable either from a 
scientific or practical perspective. Assessing the impact of a more realistic representation of albedo 
(including its impact on dynamics) could be part of a longer term initiative working collaboratively 
with the relevant experts at ECMWF: indeed we hope this work would serve to motivate improvements
in this area. 



Minor Comments -How do you explain the great variability in daily measurements compared to the 
model results in Figures 2, 3? 

We have added a sentence at the end of section 4.1.1 addressing this: “All radiative variables show 
more variability in the observations than the model, reflecting the larger range of competing influences 
in comparison to the idealised and less chaotic model.” 

-P4, L17 “ERA-I has also been evaluated by other studies in West Africa (Marsham et al., 2015).” 
Please state briefly what are the results of these evaluations for ERA-I. 

This has been added: “, who find that TCWV is well captured by the model and that its role in 
controlling TOA net flux is more important than that of dust.”

 -P6, L28: “However, the the majority” Please correct 

Done 

-P7, L3-4 and elsewhere “Wet season average bias in DLR and ULR is small at 0 and 1 Wm-2, 
respectively” Averaging over a long period of negative and positive biases can result in almost zero 
average bias but this is probably misleading. Using absolute bias could provide more insight on the 
model performance. 

The sentence has been amended from “Wet season average bias in DLR and ULR is small at 0 and 1 
Wm-2, respectively” by adding “, though this is due to cancellation of the model underestimation of 
DLR and ULR in the first part of the wet season (days 126- 200) with the overestimation in the second 
part of the wet season (days 200–300).”
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Abstract.

We use observations of surface and top-of-the-atmosphere (TOA) broadband radiation fluxes determined from the Atmo-

spheric Radiation Measurement program Mobile Facility, and GERB/SEVIRI, and a range of meteorological variables, at a site

in the Sahel to test the ability of the ECMWF Integrated Forecasting System cycle 43r1 to describe energy budget variability.

The model has daily average bias of -12Wm−2 and 18Wm−2 for outgoing longwave and reflected shortwave TOA radiation5

fluxes, respectively.
::
At

:::
the

::::::
surface

:::
the

:::::
daily

::::::
average

::::
bias

::
is

:::::::::::
12(13)Wm−2

:::
for

:::
the

::::::::
longwave

:::::::::::
downwelling

::::::::::
(upwelling)

::::::::
longwave

:::::::
radiation

::::
flux,

::::
and

::::::::::::
-21(-13)Wm−2

:::
for

:::
the

:::::::::
shortwave

:::::::::::
downwelling

:::::::::
(upwelling)

::::::::
radiation

::::
flux.

:
Using multivariate linear models

of observation minus model differences, we attribute radiation flux discrepancies to physical processes, and link surface and

TOA fluxes. We find that model biases in surface radiation fluxes are mainly due to a low bias in ice-water path (IWP), poor de-

scription of surface albedo, and model-observation differences in surface temperature.
::
We

::::
also

:::::::
attribute

::::::::
observed

:::::::::::
discrepancies10

::
in

:::
the

:::::::
radiation

::::::
fluxes,

::::::::::
particularly

::::::
during

:::
the

:::
dry

::::::
season,

:::
to

:::
the

::::::::::::::
misrepresentation

:::
of

::::::
aerosol

:::::
fields

::
in

:::
the

::::::
model

::::
from

:::
use

:::
of

:
a
::::::::::
climatology

::::::
instead

::
of
::

a
:::::::
dynamic

:::::::::
approach. At the TOA, the low IWP impacts the amount of reflected shortwave radiation

while biases in outgoing longwave radiation are additionally coupled to discrepancies in the surface upwelling longwave flux

and atmospheric humidity.

1 Introduction15

The balance at the top-of-the-atmosphere (TOA) between solar and thermal radiation fluxes determines the energy budget of

the climate system. A proportion of
:::
the incoming solar radiation is reflected back into space, but the majority is absorbed by

the Earth and its atmosphere which subsequently emit radiation at longer wavelengths. At the TOA there are three broadband

radiation components: 1) incoming solar (often referred to as total solar irradiance/TSI); 2) outgoing reflected solar (or reflected

shortwave radiation/RSR); and 3) thermal outgoing (or outgoing longwave radiation/OLR). To be able to confidently describe20

future changes in climate, climate models must be able to produce a realistic representation of this TOA radiation budget and

have some skill at simulating past states that can be evaluated using data (Flato et al., 2013). Here, we use surface and TOA

radiation flux measurements to test model skill of the ECMWF Integrated Forecasting System.

Our understanding of the TOA radiation budget has been vastly improved by dedicated satellite missions (e.g., Hartmann

1



et al., 2013; Brindley and Bantges, 2016). These instruments typically have the advantage of global spatial coverage over

multi-year temporal coverage making them ideal for studying a wide spectrum of TOA flux variations (Wielicki et al., 2002;

Wild, 2009; Loeb et al., 2012) and for evaluating climate models (Milton et al., 2008; Miller et al., 2012; Dolinar et al., 2015).

In this study we use TOA broadband radiation fluxes determined from the Geostationary Earth Radiation Budget (GERB) and

Spinning Enhanced Visible and Infrared Imager (SEVIRI) instruments (Schmetz et al., 2002; Harries et al., 2005). Although5

these instruments do not have global coverage they have the advantage of high (15 minute) temporal resolution.

TOA radiation fluxes are determined by processes at the surface and throughout the atmosphere. Measurements of surface

radiation fluxes are therefore helpful in modelling radiative processes. Surface measurements are generally much sparser than

satellite data, though some surface networks exist, such as the Baseline Surface Radiation Network (BSRN, Ohmura et al.

(1998)) and the Atmospheric Radiation Measurement (ARM) program. The ARM program includes three permanent sites and10

three ARM Mobile Facilities (AMF), which are deployed in different geographical locations. Here, we use data from an AMF

deployment in Niamey, Niger during 2006 (Miller and Slingo, 2007).
::::
Data

:::::::
collected

::::::
during

:::
this

:::::::::
campaign

::::::
consists

:::
of

:::
not

::::
only

::::
high

::::::::
frequency

:::::::
surface

::::::::
radiation

::::::::::::
measurements,

:::
but

::::
also

:::::::::
coincident

:::::::::::::
measurements

::
of

::::::::::
atmospheric

::::::::
variables

:::::::
relevant

:::
to

:::
the

::::
study

:::
of

:::::::
radiation

::::::::
transfer,

::::::::
including

::::::
aerosol

::::::
optical

::::::
depth,

::::::::::
atmospheric

:::::::::
humidity,

:
2
::
m
:::

air
::::::::::
temperature

::::
and

::::
data

::::
from

::::::
sonde

::::::
ascents.

:
15

We use surface and TOA radiation flux measurements over Niamey to evaluate the performance of the Integrated Forecasting

System (IFS) Cycle 43r1 from the European Centre for Medium-Range Weather Forecasts (ECMWF), a subsequent cycle to

Cycle 31r2 on which the reanalysis ERA-Interim is based; Appendix Ashows a comparison of radiation fluxes in 43r1 and

ERA-Interim. Using the model helps us to link observed radiation flux variations at the surface to TOA radiation fluxes, and to

quantify the influence of radiative and non-radiative variables on model error.20

:::
The

:::::::::::
combination

::
of

:::
data

::::::::
available

::::
from

:::
the

:::::
AMF

:::
and

:::::::::::::
GERB/SEVIRI

:::::::
provide

:
a
:::::::
valuable

::::::
insight

::::
into

:::::::
radiative

::::::::
processes

::
in
::
a

:::::
region

:::::
where

:::::::
surface

::::::::::::
measurements

::
are

::::::
scarce.

:::
In

::::::::
particular,

:::
the

::::
high

::::::::
temporal

::::::::
frequency

::
of

:::
the

::::
data

::::::
allows

::
us

::
to

::::
look

::
in

:::::
detail

:
at
:::

the
:::::::::::

relationships
::::
and

:::::::::::
dependencies

:::::::
between

::::
key

::::::::
variables.

::
It

::
is

:::::
worth

::::::
noting

:::
that

::::::::
although

:::
this

:::::
study

::
is

:::::::::
necessarily

:::::::
limited

::
to

:::
the

:::
one

:::::::::::
measurement

::::
site

:
at
::::::::

Niamey,
:::
this

:::::::
location

::::
was

::::::
chosen

::::::::
carefully

::
in

::::
order

::
to
:::::::

sample
:::
the

:::::
range

::
of

:::::::
climatic

:::::::::
conditions

:::::::
typically

::::::::::
experienced

::::::
across

:::
the

:::::
wider

:::::::
Sahelian

::::::
region

::::::
(Miller

:::
and

::::::
Slingo,

::::::
2007).25

In the next section, we describe the study site at Niamey, Niger and the associated key components of radiative transfer. We

present the data and methods in section 3. In section 4 we present our analysis of individual components of the radiation flux,

including an analysis of the model error. We provide conclusions in section 5.

2 Description of Niamey Study Region

Niamey, Niger (13◦29’ N, 2◦11 E) was selected for the first AMF deployment because the characteristic climatology of the30

location exhibits strong variability that substantially affects the corresponding behaviour of the TOA and surface radiative

fluxes. Regional dust storms and biomass burning plumes significantly impact the energy budget (Slingo et al., 2006; McFarlane

et al., 2007), and
:::
with

:::
dry

::::::
season

::::::
aerosol

:::::::
loading

::::::::
composed

::
of

:::::::
varying

:::::::::
proportions

::
of

:::::::
mineral

::::
dust

:::
and

:::::::
biomass

:::::::
burning

::::::
aerosol

2



::::
from

::::::::::
agricultural

::::
fires

::::::::::::::::::
(Johnson et al., 2008).

:::::::::::
Additionally,

:
the annual progression of the

::::::::::
Intertropical

:::::
Front

:::::
(ITF)

::::::
drives

:::
the

West African monsoon (WAM)
:::
and

:
imposes a strong seasonal cycle on radiation fluxes due to the onset of the wet season

::::
from

::::::::::::
approximately

::::::::::::
April–October (Slingo et al., 2008).

The AMF deployment over Niamey was from late 2005 to early 2007. It included measurements of a range of meteorological,

thermodynamic, and radiative variables. The deployment was designed to coincide with the availability of TOA broadband5

radiation fluxes from GERB. Data from AMF and GERB could then be reconciled to identify problems in radiative transfer

schemes and numerical weather prediction, (Miller and Slingo, 2007).

2.1 Overview of Radiation and Meteorological Environments

Figure 1 is used to present the key features of radiative transfer over the Sahel
::
of

:::
the

:::::::::::::::
Earth-Atmosphere

:::::::
system,

:::::
with

:::
the

::::::::
following

::::::
section

::::::::
outlining

:::
key

::::::
aspects

::
of

:::
this

::
in
:::::::
Niamey. We refer the reader elsewhere for further, in depth detail (e.g., Slingo10

et al., 2008, 2009).

The incident solar radiation (TSI) enters the top of the atmosphere. A fraction of the TSI is transmitted through the atmo-

sphere, reaching the surface as ‘direct’ solar radiation (1d). Under clear-sky conditions, water vapour plays the dominant role

in modulating the tropospheric absorption of solar radiation
:::::
When

:::::
water

::::::
vapour (1a)and hence the seasonal variability in the

amount of direct solar radiation reaching the surface (2a). When ,
:
cloud (1b) or aerosol (1c) is present, a significant fraction15

of the incident solar beam will be absorbed or scattered. Some of the scattered radiation will be scattered down to the surface

as ‘diffuse’ solar radiation (
::
2a,2b,2c). The combination of the diffuse and direct downward radiation combine to form the

total downwelling solar, or shortwave, radiation at the surface (DSR, 2). A fraction of this downwelling solar radiation will

be reflected, determined by the surface albedo, as upwelling shortwave radiation (USR, 3). The fraction of the USR that is

transmitted up through the atmosphere, combined with the solar radiation scattered upwards by atmospheric molecules, clouds20

and aerosol and escaping to space (4a, 4b), represents the reflected solar radiation at the TOA (RSR, 4).

Longwave radiation fluxes also depend on the meteorological conditionsat Niamey. Resulting thermal emissions from the

surface (upwelling longwave radiation/ULR, 5) can be absorbed by atmospheric molecules (predominantly water vapour (5a)),

clouds (5b) and dust aerosol (5c) depending on the season. Subsequent emission of radiation from these absorbers contributes

to the downwelling longwave radiation at the surface (DLR, 6a, 6b, 6c) and outgoing longwave radiation (OLR, 7a, 7b, 7c) at25

the TOA. The OLR also includes the fraction of radiation emitted by the surface that is transmitted through the atmosphere and

escapes directly to space (5d). The surface also cools by sensible heat flux (SHF, 8a), or, depending on soil moisture content,

latent heat flux (LHF, 8b).

There are distinct dry and wet seasons in Niamey, determined by the position of the surface Intertropical Front (ITF)
:::
ITF, the

boundary between the moist air coming from the southwest from tropical Atlantic, and the warmer, dry air coming from the30

northeast from the Sahara (Hasternath and Lamb, 1977; Lélé and Lamb, 2010). During 2006 the first dry season ran from day

1–125, the wet season from day 126–300 and the second dry season from days 301–365, as determined by a sustained dew point

temperature of at least 15◦C (Slingo et al., 2008). Figure 2 shows that during the first dry season, given clear conditions, there

is a steady increase in surface DSR as the year progresses. Dry conditions typically lead to a relatively constant surface albedo

3



such that RSR and USR (Fig. 2a and c) also increase with time. Figure 3 implies that the increasing DSR results in surface

warming which in turn leads to enhanced ULR. The presence of clouds, water vapour and aerosols lead to deviations from this

trend. Aerosols from dust storms, blown in from the Sahara, decrease DSR (McFarlane et al., 2009), enhance DLR (Miller

et al., 2009) and increase RSR. Periodic increases in cloudiness and total column water vapour (TCWV) lead to increased

absorption of both long- and shortwave radiation. This results in decreases in DSR
:
,
::::::::
increases

::
in

::::
RSR

:
and increases in DLR5

due to atmospheric warming.

After the northwards passing of the ITF over Niamey in April, Niamey enters the wet season. The further northward the ITF

migrates, the greater the vertical extent of the moist air mass above Niamey. TCWV therefore peaks when the ITF is at its most

northerly, leading to a period with deep convective clouds and increased precipitation (Lélé and Lamb, 2010). Greater cloud

cover leads to enhanced SW reflection back to space and atmospheric SW radiative heating which reduce the DSR. Clouds and10

increased TCWV also absorb in the LW, reducing OLR and enhancing DLR (Fig. 3). Decreases in DSR reduces the shortwave

radiative heating of the surface, therefore decreasing ULR. Increases in precipitation, and therefore higher soil moisture, affects

the partition between radiative, sensible and latent heating.

2.2 Overview of Previous Studies

There are a number of studies that have evaluated radiative processes in West Africa as represented by various models, which15

point to the difficulties in simulating the processes which control radiative transfer in the Sahel. Miller et al. (2012) examine

the impact of hydrological variables on broadband atmospheric column divergence in Niamey using both the data from the

AMF/GERB and output from four Global Climate Models (GCMs). They show that the reasonably well modelled net broad-

band divergence across the atmosphere is the product of error cancellation of longwave and shortwave divergences. GCMs

such as these are not intended to exactly replicate the exact state of the atmosphere but rather capture long-term spatial and20

temporal patterns. Operational forecasts and reanalyses, however, assimilate observational data regularly and aim to simulate

the atmosphere as closely as possible. As Walsh et al. (2009) discuss, high temporal frequency observations at specific points

are ideal for comparison to reanalyses: not only do observational constraints make the projections as realistic as possible, but

reanalyses often share aspects with GCMs which means evaluating them can simultaneously improve our understanding of

underlying models used to make climate predictions.25

There has also been some comparison of operational forecasts to data from the AMF and GERB at Niamey during 2006.

Agustí-Panareda et al. (2010), in their wider comparison of West African data to ECMWF’s operational forecast, briefly look

at how well surface broadband fluxes are modelled in Niamey. They note that there are periods in the dry season where the

observed DSR decreases which are not present in the model and attribute this primarily to the use of a constant climatology

for aerosol loading and missing cloudy conditions. ERA-I has also been evaluated by other studies in West Africa (Marsham30

et al., 2015)
:
,
::::
who

:::
find

::::
that

::::::
TCWV

::
is

::::
well

:::::::
captured

:::
by

:::
the

:::::
model

::::
and

:::
that

::
its

::::
role

::
in

:::::::::
controlling

:::::
TOA

:::
net

:::
flux

::
is

::::
more

:::::::::
important

:::
than

::::
that

::
of

::::
dust.
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3 Data and Methods

3.1 Data and Their Uncertainties

We use GERB-like High Resolution TOA broadband radiation fluxes, hereinafter referred to as GERB fluxes, with a tem-

poral resolution of 15 minutes and a spatial resolution of 10 km at nadir (Dewitte et al., 2008). This product uses SEVIRI

measurements, passed through the GERB processing algorithms, to derive broadband fluxes throughout the year.5

Table 1 summarizes the surface radiative and non-radiative variables that we use from the AMF during 2006. Direct, diffuse

and total shortwave fluxes were measured using a normal incidence pyroheliometer, and shaded and unshaded pyranometers

respectively, while longwave fluxes were measured using shaded and unshaded pyrgeometers. These were complemented with

inferences of turbulent heat fluxes (THF) from an eddy correlation system. From the ARM-standard meteorological instruments

we use 2 m air temperature. The temperature and pressure measurements at altitude, required for TCWV estimates, come10

from Vaisala RS-92 radiosonde ascents. We also use relative humidity (RH) profiles from the sonde ascents to extract upper

tropospheric humidity (UTH), defined, following Brindley (2007), as the average RH between 500-200hPa. Finally, we use

aerosol optical depth (AOD) at 500nm from the multiple-frequency rotating shadow band radiometer (MFRSR), corrected for

forward scattering (Harrison et al., 1994; Michalsky et al., 2001). In addition to these surface based measurements, we use

ice water path (IWP) and liquid water path (LWP) daily averages derived from SEVIRI provided by the Climate Monitoring15

Satellite Application Facility (CMSAF, http://www.cmsaf.eu/EN/Home/home_node.html).

When comparing AMF and GERB data we consider two sources of error associated with: 1) the determination of the quanti-

ties being measured by an instrument, and 2) relating an intrinsically point AMF measurement with a GERB flux measurement

that is representative over a much larger spatial scale (Settle et al., 2008). Slingo et al. (2009) estimate uncertainties in GERB

fluxes to be approximately 5 Wm−2 and 10 Wm−2 for the short- and longwave respectively. However, Ansell et al. (2014)20

argue that this underestimates the uncertainty, and estimate the instantaneous flux uncertainty to be 10% for both long- and

shortwave fluxes. In this study we use whichever of these is larger on a particular day, along with the AMF uncertainties of 5

Wm−2 and 9 Wm−2 for surface long and shortwave fluxes following Slingo et al. (2009). Uncertainties in other AMF vari-

ables are given in Table 1, while those in IWP and LWP are provided by CMSAF
:::
and

::::
have

:::
an

:::::
annual

:::::
mean

::
of

:::::
0.021

::::
and

:::::
0.015

::::::
kgm−2,

::::::::::
respectively.25

For ease of comparison, all data are processed into daily means. Figs. 2, 3, and 4 show daily means of shortwave and

longwave fluxes, and non-radiative variables, respectively. For our analysis, as described below, we use continuous data sets

that are regularly spaced in time. We use the period 7th January – 8th December, determined by the availability of sonde and air

temperature data, and impute missing values. Missing values from the AMF data are imputed using a linear interpolation. We

also use a linear interpolation for missing GERB data points for gaps of one data point long, otherwise we use a climatology30

from 2005-2014. In the majority of cases this corresponds to a 9-year mean. The extent of the interpolation required is indicated

in Figs. 2, 3 and 4.

5
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3.2 Model and Data Analysis

We compare the daily means of the radiation and meteorological variables to corresponding model output from IFS Cycle 43r1

(Fig. 4). We use the Tco399 resolution of IFS Cycle 43r1, with a global horizontal resolution of approximately 29 km and 137

vertical levels. The radiation scheme is called every hour, with approximate updates every model timestep (15 minutes) using

the approach of Hogan and Bozzo (2015). Both Cycle 43r1 and ERA-I use a climatological aerosol distribution (Dee et al.,5

2011), derived from Tegen et al. (1997).

To evaluate the daily mean model radiative and non-radiative variables, we use the square of Pearson’s correlation coefficient

r2, which we assume is statistically significant only if the p-value <0.001, and the root mean square error (RMSE). We also

use the average daily model bias, which we define as

bias =
∑n

i (x
O
i −xMi )

n
, (1)10

where xi is the variable in question on day i, n denotes the number of days, and the superscripts O and M denote observation

and model, respectively.

We use multivariate models to link observed and model variables. To build the multivariate linear models for a particular

variable, we identify potential predictor variables based on the schematic in Fig. 1 to give a physical rationale for selection.

There are two requirements for the predictor variable to be included in the linear model to avoid overfitting: first, the predictor15

variables must have a statistically significant correlation with the dependent variable which also tests whether the linear ap-

proximation is appropriate; second, the predictor variables must be independent of each other (Wilks, 2011). To achieve this,

we first perform a least-squares regression of the predictor variable on the dependent variable, and then between the selected

predictor variables to ensure mutual independence.

We select predictor variables according to the criteria above in order to build linear models of the observed and 43r1 fluxes.20

This has two purposes: not only does this highlight the relative importance of different predictor variables in both the obser-

vations and 43r1, but it also indicates generally how well a linear multivariate model is able to capture the variability. Finally,

we build models of the differences between observed and 43r1 variables: we define the observed-43r1 value to be the ‘discrep-

ancy’. The uncertainties in the linear models are derived from the measurement uncertainties, propagated with the uncertainty

from the linear model. We evaluate model performance by assessing the variation in the discrepancy which is explained by the25

linear model using the r2-value.

4 Results

4.1 Model Radiative and Non-radiative Variables

We begin with a comparison of observations to both 43r1 and ERA-I radiation fluxes at the surface and the TOA for long- and

shortwave flux observations (A1). ERA-I has a coarser spatial resolution, with a horizontal grid of approximately 80km, and 6030

vertical levels Berrisford et al. (2011). ERA-I is also based on an IFS Cycle 31r2, which was operational a decade earlier than
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43r1. Numerous improvements to the physics and the dynamics of the model have been made in the intervening period, such

as changes to the convection scheme leading to a much better capturing of the diurnal cycle of tropical convection (Bechtold

et al., 2014). From A1 we see that although there are some distinct changes between the two cycles of the model, most notably

in ULR and to a lesser extent DLR (A1d and f), the behaviour of the two versions of the model tends to be more similar

to each other than the to the matched observations. Due to this similarity, we continue with comparisons of observations to5

43r1 only, but note that our general conclusions are applicable to ERA-I output. We explore reasons for the observation-model

discrepancies in section 4.2.

4.1.1 Radiative Variables

For the shortwave fluxes, the model has a negative bias for RSR (Fig. 2a,d) and a positive model bias at the surface , with

annual average biases of -21 Wm−2 in DSR (Fig. 2b,e), and -13 Wm−2 in USR (Fig. 2c,f). For all shortwave fluxes, the10

observations show large, day-to-day variations during the second part of the wet season (approximately days 200-300) which

are not reproduced by the model.

For OLR, the model has a positive bias throughout the year (Fig. 3a,d). However, the the majority of the model points

lie within in the uncertainty bounds of the observations. In the wet season, when large day-to-day variability is seen in the

observations but not in the model, differences can exceed the observational uncertainty. Here the average daily bias is -13Wm−215

(Table 2). In contrast, at the surface there are larger biases in dry season longwave fluxes than in the wet season, with modelled

DLR and ULR consistently underestimated (Fig. 3b,c,e,f). The correlation coefficients for both the dry seasons are high (r2

= 0.89 and 0.76 for ULR and DLR in the first dry season) suggesting that although the model has a significant negative bias,

it captures the dry season variability of the surface longwave fluxes well. Wet season average bias in DLR and ULR is small

at 0 and 1 Wm−2, respectively. ,
::::::
though

::::
this

::
is

::::
due

::
to

::::::::::
cancellation

:::
of

:::
the

:::::
model

::::::::::::::
underestimation

::
of

:::::
DLR

::::
and

::::
ULR

:::
in

:::
the20

:::
first

::::
part

::
of

:::
the

::::
wet

:::::
season

:::::
(days

:::::::::
126–200)

::::
with

:::
the

::::::::::::
overestimation

::
in
:::
the

:::::::
second

:::
part

::
of
::::

the
:::
wet

::::::
season

:::::
(days

:::::::::
200–300).

:::
All

:::::::
radiative

::::::::
variables

::::
show

:::::
more

::::::::
variability

::
in

:::
the

:::::::::::
observations

::::
than

::
the

::::::
model,

::::::::
reflecting

:::
the

:::::
larger

:::::
range

::
of

:::::::::
competing

:::::::::
influences

::
in

:::::::::
comparison

::
to
:::
the

::::::::
idealised

:::
and

::::
less

::::::
chaotic

::::::
model.

:

4.1.2 Non-radiative Variables

Figure 4 indicates that radiative fluxes can be affected by non-radiative processes. Figure 4 shows
::::::
presents

:
observed and25

modelled 2 m air temperature, TCWV, LHF, SHF, aerosol optical depth (AOD) and IWP and LWP. Tables 2 and Table 3

present mean statistics corresponding to radiative and non-radiative variables, respectively,
::::
with

:::::
mean

:::::::
statistics

::::::
shown

::
in

:::::
Table

:
3.

Air temperature at 2 m, Ta2, is lower than, but closely coupled to, surface or skin temperature (Slingo et al., 2009) for which

observations are not available at the study site. We find that observed and model Ta2 (Fig. 4a) follows a very similar pattern to30

ULR (Fig. 3b), as expected. In particular, we find the model generally underestimates observations during the dry season, but

with a high correlation coefficient (r2 = 0.89). During the wet season, as with ULR, the model values of Ta2 display less of

the observed day-to-day variability. The seasonal cycle in TCWV is similar to that in 43r1 (r2 = 0.80 for the whole year) but is
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much less variable than the observations during the wet season.

Figure 4b shows modelled and observed THF. The model describes 66% of observed LHF variation over the year, with 43%

of observed variation described in the wet season but only 10% of observed variation described in the dry season. In contrast,

the model captures only 13% of the annual variation of SHF with the 52% of the observed variation in the first dry season but

only 6% of the observed variation described during the wet season.5

For 500 nm AOD from the AMF (Fig. 4c), we find large values (>3) during the dry seasons and much less variability in the

wet season. The model uses aerosol climatology (Dee et al., 2011), which bears little resemblance to the observations, and

consistently underestimates the AOD throughout the year.

The model-observation IWP and LWP, though significant at the p≤ 0.001 level, capture only 13% and 8% of the observed

variability, respectively (Fig. 4d). The model IWP and LWP have a consistent low bias with respect to the observations (Fig.10

4), particularly during the wet season. Although there are significant correlations during the dry season (r2 = 0.39 and 0.08,

respectively) there are no significant correlations during the wet season when there are large variations in the observations.

Figure 5 shows that the model reproduces the observed large-scale seasonal pattern of relative humidity (RH) of a very

dry lower troposphere (700-1000hPa) during the dry season, with large variations and high RH throughout the troposphere

during the wet season. The model has some consistent differences to the observations with a generally negative bias between15

500–600
:::::::
500–700 hPa and a positive bias between 200–300

:::::::
200–400 hPa (Fig. 5c).

4.2 Surface: radiative flux discrepancies

We begin by examining the surface budget in both the model and the observations. Differences in up- and downwelling fluxes

lead to differences in the surface energy budget (Fig. 6a), defined as the difference between the downwelling energy flux (net

downward shortwave (DSR-USR) + DLR) and upwelling energy flux (ULR + SHF +LHF), using the convention that down-20

welling fluxes are positive. We find that the overestimation in model DLR and DSR outweigh the underestimation in ULR and

USR, leading to a generally positive downwelling flux in the model, in contrast to the observed negative downwelling flux.

In the rest of this section we take each of the surface fluxes in turn, and examine the relationship between observed and

model fluxes with respect to other variables, before using a multivariate model to interpret the observation-model discrepancy.25

Equations for all discrepancy linear models can be found in Appendix B.

4.2.1 Surface downwelling shortwave radiation

We remove the effect of the changing TOA total solar irradiance (TSI) over the course of the year to emphasize the effect of

the meteorological controls, though simply refer to this (DSR minus TSI) as DSR for the purposes of this section. We expect30

that the primary controls on the DSR reaching the surface will be scattering and absorption from aerosols, water vapour and

clouds (Fig. 1). Therefore, we examine the DSR in both the observations and from 43r1 with relevant variables: AOD, LWP,

IWP and TCWV. Table 4 presents statistics corresponding to surface shortwave fluxes.
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As expected, the observational wet season variability in DSR is more closely correlated to variables related to clouds (TCWV,

IWP and LWP), while AOD is more closely correlated to dry season variability. By combining IWP, TCWV and AOD we

generate a linear model (similar to that used by Miller et al. (2009)) which explains 70% of the observed variability in DSR

over the whole year (Fig. 7a). Figure 7b shows the contributions to the linear model, where negative values indicate that an

increase in that variable corresponds to a decrease in DSR. We repeat this process with the corresponding model variables and5

find that TCWV and LWP have a higher correlation coefficient with DSR than in the observations, especially in the dry season

which is most likely due to the poor representation of AOD variability. We generate a linear model using IWP and TCWV, a

combination which gives high correlation coefficients throughout the year (Fig. 7c,d).

We perform linear regressions on the model minus observed
:::::::::
observation

::::::
minus

:::::
model

:
discrepancies in AOD, TCWV, IWP

and LWP with the discrepancy in DSR. The discrepancy in IWP has a statistically significant correlation with that in DSR over10

the whole year, but particularly in the wet season (r2 = 0.54). The correlation between the discrepancy in DSR and that in

LWP is lower but still significant, while the discrepancy in TCWV has no significant correlation. The discrepancy in AOD has

a significant correlation during the dry seasons (r2 = 0.27 and 0.54, respectively). We combine the highest correlating discrep-

ancies, IWP, AOD and LWP, in a linear model (Fig. 7e) which captures 56% of the variability in the model minus observed

:::::::::
observation

::::::
minus

:::::
model

:
discrepancy in DSR over the year. Figure 7f shows that during the dry season the contribution to the15

linear model from AOD is largest, while during the wet season IWP largely determines the variability in the DSR discrepancy.

From this we infer that model negative bias in cloud IWP explains a significant proportion of the overestimation of insolation

reaching the surface. This is particularly prevalent during the wet season, with day-to-day variations in AOD accounting for

dry season overestimation of DSR at the surface.

4.2.2 Surface upwelling shortwave radiation20

We consider the two factors which we would expect to produce an error in the model USR: discrepancy in DSR and the

incorrect characterization of surface albedo. To estimate the surface albedo in the model and the observations, we take the

ratio of USR to DSR or the proportion of DSR which is reflected upwards (inferred surface albedo, α). Figure 8b shows that

the model generally has a positive bias in α, ranging from 0.22–0.29, contrasting with observations, where α varies between

0.29
::::
0.14–0.14

:::
.29. The seasonal contrast is due to the semi-arid nature of the region: dry conditions during the dry seasons25

lead to a high albedo, but during the wet season green vegetation and higher soil moisture reduces the surface albedo. This is

consistent with monthly values of the Normalized Difference Vegetation Index (NDVI, Fig. 8b) from NASA MODIS, which

peaks during August/September, approximately corresponding to when there is a minimum in surface albedo. Care must be

taken when comparing these values because we compare a model grid-average value with point measurements of DSR and

USR, which is only valid if the point measurements are representative of the larger geographical area. This point is discussed30

further in Sect. 5.

To quantify the impact of the model bias in α on USR, we calculate the model USR that is consistent with using observed

α values. Figure 8a shows that this adjusted USR is much closer in magnitude and variability to the observed USR than the
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original model USR (r2 = 0.70), suggesting a major source of error for the model USR originates from the poor characterization

of the surface albedo over this study site.

To determine whether the model bias in DSR or α has more of an impact on model USR, we build a linear model of the

USR model minus observation
:::::::::
observation

::::::
minus

:::::
model discrepancy. We use the discrepancy in α and in DSR as the predictor

variables (Table 4) as both are highly correlated with the discrepancy in USR (r2 = 0.48, 0.82 respectively), but have a relatively5

low correlation with each other (r2 = 0.13). Table 4 and Fig. 8c show that the linear model performs extremely well (r2=0.97)

over the whole year. Figure 8d shows that the larger contribution comes from the discrepancy in α, although the discrepancy

in DSR is responsible for the large variations during the wet season. This suggests that increased surface reflectivity and

overestimated DSR in the model combine to produce an overestimation in USR.

4.2.3 Surface downwelling longwave radiation10

Following Miller et al. (2009), we use observed Ta2, TCWV and AOD to build a linear model that accounts for 88% of the

observed variability in DLR (Table 5, Fig. 9a). A similar linear model but without AOD explains 99% of the 43r1 variability in

DLR (Fig. 9c). Considering the full year, the linear model for 43r1 gives greater weight to the contribution from TCWV with

respect to Ta2 than the observational linear model (compare Fig. 9b to Fig. 9d), a feature which is dominated by wet season

behaviour.15

The discrepancy in TCWV is found to have little correlation with the observation model discrepancy in DLR, and is therefore

not used further. In contrast, the discrepancy in Ta2 has a stronger correlation with DLR discrepancy in the wet season (r2 =

0.46), while the discrepancy in AOD has a stronger correlation with DLR discrepancy in the first dry season (r2 = 0.45). We

therefore build a linear model of the discrepancy in DLR with discrepancies from Ta2 and AOD (Fig. 9e). These two variables

collectively account for 75% of the DLR discrepancy variability over the whole year, with higher correlations in the dry season20

than the wet season (r2 = 0.67 and 0.52, respectively). Figure 9f shows that the discrepancy in DLR is largely driven by the

discrepancies in Ta2, with peaks in AOD contributing to isolated events.

4.2.4 Surface upwelling longwave radiation

ULR is determined by variations in skin temperature, Ts and emissivity, ε, through the Stefan Boltzmann law:

ULR= εσT 4
s , (2)25

where σ denotes Stefan-Boltzmann’s constant (5.670×10−8 Wm−2 K−4). ULR model error is therefore likely to arise due to

errors in either emissivity or in Ts. We find that ULR and Ta2 (our proxy for Ts) are highly correlated in both observations and

43r1 (Table 6), as expected. The observed minus model ULR discrepancy is also highly correlated to Ta2, suggesting that the

errors in ULR are linked to those in Ts. Possible sources of error in Ts include errors in surface heating, ground heat storage

and the partitioning between ULR and the turbulent (latent and sensible) heat fluxes.30

To explore the source of this temperature difference, we perform linear regressions of ULR first with absorbed shortwave

radiation at the surface (net downward shortwave radiation flux, or DSR - USR), and then, with the addition DLR, of total
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downward radiation flux (net downward shortwave radiation flux + DLR). The observed surface ULR is significantly correlated

with observed net downward shortwave radiation flux through the year (r2 = 0.33). We find that this correlation is improved

when we linearly regress observed ULR with the total downward radiation flux (r2 = 0.59), with the largest correlation during

the dry season (r2 = 0.96). We find a similar result using 43r1. The observation minus model discrepancy in ULR is highly

correlated to the discrepancy in total downward radiation flux. Although it is difficult to fully disentangle the cause and effect5

relationship between the upwelling and downwelling longwave radiation fluxes, the suggestion through this analysis is that the

dry season discrepancy in Ts arises through an underestimate in model DLR which is partially offset by an overestimate in net

downward shortwave fluxes.

4.3 TOA :radiative flux discrepancies

As with the surface budget, we examine the total downwelling
::
net

:
radiation flux at the TOA (incoming solar - (OLR +RSR)) in10

both the model and observations (Fig. 6b). We find that despite large discrepancies in the RSR and OLR (Figs. 2 and 3) there

is good agreement between the model and observed TOA budget, especially in the dry season. This is likely due to the RSR

underestimate counteracting the OLR overestimate. The exception to this is the second part of the wet season, where the model

does not capture the large variations seen in the observations. We now interpret OLR and RSR to establish which processes

control observed and model variations, and their discrepancies.15

4.3.1 TOA reflected shortwave radiation

We find that the shortwave component of the TOA budget has similar controls to DSR (Table 7) with significant correlations

between observed RSR and cloud products (IWP and LWP, r2 = 0.56 and 0.31, respectively). Control from IWP is strongest

in the wet season, while the highest correlation with LWP and AOD is during the first dry season. Using LWP, IWP and AOD

we build a linear model which explains 73% of the observed RSR variability over the course of the year, with the highest20

correlation during the wet season (Fig. 10a). IWP and LWP have the largest contribution during the wet season, with AOD

contributing more in the dry seasons (Fig. 10b). Repeating the procedure with 43r1 shows very similar dependencies of 43r1

RSR on LWP and IWP, suggesting that the response to the cloud forcing is similar. Using the 43r1 IWP and LWP in a linear

model, we can recreate 74% of the variability in 43r1 RSR (Fig. 10c).

Discrepancies in RSR and the predictor variables show that, as with DSR, the largest correlation with RSR discrepancy is25

that in IWP, followed by that in LWP (Table 7). This suggests that the underlying discrepancies in RSR have the same cause

as those in DSR, namely the underestimation of IWP and LWP, especially in the wet season. Indeed, we see a very strong

correlation between DSR and RSR both in the observations and 43r1 individually, as well as a high correlation between the

observation-model discrepancy in DSR and RSR. By combining the discrepancies in IWP, LWP and AOD we build a linear

model which explains 55% of the variability in the discrepancy of RSR over the course of the year (Table 7). Comparison of30

the discrepancy models for both RSR (Figs. 10e and f) and DSR (Figs. 7e and f) shows that the RSR discrepancy model is less

dependent on AOD, but also includes a dependency on LWP.
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4.3.2 TOA outgoing longwave radiation

We finish our examination of the radiation fluxes with the OLR. There is a significant correlation between observed OLR and

TCWV, IWP and LWP, with the strongest correlation between IWP/LWP and OLR during the dry season, and TCWV having a

similar correlation in both the first dry and wet season. Upper tropospheric humidity (UTH) has a statistically significant, albeit

lower, correlation during the wet season (r2 = 0.13). ULR, which we might expect to influence OLR under clear-sky conditions,5

does not have a significant correlation during the dry season, though it does during the wet season. By combining IWP, LWP

and TCWV, we build a linear model which explains 60% of the observed variability throughout the year (Table 8, Fig. 11a).

Much of the seasonal cycle in this linear model is driven by TCWV, while the day-to-day variability during the wet season

comes from variations in IWP and LWP (Fig. 11b). Again, these contributions are shown as negatives in the contributions plot,

as an increase in these variables leads to an decrease in OLR.10

We see a similar pattern with 43r1, though LWP has a lower correlation with OLR during the year (r2 = 0.20), and no

significant correlation in any individual seasons. Instead, IWP has a stronger correlation (r2 = 0.69), and UTH has a higher

correlation than the observations (r2 = 0.54 rising to 0.87 during the wet season). The linear model from TCWV, IWP and

UTH (Fig. 11c) captures most of the variability in 43r1 OLR (r2 = 0.85), though TCWV contributes less to the linear model

than in the observations (Fig. 11d).15

As noted above, for the majority of the days examined, 43r1 OLR falls within the uncertainty bounds of the observations,

with the exception of the wet season. We therefore restrict our discrepancy model to just this period. There is little correlation

between the discrepancy in wet season IWP, ULR or UTH and the discrepancy in OLR, and no significant correlation with

TCWV or LWP (Table 8). We therefore build a linear model of the discrepancy in wet season OLR using the discrepancy

in IWP, ULR and UTH, producing a model with correlation coefficient of r2 = 0.36 (Fig. 11). From the contributions to this20

model (Fig. 11), we see that the largest contribution to this model is from the discrepancy in UTH, with minor contributions

from IWP and LWP, suggesting that model humidity profiles are the largest cause of OLR discrepancies.

5 Discussion and concluding remarks

The purpose of this study has been to characterise differences in TOA and surface radiation fluxes between ECMWF’s IFS 43r1

and observations from GERB/SEVIRI; to link these discrepancies to differences in physical processes; and to examine links25

between surface and TOA discrepancies. We do this using some simple statistics and by extending the methods of multivariate

linear models used by Miller et al. (2009).

We are able to link observation - model discrepancies in physical processes to those in radiation fluxes. The most striking

of these impacts arises from a lack of ice cloud, manifested as an underestimate in the ice water path, which causes large30

wet season discrepancies in shortwave radiation. This lack of ice cloud leads to too much shortwave radiation reaching the

surface, and not enough being reflected at the TOA. This effect is exacerbated by the use of an aerosol loading climatology

which typically underestimates the real amount of aerosol present in the atmosphere over Niamey and is the major source of
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the model overestimate of surface downwelling shortwave radiation (DSR) in the dry season. This agrees with an assessment

of an earlier cycle of the IFS, 32r3, used for a re-analysis by Agustí-Panareda et al. (2010), though here we directly link the

lack of cloud and aerosol loading to an overestimation of DSR. Marsham et al. (2015), in their study of controls of surface

and TOA radiation budgets in a similar site in Algeria (Bordj-Badji Mokhtar at 21.4 ◦ N 0.9 ◦ E) also find that net shortwave

radiation at the surface is controlled by a balance of clouds, AOD and TCWV, consistent with our results here. The positive5

bias in model DSR leads to an overestimation of net shortwave absorption by the surface and overestimation of upwelling

shortwave radiation (USR). However, we find that for reflected shortwave radiation (RSR) at the TOA, the largest contribution

to the observation - model discrepancy remains the underestimated cloud ice water path.

Turning to the longwave regime, we find that the model bias in ice water path also contributes to a positive bias in wet sea-

son OLR, though discrepancies in upper tropospheric humidity and upwelling longwave radiation (ULR) also play a role. Our10

analysis suggests that the discrepancy in ULR is itself due to an underestimation of skin temperature. The origin of this discrep-

ancy in skin temperature is difficult to identify: we find that the model generally shows a positive surface energy budget (where

downwelling is the positive direction), while the observations suggest the surface energy budget is generally negative. This

would logically result in an enhanced skin temperature in the model and an overestimation of ULR. The higher correlation of

ULR with a combination of net downward shortwave and downwelling longwave radiation (DLR) at the surface may indicate15

complex feedbacks. A cooler near-surface temperature profile in the model could lead to lower DLR which would in turn lead

to lower longwave absorption at the surface and therefore a lower skin temperature. Clearly, separating the cause and effect of

the underestimated skin temperature is difficult. However, this temperature discrepancy, regardless of origin, can be directly

linked to the discrepancy in DLR, particularly in the wet season. Marked peaks in model observation DLR discrepancies result

from significant aerosol events which are not captured in the model aerosol climatology.20

There are limitations to the approach we have taken here. A significant caveat relates to the comparison of point measurements

with area-averages. However, assuming a non-static atmosphere, the use of daily averages rather than instantaneous measure-

ments from the surface (point site), satellite (∼10 km resolution) and model (∼29 km resolution) should, to some degree

account for the mis-match in spatial scales given the higher native temporal resolution of the surface (1s) and satellite obser-

vations (15 minute). The qualitative agreement in the temporal variability in NDVI from MODIS (∼110km) and the surface25

albedo derived from the ARM site gives confidence in the general representativeness of the site in terms of surface properties.

We also use the upper bounds of instrumental uncertainty to avoid over-interpreting model-observation discrepancies which lie

within the bounds of measurement error.

The method we have used here does rely heavily on the availability of high-frequency measurements of radiative and mete-

orological variables from surface sites, which are not widely available. However, we find that larger-scale satellite products,30

such as ice and liquid water path, have been integral to our analysis of TOA fluxes in particular, suggesting this method could

potentially be extended to larger spatial scales using suitably validated satellite products.

In summary we have shown in this study that the use of multivariate linear models can give us deeper insight into how

physical processes in 43r1 impact the evolution of radiative fluxes at the surface and the TOA in Niamey as well as identifying

where shortcomings exist in the current version of the model.35
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Appendix A: ERA-I - 43r1 comparison

Figure showing ERA-Interim and IFS cycle 43r1 differences, as discussed in section 4

Appendix B: Linear model equations

The equations for the linear models used in section 4.2, where primes indicate observation - model discrepancies.

Surface downwelling shortwave radiation:5

DSR′ W m−2 = (3± 2) W m−2 +(−209± 12) W kg−2 × IWP ′ kg m−2 +(−29± 4) W m−2 ×AOD′

+(−181± 25) W kg−2 ×LWP ′ kg m−2, (B1)

Surface upwelling shortwave radiation:
10

USR′ W m−2 = (−1.5± 1.8) W m−2 +(0.201± 0.003)×DSR′ W m−2 +(229± 5) W m−2 ×α′. (B2)

Surface downwelling longwave radiation:

DLR′ W m−2 = (7.2± 0.7) W m−2 +(7.3± 0.2) W m−2 K−1 ×T ′ K+(16.3± 1.4) W m−2 ×AOD′ (B3)

TOA reflected shortwave radiation:15

RSR′ W m−2 = (5± 2) W m−2 +(127± 8) W kg−2 × IWP ′ kg m−2

+(125± 16) W kg−2 ×LWP ′ kg m−2 +(30± 7) W m−2 ×AOD′ (B4)

TOA outgoing longwave radiation:
20

OLR′ W m−2 = (23± 5) W kg−2 +(−37± 11) W kg−2 × IWP ′ kg m−2

+(0.5± 0.1)×ULR′ W kg−2 +(−66± 9) W kg−2 ×UTH ′ (B5)
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Figure A1. Comparison between observations (red), ERA-Interim (blue) and 43r1 (green) for (a) TOA reflected shortwave; (b) TOA outgoing

longwave; (c) surface upwelling shortwave; (d) upwelling longwave; (e) downwelling shortwave; and (f) downwelling longwave radiation

fluxes. Dashed lines indicate beginning and end of wet season.
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Variable Datastream Description Frequency
Period

(2006-mm-dd)
:::::::::
Uncertainty

:::::::::::::::::

Shortwave
radiation flux (Wm−2)

::::::::::::
qcrad1longM1.s2

: :::::::::::::::

Up and downwelling,
at surface

: :
1
::::
min

:::
avg

::::
01-01

::
–
::::
12-31

:
9
::::::

Wm−2

:::::::::::::::::

Longwave
radiation flux (Wm−2)

::::::::::::
qcrad1longM1.s2

: :::::::::::::::

Up and downwelling,
at surface

: :
1
::::
min

:::
avg

::::
01-01

::
–
::::
12-31

:
5
::::::

Wm−2

Temperature (◦C) nimmetM1.b1
Temperature, air,

at 2m height 1 min avg 01-01 – 12-08
:::
1%

TCWV (cm) nimsondewnpnM1.b1

Temperature, dew point,
at altitude

6 hour 01-06 – 12-31 :::
0.5

::

◦C
Pressure, atmospheric,

at altitude
:
1

:::
hPa

Turbulent
fluxes (Wm−2) nim30qcecorM1.s1

Latent heat flux
30 min avg 01-01 – 12-31 :::6 %

Sensible heat flux

Aerosol optical
depth AOD-FLYNN

AOD at 500 nm derived
from MFRSR corrected 1 day avg 01-01 – 12-31

::::
0.005

Table 1. Non-radiative
:::::::
Radiative

:::
and

::::::::::
non-radiative

:
data used from the AMF, with dates for which the data stream is available for in 2006.

Data are available from the ARM archive: http://www.archive.arm.gov.
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Variable Statistic Whole Year 1st Dry Season Wet Season 2nd Dry Season

OLR

r2 0.51 0.54 0.40 0.56

RMSE (W m−2) 24 20 29 10

bias (W m−2) -12 -12 -13 -5

DLR

r2 0.83 0.76 0.68 0.90

RMSE (W m−2) 23 33 12 18

bias (W m−2) 13 29 0 16

ULR

r2 0.45 0.89 0.35 0.94

RMSE (W m−2) 24 30 20 18

bias (W m−2) 12 28 -1 17

RSR

r2 0.31 0.51 0.21 0.01

RMSE (W m−2) 32 19 42 10

bias (W m−2) 18 13 24 8

DSR

r2 0.23 0.60 0.09 0.27

RMSE (W m−2) 47 28 60 13

bias (W m−2) -21 -13 -30 -3

USR

r2 0.43 0.64 0.14 0.33

RMSE (W m−2) 17 12 21 5

bias (W m−2) -13 -10 -16 -3

Table 2. Statistics from observation-43r1 comparison of radiative variables for the whole year (days 7–341), 1st dry season (days 7–125), wet

season (days 126–301) and 2nd dry season (days 302–341): Pearson’s r2 value (bold if significant to p ≤ 0.001), the root-mean-square-error,

and the bias, all defined in Section 3.
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Variable Statistic Whole Year 1st Dry Season Wet Season 2nd Dry Season

Temperature

r2 0.60 0.89 0.56 0.92

RMSE (◦C) 2.1 2.1 2.2 0.9

bias (◦C) 0.0 1.8 -1.3 0.3

TCWV

r2 0.80 0.52 0.74 0.94

RMSE (cm) 0.8 1.0 0.5 0.3

bias(cm) 0.2 0.8 -0.2 0.3

Latent heat
flux

r2 0.66 0.10 0.43 0.36

RMSE (W m−2) 17 7 22 11

bias (W m−2) -6 -6 -6 -11

Sensible heat
flux

r2 0.13 0.52 0.06 0.13

RMSE (W m−2) 25 23 28 22

bias (W m−2) 11 18 5 20

Ice water
path

r2 0.13 0.39 0.07 0.00

RMSE (kg m−2) 0.13 0.02 0.18 0.01

bias (kg m−2) 0.05 0.01 0.08 0.01

Liquid water
path

r2 0.08 0.12 0.01 0.08

RMSE (kg m−2) 0.06 0.03 0.08 0.02

bias (kg m−2) 0.01 0.01 0.02 0.01

Table 3. Statistics from observation-ERA-I comparison of non-radiative variables for the whole year (days 7–341), 1st dry season (days

7–125), wet season (days 126–301) and 2nd dry season (days 302–341): Pearson’s r2 value (bold if significant to p≤0.001), the root-mean-

square-error, and the bias, all defined in Section 3.

21



Radiative flux Variable
Whole
Year

Dry
Season 1

Wet
Season

Dry
Season 2

DSR

Observations

AOD 0.03 0.19 0.02 0.67

TCWV 0.38 0.11 0.31 0.46

IWP 0.51 0.47 0.53 0.10

LWP 0.28 0.31 0.22 0.23

Linear model 0.70 0.43 0.66 0.77

43r1

AOD 0.06 0.00 0.00 0.01

TCWV 0.51 0.64 0.32 0.75

IWP 0.61 0.22 0.66 0.08

LWP 0.38 0.63 0.13 0.58

Linear model 0.73 0.64 0.69 0.71

Discrepancy

AOD 0.04 0.27 0.02 0.54

TCWV 0.00 0.01 0.02 0.09

IWP 0.51 0.33 0.54 0.13

LWP 0.14 0.15 0.14 0.17

Linear model 0.56 0.41 0.56 0.63

USR

Observations DSR 0.77 0.87 0.85 0.89

43r1 DSR 0.70 0.96 0.75 0.90

Discrepancy

DSR 0.82 0.74 0.85 0.92

Albedo 0.48 0.22 0.46 0.53

Linear model 0.97 0.99 0.98 0.99

Table 4. Shortwave surface fluxes: r2 values from correlations between observed and 43r1 USR and DSR, and their discrepancy, to other

variables for the whole year (days 7–341), 1st dry season (days 7–125), wet season (days 126–301) and 2nd dry season (days 302–341):

Statistically significant (to p≤ 0.001) values are in bold. Italics indicate which variables were used in the linear model.
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Radiative flux Variable
Whole
Year

Dry
Season 1

Wet
Season

Dry
Season 2

DLR

Observations

TCWV 0.53 0.13 0.31 0.88

Temperature 0.25 0.54 0.22 0.79

IWP 0.04 0.26 0.00 0.02

LWP 0.12 0.30 0.04 0.26

AOD 0.04 0.07 0.14 0.36

ULR 0.28 0.61 0.19 0.79

Linear model 0.88 0.82 0.81 0.96

43r1

TCWV 0.91 0.89 0.74 0.97

temperature 0.53 0.64 0.16 0.95

IWP 0.18 0.15 0.07 0.12

LWP 0.61 0.65 0.27 0.44

AOD 0.31 0.14 0.16 0.08

ULR 0.72 0.75 0.35 0.96

Linear model 0.99 0.97 0.98 0.99

Discrepancy

TCWV 0.32 0.00 0.17 0.01

Temperature 0.65 0.30 0.46 0.15

IWP 0.12 0.02 0.14 0.09

LWP 0.21 0.45 0.07 0.18

ULR 0.60 0.25 0.48 0.21

AOD 0.21 0.45 0.07 0.18

Linear model 0.75 0.67 0.52 0.51

Table 5. Downwelling longwave surface fluxes: r2 values from correlations between observed and 43r1 DLR, and their discrepancy, to other

variables for the whole year (days 7–341), 1st dry season (days 7–125), wet season (days 126–301) and 2nd dry season (days 302–341):

Statistically significant (to p≤ 0.001) values are in bold. Italics indicate which variables were used in the linear model.
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Radiative flux Variable
Whole
Year

Dry
Season 1

Wet
Season

Dry
Season 2

ULR

Observations

Temperature 0.92 0.95 0.90 0.97

Net SW 0.33 0.46 0.33 0.04

Net SW + DLR 0.59 0.92 0.49 0.96

43r1

Temperature 0.93 0.97 0.88 0.99

Net SW 0.28 0.39 0.11 0.10

Net SW + DLR 0.82 0.98 0.40 0.98

Discrepancy

Temperature 0.87 0.73 0.80 0.73

Net SW 0.33 0.08 0.47 0.15

Net SW + DLR 0.70 0.51 0.64 0.66

Table 6. Upwelling longwave surface fluxes: r2 values from correlations between observed and 43r1 ULR, and their discrepancy, to other

variables for the whole year (days 7–341), 1st dry season (days 7–125), wet season (days 126–301) and 2nd dry season (days 302–341):

Statistically significant (to p≤ 0.001) values are in bold. Italics indicate which variables were used in the linear model.
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Radiative flux Variable
Whole
Year

Dry
Season 1

Wet
Season

Dry
Season 2

RSR

Observations

IWP 0.56 0.49 0.58 0.24

LWP 0.31 0.37 0.24 0.13

AOD 0.01 0.17 0.01 0.29

DSR 0.62 0.21 0.83 0.67

Linear model 0.73 0.56 0.73 0.43

43r1

IWP 0.70 0.33 0.69 0.01

LWP 0.24 0.57 0.07 0.37

AOD 0.11 0.07 0.01 0.00

DSR 0.32 0.10 0.77 0.35

Linear model 0.74 0.51 0.71 0.23

Discrepancy

IWP 0.43 0.20 0.44 0.07

LWP 0.16 0.23 0.15 0.12

AOD 0.05 0.13 0.03 0.01

DSR 0.80 0.51 0.85 0.39

Linear model 0.55 0.33 0.55 0.07

Table 7. TOA RSR fluxes: r2 values from correlations between observed and 43r1 RSR , and their discrepancy, to other variables for

the whole year (days 7–341), 1st dry season (days 7–125), wet season (days 126–301) and 2nd dry season (days 302–341): Statistically

significant (to p≤ 0.001) values are in bold. Italics indicate which variables were used in the linear model.
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Radiative flux Variable
Whole
Year

Dry
Season 1

Wet
Season

Dry
Season 2

OLR

Observations

TCWV 0.43 0.33 0.35 0.10

IWP 0.34 0.40 0.38 0.39

LWP 0.23 0.34 0.17 0.03

ULR 0.07 0.01 0.26 0.00

UTH 0.13 0.07 0.14 0.03

Linear model 0.60 0.47 0.58 0.13

43r1

TCWV 0.40 0.13 0.36 0.13

IWP 0.69 0.39 0.72 0.52

LWP 0.20 0.07 0.04 0.03

ULR 0.02 0.01 0.08 0.05

UTH 0.54 0.40 0.64 0.23

Linear model 0.85 0.60 0.87 0.43

Discrepancy

TCWV 0.03

IWP 0.15

LWP 0.02

ULR 0.14

UTH 0.10

Linear model 0.35

Table 8. TOA OLR fluxes: r2 values from correlations between observed and 43r1 OLR , and their discrepancy, to other variables for

the whole year (days 7–341), 1st dry season (days 7–125), wet season (days 126–301) and 2nd dry season (days 302–341): Statistically

significant (to p≤ 0.001) values are in bold. Italics indicate which variables were used in the linear model.
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Figure 1. Simplified schematic of major processes controlling broadband radiation fluxes in the Sahel. Red arrows indicate shortwave

radiation fluxes, blue arrows longwave radiation fluxes. For detailed description of arrows, please see section 2.1.
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Figure 2. Daily means of observed (blue, from AMF and GERB) and 43r1 (red) shortwave radiation fluxes at Niamey during 2006.
::::
Lines

::::::
become

:::::
dashed

:::::
when

:::::
values

:::
are

::::
from

::::::::::
interpolation

:::
(see

::::
Sec.

::
3). Plots show observed and 43r1 (a) TOA reflected shortwave; (b) surface

downwelling shortwave; (c) surface upwelling shortwave radiation fluxes; and the observation - 43r1 difference of these same fluxes in

(d)-(f) respectively. Black diamonds on plots (d)-(f) indicate model values outside of the observational uncertainty range (horizontal dashed

lines). Vertical dashed lines indicate the beginning and end of the wet season.
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Figure 3. As Figure 2 but for longwave fluxes. Plots show observed and 43r1 (a) TOA outgoing longwave; (b) surface downwelling longwave;

(c) surface upwelling longwave radiation fluxes; and the observation - 43r1 difference of these same fluxes in (d)-(f) respectively.
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Figure 4. Observed and 43r1 non-radiative fluxes for Niamey during 2006. Plot (a) shows temperature and TCWV; plot (b) sensible and

latent heat fluxes; plot (c) aerosol optical depth; and plot (d) ice water path and liquid water path. Dashed sections indicate imputed data, and

dashed vertical lines indicate the beginning and end of the wet season.
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Figure 5. (a) observed and (b) 43r1 daily mean of relative humidity profiles from 1000-200hPa above Niamey during 2006. Plot (c) is

observation - model relative humidity discrepancy .
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Figure 6. Surface and TOA energy budget at Niamey during 2006. Plot (a) shows the total downwelling
::
net energy flux at the surface

(downwelling long-and shortwave surface radiation fluxes minus upwelling long- and shortwave radiation surface fluxes and turbulent heat

fluxes) for observations (blue) and 43r1 (red). Plot (b) is the total downwelling
:::
net flux at the TOA (total solar irradiance minus reflected

shortwave and outgoing longwave radiation), also for observations and 43r1. Positive values for both indicate more downwelling than

upwelling energy flux. Dashed vertical lines indicate beginning and end of the wet season.
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Figure 7. Downwelling shortwave radiation minus total solar irradiance (DSR - TSI), in observations and 43r1. Plot (a) shows DSR (blue)

and the linear model (red) of (DSR - TSI) built from a linear combination of IWP (orange), TCWV (blue) and AOD (green) shown in plot

(b). Plot (c) shows the 43r1 (DSR - TSI) (pink) and the linear model of 43r1 (DSR - TSI) (green) made up of IWP (orange) and TCWV

(dark blue) in plot (d). Plot (e) shows the observation - 43r1 discrepancy in red, with a linear model (blue) of this discrepancy built from

discrepancies in IWP (green), aerosol optical depth (orange), and LWP (purple) in plot (f). Negative contributions in plots (b), (d) and (f)

indicate that an increase in that variable corresponds to a decrease in (DSR - TSI). Dashed lines indicate beginning and end of wet season.33
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Figure 8. Plot (a) shows observed USR (blue), 43r1 USR (red) and ‘adjusted’ USR (calculated from 43r1 DSR and observed surface albedo,

green). Plot (b) shows inferred surface albedo as calculated by the ratio USR/DSR from the observations (blue) and 43r1 (red), as well as

NDVI (see text). Plot (c) shows USR discrepancy (red) and linear model (blue) of USR discrepancy with contributions in plot (d) from

discrepancy in surface albedo (pink) and DSR discrepancy (orange). Dashed lines indicate beginning and end of wet season.
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Figure 9. As Figure 7, but for downwelling longwave radiation, with observation/43r1 linear model contributions from TCWV (blue), 2 m

air temperature (orange) and AOD (green) in plots (b) and (d) and discrepancy model contributions from 2m air temperature (orange) and

AOD (pink) in plot (f).
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Figure 10. As Figure 7, but for reflected shortwave radiation at the TOA, with observation/43r1 linear model contributions from IWP

(orange), LWP (blue) and (observations only) AOD (green) in plots (b) and (d) and discrepancy model contributions from IWP (orange),

LWP (blue) and AOD (green) in plot (f).
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Figure 11. As Figure 7, but for outgoing longwave radiation at the TOA, with observation/43r1 linear model contributions from TCWV

(orange), IWP (blue) and UTH (green) in plots (b) and (d) and discrepancy model contributions from IWP (blue) and UTH (green) and LWP

(pink) in plot (f). Negative contributions in plots (b), (d) and (f) indicate that an increase in that variable corresponds to a decrease in OLR.
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