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Dear Editor,
We thank you and the reviewers for their positive comments and opinions. About their comments, we

propose in the following some answers and corrections of the manuscript.

1 Report 1

1.1 General Description of manuscript and General Comments

The authors use observations from the West Africa AMMA aircraft campaign in 2006 and an atmospheric chem-
istry model to diagnose the transport patterns and contributing sources to enhancements in carbon monoxide
and PM 2.5 along a latitudinal transect from the Gulf of Guinea to the Sahel.

As presented currently the study appears anecdotal. It is not apparent that the features observed along a
very limited longitudinal domain in West Africa apply to the rest of West Africa and to other years. Please
clarify whether the findings in this study are generally applicable to the rest of West Africa and other years? If
so, what do the outcomes from this study mean for past/present/future atmospheric composition or development
of air quality and/or climate policy?

The present analysis is meant to be a case study for the year 2006, making use of the wealth of observations
acquired during the AMMA programme. The interannual variability has not been investigated and is out of the
scope of this paper. We revisited the AMMA 2006 observations to focus on the transport patterns and sources
of carbon monoxide and PM2.5 over Southern West Africa, a region that has received less attention than the
Sahel during AMMA.

We suspect that some of the features observed occur year after year over Southern West Africa monsoon but
we cannot extrapolate from the results of our study. Here, we proposed a new approach focusing on two major
pollutants (Carbon monoxide, CO, and fine atmospheric particulate matter, PM2.5) that can be transported
far from the sources due to their long lifetime. They are certainly of paramount importance for air quality and
climate policies development, but we feel that additional simulations are needed to address this, which is also
beyond the scope of the paper.

Why not also compare the model to other parameters measured during the AMMA campaign to assist
in interpreting transport patterns and contributing sources and diagnosing what causes differences between
modeled and observed PM 2.5 and CO? These could include measure components of PM 2.5 (sulfate, ammonium,
organic aerosol, nitrate), and CO precursor VOCs, for example.

We decided to focus on these two important atmospheric components (Carbon monoxide, CO, and fine atmo-
spheric particulate matter, PM2.5) because the data were available. Aerosol Mass Spectrometer data were not
available. For CO, we assume that we modeled the two main sources (i.e. Anthropogenic and biomass burning).
Given the amount of VOCs, i.e. > 15 ppb according to Ancellet et al. (2011), VOCs oxidation must be very
low (a few ppb).

1.2 Specific Comments

We thank the reviewer for taking the time to go through the spelling and grammar of the manuscript. All
proposed corrections have been taken into account in the revised version of the manuscript. Below, we provide
answers to the more science oriented questions the referee has.

p. 2, Lines 17-18: The authors point to economic growth as a driver of emissions from industries, including
gas flaring, but the reference they site does not mention economic growth as a driver.

The sentence has been changed: ’However, the economic growth over the region drives up anthropogenic
emissions: the increase of industries including gas flaring (Asuoha and Osu, 2015), of local fuel-wood burning



for stoves and of traffic (Liousse et al., 2010; Hadji et al., 2012; Liousse et al., 2014) with more two-wheel
vehicles using very poor fuel quality used (Ndoke and Jimoh, 2005; Assamoi and Liousse, 2010), which are
suspected to quickly worsen the air quality.’

p. 2, Line 19: Do the authors mean ’air quality standards’ or air quality guidelines? If from WHO these
should be guidelines.

Corrected

p. 3, lines 9-12: Presumably DACCIWA will also contribute to understanding the change in atmospheric
composition due to increases in emissions over a rapidly growing region?

The sentence has been changed: It will contribute to understanding the change in atmospheric composition due
to increases in emissions over a rapidly growing region as well as the development of the next generation of
accurate models to forecast weather and pollution in southern West Africa (Knippertz et al., 2015).

p. 3, line 31: Is a 1 month spin-up sufficient for carbon monoxide output from a model, when CO has a
lifetime of 2 months?

As for all chemical species, and the principle of an area limited domain model, the lifetime of the species is
not a constraint. The ’aged’ concentrations are already modeled with the global climatological model, providing
hourly boundary conditions. These concentrations are injected into our regional model depending on the wind
direction and speed. The ’fresh’ concentrations are explicitly hourly emitted in the domain.

The real constraint motivating the use of a spin-up time is the transport of the species into the domain: we
want to ensure that for the first modeled hour, all possible species, due to a previous transport, are well present
in the domain. There is no link to the lifetime, but depends on the transport and the domain size only.

p. 5, lines 22-23: Please point out the features that are similar to the Flaounas et al. (2010).

The paragraph related with Flaounas et al. (2010) has been modified such as: ’During this period, the precip-
itation location and rate will play a crucial role on the modeled surface PM2.5 concentrations. As a validation
for this variable, the methodology of Flaounas et al. (2010) is used: precipitation rates are averaged between
8.5W and 8.5E. Day-to-day variability is smoothed by applying a moving average of ±2 days. Figure 2 is di-
rectly comparable to the Flaounas et al. (2010) study using the same period and averaged region. In May and
June, observed and modeled precipitations occur mainly over the ocean (below 5N). From late June on, the main
precipitation areas move over the continent (above 5N) and reach the Sahel (at about 13N). Figure 2 shows that
the modeled precipitation spatial patterns are in good agreement with the two satellite observations (TRMM and
GPCP) presented in their study (see Figure 3 of Flaounas et al. (2010)). ’

p. 6, line 14: Remove parentheses around the AERONET URL.
p. 6, line 15: Space between number and units (400 nm instead of ’400nm’).
p. 6, line 15: Provide units for ’440-870’.
p. 10, line 17: ’analyzes’ should be analysis.

All four points have been corrected.

p. 10, lines 26-27: Point out in Figure 5 the feature that indicates the arrival of the cold tongue.

This sentence has been revised: At the end of the period, when precipitation occurs inland and anth-PM2.5

is low, the meteorological situation changes suddenly over the ocean showing the cold tongue arrival located at
the Equator, which is associated with increased wind speed between the Equator and the coast, as detailed by
Meynadier et al. (2016).

p. 12, line 31: Fix units.
p. 14, line 11: ’perturbated’ should be perturbed.
p. 15, line 5 (bottom of page): Dust is repeated.

All three points have been corrected.

p. 15, line 14: What does ’Figure ??’ refer to? Is this Figure 11? Indicate on the figure the convective cell.



Thanks for picking this up. Yes indeed, we meant Figure 12 (previously 11). A red ellipse has been superimposed
on Figure 12 to indicate the location of the convective cell.

p. 16, lines 29-30: There is no context for why the results in this work will be compared to DACCIWA.
What new insights will be gained from this comparison that justify mentioning it here?

This sentence has been changed: Concerning air quality and climate policy development, we have shown that
the export of anthropogenic pollutant from the Guinean coast toward the North could lead to cross boundary
pollution plumes. This result will be confirmed by comparing to the 2016 DACCIWA campaign observations in
order to propose strategy to reduce the atmospheric pollution in West Africa.

Figures:
Figure 3: What are the statistics in the first and third panel? Does this compare the modeled component to
total AOD from the measurements? Whats the value in showing this? Why not just compare total modeled
and observed AOD? The label for the modeled AOD components is confusing. The label is ’AOD Anthr.’ and
’AOD Fires’, but shouldnt is rather be biomass burning and all other components for clarity? The figure caption
suggests this is what is shown.

There is no value to keep the statistics because the scores are very slightly improved by adding biomass burning
emission. It has been removed. Concerning the legend, the labels (’AOD Anthr.’ and ’AOD Fires’) have
been replaced (by ’with biomass burning’ and ’without biomass burning’). The new figure is presented below

( Figure 1 of this document).
Moreover, a detailed explanation of how the different contributions are obtained has been added in Section

2.2.

2 Report 2

2.1 General Comments

This paper looks at the contribution of different emissions sources to CO and PM2.5 over W. Africa and the
meteorological conditions that influence the transport of the pollutants within this region. It is a model study
using a WRF coupled to CHIMERE and evaluated using measurements made during the AMMA project in
2006. It is the impact of the meteorological conditions on pollution concentrations particularly on the coastal
region where the majority of people live that provides novel insight that is worthy of publication. I do have a
few concerns that I would like to see addressed before publication.

2.2 Specific Comments

It is not clear to me why in section 3.3, the model meridional simulation of CO and PM2.5 is evaluated against
just two flights the on consecutive days (13-14 June), during which an MCS passes through the area (section
3.3.1). On the back of this the model is then used to quantify the modelled pollution source apportionment on
a monthly basis. Why not evaluate the model over the whole month? There were flights on other days and
with other aircraft. There are several papers published from the AMMA campaign that could have been used
to help with this evaluation see Reeves et al (2010) (www.atmos-chem-phys.net/10/7575/2010/) that gives an
overview of the chemical and aerosol characterisation and references therein. Satellite data could also be used
for the evaluation. This would also help to evaluate the transport of biomass burning plumes into the region
from south of the aircraft flight tracks.

The section 3.3 deals with modeled and observed CO and PM2.5 during two meridional flight trajectories
on consecutive days (13-14 June) because it provides data from the coast to the Sahel, thus it fits exactly the
scope of the study focusing on the Sudano-Guinean region. New insights are presented gained from the AMMA
2006 observations as we focus on the transport patterns and sources of CO and PM2.5 over the Sudano-Guinean
region.



Figure 1: Observed daily averages of AERONET level 2 AOD and Angström exponent (black dots) at Djougou
(Benin) and Banizoumbou compared to the modeled time series with a splitting to extract the relative contribution
between without biomass burning emissions (including anthropogenic, biogenic, sea salt and mineral dust; all
four in blue) and with biomass burning emissions (in red).



Moreover, it has been difficult to work with validated data from the AMMA database. Many datasets used
in preliminary evaluations were partly unusable after contacting responsible people of the dataset. We have
contacted FAAM team (Graeme NOTT) for data from the BAe 146 of the 20-21 July but it was not possible to
produce PM concentration because: ’during this period no calibration of the PCASP was carried out by FAAM’
and in the FORTRAN code, a mistake has been done using constant flow rate. Suzanne CRUMEYROLLE has
provided the only aircraft data that we are confident but aerosol speciation was not available. The two flights
used in our study are meridional transects that fit exactly with the purpose of the study.

How is the source apportionment (Section 3.3.1) determined? Are separate CO tracers used for the back-
ground, anthropogenic and biomass burning? How is this done for PM2.5, in particular considering how the
aerosol scheme works? How is the formation of SOA considered? What about mixed aerosols? One of the main
scientific questions addressed in this paper is the contribution of different sources to pollutant concentrations,
so it is essential that a clear description of the methodology for determining this is included in the paper. Much
of the analysis in the paper focuses on anth-PM2.5 so it must be clear how this is defined.

References describing how the aerosol scheme works in the CHIMERE model were missing in the manuscript.
In the revised version of the manuscript, we now describe it as well as how the source apportionment is deter-
mined for CO and for PM2.5, which has been added in Section 2.2:
’Menut et al. (2016) have detailed and analyzed aerosol speciation and size distribution in the CHIMERE model
during the summer 2013 over Europe and Africa using the AERONET network for AOD and EMEP network
for PM concentrations. For the AOD calculation, the aerosol optical scheme in the CHIMERE model considers
mixed aerosols following the ’core-shell’ hypothesis detailed in Péré et al. (2009) and evaluated in Péré et al.
(2010).
In order to quantify the PM2.5 source apportionment, we assume that it is possible to split aerosols in different
families depending on the sources because their chemical compositions are different: Mineral, Biogenic, Salt
and Anthropogenic. Given that anthropogenic and biomass burning aerosols have similar compositions, we have
done two simulations with and without biomass burning emissions to split their contributions. The gas phase
chemical scheme for SOA formation explained in Bessagnet et al. (2010) takes into account three anthropogenic
and three biogenic hydrophilic species, three hydrophobic species with different saturations, and two surrogate
compounds for the isoprene oxidation products.
The source apportionment has been determined for CO considering three main contributors (anthropogenic
sources, biomass burning sources and long-range transport). Consequently, three simulations have been done:
one without any emission source in the domain for the background concentration, one with the anthropogenic
emission only, and a last one with the anthropogenic and biomass burning emissions.’

Section 4.22. I really do not understand the conclusions here. In Figure 7, surely a and b are the wrong way
around, with the top plot having the 1 a.u. contour at around 7N near Cotonou and the bottom plot having it
at 14N near Niamey? Perhaps I am getting muddled by this figure, but it seems extremely odd that the ratio
of the coastal to Sahelian tracer is greater in the Sahelian region, especially since the tracer experiment uses
arbitrary units and so does not consider the relative strengths of the tracer emissions in each region. The clarity
of the discussion could be improved by attention to the English, but I think there is something scientifically
wrong here.

We thank the reviewer for reporting this mistake. In this Figure (now Figure 8) , a) and b) were the wrong
way around. This has been corrected.

Real anthropogenic emissions represent the amount of what each city emits: their magnitude is thus repre-
sentative of each location, the activity sectors and the population. After emissions, pollutants are transformed
by transport, mixing, deposition and chemistry. In this case, and if we want a realistic estimate of a concen-
tration far from the sources, it is necessary to have emissions really representative of the size of each urbanized
area. The problem is different with the tracers: we don’t want to have a realistic value, but just to know the
percentage of what arrived at a remote location. Thus, we need to emit the same amount at every location to
have the exact percentage at the studied remote location. This enables to quantify that in Niamey, Cotonou
tracer concentration is about 9% (of the 1 a.u. isocontour presented in Figure 8-a), while in Cotonou, Niamey
tracer concentration is about 0.03% (of the 1 a.u. isocontour presented in Figure 8-b).

In Section 4.2.2, a sentence has been added for clarity: ’The tracer experiment uses arbitrary units and
considers the same quantity of tracers emitted in each town.’



The second paragraph of this section has been changed: ’Tracers emitted at the coast indicate that there is an
important transport of coastal pollutants toward the North in the PBL. On the other hand, there is no significant
transport of tracers emitted in the Sahel toward the coast. In Niamey, Cotonou tracer concentration is about
9% (of the 1 a.u. isocontour presented in Figure 8-a), while in Cotonou, Niamey tracer concentration is about
0.03% (of the 1 a.u. isocontour presented in Figure 8-b). In the HTAP anthropogenic inventories (presented in
Figure 1), the anth-PM2.5 (respectively anth-CO) is ≈ 103 (735) kg.km−2.day−1 in Niamey and ≈ 438 (7707)
kg.km−2.day−1 in Cotonou. Therefore, an important part of the pollution over the Sahel has been emitted at
the coast and it contributes to a maximum of anthropogenic pollution in June over the Sahel. In conclusion,
the high concentration over the Sahel is due to the existence of a meridional atmospheric cell, which acts at
accumulating pollutants emitted locally and remotely at the coast.’

P 2, l 22-24: Several values are given for high concentrations of pollutants in these 3 lines. It would be
helpful to give the time averages over which these measurements were made as the context of this paragraph is
to compare them with the air quality standards which are for specified periods of exposure.

Time averages have been added: ’based on half-hour averages’ for Baumbach et al. (1995); ’based on 1-min
averages’ for Dionisio et al. (2010); ’based on daily averages’ for Boman et al. (2009)

P 4, l 24-25: Id like to see more details on how WRF is coupled to CHIMERE. Is the CHIMERE transport
used or just the chemistry? Time steps for physical processes and chemistry?

In this study, we present offline simulations (CHIMERE is forced by WRF). For chemistry and aerosol sim-
ulations, the concentrations are calculated using the chemistry, transport, mixing and deposition equations
implemented in the CHIMERE model. For clarity, two sentences have been added: ’The WRF and CHIMERE
models are run offline on the same horizontal grids for the continental and regional domains’ and ’The time step
is set to 10 minutes for the physical processes and 5 minutes for the chemistry, which could change depending
on the Courant-Friedrichs-Lewy condition.’

P 5, l 24: It would be good to show plots of the TRMM and GPCP data to demonstrate the good agreement.

These two plots have been presented by Flaounas et al. (2010) as well as the comparison to the different WRF
parametrization. We do not aim at focusing on the precipitation patterns in the present study. We have
specifically pointed out comparable patterns of our Figure 2 and Figure 3 of Flaounas et al. (2010). The first
paragraph of Section 3.1 has been modified such as: ’During this period, the precipitation location and rate
will play a crucial role on the modeled surface PM2.5 concentrations. As a validation for this variable, the
methodology of Flaounas et al. (2010) is used: precipitation rates are averaged between 8.5W and 8.5E. Day-
to-day variability is smoothed by applying a moving average of ±2 days. Figure 2 is directly comparable to the
Flaounas et al. (2010) study using the same period and averaged region. In May and June, observed and modeled
precipitations occur mainly over the ocean (below 5N). From late June on, the main precipitation areas move
over the continent (above 5N) and reach the Sahel (at about 13N). Figure 2 shows that the modeled precipitation
spatial patterns are in good agreement with the two satellite observations (TRMM and GPCP) presented in their
study (see Figure 3 of Flaounas et al. (2010)). ’

P 6, l 3-8: Looking at Fig. 2, it seems to me that the precipitation is focused at 2N through much of June
and that it is only until mid-late June that it shifts to more to 5N. This is not consistent with the text that
says the pre-onset occurs in May.

The section 3.1 has been modified to be consistent with the figure and the three periods defined (see above).

P 9, l 30: The high CO concentrations at the coast are not so continuous in late June and July.

’during the whole period’ has been changed to ’from the beginning of May to late June’

P 10, l 5-8: Please explain more clearly how precipitation/convection impacts surface CO concentrations.
How does it affect the vertical distribution?

In this section, we identify the changes which are analyzed in the following. The sentence: ’In July, the
variability is mostly consistent with precipitation rates after the onset, which suggest that surface versus vertical
distribution has changed by the convection associated with large scale precipitation.’ has been replaced by ’In
July, the variability is mostly consistent with precipitation rates after the onset, suggesting modifications of
transport and deposition patterns by the convection associated with large scale precipitation.’



P 10, l 15-16: A cant make out any great difference between the pattern at 12N and 13N.

’at 12N’ has been removed. This sentence was unclear because we were not comparing 12N and 13N. This
paragraph has been modified (see above).

P 12, l 27: Are diurnal patterns included in the emission inventories used?

’when the convection and NLLJ are weak’ has been removed because diurnal patterns of anthropogenic pollution
are mostly driven by diurnal variation of the emissions.

P 12, l 29-31: In Fig. 8 some of the pollution over the sea on the 10-11 June in the Hovmuller plot appears
to progress northwards with time (i.e. bottom left towards top right) rather than be transported out to sea
from the land. Fig. 9 suggests it may be coming from other cities further to the south.

This paragraph has been modified such as: ’There is a transition from low to high concentration of anthro-
pogenic pollution from 8 to 12 June. Anthropogenic pollution is modeled over the sea from 10 to 11 June. It
is interesting to note that precipitation occurs inland on 11 June (between 18 UTC and 00 UTC), then high
modeled concentrations persist during the night of 11-12 June. This precipitation event reflects a change in the
wind patterns, which induces a change in the transport of pollutants, leading to surface concentrations up to 8
µg.m−3 in Cotonou.’

P 13, l 33: How can you be sure that the plumes are ’overlaying’ and not mixed?

You are right, it is mixed. We are analyzing the surface level. If the tracers associated to the different cities are
at the same location, it means that the pollution from the different cities is mixed.

The English needs to be improved. I have listed some places where the understanding is not clear or incorrect
because of the English, but there are many minor corrections that need to be made (e.g. the appropriate use of
’the’ and ’a’, use of singular and plural) that I have not listed.

2.3 Technical Comments

Ensure the initial letters of ’Guinean Gulf’ are in uppercase, here and throughout the paper.

OK

P 1, l 5-6: It needs to be clear what the 38% relates to. 38% of PM.2.5?

This sentence has been modified from ’For PM2.5, desert dust decreases from ≈ 38 % in May to ≈ 5 % in July;’
to ’Desert dust decreases from ≈ 38 % in May to ≈ 5 % in July of PM2.5 concentration’

P 1, l 9-10: It is not clear. Are the pollutants emitted near the coast concentrated in the Sahel?

In order to be clear, this sentence has been split in two sentences: ’Air masses dynamics concentrate pollutants
emitted in the Sahel due to a meridional atmospheric cell. Moreover a part of the pollution emitted remotely at
the coast is transported and accumulated over the Sahel.’

P 1, l 11: ’Refining the analysis’ reword the English. Suggest ’Focusing the analysis’

OK

P 1, l 13: ’overlay’ each other?

They are mixed and not overlaying. Corrected

P 1, l 13: ’high pollution level’ is ambiguous. High concentrations? High attitude?

Indeed ’level is ambiguous. It should be either ’concentration’ or ’altitude’. The manuscript has been entirely
modified to remove this ambiguity.

P 2, l 2: ’washout the atmosphere’ change to ’wash pollutants out of the atmosphere’

OK

P 2, l 4: ’air pollution’. Are natural components of the atmosphere pollutants? E.g. Sea salt aerosols?

’air pollution sources’ has been replaced by ’aerosol and gas sources’



P 2, l 7: ’in megacities’ should be ’from megacities’.

OK

P 2, l 31: ’since the last decade’. The English is not clear. Do you mean ’since’ or ’during’. Note that the
main AMMA campaign was in 2006, i.e. more than a decade ago.

’since the last decade’ has been deleted.

P 3, l 13: ’This article is dedicated to the pollutants transport over the Guinean Gulf coastal region and
focuses on two major pollutant concentrations:’. Reword the English, ’This article focuses on transport of
pollutants over the Guinean Gulf coastal region, in particular on:’

OK

P 3, l 15: Replace ’have both an’ with ’both have a’.
P 3, l 17: Replace ’pollutants in the’ with ’pollutants to the’.
P 3, l 23: Replace ’refines spatially’ with ’focuses on’.

All last three points have been corrected.

P 3, l 27: It would be useful to provide a figure showing the 2 nested domains.

The latitudes and longitudes of the two domains are given in the beginning of Section 2. The results of the
article concern only the West African region. Furthermore, we do not compare the coarse and fine resolutions.
It is why we want to focus only on the regional domain (presented in Figure 1).

P 4, l 6: Replace ’hourly interpolated’ with ’interpolated hourly’.

OK

P 4, l 8: ’better’ than what?

The sentence has been changed and ’better’ removed.

P 4, l 27-28: Replace ’The anthropogenic emissions are estimated using the HTAP v2 (Hemispheric Transport
of Air Pollution) annual totals for the year 2010 by the EDGAR Team,’ with ’The anthropogenic emissions are
estimated by the EDGAR Team using the HTAP v2 (Hemispheric Transport of Air Pollution) annual totals for
the year 2010,’

OK

P 4, l 31-32: ’Taking into account vegetation fires emission fluxes is of primary importance to simulate West
African pollution (Giglio et al., 2006).’- The English needs improving.

This sentence has been modified: ’Biomass burning emission from Central Africa is of primary importance to
simulate West African pollution (Giglio et al., 2006)’

P 4, l 31 P5, l2: Be consistent with terms and their combinations: ’fire’, ’vegetation’, ’biomass burning’.
How were the two parts split?

The manuscript has been revised to use only ’biomass burning’.
Since the incomplete combustion is both included in anthropogenic inventories (local urban burning) and

forests biomass burning inventories, the simulation was designed to split these two parts. It is now explained in
Section 2.2

P 5, l 4: ’a new global soil and surface datasets’ singular or plural?
P 5, l 4: ’a satellite-derived aeolian roughness length data’ singular or plural?

This is singular because it is a unique dataset composed of two satellite retrievals.
The sentence has been modified such as: ’The mineral dust sources are obtained using the GARLAP (Global

Aeolian Roughness Lengths from ASCAT and PARASOL) new global soil and surface dataset made from satellite-
derived aeolian roughness lengths with a 6 km spatial resolution, as detailed in Mailler et al. (2016).’

P 5, l 14-15: ’first analyze and quantify the temporal variability of the pollutants concentrations modeled in
the urbanized areas along the Guinean Gulf coast during the whole AMMA-SOP1 period (Redelsperger et al.,



2006). First’ There are two ’firsts’ which is confusing. It states that the temporal variability of the pollutants
will be analysed, but in the rest of the paragraph I can only see mention of AOD. What about any other
pollutants?

This sentence has been modified: ’In this section, we analyze the temporal variability of precipitation, gas and
aerosol during the whole AMMA-SOP1 period (Redelsperger et al., 2006).’

P 5, l 29: Replace ’interactions constituted’ by ’interactions, which are made up’.

OK

P 6, l 27: Replace ’lead’ with ’leads’.

OK

P 7, l 5-6: English needs improving.

’Two flights made during a ’North-South land-atmosphere-ocean interaction’ mission plans have been conducted
over the Cotonou-Niamey meridional transect on 13 and 14 June 2006.’ has been modified such as: ’We are
studying two flights conducted along a meridional transect between Cotonou and Niamey on 13 and 14 June
2006 as part of a ’North-South land-atmosphere-ocean interaction’ survey mission.’

P 7, l 28: What is meant by ’a South-North gradient is expected moving closer to the Sahara’?

’a South-North gradient is expected moving closer to the Sahara’ is unclear and it has been modified such as:
’For PM2.5, a South-North gradient is expected with the highest concentrations close to the Sahara.’

P 7, l 31 and P8, l 4: What is meant by ’a gap of concentration’?

This has been replaced by: ’important increase of the concentration’

P 7, l 7: To test if the model reproduces the MCS, why not compare modelled meteorological parameters
with observed e.g. satellite precipitation.

A new figure has been added in Section 3.3.1 (presented in Figure 2 of this document), which aims at present-
ing the meteorological situation on 13-14 June as well as validating the model meteorology. The first paragraph
of this section has been modified such as: ’We are studying two flights conducted along a meridional transect
between Cotonou and Niamey on 13 and 14 June 2006 as part of a ’North-South land-atmosphere-ocean inter-
action’ survey mission. During these two days, the WAM dynamics over the area were perturbed by the presence
of a MCS. It developed over the Jos Plateau (Nigeria) around 16:00 UTC, reaching the Benin-Nigeria border
at 20:00 UTC and moved southwestward across Benin overnight and into central Ghana, as already described
in Flamant et al. (2009) and (Crumeyrolle et al., 2011). The model reproduces the location of this MCS but
earlier than in the observations, i.e. reaching the Benin-Nigeria border at 10:00 UTC (Figure 4). The MCS
interacts with the dust layer coming from the Sahara (especially from the Bodele depression), changing the dust
load and vertical distribution over Benin and Niger. Associated with subsidence in the wake of the MCS, there
is a lowering of the dust layer height (Flamant et al., 2009). ’

P 7, l 8: Replace ’not realistic’ with ’unrealistic’.

OK

P 7, l 9: Why ’Nevertheless’?

This sentence has been modified: ’Nevertheless, the order of magnitude of the CO and PM2.5 concentrations
are good in agreement with observations. ’

P 8, l 31: Presumably by ’vegetation emissions’ you mean biomass burning rather than biogenic. This needs
to be clear and correct throughout the paper.

OK

P 8, l 33-34 and P 9, l 5 and 10: Units of ppb should be microg / m-3.

OK

P 10, l 10: Why ’more important’?
P 10, l 11: What ’increase’? The English in this sentence needs improving. Consider splitting it in two.



Figure 2: (top) EUMETSAT visible image of the Cotonou area of the 13 June 2006 at 20 UTC (from NAScube
(http://nascube.univ-lille1.fr); (bottom) Map of Cotonou area for the 13 June 2006 at 12 UTC with wind vectors
at 10 m (orange arrows), precipitation (blue shading). The two flight trajectories are displayed with the red line
for the 13 June and with the green line for the 14 June.



For the two last points, the sentences: ’The same behavior is observed for the surface concentrations of PM2.5.
The week to week variability is more important. This increase is probably due to the longer CO lifetime compared
with that of PM (being less chemically active and without settling), the CO concentrations are more homoge-
neously mixed in a large latitudinal area from the coast to more than 16 up to the North.’, have been reworded:
’The same behavior is observed for the surface concentrations of PM2.5. The week to week variability is greater
than for anth-CO, which is probably due to the longer lifetime of CO compared with that of PM (being less
chemically active and less prone to settling). CO is more homogeneously mixed than PM in a large latitudinal
area spanning from the coast to latitudes higher than 16. ’

P 10, l 13: A frequency has units of 1/time. Do you mean a periodicity close to 2 weeks?

OK

P 10, l 14: A wouldnt call these features plumes as they are a characteristic of a Hovmuller plot rather than
a pollution plume.

’latitudinal plumes’ has been replaced by: ’latitudinal patterns’

P 11, l 19: anti-clockwise?

Yes, it has been corrected.

P 12, l 25: Replace ’derives’ with ’are transported’.

OK

P 14, l 11-12: Low and high anthropogenic pollution where? Contonou?

Yes, ’in Cotonou’ has been added.

P 15, l 14: ’Figure ??’, 11.

OK

Fig. 2. Caption ’regional domain’ should be replaced by ’regional model domain’.

OK

Fig. 3. The legend only says ’anthr’ but the captions says ’anthropogenic, biogenic and mineral dust’. Is
the red line the sum of ’anthropogenic, biogenic and mineral dust’ and ’biomass burning emissions’?

In red, this is anthropogenic plus biogenic plus mineral dust plus sea salt. The legend’s labels (’AOD Anthr.’
and ’AOD Fires’) have been replaced (by ’with biomass burning’ and ’without biomass burning’).

Fig. 6 caption: what PM2.5 mass density is the light orange line meant to be? Shading should be lines.

We tried to remove shading but it leads to too much contours, which is difficult to read. In the end, we use
shading for the meridional wind speed and contours for the anthropogenic PM2.5 concentration. The light
orange line has been removed and we focuse only on anthropogenic PM2.5 concentration = 4.0 µg.m−3 (orange)

and = 5.0 µg.m−3 (violet). The new figure is presented below ( Figure 3 of this document).

Fig. 7 caption: Shading should be lines. It is not clear if one line is white or both are yellow.

As for the previous figure, we have removed the white line. The comment of this figure is now focused on only
two isocontours. The new figure is presented below ( Figure 4 of this document).



a) May 2006 average at 00 UTC

b) June 2006 average at 00 UTC

c) July 2006 average at 00 UTC

Figure 3: Vertical cross-section of the meridional wind (shading in m.s−1) mean over: a) May, b) June and c)
July, at 00 UTC along a meridional transect from 2N to 19N and averaged from 2E to 3E including Cotonou
(Benin) and Niamey (Niger). Orange and violet shading represent anthropogenic PM2.5 concentrations of = 4.0
µg.m−3 and = 5.0 µg.m−3. Vectors represent the wind field in the plan of the transect (with an aspect ratio
of 500 between the meridional and the vertical components). The green line is the PBL height (m). The grey
vertical dash line is the latitude of the coast.



a) Niamey (Niger) tracers emission averaged at 00 UTC

b) Cotonou (Benin) tracers emission averaged at 00 UTC

Figure 4: Vertical cross-section of the meridional wind (shading in m.s−1) along a meridional transect from 2N
to 19N, averaged from 2E to 3E including Cotonou (Benin) and Niamey (Niger) and averaged over 20 to 30
June at 00 UTC. Isocontours represent gaseous tracers concentration continuously emitted (in arbitrary unit)
from the 1 to 30 June at: a) Niamey (Niger) and b) Cotonou (Benin). Brown and yellow shading represent
tracers concentration = 1 a.u. and = 10 % a.u. respectively. The green line is the PBL height (m). Vectors
represent the wind field in the plan of the transect (with an aspect ratio of 500 between the meridional and the
vertical components). The white vertical dash line is the latitude of the coast.
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Péré, J., Mallet, M., Pont, V., and Bessagnet, B. (2010). Atmospheric Environment, 44(30):3688–3699.
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Abstract. Carbon monoxide, CO, and fine atmospheric particulate matter, PM2.5, are analyzed over the Guinean gulf
::::
Gulf

coastal region using the WRF-CHIMERE modeling system and observations during the beginning of the monsoon 2006 (from

May to July), corresponding to the Africa Multidisciplinary Monsoon Analysis (AMMA) campaign period.

Along the Guinean gulf
::::
Gulf

:
coast, the contribution of long-range pollution transport to CO or PM2.5 concentrations is impor-

tant. For PM
:::
The

::::::::::
contribution

:::
of

:::::
desert

::::
dust

:::
PM2.5 , desert dust

::::::::::
concentration

:
decreases from ≈ 38 % in May to ≈ 5 % in July;5

biomass burning aerosol
:
.
:::
The

::::::::::
contribution

:::
of

:::::::
biomass

::::::
burning

::::::
PM2.5:::::::::::

concentration
:
from Central Africa increases from ≈ 10

% in May to ≈ 52 % in July. The anthropogenic contribution is ≈ 30 % for CO and ≈ 10 % for PM2.5 :::::
during

:::
the

::::::
whole

:::::
period.

When focusing only on anthropogenic pollution, frequent northward transport events from the coast to the Sahel are associated

with periods of low wind and no precipitation. In June, anthropogenic PM2.5 and CO concentrations are higher than in May or

July over the Guinean coastal region. Over the Sahel, air masses
::
Air

:::::
mass dynamics concentrate pollutants emitted locally and10

remotely at the coast
::
in

:::
the

:::::
Sahel

:
due to a meridional atmospheric cell.

::::::::
Moreover

::
a

:::
part

:::
of

:::
the

:::::::
pollution

:::::::
emitted

::::::::
remotely

::
at

::
the

:::::
coast

::
is

:::::::::
transported

::::
and

::::::::::
accumulated

::::
over

:::
the

::::::
Sahel.

Refining
:::::::
Focusing the analysis on the period 8 - 15 June, anthropogenic pollutants emitted along the coastline are exported

toward the North especially at the beginning of the night (18 UTC to 00 UTC) with the establishment of the nocturnal low

level jet. Plumes originating from different cities overlay
::
are

::::::
mixed for some hours at the coast, leading to high pollution15

level
:::::::::::
concentration, because of specific disturbed meteorological conditions.

1 Introduction

The interactions
:::::::::
interaction

:
between air pollution and climate in megacities is a challenging field of research (Baklanov et al.,

2016). In the countries of the Guinean Gulf, the population has been growing rapidly during the last decades, accompanied by20

economic development. Parallel to industrialization, air pollution is increasing without any governmental control (Zhu, 2012).
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During the dry season (i.e. November - April),
:::::
when

:::
the

:::::::::
Harmattan

:::::::
easterly

::::
wind

::
is
:::::
weak,

:
high ozone concentrations and

smog are observed over megacities such as Lagos or Cotonou when the Harmattan easterly wind is weak (Marais et al., 2014;

Minga et al., 2009). During the wet season (i.e. May - October), the West African Monsoon (WAM) wind carries the pollutants

northward, and local convective precipitations wash out
::::::::
pollutants

:::
out

::
of the atmosphere. Two precipitation periods occur over

the Guinean Gulf coastal region in April-May and August-September. Between these two periods, the wind coming from the5

South is predominant (Janicot et al., 2008).

There are various air pollution
::::::
aerosol

::::
and

:::
gas sources in the Guinean Gulf coastal region during the WAM. Sea salt aerosols

are transported in the marine boundary layer, and mineral dust aerosols are transported in the Saharan Air Layer (SAL) above

the monsoon air (Lafore et al., 2011). Biogenic components are emitted by tropical forests (Reeves et al., 2010), and the

urban air pollution in megacities (Liousse et al., 2014)
::::
from

:::::::::
megacities

:::::::
leading

::
to

::::::
ozone

:::::::::
production

:::::::::::::::::::
(Ancellet et al., 2011)10

:::::::::::::::::
(Liousse et al., 2014). In addition, pollutants resulting from incomplete combustion such as carbon monoxide and black carbon

particles
:::
are

:
coming from the Southern hemisphere due to biomass burning reach

::::::::
emissions,

:::
and

::::
are

:::::::
reaching

:
the Guinean

coast in June (Mari et al., 2007). Biomass
:::::::::::::::
(Mari et al., 2007)

:::::::::::::::::::
(Williams et al., 2010).

::
In

:::
situ

:::::::
biomass

:
burning plumes observa-

tions have shown
:::::::
measured

:
high ozone (≥ 60 ppb at 700 hPa) and carbon monoxide concentration (≥ 200 ppb at 700 hPa)

::::::::::::
concentrations (Sauvage et al., 2004; Mari et al., 2011).15

In Nigeria, Akeredolu (1989) have listed the different sources of particle loading: biomass burning (31.7 %), fugitive dust

from roads (29.1 %), fuel wood burning (21.3 %), Harmattan dust (13.8 %), solid waste incineration (2.1 %), stationary sources

(1.6 %), automobile exhaust lead (0.2 %) and gas flares (0.1 %). Since the 1990’s, natural pollutions
:::::::
pollution

:
from desert dust

and vegetation fires remains
::::::
biomass

:::::::
burning

:::
has

:::::::::
remained important (Mari et al., 2011; Haywood et al., 2008). However,

anthropogenic pollution has increased: there is more
::
the

::::::::
economic

::::::
growth

::::
over

:::
the

::::::
region

:::::
drives

:::
up

::::::::::::
anthropogenic

:::::::::
emissions:20

::
the

::::::::
increase

::
of

::::::::
industries

:::::::::
including

:::
gas

::::::
flaring

:::::::::::::::::::::
(Asuoha and Osu, 2015),

::
of

:
local fuel-wood burning for stoves and more

::
of

traffic (Liousse et al., 2010; Hadji et al., 2012; Liousse et al., 2014) with more two-wheel vehicles
::::
using

::::
very

::::
poor

::::::
quality

::::
fuel

::::::::::::::::::::
(Ndoke and Jimoh, 2005)

:::::::::::::::::::::::::
(Assamoi and Liousse, 2010),

:
which are suspected to quickly worsen the air quality, partly due to

the very poor fuel quality used (Ndoke and Jimoh, 2005; Ndoke and Jimoh, 2010); the economic growth over the region drives

up emissions by industries including gas flaring (Asuoha and Osu, 2015)
::
air

::::::
quality.25

All studies of air quality monitoring
:::::
studies

:
have shown that the outdoor air quality standards

:::::
WHO

:::
air

::::::
quality

:::::::::
guidelines

(i.e. threshold concentrations) are largely exceeded. These thresholds are for CO: 35 ppm for 1 h and 9 ppm for 8 h exposure;

and for PM2.5: 10 µg.m−3 annual mean, 25 µg.m−3 for 24-hour mean. For instance, in April 1993, Baumbach et al. (1995)

have measured in Lagos (Nigeria)
::::
very high levels of carbon monoxide, CO, (up to 10 ppm, measured close to high traffic road)

and total particulate matter (up to 200 µg.m−3)
:::::
based

::
on

::::::::
half-hour

::::::::
averages

::
in

:::::
Lagos

::::::::
(Nigeria). In Accra (Ghana), Dionisio30

et al. (2010) have measured PM2.5 up to 200 µg.m−3 in a polluted street
:::::
(based

:::
on

:::::
1-min

::::::::
averages)

::
in

:::::
streets

:::::::
polluted

:
by wood

stoves, heavy traffic and trash burning. In Ouagadougou (Burkina Faso) PM2.5:::::::::::
observations

:::::
(based

:::
on

:::::
daily

::::::::
averages) reach

164 µg.m−3 (Boman et al., 2009) and CO concentration measured in-traffic frequently exceed all World Health Organization

(WHO) guidelines (Lindén et al., 2008).
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The health impact of such air pollution is expected to be high and to increase
:::::
further

:
without any specific emission regulation

(Lindén et al., 2012). It is therefore important to gain a better understanding of the pollutants’
:::::::
pollutant

:
emissions and transport

in West Africa. All these results have highlighted the high level of pollution in megacitiesaffecting
:
,
:::::::
affecting

::::
also remote places.

However, there is no continuous air quality monitoring in West Africa, so existing studies are focused on local scale
:::::
scales, short

time period
::::::
periods, and few pollutants.5

Several observation campaigns have been dedicated to WAM since the last decade
::
the

::::::
WAM, notably the Africa Multidis-

ciplinary Monsoon Analysis (AMMA)
:
, which was the first international program started to improve our knowledge of

::
on

:
all

aspects of the WAM (Redelsperger et al., 2006). WAM modeling made progresses, however the Guinean Gulf coastal region

is challenging to model because of the complex land-sea-atmosphere interactions.

Along the coastline, there are several atmospheric cells acting at
::
on

:
different scales. The diurnal cycle of the land-sea breeze10

occurs at a local scale (
:
a
:
few kilometers). During the day, surface wind is linked with convection within the boundary layer,

while at night there is the formation of the Nocturnal Low Level Jet (NLLJ) in response to the daily deep convection activity

(Parker et al., 2005). At a regional scale (a
:
few hundred kilometers), the monsoon wind from the South meets the Harmattan

wind from the North, forming the Inter Tropical Discontinuity at the ground level (Flamant et al., 2007; Cuesta et al., 2009;

Karam et al., 2009; Pospichal et al., 2010),
:::
and leading to a complex vertical structure (Haywood et al., 2008; Lafore et al.,15

2011). Between these two scales, an additional meridional atmospheric cell is suspected in the low atmosphere enhancing

convergence at the coast (Leduc-Leballeur et al., 2013), which .
:::::

This
:::
cell

:
results from a gradient of wind speed due to the

meridional gradient of sea surface temperature (de Coëtlogon et al., 2014). The recent research program "Dynamics-Aerosol-

Chemistry-Cloud Interactions in West Africa program" (DACCIWA) has been dedicated to the study of land-sea-atmosphere

interactions in West Africa. It will contribute to the
:::::::::::
understanding

:::::::
changes

:::
in

:::
the

::::::::::
atmospheric

::::::::::
composition

::::
due

::
to

:::::::::
increasing20

::
in

::::::::
emissions

::::
over

:
a
::::::
rapidly

::::::::
growing

::::::
region,

::
as

::::
well

::
as

::
to

:::
the development of the next generation of accurate models to forecast

weather and pollution in southern West Africa (Knippertz et al., 2015).

This article is dedicated to the pollutants transport
::::::
focuses

::
on

::::::::
transport

::
of

::::::::
pollutants

:
over the Guinean Gulf coastal regionand

focuses ontwo major pollutant concentrations
:
,
::
in

::::::::
particular

:::
on: Carbon monoxide and Particulate Matter with an aerodynamic

diameter Dp < 2.5 µm (CO and PM2.5 hereafter), which have both an
::::
both

::::
have

::
a
:
detrimental impact on health (Lelieveld25

et al., 2015). The scientific questions addressed in this work are:

– What is the relative contribution of long-range transported and locally emitted pollutants in the
:
to

:
surface concentrations

from the Guinean Gulf to the Sahel?

– What is the impact of meridional atmospheric cells on the transport of pollutants emitted from coastal megacities?

The pollution patterns are analyzed during the 2006 AMMA period using several observational data sets in combination30

with numerical simulations of the meteorology as well as
:
of

:
the aerosol-gas chemistry and transport presented in section

::::::
Section 2. Section 3 presents the main spatial and temporal patterns over the Sudano-Guinean region of the AMMA study case.

Section 4 analyzes the anthropogenic pollution from the coast to the Sahel. Section 5 refines spatially the analysis on
::::::
focuses

3



::
on

:::
the

:::::::
analysis

:::
of the coastal dynamics and pollution transport. Section 6 focuses on specific study cases. Conclusions and

perspectives are given in section
::::::
Section

:
7.

2 Weather-Pollution modeling configuration

The modeling analysis was performed using the Weather Research and Forecasting (WRF) model for the meteorological fields,

which drives the CHIMERE model for the gaseous and particulate species concentrations. Two nested geographical domains5

are defined: a continental one to take into account remote sources and long-range transport from the Mediterranean sea to the

tropic of Capricorn (27◦S to 44◦N; 38◦W to 47◦E); and a regional one, centered on the Guinean Gulf (1◦N to 20◦N; 23◦W to

17◦E).
:::
The

:
WRF and CHIMERE models work

::
are

::::
run

:::::
offline

:
on the same two horizontal grids . The time period simulated

::::::::
horizontal

:::::
grids

:::
for

:::
the

:::::::::
continental

:::
and

:::::::
regional

::::::::
domains.

::::
The

::::::::
simulated

::::
time

::::::
period is April to end of July 2006, including a

one month spin-up.10

2.1 Meteorological fields with the WRF model

The meteorological variables are modeled with the regional non-hydrostatic WRF model (version 3.7.1) presented by Ska-

marock and Klemp (2008). The continental domain has a constant horizontal resolution of 60 km × 60 km, and
:::
the

:::::::
regional

::::::
domain

:::
has

:
a
::::::::
constant

::::::::
horizontal

:::::::::
resolution of 20 km × 20 kmfor the regional one, both with 32 vertical levels from the surface

to 50 hPa. We use a 2-way nesting with the WRF model.15

The global meteorological fields are taken from the US Global Forecast System produced by the National Center for En-

vironmental Prediction. It is read and hourly interpolated
:::::::::
interpolated

::::::
hourly

:
by WRF using low frequency spectral nudging

above the PBL in order to enable the PBL variability to be resolved by WRF (von Storch et al., 2000). We followed the rec-

ommendations of Flaounas et al. (2010, 2011) to configure the convection and planetary boundary layer schemes , which have

optimized a better model
:::
with

::
a set-up for the entire

::::::::
optimized

:::
for

:::
the

:
2006 WAM, especially for the meridional gradient of20

temperature and the low level circulation.

The Single Moment-6 class microphysics scheme (WSM6) is used allowing for mixed phase processes suitable for high

resolution simulations (Hong and Lim, 2006). Li et al. (2015) have shown that WAM precipitation patterns are very sensitive

to the radiation scheme, and the most realistic patterns were obtained with the Rapid Radiative Transfer Model for General

Circulation Models (RRTMG) with the Monte-Carlo Independent Column Approximation (McICA) method of random cloud25

overlap from Mlawer et al. (1997). The planetary boundary layer physics are computed using the Yonsei University scheme

(Hong et al., 2006). The cumulus parametrization used is the ensemble Grell-Dévényi scheme, as Crétat and Pohl (2012) have

shown that internal variability is much larger with the Kain-Fritsch scheme than for
:::
with

:
the Grell-Dévényi scheme at the

seasonal, intra-seasonal, and daily time scales, and from the regional to the local (grid point) spatial scales. The surface layer

scheme is based on Monin-Obukhov with
:
a Carslon-Boland viscous sub-layer. The surface physics are calculated using the30

’Noah’ Land Surface Model ) scheme with four soil temperatures and moisture layers Ek et al. (2003)
:::::::::::::
(Ek et al., 2003).
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2.2 Chemistry-Transport with the CHIMERE model

CHIMERE is a regional chemistry-transport model (version 2017), fully described in Menut et al. (2013a); Mailler et al. (2016).

The CHIMERE model has previously been used over the AMMA observation period but only dust aerosols were modeled

(Schmechtig et al., 2011; Menut et al., 2009). In this study, all important
:::
gas

:::
and

:::::::
aerosol sources are included (anthropogenic,

biogenic, mineral dust, sea salt and biomass burning). The 32 vertical levels of the WRF model are projected on the 20 levels5

for CHIMERE from the surface to 200 hPa. We use a 1-way nesting with the CHIMERE model.

The anthropogenic emissions are estimated
::
by

:::
the

:::::::
EDGAR

:::::
Team

:
using the HTAP v2 (Hemispheric Transport of Air Pol-

lution) annual totals for the year 2010by the EDGAR Team, using inventories based on
::
the

:
MICS-Asia, EPA-US/Canada and

TNO databases (available at http://edgar.jrc.ec.europa.eu/htap_v2). Figure 1 presents the anthropogenic PM and CO emissions

over the regional domain and the Cotonou-Niamey meridional transect used for the analysis in the next sections, defined in10

longitude λ = 2◦ East to 3◦ East, and in latitude φ = 1◦ North to 19◦ North.

Taking into account vegetation fires emission fluxes is
:::::::
Biomass

:::::::
burning

:::::::::
emissions

::::
from

:::::::
Central

::::::
Africa

:::
are

:
of primary

importance to simulate West African pollution (Giglio et al., 2006). This is achieved using the APIFLAME model (Turquety

et al., 2013), which estimates aerosols and chemical species emissions produced by vegetation fires
::::::
biomass

:::::::
burning. Since

the incomplete combustion is both included in anthropogenic inventories (local urban burning) and fires emissions inventories15

(biomass burning of forests)
:::::
forests

:::::::
biomass

:::::::
burning

:::::::::
inventories, the simulation was designed to split these two parts.

Biogenic emissions are calculated using the MEGAN emissions scheme (Guenther et al., 2006). The mineral dust sources

are obtained using a
:::
the

::::::::
GARLAP

:::::::
(Global

:::::::
Aeolian

::::::::::
Roughness

:::::::
Lengths

::::
from

:::::::
ASCAT

::::
and

::::::::::
PARASOL)

:
new global soil and

surface datasets made from a
::::::
dataset

:::::
made

:::::
from satellite-derived aeolian roughness length data

::::::
lengths

:
with a 6 km spatial

resolutionGARLAP (Global Aeolian Roughness Lengths from ASCAT and PARASOL) (Menut et al., 2013b),
:::
as

:::::::
detailed

::
in20

::::::::::::::::
Mailler et al. (2016).

:::
The

:::
top

:::
and

::::::
lateral

::::::::
boundary

::::::::
conditions

:::
are

::::::
driven

::
by

::::::::::::
LMDZ-INCA

::
for

:::::::
aerosols

::::
and

:::::::
chemical

::::::
species

:::::::::::::::::::
(Folberth et al., 2006).

:::
The

::::
time

::::
step

::
is

:::
set

::
to

::
10

:::::::
minutes

:::
for

:::
the

:::::::
physical

:::::::::
processes

:::
and

::
5

::::::
minutes

:::
for

:::
the

:::::::::
chemistry,

::::::
which

:::::
could

::::::
change

:::::::::
depending

::
on

:::
the

:::::::::::::::::::::
Courant-Friedrichs-Lewy

:::::::::
condition.

:
It
::
is
::::
also

:::::::
possible

::
to

::::::
release

:::::::
gaseous

::
or

:::::::::
particulate

:::::::::::
atmospheric

::::::
tracers,

:::::
which

::
is
::
a

:::::::
powerful

::::
tool

::
to

::::::
analyze

:::
the

::::::::
pollution

:::::::
patterns.

:
25

Bessagnet et al. (2004) described the calculation of gaseous species in the MELCHIOR-2 (reduced) scheme and the aerosol

scheme, which takes into account species such as sulphate, nitrate, ammonium, primary organic matter (POM) and elemental

carbon (EC), secondary organic aerosols (SOA), sea salt, dust and water. All aerosols are represented using ten bins, from 40

nm to 40 µm in diameter. Their life cycle is fully represented with emission, transport, chemistry and deposition (wet and dry).

The top and lateral boundary conditions are driven by LMDZ-INCA for aerosols and chemical species (Folberth et al., 2006). It30

is also possible to release gaseous or particulate atmospheric tracers, which is a powerful tool to analyze the pollution patterns

:::::::::::::::
Menut et al. (2016)

:::::
have

:::::::
detailed

:::
and

::::::::
analyzed

::::::
aerosol

:::::::::
speciation

:::
and

::::
size

::::::::::
distribution

::
in

:::
the

:::::::::
CHIMERE

::::::
model

::::::
during

:::
the

::::::
summer

:::::
2013

::::
over

::::::
Europe

::::
and

:::::
Africa

:::::
using

:::
the

::::::::::
AERONET

:::::::
network

:::
for

::::
AOD

::::
and

::::::
EMEP

:::::::
network

::
for

::::
PM

::::::::::::
concentrations.

::::
For
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::
the

:::::
AOD

::::::::::
calculation,

:::
the

::::::
aerosol

::::::
optical

:::::::
scheme

::
in

:::
the

:::::::::
CHIMERE

::::::
model

::::::::
considers

::::::
mixed

:::::::
aerosols

::::::::
following

:::
the

::::::::::
’core-shell’

:::::::::
hypothesis

::::::
detailed

::
in
:::::::::::::::
Péré et al. (2009)

:::
and

::::::::
evaluated

::
in

:::::::::::::::
Péré et al. (2010).

::
In

:::::
order

::
to

:::::::
quantify

:::
the

::::::
PM2.5::::::

source
:::::::::::::
apportionment,

:::
we

::::::
assume

::::
that

::
it
::
is

:::::::
possible

::
to
:::::

split
:::::::
aerosols

::
in

::::::::
different

:::::::
families

::::::::
depending

:::
on

:::
the

:::::::
sources

:::::::
because

:::::
their

::::::::
chemical

:::::::::::
compositions

:::
are

:::::::::
different:

:::::::
Mineral,

:::::::::
Biogenic,

::::
Salt

:::
and

::::::::::::::
Anthropogenic.

:::::
Given

:::
that

:::::::::::::
anthropogenic

:::
and

:::::::
biomass

:::::::
burning

:::::::
aerosols

:::::
have

::::::
similar

::::::::::::
compositions,

:::
we

::::
have

:::::
done

:::
two

::::::::::
simulations

::::
with

::::
and5

::::::
without

:::::::
biomass

:::::::
burning

::::::::
emissions

:::
to

::::
split

::::
their

:::::::::::
contributions.

::::
The

:::
gas

:::::
phase

::::::::
chemical

:::::::
scheme

::
for

:::::
SOA

::::::::
formation

:::::::::
explained

::
in

:::::::::::::::::::
Bessagnet et al. (2010)

::::
takes

::::
into

:::::::
account

:::::
three

::::::::::::
anthropogenic

:::
and

:::::
three

:::::::
biogenic

::::::::::
hydrophilic

:::::::
species,

:::::
three

:::::::::::
hydrophobic

::::::
species

::::
with

:::::::
different

::::::::::
saturations,

:::
and

::::
two

::::::::
surrogate

:::::::::
compounds

:::
for

:::
the

:::::::
isoprene

::::::::
oxidation

::::::::
products.

:::
The

::::::
source

::::::::::::
apportionment

:::
has

::::
been

::::::::::
determined

::
for

::::
CO

:::::::::
considering

:::::
three

::::
main

::::::::::
contributors

:::::::::::::
(anthropogenic

:::::::
sources,

:::::::
biomass

::::::
burning

:::::::
sources

:::
and

:::::::::
long-range

:::::::::
transport).

:::::::::::
Consequently,

:::::
three

:::::::::
simulations

:::::
have

::::
been

:::::
done:

:::
one

::::::
without

::::
any

:::::::
emission

::::::
source

::
in10

::
the

:::::::
domain

:::
for

:::
the

::::::::::
background

:::::::::::
concentration,

::::
one

::::
with

:::
the

::::::::::::
anthropogenic

:::::::
emission

:::::
only,

:::
and

:
a
::::
last

:::
one

::::
with

:::
the

::::::::::::
anthropogenic

:::
and

:::::::
biomass

:::::::
burning

:::::::::
emissions.

3 Temporal variability from May to July 2006

In this section, we first analyze and quantify
:::::::
analyze the temporal variability of the pollutants concentrations modeled in the

urbanized areas along the Guinean Gulf coast
::::::::::
precipitation,

:::
gas

::::
and

:::::::
aerosols

:
during the whole AMMA-SOP1 period (Re-15

delsperger et al., 2006). First, the precipitation regimes are analyzed
::::::::
identified using Hovmoller diagrams. Second, AERONET

surface stations data are used to quantify the three-months variability of the Aerosol Optical Depth (AOD). Finally, the relative

contribution of several sources are quantified using the model
::
to

:::::
gases

:::
and

::::::::
aerosols

::::
from

::::::
several

:::::::
sources

::
is

:::::::::
quantified

:::::
using

::::
both

:::::::
airborne

:::::::::::
observations

:::
and

::::::::
modeling. The two last points focus on three locations: Cotonou (Benin), Djougou (Benin)

and Niamey (Niger), which are representative of locations under several influences (
:::
the

::::::::
combined

::::::::
influence

:::
of mineral dust,20

anthropogenic pollutionand vegetation fires)
:
,
:::::::
biogenic

::::
and

:::::::
biomass

::::::
burning

:::::::::::
components.

3.1 Precipitations Patterns

During this period, the precipitation location and rate will play a crucial role on
::
for

:
the modeled surface PM2.5 concentrations.

As a validation for this variable, the methodology of Flaounas et al. (2010) is used: precipitation rates are averaged between

8.5◦W and 8.5◦E. Day-to-day variability is smoothed by applying a moving average of ±2 days. Figure 2 is directly comparable25

to the Flaounas et al. (2010) study using the same period and averaged region. Results show
::
In

::::
May

::::
and

:::::
June,

::::::::
observed

:::
and

:::::::
modeled

::::::::::::
precipitations

:::::
occur

::::::
mainly

::::
over

:::
the

::::::
ocean

::::::
(below

:::::
5◦N).

:::::
From

:::
late

:::::
June

:::
on,

:::
the

::::
main

:::::::::::
precipitation

:::::
areas

:::::
move

:::
over

::::
the

::::::::
continent

::::::
(above

:::::
5◦N)

:::
and

:::::
reach

:::
the

:::::
Sahel

:::
(at

:::::
about

::::::
13◦N).

::::::
Figure

::
2
::::::
shows that the modeled precipitation

:::::
spatial

patterns are in good agreement with the two satellite observations (TRMM and GPCP) presented in their study
:::
(see

::::::
Figure

::
3

::
of

::::::::::::::::::
Flaounas et al. (2010)).30

The WAM is due to
:::::
driven

::
by

:
the sea surface temperature decreases , which forms a cold tongue,

::::
over

:::
the

::::
Gulf

::
of

:::::::
Guinea

and over the Sahara, a low thermal pressure system appears called the Saharan Heat Low (Lafore et al., 2011). The temperature
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gradient between the sea and the Sahara allows the monsoon system to progress inland reaching the Sahara in July (Hall

and Peyrillé, 2006; Lavaysse et al., 2009). We can notice on Figure 2 that the
:::
The

:
monsoon progression to the North is not

linear . Two jumps are observed due to the complex sea-land-atmosphere interactions constituted of two steps: the monsoon

’pre-onset’ occurs
::::::
(Figure

::
2).

::::
Two

:::::
jumps

:::
are

::::::::
modeled

:
at
:::
the

:
end of May when the main precipitation area associated to the Inter

Tropical Convergence Zone (ITCZ) located at 2◦N moves to 5◦N (Sultan and Janicot, 2000; Sultan and Janicot, 2003, 2003);5

and the monsoon ’onset’ is another abrupt shift happening end of Junewhen the main precipitation area moves from 5◦ to 10◦N

(Janicot et al., 2008). The precipitation
:::
and

::
at

:::
the

::::::::
beginning

:::
of

::::
June.

:::::::::::
Precipitation

:
is associated with large scale squall-lines,

creating Mesoscale Convective Systems (MCS) moving Westward (Hall and Peyrillé, 2006).

The meteorological simulation reproduces
::
the

::::
two changes of the main precipitation area at the

:::
that

::::
have

:::::
been

:::::::::
previously

::::::::
identified

::::
from

::::::::::::
climatological

::::::::
averages:

:::
the

::::::::::
’pre-onset’

:
(
::
i.e. end of May

:
),
:::::

when
:::

the
:::::

main
:::::::::::
precipitation

::::
area

:::::::::
associated

::
to

:::
the10

::::
Inter

:::::::
Tropical

:::::::::::
Convergence

::::
Zone

::::::
(ITCZ)

::::::
located

::
at
:::
the

::::::
equator

::::::
moves

:::::
close

:
to
:::
the

:::::
coast

:::::::::::::::::::::::::::::::::::::::::::::::
(Sultan and Janicot, 2000; Sultan and Janicot, 2003, 2003),

:::
and

:::
the

::::::
’onset’ (i.e. the ’pre-onset’ ) and

:::
i.e. at the beginning of July(i.e. the ’onset’)

:
),

:::::
when

::
the

:::::
main

::::::::::
precipitation

::::
area

:::::::
reaches

::
the

::::::
Sahel

:::::::::::::::::
(Janicot et al., 2008). For these dates, simulated precipitations match very well AMMA observations which have

shown that the 2006 monsoon onset date was the 10 July
::::::::::
precipitation

:::::::
matches

::::
very

::::
well

::::
with

:::::::
AMMA

:::::::::::
observations. In 2006,

the monsoon onset occurred
::
on

:::
the

::
10

::::
July

:
with a 10-day delay compared to its climatological date, i.e.

:::::
which

::
is 24 June with15

a standard deviation of 8 days over the period 1968-2005 (Janicot et al., 2008)
::::::::
according

::
to

::::::::::::::::
Janicot et al. (2008). Thus, three

periods could be defined: before ’pre-onset’ (in May), between ’pre-onset’ and onset (in June), after onset (in July).

3.2 Meridional aerosols content

In our studied region, surface
::::::
aerosol concentrations in the cities are affected by several contributions. In addition to local

emission, cities may be strongly impacted by biomass burning transported from the Central Africa (Mari et al., 2007)
::::::
Central20

:::::
Africa

:::::::::::::::
(Mari et al., 2007)

:::::::::::::::::::
(Williams et al., 2010), or by mineral dust transported from Sahara (Flamant et al., 2009).

The modeled daytime Aerosol Optical Depth (AOD) and Angström exponent are compared to observations from the

AERONET network (Holben et al., 1998), available at (aeronet.gsfc.nasa.gov). From the daily AERONET level-2 measure-

ments AERONET-AOD at 440nm and
::
(at

:::
440

::::
nm)

:::
and

:::
the Angström exponent 440-870

::::
(440

:::
nm

:
-
:::
870

::::
nm), AERONET-AOD is

calculated at 600 nm
::
(at

:::
550

::::
nm) based on the Angström law. A spatial bilinear interpolation of the model outputs is performed25

at the station location.

Two AERONET stations are located close to the meridional transect studied (Figure 1): Banizoumbou (13.5◦N, 2.1◦E) in

the suburb of Niamey in Niger, and Djougou in Benin (9.7◦N, 1.6◦E) North of the strongly urbanized areas around Cotonou.

Comparisons are
:::
We

:::::::
compare

:
a
:::::::::
simulation

:::::
made

::::
with

::::
and

::::::
without

:::::::
biomass

:::::::
burning

::::::::
emission

:::::::::::
(with/without

::::
BB),

:
presented in

Figure 3.30

There are two important events of coarse particles recorded at both sites, associated with a low Angström exponent (i.e.

Angström exponent lower than 0.5 as in Ogunjobi et al. (2008)) and AOD greater than 1, between 13-14 May and between

10-13 June. The model captures the magnitude of these large scale dust events. During the studied period, the events of coarse

particles are well reproduced (high or moderate AOD are generally associated with a low Angström exponent). There is an
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increase of the Angström exponent, i.e. fine particles over the period, which is well reproduced by the model. Frequent fine

aerosol events (high Angström exponent) have been monitored corresponding to low or moderate AOD
:
, which are partially

captured by the model.

The addition of the biomass burning emission
::::::::
emissions

:
lead to an important plume of gas and aerosols reaching the Guinean

gulf
:::
Gulf

:
in June. Modeled AOD

:::
with

:::::::
biomass

:::::::
burning

::::::::
emissions

:
are well in the range with biomass emission (bias is reduced)5

::
of

:::
the

::::::::::
observations

:
but the variability is not captured. The Angström exponent is associated in Maywith

::
In

::::
May,

:::
the

:::::::
aerosol

::::::
content

::
is

:::::
mostly

:::::::::
composed

::
of coarse particles (Angström exponent about 0.2), in June with

:
of
::
a fine/coarse mixture of particles

(about 0.5), in July with a fine particles(
::
of

::::
finer

::::::::
particles,

::::::::
especially

::
at

::::::::
Djougou

:::::::::
(Angström

::::::::
exponent about 0.8). The model is

able to reproduce this increase of the Angström exponent, which suggests an aerosol origin transition, from a period dominated

by desert dust to a period of fine particles which could be
::::
local

:
urban or/and biomass burning pollution from the South.10

3.3 Meridional aerosols and gases concentrations

In this section, firstly the modeled CO and PM2.5 concentrations are compared to
::::::
aircraft

:
observations collected during the

AMMA campaign . Secondly
::::::
(3.3.1).

:::::
Then, the different contribution

:::::::::::
contributions of the pollution sources is

:::
are

:
analyzed

from the modeled concentrations at the three studied sites
:::::
(3.3.2).

3.3.1 Airborne observations15

Two flights made during a ’North-South land-atmosphere-ocean interaction’ mission plans have been conducted over the

Cotonou-Niamey meridional transect
:::
We

:::
are

:::::::
studying

::::
two

::::::
flights

:::::::::
conducted

:::::
along

:
a
::::::::::

meridional
:::::::
transect

:::::::
between

::::::::
Cotonou

:::
and

:::::::
Niamey

:
on 13 and 14 June 2006. These two dayscorrespond to disturbed dynamics of the WAM due to

::::
2006

:::
as

::::
part

::
of

:
a
::::::::::::
’North-South

:::::::::::::::::::
land-atmosphere-ocean

::::::::::
interaction’

::::::
survey

:::::::
mission.

::::::
During

:::::
these

::::
two

:::::
days,

:::
the

:::::
WAM

::::::::
dynamics

:::::
over

:::
the

:::
area

:::::
were

::::::::
perturbed

:::
by

:::
the

::::::::
presence

::
of

:
a MCS. It developed in the vicinity of the Jos plateau in the North of Nigeria

::::
over20

::
the

::::
Jos

::::::
Plateau

::::::::
(Nigeria)

:
around 16UTC, moving westward to the center of Ghana, which have already been described (e.g.

(Flamant et al., 2009) and (Crumeyrolle et al., 2011)). Moreover, the
::
:00

:::::
UTC,

::::::::
reaching

:::
the

::::::::::::
Benin-Nigeria

::::::
border

::
at
::::::

20:00

::::
UTC

:::
and

::::::
moved

:::::::::::::
southwestward

:::::
across

::::::
Benin

::::::::
overnight

:::
and

::::
into

::::::
central

::::::
Ghana,

:::
as

::::::
already

::::::::
described

::
in
::::::::::::::::::
Flamant et al. (2009)

:::
and

::::::::::::::::::::::
(Crumeyrolle et al., 2011).

:::
The

::::::
model

:::::::::
reproduces

:::
the

::::::
location

:::
of

:::
this

::::
MCS

:::
but

::::::
earlier

::::
than

::
in

:::
the

:::::::::::
observations,

::
i.e.

:::::::
reaching

::
the

::::::::::::
Benin-Nigeria

::::::
border

::
at

:::::
10:00

:::::
UTC

::::::
(Figure

:::
4).

:::
The

:
MCS interacts with the dust layer coming from the Sahara (especially25

from the Bodele depression), changing the dust load and vertical distribution over Benin and Niger. Associated with subsidence

in the wake of the MCS, there is a lowering of the dust layer height (Flamant et al., 2007)
:::::::::::::::::
(Flamant et al., 2009).

Modeled CO and PM2.5 concentrations are compared to aircraft measurements performed onboard the ATR-42 aircraft

(with PCASP instrument for PM), which have been averaged at a 2-minute time step. The modeled values are interpolated

along the aircraft trajectories, in time between the two closest modeled hourly outputs, and vertically between the two closest30

model vertical levels and horizontally with a bilinear interpolation. For
::
the

:
two flights (13 July in the morning from Niamey to

Cotonou, and 14 July in the afternoon from Cotonou to Niamey), Table 1 presents modeled and observed mean spatial value and

range
:::::
values

:::
and

::::::
ranges

:
of CO and PM2.5 concentrations in the PBL (altitude lower than 1000 m) over three regions: Coastal
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region including Cotonou (6.3◦N - 9.0◦N), Sudano-Guinean region including Djougou (9.0◦N - 11.0◦N), Sudano-Sahelian

region including Niamey (11.0◦N - 13.5◦N).

For CO concentration, on 13 June, there is no clear gradient over the three regions but rather a constant concentration of

about 170 ppb. On 14 June, a gradient is noticed
::
we

::::
can

::::::
noticed

::
a

:::::::
gradient from the coast (200 ppb) to the Sahel (167 ppb).

For both days, the model predict an opposite
::::::
predicts

::
a gradient with the highest

:::::::::::
concentration

:
over the Sahel. Over the coastal5

region, the observed CO concentration range is similar for the two flights (between 147 - 222 ppb), which is well in agreement

with the modeled range (between 175 - 240 ppb). Over the Sudano-Guinean region, the observed range of variation is 161 -

182 ppb prior to the MCS (13 June), and it increases to 153 - 233 ppb after the MCS (14 June). The model is able to capture

the larger range
:::::::::
variability on 14 June than on 13 June (205 - 247 ppb compared with

::
to

:
218 - 245 ppb

::
on

:::
13

::::
June). Over

the Sudano-Sahelian region, the observed range
::::::::
variability of CO concentration is also larger on 14 June (146 - 200 ppb) than10

on 13 June (149 - 174 ppb). This behavior is not reproduced in modeled concentrations.
:::::
There

::
is

::
an

:::::::::::::
over-estimation

:::
of

:::
the

:::::::
modeled

:::
CO

::::::::::::
concentration

:::::::
(positive

::::
bias

::
of

::
≈

::
20

:::::
ppb)

::
for

:::
13

:::
and

:::
14

::::
June.

:

For the PM2.5 concentration
::::::::::::
concentrations, a South-North gradient is expected moving closer

::::
with

:::
the

::::::
highest

::::::::::::
concentrations

::::
close

:
to the Sahara. There is a clear gradient in the observed PM2.5 concentration mean on 13 June :

::::::
between

:::
the

::::::
coastal

::::::
region

:
(8 µg.m−3for the coastal region , )

::::
and

:::
the

::::::::::::::
Sudano-Guinean

::::::
region

:
(50 µg.m−3for the

:
),
::::
and

:::::
almost

::::
the

::::
same

::::::::::::
concentration15

::
in

:::
the Sudano-Guinean region,

:::
and

:::
the

::::::::::::::
Sudano-Sahelian

::::::
region

:
(56 µg.m−3for the Sudano-Sahelian region

:
). After the MCS,

there is no clear gradient but rather the same concentration over the coastal and the Sudano-Guinean regions (39 µg.m−3)and

a gap of concentration over .
::::::::
However,

:::::
there

::
is
:::
an

::::::::
important

::::::::
increase

::
of

:::
the

::::::::::::
concentration

:::::::
moving

::
to

:
the Sahel (up to 92

µg.m−3). The ranges are
:::::::::
variability

:
is
:
increased over the three regions: 37 - 42 µg.m−3 for the coastal region, 24 - 59 µg.m−3

for the Sudano-Guinean region, 50 - 139 µg.m−3 for the Sudano-Sahelian region. The modeled ranges match the observed20

one
::::
ones

:
for both days. The model reproduce

:::::::::
reproduces a South-North gradient on 13 June, which is well in agreement with

the observations. On 14 June, the model predict
:::::::
predicts the concentration gap between the coastal and the Sudano-Guinean

regions (from 43 to 82 µg.m−3), while it was observed between the Sudano-Guinean and the Sahelian regions.

The 13 and 14 June 2006 correspond to disturbed
:::::
These

:::
two

::::
days

::::::::::
correspond

::
to

::::::::
disturbed meteorological conditions, which

may not be representative of the typical average concentrations. The model-observation comparison suggest
:::::::
suggests

:
that the25

MCS is not well reproduced
::::::
occurs

::::
later

::
in

:::
the

::::::::::
observation, which could in turn induce a not realistic

::::::::
unrealistic

:
modeled

pollution plume (for instance a biomass burning plume) over the Sudano-Sahelian region and the Sahel. Nevertheless, there is

a over-estimation of the modeled CO concentration (positive bias of ≈ 20 ppb) for these two days
::
the

:::::
order

::
of

:::::::::
magnitude

::
of

:::
the

:::
CO

:::
and

::::::
PM2.5 ::::::::::::

concentrations
:::
are

::::
good

::
in
:::::::::
agreement

::::
with

:::::::::::
observations.

3.3.2 Monthly modeled pollution sources apportionment30

In order to analyze the source apportionment, we consider that the CO mixing ratio is due to three major sources: background,

anthropogenic and fires, and
:::::::
biomass

:::::::
burning,

:::
and

::::
that the PM2.5 mass concentration comes from five major types of pollution

source: anthropogenic, fires
:::::::
biomass

:::::::
burning, mineral dust, biogenic and sea salt (we assume that PM2.5 background concen-

tration is negligible). For the whole period and for each month of the simulation, the
:::
The

:
relative percentage of each source is

9



presented
::
for

::::
CO in Table 2 and

::
for

::::::
PM2.5 Table 3 at the three studied locations: Cotonou, Djougou and Niamey

:
,
::
for

:::
the

::::::
whole

:::::
period

:::
and

:::
for

::::
each

::::::
month

::
of

:::
the

:::::::::
simulation.

For the three sites, the average concentrations of surface CO increase during the whole period. The mean concentrations are

very close for the three sites: 221 ppb in Cotonou, 227 ppb in Djougou,
:::
and 212 ppb in Niamey. There is a clear increase of the

CO from May (157 - 180 ppb) to July (267 - 280 ppb). This increase is due to the vegetation fire
::::::
biomass

:::::::
burning sources from5

May (3 - 10 %) to July (40 - 49 %),
:
while the anthropogenic and background concentrations are stable during the whole period

and for the three
::
all sites. It seems that the CO overestimation noticed in the previous section is linked with an overestimation

of vegetation fire
:::::::
biomass

::::::
burning

:
emissions.

Considering PM2.5 concentrations , there is on average over the whole period
::::::
display a South-North gradient of concentra-

tions (30 µg.m−3 in Cotonou, 38 µg.m−3 in Djougou, 54 µg.m−3 in Niamey)
::
on

:::::::
average

::::
over

:::
the

::::::
whole

::::::
period, consistent10

with the gradient of the dust contribution (15 % in Cotonou, 35 % in Djougou, 67 % in Niamey). From May to July and for

the three
::
all

:
sites, the mineral dust contribution is in constant decrease. On the other hand, the vegetation fires

::::::
biomass

:::::::
burning

::::::::::
contribution increases (3 to 19 µg.m−3 in Cotonou, 1 to 17 µg.m−3 in Djougou, 0.6 to 11 µg.m−3 in Niamey), which could

:::::
seems

::
to

:
be overestimated as for CO concentration. PM2.5 concentrations are dominated by natural sources. Nevertheless

anthropogenic
::::::::::::
Anthropogenic

:
PM2.5 concentrations range between

::::
from 3 to 5 µg.m−3, which is about 10 % for the whole15

period and for the three sites.

In Cotonou, the average concentrations
::::::::::
concentration

:
of surface PM2.5 increases during the whole period, from 23 to 37

µg.m−3. This mainly corresponds to the arrival of vegetation emissions
::::::
biomass

:::::::
burning

::::::::
emission products, transported from

Central Africa to the Guinean Gulf, with an increase from 11 to 52 % from May to July. On the contrary, the mineral dust

contribution decreases during the period, from 38 to 5 %. The sea salt contribution increases from 3 to 6 ppb. During the20

three months, the anthropogenic and biogenic contributions remain stables
:::::
stable at about 4 ppb

::::::
µg.m−3

:
and 6 ppb

:::::::
µg.m−3

respectively.

In Djougou, the same behavior is observed but with some changes in the absolute values. The relative contribution of mineral

dust decreases from 57 % to 14 %, while the fire
:::::::
biomass

::::::
burning

:
contribution increases from 3 to 47 %. The anthropogenic

contribution is slightly higher in June at about 5 ppb.
:::::::
µg.m−3.

:
25

In Niamey, the dust contribution is important for the three months. It decreases by a factor 4, from 61 to 15 µg.m−3,

consistently
::::::::
consistent

:
with observation of PM10 in Banizoumbou in Niger (Marticorena et al., 2010), which is probably due

to the reduction of local emission linked with the increase of vegetation cover. The relative contribution of anthropogenic

pollution is slightly higher in June at about 5 ppb.
:::::::
µg.m−3.

For CO or PM2.5 concentrations, the anthropogenic contribution is always important in
::::::::
emissions

::::::::
contribute

:::::::::::
significantly

::
to30

the total budget (≈ 30 % for CO and ≈ 10 % for PM2.5). It is therefore important to better understand the daily variability of

anthropogenic pollutants
:::::::
pollutant

:
transport.
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4 Focus on anthropogenic pollutants from Cotonou to Niamey

This section focuses on anthropogenic pollution
::
the

:
horizontal variability and vertical structure

:
of

::::::::::::
anthropogenic

::::::::
pollution.

Only the contribution of anthropogenic sources is considered in PM2.5 and CO concentrations, from now on referred to as

anth-PM2.5 and anth-CO.

4.1 Time-latitude variability at the surface5

4.1.1 CO and PM2.5 concentrations

The Cotonou-Niamey meridional transect includes
:::
the two specific cities extensively studied in the framework of the AMMA

program: a coastal megacity (Cotonou in Benin) and a Sahelian city (Niamey in Niger). To highlight the latitudinal regional

transport, modeled concentrations are presented with the same methodology as
::
in the previous section with Hovmöller dia-

grams, corresponding to time-latitude average of variables (data are smoothed with a 5-day moving average, i.e. ±2 days).10

Results are presented in Figure 5 for anth-CO and anth-PM2.5. For the two species, meteorological parameters are superim-

posed to
::
on

:
the concentrations. The precipitation

::::::::::
Precipitation rate contours are defined for events with more than 10 mm/day

over the Cotonou-Niamey transect. These are similar but not equivalent patterns to those presented in section 3.1 averaged over

the entire West Africa.

The Inter-Tropical Discontinuity (ITD) is the limit between the northward monsoon wind and the southward Harmattan wind15

(Flamant et al., 2007; Karam et al., 2009). The ITD could be defined as the isocontour of relative humidity (RH) equal to 20

%. We can notice that the location of the ITD marks
::::::::
associated

::::
with

:
a sharp gradient in surface

:::::::::::
anthropogenic

:
concentrations,

with a decrease
::::
going

::::::
further

:::::
North

:
from 100 to 20 ppb for CO, and from 5 µg.m−3 to 2 µg.m−3 for PM2.5.

For anth-CO surface concentrations, high concentrations are continuously noticed during the whole period
:::::::
modeled

:::::
from

::
the

:::::::::
beginning

::
of

::::
May

::
to
::::

late
::::
June

:
at the coast where Cotonou is located, about 100 ppb around φ = 6.3◦N. Over the Guinean20

gulf
::::
Gulf, the concentration is low between 20 and 50 ppb. The second area with high anth-CO values corresponds to the

Sudano-Sahelian region, where concentration vary between 60 and 100 ppb around φ = 12◦N. Whereas high concentrations of

anth-CO at the coast is
:::
are clearly related to local emissions, the high concentrations over the Sahel should

::::
could

:
be either due to

transport, or local emissions. Over the studied domain, anth-CO surface concentrations evolves
::::::
evolve between 20 and 120 ppb.

There are in May and in June some high modeled surface concentrations
::
in

::::
May

::::
and

::
in

::::
June when rain occurs,

:
such as around25

11 June. In July, the variability is mostly consistent with precipitation rates after the onset, which suggest that surface versus

vertical distribution has changed
:::::::::
suggesting

:::::::::::
modifications

:::
of

:::::::
transport

::::
and

:::::::::
deposition

:::::::
patterns by the convection associated

with large scale precipitation. The precipitation
:::::::::::
Precipitation variability can thus explain only a part of the CO variability. It is

necessary to also investigate the large-scale wind speed and direction.

The same behavior is observed for the surface concentrations of PM
:::::::
anth-PM2.5. The week to week variability is more30

important. This increase
::::::
greater

::::
than

:::
for

:::::::
anth-CO,

::::::
which

:
is probably due to the longer CO lifetime

:::::::
lifetime

::
of

:::
CO

:
compared

with that of PM (being less chemically active and without settling), the CO concentrations are
:::
less

::::::
prone

::
to

:::::::
settling).

::::
CO

::
is

more homogeneously mixed
:::
than

:::
PM

:
in a large latitudinal area

:::::::
spanning

:
from the coast to more

::::::
latitudes

::::::
higher

:
than 16◦up

11



to the North. The temporal variability of surface PM
:::::::
anth-PM2.5 exhibits a frequency close to 2-week

::::::::
periodicity

:::::
close

::
to

::::
two

:::::
weeks: during the whole modeled period, five higher concentration periods are observed from the coast to φ ≈ 16◦N. In

addition in these latitudinal plumes
::::::
patterns, local minima are modeled, for instance the 20 Juneat φ ≈ 13 ◦N. At φ = 12◦N,

there is an area of high concentration , which is present over the whole period. This may be related to vertical transport and will

be quantified in the next sections. The results showing similarities for both two pollutants in terms of time-latitude variability,5

the next sections will refine the analyzes only for PM
::::::
analysis

::::
only

:::
for

:::::::
anth-PM2.5.

4.1.2 Synoptic wind and pollution

This section aims at analyzing the anth-PM2.5 concentration temporal frequency
::::::::
variability

:
through the surface wind speed

and direction. The previous section has shown that low pollution levels are
:::::::::::
concentration

::
is not always associated with pre-

cipitations. Results are presented in the same way using Hovmöller diagrams on Figure 6
::::::
(Figure

::
6). For each figure, colored10

isocontours are superimposed corresponding to surface anth-PM2.5 of 4 and 5 µg.m−3.

For the surface wind speed, the lowest values are modeled along the coast during the whole period. The wind speed vari-

ability is weak from the coast to the Sahel. Periods of low wind speed are coincident with the highest values of surface

PM
:::::::
anth-PM2.5. At the end of the period,

::::
when

:::::::::::
precipitation

::::::
occurs

:::::
inland

::::
and

:::::::::
anth-PM2.5::

is
::::
low, the meteorological situation

changes and the wind speed increases suddenly over the ocean showing the cold tongue arrival as previously described by15

Meynadier et al. (2016), when there are precipitations inland and low anthropogenic pollution levels
::::::
located

::
at

:::
the

::::::::
Equator,

:::::
which

::
is

::::::::
associated

::::
with

:::::::::
increased

::::
wind

:::::
speed

:::::::
between

:::
the

:::::::
Equator

:::
and

:::
the

:::::
coast,

:::
as

::::::
detailed

:::
by

:::::::::::::::::::
Meynadier et al. (2016).

Regarding the precipitations
::::::::::
precipitation occurrences discussed in the previous section, the high surface anth-PM2.5 concen-

trations modeled around φ= 12◦N are due to a combination of low wind speed and low precipitation rates. These meteorological

conditions are representative of stagnation, which accumulate pollutants in the lowest layers of the troposphere.20

For the surface wind direction, the main wind direction near the coast is the South-West quarter during the whole period.

There is no obvious link between wind direction changes and PM2.5 highest values over the Cotonou-Niamey meridional

transect.

The large scale variability of meteorological variables (precipitation and wind speed) controls the period of high anthro-

pogenic pollution from the coast to the Sahel. However, it does not explain if the high concentration over the Sahel are linked25

with local emissions or/and
::::
with pollutants transport from the coast.

4.2 Monthly mean vertical structure

4.2.1 Anthropogenic pollution

We now focus on the vertical structure of the lower troposphere from the surface to 4 km altitude in order to understand what is

responsible for
:::
hte

::::::
causes

::
of the high anth-PM2.5 :::::::::::

concentration over the Sahel. Monthly averages of anth-PM2.5 concentration30

are analyzed together with wind circulations
::::::::
circulation

:
(monthly averages correspond to consistent meteorological periods,

c.f. Section 3.1). In Figure 7, the modeled concentrations are spatially averaged over the Cotonou-Niamey meridional transect.
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Three isocontours (3, 4 and 5 µg.m−3) are used to follow the anthropogenic pollution patterns. Results are presented at 00

UTC when the NLLJ is established (on the contrary,
:::
well

::::::::::
established

:
(during the day, the pollution is

::::
more

:
mixed in the PBLby

dry convection).

For the three months, the meridional wind is lower at the surface than in the boundary layer from the coast to ≈ 9◦N,

highlighting the well established NLLJ. Above the northward monsoon flux, there is the SAL associated with southward5

winds. The highest southward wind speed in the core of the SAL between 11 and 16◦N in latitude and 2 to 4.5 km in altitude

is the African Easterly Jet (AEJ).

Regarding the wind, two atmospheric cells are noticed on Figure 7
:::::::
modeled

:
during the three months

::::::
(Figure

::
7). There is

a large cell going northward at the surface within the monsoon flow, and going backward toward the South with the SAL (or

AEJ), located at ≈ 2 km altitude, and between the coast and ≈ 16◦N. There is also a small cell turning in the same direction10

(clockwise
:::::::::::
anti-clockwise) at ≈ 2 km altitude, with the downdraft at 6◦N and the updraft at 7◦N. In May and June, the small

cell is included in the large cell, while in July, they are disconnected. These two cells seem to interact with the anthropogenic

pollution because the anth-PM2.5 isocontours shape appear to be driven by the wind patterns.

Regarding anth-PM2.5 concentration, these two atmospheric cells seem to interact with the anthropogenic pollution because

the anth-PM2.5 isocontours shape appear to be driven by the wind patterns. The large atmospheric cell induces a recirculation15

of the modeled anthropogenic plume, ranging from φ = 6 to 18◦N in latitude and 0.5 to 3 km in altitude (anth-PM2.5 isocontour

of 3 µg.m−3). We can notice that the recirculation center
::::
The

:::::
center

::
of

:::
this

::::
cell is located at φ≈ 14 ◦N during the three months

studied. In May, an important part of the pollution from the coast is transported in altitude within the NLLJ above the PBL

(displayed by the anth-PM2.5 isocontour of 4 µg.m−3). In June, there is high concentration in altitude over the Sahel (displayed

by the anth-PM2.5 isocontour of 5 µg.m−3), which suggests that the atmospheric cell concentrates pollutants. Note that in July,20

the lowest latitude of the anthropogenic plume is moved northward, starting at ≈ 10◦N, and less connected with the coast
::::
high

:::::::::
anth-PM2.5::::::::::::

concentration
::
are

:::::
only

:::::::
modeled

:::::
along

:::
the

::::
coast

::::
and

::::
close

::
to
:::
the

:::::::
surface.

Air masses transport anthropogenic pollutants from the coast to the Sahel. High surface concentrations of anth-PM2.5 are

modeled at the latitude of the coastal urbanized areas (φ = 6.3◦N), leading to a plume to the North within the NLLJ and

concentrating pollutants over the Sahel.25

4.2.2 Coastal versus Sahelian pollutants meridional transport

A tracer experiment has been set-up to analyze if the main contributors to the Sahelian maximum are emitted locally or remotely

at the coast. Gaseous tracers are released at the two major cities of the meridional transect (without any sink): Cotonou (Benin

) and Niamey (
:::::::
Cotonou

::
in
::::::
Benin

:::
and

:::::::
Niamey

::
in

:
Niger). The tracers

::::
tracer

::::::::::
experiment

::::
uses

::::::::
arbitrary

::::
units

::::
and

::::::::
considers

:::
the

::::
same

:::::::
quantity

::
of

::::::
tracers

:::::::
emitted

::
in

::::
each

:::::
town.

:::
The

::::::
tracers

:
are constantly released from the 1 to 30 June. The emission altitude30

occurs in the PBL (0 - 500
:::
200

:
m) from the 1 June to 30 June. Results are presented in Figure 8 averaged during the ten last

days at 00 UTC considering
::
as

::
in

:::
the

:::::::
previous

:::::::
section.

:::
We

::::::::
consider

:::::
either only coastal emissions or only Sahelian emissions

in order to observe where air recirculation may concentrate the pollutants
::::::
(Figure

::
8).
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Tracers emitted at the coast indicate that there is a contribution
::
an

:::::::::
important

:::::::
transport

:
of coastal pollutants over the Sahel.

The ratio of Sahelian tracers concentration and coastal tracers concentration
:::::
toward

:::
the

:::::
North

::
in
:::
the

:::::
PBL.

:::
On

:::
the

:::::
other

:::::
hand,

::::
there

::
is

:::
no

:::::::::
significant

:::::::
transport

:::
of

::::::
tracers

:::::::
emitted in the Sahel is between 10 % and

:::::
toward

:::
the

:::::
coast.

:::
In

:::::::
Niamey,

::::::::
Cotonou

:::::
tracer

:::::::::::
concentration

::
is
:::::
about

::::
9%

:::
(of

:::
the

:
1 %; i.e. with coastal emission 10 to 100 times higher, the anthropogenic coastal

pollution could be equivalent to the anthropogenic Sahelian pollution over the Sahel.
:::
a.u.

:::::::::
isocontour

:::::::::
presented

::
in

:::::
Figure

:::::
8-a),5

::::
while

:::
in

::::::::
Cotonou,

:::::::
Niamey

:::::
tracer

::::::::::::
concentration

::
is
:::::

about
::::::

0.03%
::::

(of
:::
the

::
1

:::
a.u.

::::::::::
isocontour

::::::::
presented

::
in
::::::

Figure
:::::

8-b).
:
In the

HTAP anthropogenic inventories (presented in Figure 1), the anth-PM2.5 (respectively anth-CO) is at Niamey ≈ 103 (735)

kg.km−2.day−1 and at Cotonou
::
in

::::::
Niamey

::::
and ≈ 438 (7707) kg.km−2.day−1

:
in
::::::::

Cotonou. Therefore, an important part of the

pollution over the Sahel has been emitted at the coast , which
::
and

::
it
:
contributes to a maximum of anthropogenic pollution

in June
:::
over

:::
the

:::::
Sahel. In conclusion, the high concentration in altitude over the Sahel are due to atmospheric cells, which10

concentrate
:
is

:::
due

:::
to

::
the

::::::::
existence

:::
of

:
a
:::::::::
meridional

::::::::::
atmospheric

::::
cell,

::::::
which

:::
acts

::
at

:::::::::::
accumulating

:
pollutants emitted locally and

remotely at the coast.

5 Impact of coastal dynamics on anthropogenic pollution

In order to better characterize the coastal pollution, anthropogenic PM
:::::::
anth-PM2.5 for the period of 8 to 15 June 2006 are now

described at hourly temporal resolution. This week includes a large variability of low to high surface concentrations.15

5.1 Surface hourly pollution variability

The surface hourly anthropogenic PM
:::::
hourly

:::::::
surface

:::::::
anth-PM2.5 concentrations are shown on

:
in
:

Figure 9 over the Cotonou

meridional transect . The highest temporal resolution shows the same variability as described in Figure 5 with the
::::
with

:::::::::
Hovmöller

::::::::
diagrams.

::::
The beginning of the week associated with lower concentrations.

:
,
::
as

::::::
already

::::::::
described

:::
in

:::::
Figure

::
5.
:
For most days, the highest surface concentrations are modeled between 18 UTC and 0020

UTC from the coast to 8◦N. This coincides with the lowest boundary layer height, which concentrates urban emissions (i.e

waste burning and traffic) in a thin layer (not shown). It seems that urban plumes start from the coastline, corresponding to the

city, at the sunset (18 UTC) and derives to the North in the next few hours.

At the coast, anth-PM2.5 concentration decreases at night (between 00 UTC and 06 UTC) and ,
:::::::
increases

:::::
again in the morning

(around 06 UTC), concentration increases again at the surface when the convection and NLLJ are weak, which follows traffic25

emissions.
:::::
This

::::::
feature

::::::
follows

:::::
traffic

:::::::::
emissions,

::::::
which

:::
are

:::::::
included

::
in
:::
the

::::::::::::
anthropogenic

::::::::
emission

::::::::::
inventories.

::
It

:::::
seems

::::
that

:::::
urban

::::::
plumes

::::
start

::::
from

:::
the

::::::::
coastline

::
at

:::::
sunset

:::
(18

:::::
UTC)

::::
and

:::
are

:::::::::
transported

::
to
:::
the

:::::
North

:::
in

::
the

:::::::::
following

:::::
hours.

There is a transition from low to high level
:::::::::::
concentration of anthropogenic pollution from the 8 to 12 June.

::::::::::::
Anthropogenic

:::::::
pollution

::
is

:::::::
modeled

:::::
over

::
the

::::
sea

::::
from

::
10

:::
to

::
11

:::::
June. It is interesting to note on the 11-12 June night that high concentrations

are modeled during the day when there is precipitation inland
:::
that

::::::::::
precipitation

::::::
occurs

::::::
inland

::
on

:::
11

::::
June

:::::::
(between

:::
18

::::
UTC

::::
and30

::
00

::::::
UTC),

::::
then

::::
high

:::::::
modeled

:::::::::::::
concentrations

:::::
persist

::::::
during

:::
the

:::::
night

::
of

:::::
11-12

:::::
June. This precipitation event reflects a change
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in the wind patterns, which induces a
::::::
change

::
in

:::
the transport of pollutantsover the sea (with

:
,
::::::
leading

::
to

:
surface concentrations

up to 3
:
8
:
µg.m3)

:::

−3
::
in

:::::::
Cotonou.

5.2 Contribution of other cities at Cotonou

At the coast, the wind direction comes from the sector S-SW but there are diurnal variations , which could affect the air

pollution along the coastline. In order to distinguish pollutants
:::::::
pollutant transport from the different coastal megacities, a tracer5

experiment has been set-up
::
set

::
up. The tracers are constantly released in the lowest model layers ranging from surface to 500 m

above sea level. This altitude corresponds to emission below or within the NLLJ. Three point sources have been defined: Accra

in Ghana (5.6◦N,0.2◦W), Lome in Togo (6.2◦N,1.2◦E) and Cotonou in Benin (6.4◦N,2.4◦E). The results are presented over

the Cotonou meridional transect (Figure 10). We aim at evaluating the impact of the Cotonou local emissions versus emissions

from distant areas transported toward Cotonou. The emission (in arbitrary unit) has the same magnitude in each city without10

any daily variation.

As expected, the surface concentrations of Cotonou due to local emission only are the highest at the coast. The diurnal

cycle of pollutants
:::::::
pollutant transport appears clearly with the highest concentrations exported at the beginning of the night

(18 UTC), when the boundary layer height decreases quickly and when the establishment of the NLLJ occurs. Up to 9◦N, high

tracers concentrations are transported from Cotonou far from the point source. The Cotonou plume always transports tracers15

up to 7◦N; for some days, these plumes may reach the latitude of 9◦N during the night between 18 UTC and 06 UTC.

At Cotonou, the modeled tracers concentration released from Lome or Accra are logically lower because the source points are

not in the Cotonou meridional transectstudied. The same kind of northward transport is observed but pollutants transport from

Accra and Lome reach Cotonou in the morning between 06 UTC and 12 UTC for the Lome plume, and in the afternoon between

12 UTC and 18 UTC for the Accra plume. This result is consistent with a transport speed between 10 and 20 km.hour−1 (the20

Lome-Cotonou distance is about 150 km, and Accra-Cotonou about 300 km) . Moreover, there is probably a diurnal variation

of the wind direction , coming
:::
and

:::::::
synoptic

:::::
wind

:::::::
direction

:
from the sector S-SW during the day and SW-W at night because

of the land/sea breeze, which carry more efficiently pollutants emitted during the night toward Cotonou.

::::
S-W.

:
In arbitrary unit and with the same emission at the three cities, the concentrations modeled at latitude

:::::::
modeled

::::::::::::
concentrations between 7◦N and 8◦N are similar for the Lome and Cotonou plumes, and in a lower extent

::::
lower

:
for the25

Accra plume. This means that the urbanized areas West from Cotonou (Lome or Accra) contribute as much as Cotonou to the

anthropogenic pollution at those locations (when considering the same emission).

The comparison between the three plumes shows a specific behavior during 10-12 June as the Cotonou pollution is not

exported to the North:

– On 10 June, the Lome plume is clearly exported over the sea and very high concentrations are noticed over Cotonou. The30

same behavior is observed for the Accra plume with lower concentration because this location is further from Cotonou.

Indeed, the Lome and Accra plumes reach Cotonou after being transported over the sea, which suggests that pollutants

at the three cities have been transported Eastward, leading to plumes overlaying
::::::
mixing at the Cotonou location.
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– On 11 June, there are still high concentrations over Cotonou due to the Accra plume probably driven by the same

meteorological conditions, but
:
it

::::
does

:::
not

::::::
affect the Lome plumedoes not have a specific behavior. This suggests a

perturbation affecting especially Accra.

– The
::
On

:
12 Junecorresponds to the most

:
,
::::
there

::
is
:::
an important transport of Cotonou emission

::::::::
pollution to the North. At

the same time, this is the only day when Lome and Accra plumes do not reach Cotonou, as they are shifted to the North5

at 7◦N when crossing the Cotonou meridional transect.

All these results suggest a fast change of the meteorological situation, leading to air pollution. In the next section, the

specificity of the vertical wind structure during this period will be studied in detail.

6 Disturbed atmospheric dynamics and pollution transport

In this section the analysis is refined to two periods of two days on 8-9 and 11-12 June 2006.
::::
2006

::
in

:::
the

::::::::
Cotonou

::::
area.

:
The10

first corresponds to non-perturbated
:::::::::::
non-perturbed

:
monsoon flow situation leading to low anthropogenic pollution, the second

corresponds to a disturbed
:::::::
perturbed

:
situation leading to high anthropogenic pollution.

6.1 Evolution of the vertical structure

In order to focus
::
on the day/night transport from the coast to the North (described in section 5.1) and the changes in dynamical

regimes during this period (described in section 5.2), results are presented as vertical slices in Figure 11, averaged along the15

Cotonou meridional transect. The tracers concentrations, emitted separately at Lome and Cotonou, are presented as isocontours

of threshold values: the emissions being arbitrary, the modeled concentrations are also arbitrary. But the same threshold is

used for the two emissions locations, thus concentration magnitudes are comparable. The wind vectors (meridional/vertical

components) are superimposed on the figures to highlight the vertical cells. The meridional wind is also presented as color

shading for the NLLJ intensity.20

The first period ,
:
(8 June at 23 UTC and 9 June at 11 UTC, )

:
corresponds to a classical monsoon case, often observed and

described in the literature (Abdou et al., 2010; Lothon et al., 2008). At night, surface pollutants are concentrated in a shallow

layer (less than 200m), corresponding to nocturnal surface layer and to the lowest part of the NLLJ (represented by the ’dark

blue’ shaded area in Figure 11).
::::
The

:::::::
Cotonou

:::
and

:::::
Lome

::::::
plumes

:::
are

::::::
mixed. During the day, the convection induces more mixing

over land than over sea, where the boundary layer reaches 1500 m
:::::
mixing

::
in

:::
the

::::::::
boundary

:::::
layer,

::::::
which

::::::
reaches

:::::
1500

::
m

::
at

:::
1125

::::
UTC

::::
over

:::
the

::::::::
continent. The Lome plume does not reach the coast, but it crosses the Cotonou meridional transect more

::::::
further

to the North > 6.5
:::
(≈

:
7◦N

:
).

On 8-9 June, an updraft-downdraft convective cell is clearly observed during the day and at night, with ascendent wind at

7◦N and subsident wind at 6.3◦N (the Cotonou site latitude). This circulation has already been observed for the whole studied

period in section 4.2.1. This is not a modeled land-sea breeze because it turns in the same direction day and night. Land-sea30

breezes have not been explicitly modeled because of the too coarse resolution (about 20 km).
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The second period ,
:
(11 June at 23 UTC and 12 June at 11 UTC,

:
)
:
corresponds to a disturbed case compared to what is

usually observed in this region and for this month(for instance 8-9 June). Indeed, for the 11 June at 23 UTC, the NLLJ is not

present near the coast and the wind is weak from the coast to 8◦N. The modeled nocturnal PBL height is very low (less than

50m
::
50

::
m). The Lome plume is not present over Cotonou. On 12 June at 11 UTC, air subsidence is modeled from 7◦N to

10◦N. The isocontours of concentrations due to emissions in Lome and Cotonou are at the same latitude, corresponding to an5

iso-latitudinal transport, along the coast. Compared to the 8-9 June, there is no coastal cell located over the emission region.

But a
:
A

:
larger cell is modeled, with high meridional wind speed (up to 4 m.s−1). The subsidence, located at φ > 7◦N, imports

upper air masses from the free troposphere and blocks the northward transport of the coastal pollutants.

6.2 Specificity of 11-12 June 2006

In this last section
:::::::
analysis, we focus on the 11-12 June to understand which meteorological conditions have led to an important10

modeled anthropogenic PM2.5 event at Cotonou. Schwendike et al. (2010) have shown that a large MCS has occurred over

Ghana due to convective instabilities at the border of Togo, Ghana and Burkina Faso. Some spots of convection (’Pop corn’

convection) over a large region including Cotonou has been identified on 11 June. An isolated convective cell lasting a few

hours coming from South-East and going
::::::
moving

:
North-West have

::
has

:
crossed the coastline over Cotonou at around 18

UTC (Figure ??
:::::
Figure

:::
12), which is well in agreement with the modeled location (Figure 13). When precipitation is inland15

between 19 UTC and 23 UTC(Figure 13 - top), the wind speed is null over the coast because the monsoon flux is blocked

::::::
(Figure

::
13

::
-
:::
top). During these specific meteorological conditions, the high anth-PM2.5 surface concentrations are thus due to

an accumulation of pollution during a few hours (from 19 to 23 UTC).

The same tracer experiment as described in the previous sections (described in section 5.2 ) is used to test our hypothesis

about
::::::
confirm

:
the accumulation of pollutants and to distinguished plumes of the different cities. Gaseous tracers are released20

with the same emission at four cities: Accra (Ghana), Lome (Togo), Cotonou (Benin) and Lagos in Nigeria has been added

(6.5◦N,3.4◦E) .

We can notice (on Figure 13 -bottom) that the pollution emitted at the different cities West from Cotonou is mixed at φ = 7◦N

on 11 June at 19 UTC
:::::
(Figure

:::
13

::::::::
-bottom). Six hours later, only the Cotonou plumes is responsible for the high anth-PM2.5,

which confirms pollutants accumulation because it has been blocked by the down-draft of the precipitation system
:::::
during

:::
six25

::::
hours.

This result demonstrates that during the monsoon period, specific meteorological conditions could lead to high pollution in

the Guinean coast megacities, although most of the time pollution emitted along the coastline are quickly transported to the

North.

7 Conclusions30

The West African pollution has been
:::
was

:
studied using both models and observations during May, June and July 2006. This

corresponds to the beginning of the WAM and
::::
West

:::::::
African

::::::::
monsoon

:::
and

::
it
:
includes the AMMA campaign observational
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period. The focus is
::::
was on urbanized areas , located along the Guinean Gulf

::::
coast

:
and known as large gas and aerosol

emitters. In addition to these anthropogenic emissions, the coast is often under the influence of long-range transport of mineral

dust and vegetation fires
:::::::
biomass

:::::::
burning emissions. The analyses are performed for CO and PM2.5 over a large domain to

include all sources: Central Africa for biomass burning, Sahel and Sahara for mineral dust and a large part of the Guinea Gulf

for sea salt.5

The first analysis was devoted to estimate the relative contribution of each source during the three months in Cotonou

(Benin), Djougou (Benin) and Niamey (Niger). It was shown that the surface concentrations of PM2.5 constantly increase

during the period. The mineral dust dust relative contribution remains low close to the coast, showing that in monthly average,

pollution during this period is not dominated by mineral dust transport events. On the other hand, the vegetation fires
:::::::
biomass

::::::
burning

:::::::::
emissions increase from May to July. The anthropogenic part is stable during the whole period for the three studied10

sites at ≈ 50 % for CO and ≈ 15 % for PM2.5.

The second part of the study was focused on
:::::::
analyzed the anthropogenic contribution of

:
to

:
CO and PM2.5 along a Cotonou-

Niamey meridional transect. A transport of these pollutants
:::::
These

::::::::
pollutants

:::
are

::::::::::
transported

:
from the coast to the north has

been demonstrated up to
:
as

:::
far

:::
as the Sahel (13◦N). The Northward limit of the transport corresponds to the Inter Tropical

Discontinuity. It was also shown that there are alternating periods of high/low concentration from Cotonou to Niamey with15

a weekly frequency. To understand this variability, meteorological variables have been
::::
were investigated. The highest surface

pollutants concentrations occurred when there is no precipitation and low wind speed.

In order to better understand the meridional transport and the occurrence of high pollutants
:::::::
pollutant concentrations over the

Sahel (≈ 13◦N), monthly averages of vertical wind structure were analyzed. From May to June, a large atmospheric cell going

from the coast to the Sahel remains present and it has been identified as responsible for the
:::::::
pollutant

:
accumulation over the20

Sahel of pollutants emitted locally and remotely at the coast.

A focus has been done
:::
was

::::
put on coastal dynamics and pollution transport during a restricted period, from 8 to 15 June

2006, including
:::::
which

:::::::
included

:
high and low levels

:::::::::::
concentrations

:
of anthropogenic pollution. To isolate the coastal dynamics

impacts on several cities plumes from
:::
city

::::::
plumes

:::::
along the coastline, a tracer experiment was designed with emissions at Accra

(Ghana), Lome (Togo) and Cotonou
::::::
(Benin). The tracer concentrations confirm that, in Cotonou, the modeled concentrations25

are both due to
:::
due

::
to

::::
both local and remote emissions. A meridional transport of the anthropogenic pollution from the coast

to the North has been highlighted at night linked with the Nocturnal Low Level Jet close to the coast.

Finally, two contrasted anthropogenic pollution situations were detailed
:::::::
analyzed

::
in
::::::

detail. The first situation (8-9 June)

corresponds to low anthropogenic pollution during a ’typical’ case of monsoon dynamics, while the second situation (11-12

June) corresponds to a disturbed meteorological situation due to a MCS. During the
:::::::::
convective

::::::
system.

:::::::
During 11-12 June,30

it was shown that air subsidence is modeled at latitude 7◦N, which imports clean upper air masses from the free troposphere,

limiting the northward transport of the coastal pollutants. The main results of this article will be compared to

:::::::::
Concerning

:::
air

::::::
quality

::::
and

:::::::
climate

:::::
policy

::::::::::::
development,

:::
we

:::::::
showed

::::
that

:::
the

:::::
export

:::
of

::::::::::::
anthropogenic

::::::::
pollutant

:::::
from

:::
the

:::::::
Guinean

::::
coast

:::::::
toward

:::
the

:::::
North

:::::
could

::::
lead

::
to

:::::
cross

::::::::
boundary

:::::::
pollution

:::::::
plumes.

::::
This

:::::
result

::::
will

:::
be

::::::::
confirmed

:::
by

::::::::::
comparison
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::
to

:::
the

:
2016 DACCIWA campaign observations in order to confirm and refine your conclusions

::::::
propose

:::::::
strategy

:::
to

::::::
reduce

::::::::::
atmospheric

:::::::
pollution

:::
in

::::
West

::::::
Africa.
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Anthropogenic carbon monoxide

Anthropogenic primary particulate matter

Figure 1. Anthropogenic carbon monoxide (top) and primary particulate matter (bottom) surface emission fluxes in kg.km−2.day−1 averaged
over the three months period. The gray dots are the major cities and the three green dots are the locations studied from the South to the North:
Cotonou (Benin), Djougou (Benin), Niamey (Niger). The blue box represents the Cotonou (Benin) - Niamey (Niger) meridional transect
studied (longitude λ = 2◦ East to 3◦ East, latitude φ = 1◦ North to 19◦ North).
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Figure 2. Time-latitude average (Hovmöller) of precipitation (mm.day−1). Precipitation is averaged between 8.5◦W and 8.5◦E in longitude.
Day-to-day variability is eliminated by applying a moving average of ±2 days. Due to the longitudinal average, the coastline is between
5◦N and 6◦N. The 2 gray lines show the latitudinal extend of the regional

:::::
model domain. The 3 dash gray lines present the latitudes of the 3

locations studied (Cotonou, Djougou and Niamey).
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Figure 3. Observed daily averages of AERONET level 2 AOD and Angström exponent (black dots) at Djougou (Benin) and Banizoumbou
compared to the modeled time series with a splitting to extract the relative contribution between

:::::
without

:::::::
biomass

::::::
burning

:::::::
emissions

::::::::
(including

anthropogenic, biogenic
:
,
:::
sea

:::
salt and mineral dust(

:
; all three

:::
four in blue) and

:::
with

:
biomass burning emissions (in red).30



Figure 4.
::::
(top)

:::::::::
EUMETSAT

:::::
visible

:::::
image

::
of

:::
the

::::::
Cotonou

::::
area

::
of

::
the

:::
13

:::
June

::::
2006

::
at
::
20

::::
UTC

:::::
(from

:::::::
NAScube

:
(
::::::::::::::::::::
http://nascube.univ-lille1.fr

:
);

::::::
(bottom)

::::
Map

::
of

::::::
Cotonou

::::
area

:::
for

::
the

::
13

::::
June

::::
2006

::
at

::
12

::::
UTC

::::
with

::::
wind

:::::
vectors

::
at

::
10

::
m

::::::
(orange

:::::::
arrows),

:::::::::
precipitation

::::
(blue

::::::::
shading).

:::
The

:::
two

::::
flight

::::::::
trajectories

:::
are

::::::::
displayed

:::
with

:::
the

:::
red

:::
line

::
for

:::
the

::
13

::::
June

:::
and

::::
with

::
the

:::::
green

:::
line

:::
for

::
the

::
14

:::::
June.
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a)

b)

Figure 5. Time-latitude average (Hovmöller diagram) of: a) surface CO concentration (ppb), and b) PM2.5 (µg.m−3) due to anthropogenic
emissions along a meridional transect from 2◦N to 19◦N and averaged from 2◦E to 3◦E including Cotonou (Benin) and Niamey (Niger).
Day-to-day variability is smoothed by applying a moving average of ±2 days. White contours are precipitation = 10 mm.day−1. Specific
isocontours are highlighted = 4 µg.m−3 (orange) and = 5 µg.m−3 (pink

::::
violet). The black line is the ITD defined as RH isocontour = 20 %.
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a)

b)

Figure 6. Time-latitude average (Hovmöller diagram) of surface wind: a) speed and b) direction, along a meridional transect from 2◦N to
19◦N and averaged from 2◦E to 3◦E including Cotonou (Benin) and Niamey (Niger). Wind directions are presented with steps of 45◦. Day-
to-day variability is smoothed by applying a moving average of ±2 days. Orange and pink

::::
violet

:
contours are surface PM2.5 concentrations

of 4 and 5 µg.m−3.
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a) May 2006 average at 00 UTC

b) June 2006 average at 00 UTC

c) July 2006 average at 00 UTC

Figure 7. Vertical cross-section of the meridional wind (shading in m.s−1) mean over: a) May, b) June and c) July, at 00 UTC along a
meridional transect from 2◦N to 19◦N and averaged from 2◦E to 3◦E including Cotonou (Benin) and Niamey (Niger). Light orange, orange

:::::
Orange

:
and pink

::::
violet shading represents

::::::
represent

:
anthropogenic PM2.5 concentration

:::::::::::
concentrations

::
of

:
= 3.0 µg.m−3, = 4.0 µg.m−3

:::
and = 5.0 µg.m−3. Vectors are vertical and meridional

:::::::
represent

::
the

:
wind

:::
field

::
in
:::

the
::::
plan

::
of

:::
the

::::::
transect

:
(with an aspect ratio of 500

::::::
between

:::
the

::::::::
meridional

:::
and

:::
the

::::::
vertical

:::::::::
components). The green line is the PBL height (m). The grey vertical dash line is the latitude of the

coast.
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a) Niamey (Niger) tracers emission averaged at
::
00

::::
UTC

:

b) Cotonou (Benin) tracers emission averaged at
::
00

::::
UTC

Figure 8. Vertical cross-section of the meridional wind (shading in m.s−1) along a meridional transect from 2◦N to 19◦Nand , averaged from
2◦E to 3◦E including Cotonou (Benin) and Niamey (Niger) ,

:::
and averaged over 20 to 30 June at 00 UTC. Isocontours represent gaseous

tracers concentration continuously emitted (in arbitrary unit) from the 1 to 30 June at: a) Niamey (Niger) and b) Cotonou (Benin). Brown ,
yellow and white

::::
yellow

:
shading represent tracers concentration = 1 a.u. ,

::
and

:
= 10 % a.u. and = 1 % a

::::::::
respectively. u.; The green line is

the PBL height (m).
:::::
Vectors

:::::::
represent

:::
the

::::
wind

::::
field

:
in
:::

the
::::
plan

::
of

::
the

:::::::
transect

::::
(with

::
an

:::::
aspect

::::
ratio

::
of

:::
500

:::::::
between

::
the

:::::::::
meridional

:::
and

:::
the

:::::
vertical

:::::::::::
components). The white vertical dash line is the latitude of the coast.
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Figure 9. Time-latitude average (Hovmöller) of surface anthropogenic PM2.5 concentration (µg.m−3) averaged along a meridional transect
between 2◦East and 3◦East from 1 to 17 June 2016. Black vertical bars delimit the periods of the day (00 UTC; 06 UTC; 12 UTC; 18
UTC). White isocontours present precipitation rate = 3.0 mm.hour−1). Orange isocontour represents the surface anthropogenic PM2.5

concentration = 4 µg.m−3.
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a) Cotonou concentrations with Accra (Ghana) emissions

b) Cotonou concentrations with Lome (Togo) emissions

c) Cotonou concentrations with Cotonou (Benin) emissions

Figure 10. Time-latitude average (Hovmöller) of gaseous tracers concentration (a.u.) averaged along a meridional transect between 2◦E
and 3◦E centered on Cotonou (Benin) from 8 to 15 June 2006. Emissions are set up with a constant emission between 0 m and 500 m altitude
at: a) Cotonou (Benin), b) Lome (Togo) and c) Accra (Ghana). Black vertical bars delimit the periods of the day (00 UTC; 06 UTC; 12 UTC;
18 UTC). 37



Figure 11. Vertical cross-section of the meridional wind (shading in m.s−1) along a meridional transect from 5◦N to 10◦N and averaged from
2◦E to 3◦E including Cotonou (Benin). The two orange isocontours are tracer concentrations released in Cotonou and in Lome, respectively
bold and dashed, with same threshold values (in arbitrary unit). Vectors are vertical and meridional

:::::::
represent

:::
the wind

:::
field

::
in
:::
the

::::
plan

::
of

::
the

:::::::
transect (with an aspect ratio of 500

::::::
between

:::
the

::::::::
meridional

:::
and

:::
the

::::::
vertical

:::::::::
components). The green line is the PBL height (m). The

white vertical dash line is the latitude of the coast.
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Figure 12. EUMETSAT visible image of the Cotonou area of the 11 June 2006 at 19 UTC (from NAScube (http://nascube.univ-lille1.fr)
:
.
:::
The

::
red

:::::
ellipse

::
is
:::
the

::::::::
convective

:::
cell

:::::::
location.
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Figure 13. (top) Map of Cotonou area for the 11 June 2006 at 19UTC
::
19

:::
UTC

:
with wind vectors at 10 m (green arrows), precipitation (blue

shading), anthropogenic PM2.5 concentration (red shading); (bottom) Isocontours of tracers concentration on 11 June at 19 UTC (solid
line) and on 12 June at 01 UTC (dashed line), released in Accra (Ghana) in green, Lome (Togo) in red, Cotonou (Benin) in orange, Lagos
(Nigeria) in violet. Blue dots show precipitation location each hour between 11 June at 19 UTC and on 12 June at 01 UTC (the size of blue
dots depends on precipitation amount).
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Pollutants obs/mod Coastal region Sudano-Guinean region Sudano-Sahelian region

Aircraft observations of 13 June 2006 from 10 UTC to 13 UTC
Mean Min Max Mean Min Max Mean Min Max

CO CHIMERE (ppb) 207.24 174.90 233.03 231.52 217.50 244.54 243.88 212.25 275.76
CO Aircraft (ppb) 172.78 146.78 209.21 172.51 161.43 182.14 159.26 148.70 174.24
PM2.5 CHIMERE (µg.m−3) 23.95 19.26 26.01 28.96 25.46 33.87 55.15 35.18 79.93
PM2.5 Aircraft (µg.m−3) 15.67 7.57 33.02 49.72 22.33 77.88 55.81 34.22 72.20

Aircraft observations of 14 June 2006 from 13 UTC to 16 UTC
Mean Min Max Mean Min Max Mean Min Max

CO CHIMERE (ppb) 212.71 190.23 239.83 229.15 205.49 246.75 244.74 232.68 257.97
CO Aircraft (ppb) 200.21 185.49 222.34 181.51 153.11 233.35 168.66 146.35 200.66
PM2.5 CHIMERE (µg.m−3) 42.79 28.23 64.33 82.25 64.43 92.93 84.01 79.65 91.46
PM2.5 Aircraft (µg.m−3) 39.40 37.26 42.37 39.36 23.60 59.12 92.08 50.11 138.86

Table 1. Range of 2-minute average modeled and observed concentrations of CO (ppb) and PM2.5 (µg.m−3) in the PBL (altitude lower than
1000 m) over three regions: Coastal region (6.3◦N - 9.0◦N), Sudano-Guinean region (9.0◦N - 11.0◦N), Sudano-Sahelian region (11.0◦N -
13.5◦N).
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CO May-July May June July
Cotonou (Benin)

Average (ppb) 221.01 157.25 239.11 267.26
Background (ppb and %) 73.30 33.17 73.58 46.79 72.82 30.45 73.48 27.50
Anthropogenic (ppb and %) 64.75 29.30 67.83 43.14 64.65 27.04 61.77 23.11
Fire

::::::
Biomass

::::::
burning (ppb and %) 82.96 37.54 15.84 10.07 101.64 42.51 132.00 49.39

Djougou (Benin)
Average (ppb) 226.78 180.28 240.65 259.85
Background (ppb and %) 75.27 33.19 77.38 42.92 75.23 31.26 73.21 28.17
Anthropogenic (ppb and %) 80.77 35.62 93.52 51.88 89.01 36.99 60.04 23.11
Fire

::::::
Biomass

::::::
burning (ppb and %) 70.74 31.19 9.38 5.21 76.41 31.75 126.60 48.72

Niamey (Niger)
Average (ppb) 212.44 171.24 229.26 237.34
Background (ppb and %) 78.95 37.16 82.72 48.30 78.69 34.32 75.42 31.78
Anthropogenic (ppb and %) 82.54 38.85 83.92 49.01 98.24 42.85 65.96 27.79
Fire

::::::
Biomass

::::::
burning (ppb and %) 50.95 23.98 4.60 2.69 52.33 22.82 95.97 40.43

Table 2. CO (ppb) average and relative contributions (%) of each type of pollution source (background, anthropogenic, fire
::::::
biomass

::::::
burning)

at Cotonou (Benin), Djougou (Benin) and Niamey (Niger). The time averaged periods correspond to each month of
:
(May, June, July

:
) and to

the whole period (from May to July).
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PM2.5 May-July May June July
Cotonou (Benin)

Average (µg.m−3) 29.62 23.31 28.89 36.64
Anthropogenic (µg.m−3 and %) 3.45 11.64 3.44 14.75 3.44 11.90 3.47 9.46
Fire

::::::
Biomass

::::::
burning (µg.m−3 and %) 12.02 40.58 2.54 10.89 14.38 49.79 19.21 52.44

Dust (µg.m−3 and %) 4.35 14.68 8.89 38.15 2.34 8.10 1.74 4.76
Biogenic (µg.m−3 and %) 6.04 20.38 5.84 25.04 5.68 19.65 6.59 17.98
Salt (µg.m−3 and %) 3.77 12.72 2.60 11.17 3.05 10.56 5.62 15.35

Djougou (Benin)
Average (µg.m−3) 38.25 41.31 37.71 35.70
Anthropogenic (µg.m−3 and %) 4.10 10.72 4.38 10.60 4.59 12.16 3.35 9.38
Fire

::::::
Biomass

::::::
burning (µg.m−3 and %) 9.18 23.99 1.34 3.23 9.36 24.82 16.84 47.17

Dust (µg.m−3 and %) 13.55 35.43 23.73 57.44 12.05 31.95 4.83 13.52
Biogenic (µg.m−3 and %) 9.95 26.01 10.76 26.05 10.44 27.68 8.66 24.25
Salt (µg.m−3 and %) 1.47 3.85 1.10 2.67 1.28 3.39 2.03 5.68

Niamey (Niger)
Average (µg.m−3) 53.76 71.59 52.56 37.09
Anthropogenic (µg.m−3 and %) 4.22 7.85 4.00 5.58 5.15 9.80 3.54 9.54
Fire

::::::
Biomass

::::::
burning (µg.m−3 and %) 5.73 10.66 0.56 0.78 5.47 10.41 11.15 30.06

Dust (µg.m−3 and %) 36.86 68.57 61.02 85.24 34.34 65.35 15.14 40.83
Biogenic (µg.m−3 and %) 6.31 11.75 5.58 7.79 7.08 13.48 6.31 17.01
Salt (µg.m−3 and %) 0.63 1.18 0.44 0.61 0.51 0.96 0.95 2.56

Table 3. PM2.5 (µg.m−3) average and relative contributions (%) of type of pollution source (anthropogenic, fire
::::::
Biomass

::::::
burning, dust,

biogenic, sea salt
:
)
:
at Cotonou (Benin), Djougou (Benin) and Niamey (Niger). The time averaged periods correspond to each month of (May,

June July)
:
and to the whole period (from May to July).
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