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Abstract 20 

We investigated the seasonal trends of OA sources affecting the air quality of Marseille 21 

(France) which is the largest harbor of the Mediterranean Sea. This was achieved by 22 

measurements of nebulized filter extracts using an aerosol mass spectrometer (offline-AMS). 23 

PM2.5 (particulate matter with an aerodynamic diameter <2.5 m) filter samples were 24 

collected over 1 year from August 2011 to July 2012. The same samples were also analyzed 25 

for major water-soluble ions, metals, elemental and organic carbon (EC/OC), and organic 26 

markers, including n-alkanes, hopanes, polyaromatic hydrocarbons (PAHs), lignin and 27 

cellulose pyrolysis products and nitrocatechols. The application of positive matrix 28 
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 2 

factorization (PMF) to the water-soluble AMS spectra enabled the extraction of five factors, 1 

related to hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), 2 

oxygenated OA (OOA), and an industry-related OA (INDOA). Seasonal trends and relative 3 

contributions of OA sources were compared with the source apportionment of OA spectra 4 

collected from the AMS field deployment at the same station but in different years and for 5 

shorter monitoring periods (February 2011 and July 2008). Online- and offline-AMS source 6 

apportionment revealed comparable seasonal contribution of the different OA sources. 7 

Results revealed that BBOA was the dominant source during winter representing on average 8 

48% of the OA, while during summer the main OA component was OOA (63% of OA mass 9 

on average). HOA related to traffic emissions contributed on a yearly average 17% to the OA 10 

mass, while COA was a minor source contributing 4%. The contribution of INDOA was 11 

enhanced during winter (17% during winter and 11% during summer), consistent with an 12 

increased contribution from light alkanes, light PAHs (fluoranthene, pyrene, phenantrene) and 13 

selenium, which is commonly considered as an unique coal combustion and coke production 14 

marker. Online- and offline-AMS source apportionments revealed evolving 15 

levoglucosan:BBOA ratios, being higher during late autumn and March. A similar seasonality 16 

was observed in the ratios of cellulose combustion markers to lignin combustion markers, 17 

highlighting the contribution from cellulose rich biomass combustion, possibly related to 18 

agricultural activities.  19 

 20 

1 Introduction 21 

Outdoor particulate air pollution is estimated to be responsible for approximately 3.3 million 22 

premature deaths each year worldwide, and this number is projected to double by 2050 23 

(Lelieveld et al., 2015). Organic aerosols (OA) can contribute up to 90% of the PM1 (Jimenez 24 

et al., 2009), therefore understanding their main emission sources and formation processes is a 25 

key prerequisite for the development of appropriate mitigation policies.  26 

In the Mediterranean basin, sources and trends of OA remain scarcely investigated, despite 27 

their deleterious impact in such a densely populated region. The Mediterranean region is 28 

characterized by an intense photochemistry during summer. Not surprisingly, the majority of 29 

the OA source apportionment studies conducted in the region using aerosol mass 30 

spectrometry (AMS) focused on the summer period (e.g., El Haddad et al., 2013; Minguillón 31 

et al., 2011, 2016; Hildebrandt et al., 2011). Through positive matrix factorization (PMF) 32 
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techniques, these studies revealed that during summer the oxygenated organic aerosol (OOA) 1 

fraction formed by oxidation of gaseous precursors, represented the largest part of OA. 2 

Amongst these studies, the field deployment of the AMS in Marseille, the largest port in the 3 

Mediterranean, has demonstrated that this instrument is well suited for quantifying the 4 

contribution of industrial emissions (El Haddad et al., 2013). In that work, the industrial OA 5 

factor was identified by the high correlation with heavy metals and AMS-polycyclic aromatic 6 

hydrocarbons (AMS-PAHs), moreover strong increments of the industrial factor 7 

concentrations were systematically observed when winds shifted to the west/south west, 8 

consistent with back-trajectory analysis highlighting the transport of industrial emissions from 9 

an industrial pole. Overall the industry-related OA contributed on average 7% of the bulk OA 10 

mass (El Haddad et al., 2011; 2013). However, these results were limited to 2 weeks of 11 

measurements during summer while the contribution of industrial emissions during the rest of 12 

the year remains unknown.   13 

There is a general paucity of AMS and ACSM datasets in the Mediterranean region during 14 

winter. Exceptions include AMS campaigns (Mohr et al. 2012; Hildebrandt et al., 2011) 15 

covering a few weeks during late winter-early spring, and studies with an aerosol chemical 16 

speciation monitor (ACSM) (e.g., Minguillón et al., 2015, covering three weeks of 17 

monitoring). The measurement of organic markers and elements (e.g., Salameh et al., 2015; 18 

Reche et al., 2012) at different stations indicate a substantial contribution from biomass 19 

burning (BB). However, the sources and chemical composition of this fraction and its 20 

evolution during the year remain uncertain. Modelling results within the European Monitoring 21 

and Evaluation Programme (EMEP) have shown that the South of France, together with 22 

Portugal, can be a major hot spot in Europe for OA during February-March, possibly due to 23 

agricultural fires (Dernier van der Gon et al., 2015; Fountoukis et al., 2014). In this region, 24 

BBOA can derive from various processes such as agricultural land clearing activities, 25 

wildfires, and domestic heating, and therefore may have a variable chemical composition.  26 

The current study capitalizes on the AMS measurements of offline samples collected over one 27 

year (2011-2012), in Marseille, an ideal environment for the characterization of urban 28 

emissions from biomass burning, traffic and industrial activities and their transformation 29 

under high photochemical activity. The source apportionment results obtained from PMF 30 

applied to the OA mass spectra are corroborated using a comprehensive set of offline 31 

measurements including elemental and organic carbon (EC/OC) measurements, as well as 32 
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measurements of elements by inductively coupled plasma mass spectrometry (ICP-MS), of 1 

molecular markers by gas chromatography mass spectrometry (GC-MS) and ultra-2 

performance liquid chromatography mass spectrometry (UPLC-MS), and of major ions by ion 3 

chromatography (IC). We mainly focus on the sources and trends of winter OA and therefore 4 

we additionally analyzed an online AMS dataset acquired at the same location during the 5 

winter of the previous year. The comparison of online- and offline-AMS data, and organic 6 

marker concentrations enables an in-depth characterization of OA sources in Marseille, and in 7 

particular the identification of the main processes by which biomass smoke is emitted and 8 

transformed in this region.  9 

 10 

2 Methods 11 

2.1 Site description  12 

Marseille is the second largest city in France with more than 1 million inhabitants (2010). It 13 

hosts the largest harbor in France and in the Mediterranean Sea. Many port-related industries, 14 

especially petrochemical companies, are located in a big cluster. These facilities are situated 15 

about 40 km NW from the city and include steel facilities, coke production plants, oil storing, 16 

refining plants, and several shipyards. The Marseille commercial harbor is located in the 17 

vicinity of this industrial cluster and represents the third-largest harbor of the world for crude 18 

oil storage and treatment. During summer, typical wind patterns in the city of Marseille favor 19 

the transport of polluted air masses from the industrial cluster to the city, including the sea 20 

breeze and the light Mistral wind from the Rhone valley. At night, the land breeze may 21 

transport air masses from an agricultural valley located east of the sampling site. A more 22 

detailed description of wind patterns in Marseille can be found in Drobinski et al. (2007) and 23 

Flaounas et al. (2009). The sampling location is classified as an urban background station and 24 

is situated in the urban park “Cinq Avenue” in a traffic-free zone near the city center 25 

(43°18’20’’ N, 5°23’40’’E; 64 m a.s.l.).  26 
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 5 

2.2 Yearly cycle dataset 1 

Sample collection.  2 

In total, 216 24-h (from midnight-to-midnight) integrated PM2.5 pre-baked (500°C for 3 h) 3 

quartz fiber filters (150 mm diameter, Tissuquartz) were collected between 30 July 2011 and 4 

20 July 2012 using a High-Volume sampler (Digitel DA80) operated at 500 L min
-1

 (Batch 1). 5 

Filter samples were subsequently wrapped in aluminum foil, sealed in polyethylene bags and 6 

stored at -18°C.  7 

Offline-AMS analysis. This work discusses the offline-AMS analysis of 55 composite samples 8 

(created from the batch of 216 PM2.5 filters collected) which were analyzed by Salameh et al. 9 

(in prep.) for major ions, molecular markers and elements (Table S1). A thorough description 10 

of the offline-AMS analysis can be found in Daellenbach et al. (2016). One punch per filter 11 

sample (from 5 to 25 mm diameter depending on the filter loading and on the number of 12 

punches per composite sample) was prepared for analysis. Punches from the same composite 13 

sample were extracted together in 15 mL of ultrapure water (18.2 M cm, total organic 14 

carbon < 5ppb, 25°C) in an ultrasonic bath for 20 min at 30°C. After extraction, filters were 15 

vortexed for 1 min, and the resulting liquids were filtered with 0.45 m nylon membrane 16 

syringe filters. 17 

The generated liquid extracts were atomized in air using a custom-made two-nozzle nebulizer. 18 

The generated aerosol was dried using a silica gel diffusion drier and then measured by a high 19 

resolution time-of-flight AMS (HR-ToF-AMS, running in V-mode). In the AMS, particles are 20 

flash vaporized (600°C) and the resulting gas is then ionized by electron impact  (EI, 70eV), 21 

yielding quantitative mass spectra of the non-refractory submicron aerosol components, 22 

including OA, NO3
-
, SO4

2-
, NH4

+
, and Cl

-
. A detailed description of the AMS operating 23 

principles, calibration protocols, and analysis procedures are provided by DeCarlo et al. 24 

(2006). In total about 10 mass spectra (mass range 12-300 Da, 60 sec averaging time) were 25 

collected per composite sample. Between each sample, a measurement blank was recorded via 26 

nebulization of ultra-pure water to minimize and monitor the possible memory effects of the 27 

system. In total five mass spectra were collected per each measurement blank. Offline-AMS 28 

data were processed and analyzed using the HR-ToF-AMS analysis software SQUIRREL 29 

(SeQUential Igor data RetRiEvaL) v.1.52L and PIKA (Peak Integration by Key Analysis) 30 

v.1.11L for IGOR Pro software package (Wavemetrics, Inc., Portland, OR, USA). HR 31 
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analysis of the mass spectra was performed in the mass range 12-115 Da and in total 217 ion 1 

fragments were fitted. 2 

The interference of NH4NO3 on the CO2
+
 signal was corrected according to Pieber et al. 3 

(2016) as follows: 4 

𝑪𝑶𝟐,𝒓𝒆𝒂𝒍 = 𝑪𝑶𝟐,𝒎𝒆𝒂𝒔 − (
𝑪𝑶𝟐,𝒎𝒆𝒂𝒔

𝑵𝑶𝟑,𝒎𝒆𝒂𝒔
)

𝑵𝑯𝟒𝑵𝑶𝟑,𝒑𝒖𝒓𝒆
∗ 𝑵𝑶𝟑,𝒎𝒆𝒂𝒔       5 

 (1) 6 

where the (
𝐶𝑂2,𝑚𝑒𝑎𝑠

𝑁𝑂3,𝑚𝑒𝑎𝑠
)

𝑁𝐻4𝑁𝑂3,𝑝𝑢𝑟𝑒
 correction factor was 2.5% as determined from aqueous 7 

NH4NO3 measurements conducted regularly during the measurement period. 8 

Other offline measurements. A complete list of the measurements performed can be found in 9 

Table S1. To summarize, major ions (Ca
2+

, Mg
2+

, K
+
, Na

+
, NH4

+
, NO3

-
, SO4

2-
, Cl

-
, oxalate, 10 

malate, succinate, and malonate) were measured by ion chromatography (IC) according to the 11 

methodology described by Jaffrezo et al. (1998). A subset of the filters was selected for CO3
2-

 12 

quantification following the method described by Karanasiou et al. (2011). The method 13 

encompasses the fumigation of the filter samples with HCl. The CO2 evolved by this 14 

acidification of the carbonates deposited on the filters is detected by thermal optical 15 

transmittance determination. The CO3
2-

 measurements agreed fairly well with the CO3
2-

 16 

estimate from ion balance calculations based on IC data (Fig. S1). In the following discussion, 17 

ion concentrations from filter samples always refer to the IC measurements unless otherwise 18 

specified. 19 

Elemental and organic carbon (EC and OC) were determined for each filter by thermal optical 20 

transmittance using a Sunset Lab analyzer (Birch and Cary, 1996) following the EUSAAR2 21 

protocol (Cavalli et al., 2010). The CO3
2-

 concentration determined from the IC ion balance 22 

was then subtracted from OC concentration. The water soluble OC (WSOC) was measured 23 

with a total organic carbon analyzer (TOC) following the methodology described in Bozzetti 24 

et al. (2016a) and references therein. Before the analyses, the liquid extracts were treated with 25 

a 2 M HCl solution for 1-30 min to remove the inorganic C fraction. Total nitrogen (TN) was 26 

determined using a TOC analyzer combustion tube. The NO2 generated from the water 27 

soluble (WS) N decomposition was detected by a chemiluminescence TNM-1 unit detector. 28 

Organic markers were measured via GC-MS analysis, following the methodology described 29 

in El Haddad et al. (2009; 2011), Favez et al. (2010) and Piot et al. (2012). In total 15 30 

different polycyclic aromatic hydrocarbons (PAH), 19 alkanes (C19-C36), 8 hopanes, 5 31 
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phtalate esters,  levoglucosan, 6 lignin pyrolysis compounds, 6 fatty acids, and 3 sterols were 1 

determined (Table S1). 33 chemical elements (Table S1) were quantified using ICP-MS 2 

according to the procedure described in Chauvel et al. (2010) and the modifications suggested 3 

in El Haddad et al. (2011). A subset of 20 composite samples was selected for the 4 

quantification of methyl-nitrocatechol isomers (Table S1) via Ultra Performance Liquid 5 

Chromatography coupled with an Electro Spray Ionization – ToF - MS (UPLC-ESI-ToF-MS), 6 

following the procedure described in Iinuma et al. (2010).  7 

2.3 Intensive winter campaign 8 

A HR-ToF-AMS was deployed at the same station (urban park “Cinq Avenue”) between 25 9 

January 2011 and 2 March 2011 to monitor the real-time NR-PM1 aerosol chemical 10 

composition. Although February 2011 is not included in the sampling period covered by 11 

offline-AMS, these online measurements nonetheless provide a good opportunity to compare 12 

the separation, relative contributions and winter seasonal trends of the OA sources retrieved 13 

by the offline- and online-AMS source apportionment procedures. Summer offline-AMS 14 

results were instead compared with online-AMS source apportionment results reported by El 15 

Haddad et al. (2013). The AMS was operated with an averaging time of 8 minutes, and in 16 

total 5633 mass spectra were collected during the monitoring period. We performed an 17 

ionization efficiency (IE) calibration by NH4NO3 nebulization, and the resulting IE value of 18 

1.76∙10
-7

 was applied to the dataset. The standard relative ionization (RIE) efficiency was 19 

assumed for organics (1.4), SO4
2-

 (1.2), NH4
+
 (4) and Cl

-
 (1.3), while the collection efficiency 20 

(CE) was estimated using the composition dependent collection efficiency model 21 

(Middlebrook et al., 2012). Total AMS-PAHs were estimated from AMS data according to 22 

Dzepina et al. (2007).  23 

Similarly to offline-AMS, online-AMS data were also processed and analyzed using HR-ToF-24 

AMS Analysis software SQUIRREL (SeQUential Igor data RetRiEvaL) v.1.52L and PIKA 25 

(Peak Integration by Key Analysis) v.1.11L for IGOR Pro software package (Wavemetrics, 26 

Inc., Portland, OR, USA). HR analysis of the mass spectra was performed in the mass range 27 

12-115 Da and in total 215 ion fragments were fitted.  28 

A NOx analyzer was run in parallel to the AMS to monitor the real-time NOx concentration. A 29 

set of pre-baked (500°C for 3h) 24-h integrated PM2.5 filter samples was also collected during 30 

this campaign (Batch 2) following the same sampling and storage procedure described in 31 
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Section 2.2. Filters were analyzed for major ions, metals, elemental and organic carbon 1 

(EC/OC), and organic markers, including n-alkanes, hopanes, polyaromatic hydrocarbons 2 

(PAHs), lignin and cellulose pyrolysis products using the techniques previously described in 3 

Section 2.2 (Table S1). 4 

 5 

2.4 Source apportionment 6 

Implementation. The online- and offline-AMS source apportionment results discussed in this 7 

work were obtained from PMF analysis (Paatero and Tapper, 1994) of AMS spectra using the 8 

Multilinear Engine (ME-2, Paatero 1999). The Source Finder toolkit (SoFi, Canonaco et al., 9 

2013, v.5.1) for Igor Pro (Wavemetrics, Inc., Portland, OR, USA) served as interface for data 10 

input and results evaluation. PMF is a multilinear statistical tool used to describe the 11 

variability of a multivariate dataset as the linear combination of static factor profiles times 12 

their corresponding time series, as described in Eq. 2: 13 

𝑥𝑖,𝑗 =  ∑ 𝑔𝑖,𝑧  ∙  𝑓𝑧,𝑗  +  𝑒𝑖,𝑗
𝑝
𝑧=1         (2) 14 

Here xi,j, gi,z, fz,j, and ei,j represent respectively elements of the data matrix, factor time series 15 

matrix, factor profile matrix and residual matrix, while subscripts i,j and z denote time 16 

elements, variables (in our case AMS fragments), and discrete factor numbers, respectively. p 17 

represents the total number of factors selected by the user for current given PMF solution. The 18 

PMF algorithm returns only gi,z and fz,j values ≥ 0, and solves Eq. 2 by minimizing the object 19 

function Q, defined as: 20 

𝑄 =  ∑ ∑ (
𝑒𝑖,𝑗

𝑠𝑖,𝑗
)

2

𝑗𝑖                  (3) 21 

Here si,j is an element of the error input matrix. PMF is subject to rotational ambiguity, i.e. 22 

different GˑF combinations characterized by the same Q can exist. The ME-2 implementation 23 

of the PMF algorithm offers an efficient exploration of the solution space by directing the 24 

solution toward environmentally-meaningful rotations by constraining the factor profile 25 

elements fz,j for one or more z factors. In the a-value implementation of ME-2, the elements of 26 

the factor profile matrix F (in our case AMS fragments) are forced to predefined values fz,j 27 

allowing a certain variability defined by the a-value, such that the modelled element fz,j’ 28 

satisfies Eq. 4: 29 
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(1−𝑎)𝑓𝑧,𝑛

(1+𝑎)𝑓𝑧,𝑚
 ≤  

𝑓𝑧,𝑛′

𝑓𝑧,𝑚′
 ≤  

(1+𝑎)𝑓𝑧,𝑛

(1−𝑎)𝑓𝑧,𝑚
                        (4) 1 

where n and m represent any two arbitrary variables in the normalized F matrix. A complete 2 

description of the a-value approach can be found elsewhere (Canonaco et al., 2013). 3 

For the offline–AMS source apportionment, the PMF input data matrix was constructed as 4 

follows: each composite sample is represented by approximately 10 time points i, 5 

corresponding to the ~10 mass spectra collected per filter sample (section 2.4). Each point of 6 

the data matrix is subtracted by the average corresponding measurement blank.  7 

The error matrices were instead constructed as follows. For online-AMS source 8 

apportionment, the error matrix elements si,j were calculated according to Allan et al. (2003) 9 

and Ulbrich et al. (2009), and included the uncertainty deriving from electronic noise, ion-to-10 

ion variability at the detector, and ion counting statistics. si,j included also a minimum error 11 

which was applied according to Ulbrich et al. (2009). For the offline-AMS source 12 

apportionment, the error term i,j was calculated in the same way, but a further term (i,j) 13 

including the blank subtraction uncertainty was propagated according to Eq. 5: 14 

𝑠𝑖,𝑗 =  √𝑖,𝑗
2 + 𝑖,𝑗

2                  (5) 15 

Finally for both online- and offline-AMS we applied a down-weighting factor of 3 to all 16 

variables with an average signal to an average error ratio lower than 2 (Ulbrich et al., 2009). 17 

No variable with an average signal to error value lower than 0.2 was detected.  18 

Dust and ash can contain significant amount of inorganic CO3
2-

. Both the IC balance and the 19 

CO3
2-

 measurements revealed non-negligible contributions from CO3
2-

 in the PM2.5 fraction 20 

(Fig. S1). Preliminary PMF results also resolved a factor correlating with Ca
2+

 (SI) which was 21 

characterized by high fCO2
+
, suggesting a possible solubilisation of CO3

2-
 from dust which 22 

could affect the OA mass spectral fingerprint. Overall, as discussed in the SI, we could not 23 

achieve a clear inorganic dust separation using PMF, therefore we opted for a correction of 24 

the PMF input matrices. The measured pH of our filter extracts was never >8, therefore we 25 

can exclude the presence of CO3
2-

 in the extracts, but rather assume all solubilized CO3
2-

 to 26 

exist as HCO3
-
.
 
Direct measurements of nebulized standard NaHCO3 aqueous solutions, 27 

revealed that thermal decomposition of HCO3
-
 on the AMS vaporizer (600°C) releases CO2 28 

(Fig. S2). Currently no HCO3
-
 correction for the OA spectra is implemented in the standard 29 

AMS fragmentation table (Aiken et al., 2008), therefore the measured CO2
+
 signal needs to be 30 
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subtracted from the OA AMS spectra. Offline-AMS PMF input matrices were corrected for 1 

HCO3
-
 and rescaled for WSOMi according to the procedure described in the Supplementary 2 

information, SI. 3 

Online-AMS source apportionment optimization. In the following we describe the 4 

optimization of the online-AMS source apportionment results. In order to optimize the source 5 

separation we performed sensitivity analyses on PMF solutions. We adopted different 6 

optimization strategies for online- and offline-AMS source apportionments (SI) as we 7 

encountered dissimilar mixings between sources. This is not surprising as the two methods are 8 

characterized by different time resolution and different monitoring time extension (1 year for 9 

offline-AMS, 1 month for online-AMS), which in turn result in different variabilities 10 

apportioned by the PMF algorithm (daily for online-AMS vs. seasonal for offline-AMS). 11 

We selected a 4-factor solution based on residual analysis. We investigated the time 12 

dependent Q(t)/Qexp(t) evolution when increasing the number of factors. Q/Qexp is defined as 13 

the ratio between Q (as defined in Eq. 3) and the remaining degrees of freedom of the model 14 

solution (Qexp) calculated as iˑj-(j+i)p (Canonaco et al., 2013). A decrease of the Q/Qexp, from 15 

lower to higher order solutions indicates an improvement in the variation explained by the 16 

model. In particular we calculated the (Q/Qexp(t)) obtained as the difference between the 17 

Q/Qexp(t) for a (z)–factor solution minus the Q/Qexp(t) value obtained from the (z-1)–factor 18 

solutions, where z indicates the number of factors. We observed a large reduction of 19 

(Q/Qexp(t)) until 4 factors (Fig. S4). Higher order solutions provided only minor 20 

contributions to the explained variability and in terms of solution interpretability resulted in a 21 

splitting of primary sources which could not be unambiguously associated to specific aerosol 22 

sources or processes. An a-value sensitivity analysis was performed by scanning all possible 23 

a-value combinations for HOA and COA given by an a-value range 0-1 with a step size of 24 

0.1. In order to optimize the source apportionment results, we retained only the PMF solutions 25 

satisfying an acceptance criterion described hereafter.  26 

PMF factors were associated to specific aerosol emissions/processes based on mass spectral 27 

features, diurnal cycles, and time series correlations with tracers. The identified factors were 28 

associated to traffic (HOA), cooking (COA), biomass burning (BBOA), and oxygenated 29 

organic aerosol (OOA). A thorough interpretation of the PMF factors will be discussed in the 30 

Results section. Given the absence of widely accepted tracers for COA emissions, the 31 

optimization of the COA contributions was based on the analysis of the COA diurnal cycles. 32 

PMF solutions obtained from the COA and HOA a-value sensitivity analysis (121 PMF runs 33 
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in total) were categorized according to a cluster analysis of the normalized COA diurnal 1 

cycles (Elser et al. 2015 and references therein). The k-means clustering approach enables 2 

classifying the PMF solutions into k clusters, by minimizing a cost function (C): 3 

C =  i,z(( xi-µz,i )
2
)          (6) 4 

where C represents the sum of the Euclidian distances between each observation (xi) and its 5 

respective cluster centre (µzi), according to Eq. 6. 6 

The number of clusters (k) that best represents the data is a critical choice in order to 7 

perform a proper cluster analysis. The addition of a cluster (k+1) on one hand adds 8 

complexity to the solution, while on the other hand decreases the cost function. A typical 9 

strategy to select the right number of clusters is to explicitly penalize the addition of new 10 

clusters by using Bayesian information criteria. This approach consists in adding a penalty 11 

term to Eq. 6 proportional to the number of clusters (k):  12 

C ‘=   i,z(( xi-µz,i )
2
) + k∙ln(D)            (7) 13 

where D denotes the dimensionality of the clusters (24 in our case, as we consider diurnal 14 

cycles with hourly time resolution). In this study the C’ function showed the minimum at 5 15 

clusters (Fig. S5). The absence of convexity properties (i.e. several local minima can exist and 16 

the solution strongly depends on the initialization) represents a possible drawback of the k-17 

means algorithm, therefore 100 random initializations of the k-means algorithm were 18 

conducted.  19 

The best clusters are selected based on a novel statistical analysis of the HOA, COA and 20 

BBOA average cluster spectra (SI). Briefly, a cluster was retained if the HOA, COA, and 21 

BBOA average cluster spectra were not statistically different from the average reference 22 

HOA, COA, and BBOA spectra from literature (Crippa et al., 2013b; Mohr et al., 2012; Bruns 23 

et al., 2015; Docherty et al., 2011; Setyan et al., 2012; He et al., 2010, Table S3). A complete 24 

description of the best clusters selection is reported in the SI (Figs. S4-S7). Overall, three 25 

clusters were retained and 2 were rejected. Finally, we retained only the PMF solutions that 26 

were attributed to the 3 best clusters in more than 95% of the k-means random initializations 27 

(Fig. S8). 28 

In order to explore the rotational ambiguity of our PMF model we performed 200 PMF runs 29 

by initiating the PMF algorithm using different input matrices. The 200 different input 30 

matrices were generated using a bootstrap approach (Davison and Hinkley, 1997; Brown et 31 

al., 2015). In short, the bootstrap approach creates new input matrices by randomly 32 

resampling mass spectra (i elements) from the original input matrices. Note that some mass 33 
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spectra are resampled multiple times, while others are not represented at all. On average we 1 

randomly resampled 63±1% of the original spectra per bootstrap PMF run. Finally, each 2 

bootstrap PMF run was initiated by randomly varying the HOA and COA a-values using the 3 

{a-value HOA; a-value COA} combinations previously selected as optimal from the cluster 4 

analysis (Fig. S9). Only solutions showing a higher COA diurnal correlation with the three 5 

selected clusters than with the two rejected clusters were retained. In this way we rejected 6 

3.7% of the solutions. In the following we present the average bootstrap solution. The source 7 

apportionment uncertainty is calculated as the variability of the retained bootstrap PMF runs. 8 

 9 

Offline-AMS source apportionment optimization.  10 

In this section we discuss the optimization of the offline-AMS source apportionment. The 11 

PMF input matrices included 217 ions and 538 time elements deriving from about 10 AMS 12 

mass spectral repetitions collected for each of the 54 composite samples. 13 

Based on analysis of the PMF residuals, we selected a 5-factor solution to explain the 14 

variability of our dataset (Fig. S10). Similar to online-AMS, we monitored the decrease in 15 

Q/Qexp when increasing the number of factors (z). In this study, a large Q/Qexp decrease was 16 

observed until 5 factors. We also observed a clear Q/Qexp structure removal until 5 factors, 17 

with higher order solutions leading to additional factors that were not attributable to specific 18 

aerosol sources/processes. The 5 separated factors included HOA, COA, BBOA, OOA, and 19 

industry-related OA (INDOA). The complete validation of the PMF factors will be discussed 20 

in the Results section. 21 

To explore the rotational ambiguity of our PMF model we performed 1080 bootstrapped PMF 22 

runs. In this case we performed a higher number of bootstrap runs than online-AMS because 23 

the COA and HOA a-value combinations could not be separately optimized because the 24 

offline-AMS method cannot resolve diurnal patterns. Each PMF run was also initiated using 25 

different input matrices. As previously mentioned the input matrices contained about 10 mass 26 

spectral repetitions per filter sample, therefore the bootstrap algorithm was implemented to 27 

randomly resample 54 filters samples, each one with all the corresponding mass spectral 28 

repetitions. The final generated matrices included 54 samples; note that some filter samples 29 

could be resampled more times, while others were not resampled at all. On average 63±5% of 30 

the original samples were resampled. Finally, each of the PMF runs was initiated by randomly 31 
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varying the HOA and COA a-values. The optimal PMF solutions were selected based on 6 1 

acceptance criteria including: 2 

1) Significantly (p=0.05) positive Pearson correlation coefficient R between BBOA and 3 

levoglucosan. 4 

2) Significantly positive R between HOA and NOx. 5 

3) Significantly positive R between INDOA and Se. 6 

4) BBOA correlation with levoglucosan (R) significantly higher than the correlation 7 

between COA and levoglucosan. 8 

5) HOA correlation with NOx significantly higher than the correlation between COA and 9 

NOx. 10 

6) COA correlation with Se significantly smaller than the correlation between INDOA 11 

and Se. 12 

Criteria 1-3 analyse the correlation between factor and marker time series. The significance of 13 

a correlation was determined by calculating the Fisher transformed correlation coefficient z 14 

(Garcia, 2011): 15 

𝑧 = 0.5 ∗ ln (
1+𝑅

1−𝑅
) = arctan(𝑅)         (8) 16 

where R is the Pearson correlation coefficient between factor and marker time series. 17 

Subsequently we conducted a t-test to verify the significance (α=0.95) of the correlation: 18 

𝑡 =
𝑅

√1−𝑅2

𝑁−2

            (9) 19 

Here, N represents the number of samples (54). For a confidence interval of 95% the 20 

minimum significant correlation was R = 0.23. For criteria 4-6, in order to evaluate whether 21 

HOA, BBOA and INDOA correlated significantly better than COA with their corresponding 22 

markers, we compared the z values obtained between each factor and its corresponding tracer 23 

(e.g. BBOA and levoglucosan) and between COA and the same tracer (e.g. levoglucosan), 24 

using a standard error on the z distribution of 1 √𝑁 − 3⁄   (Zar, 1999). 25 

In total, we retained 1.5% of the PMF runs. The criteria that discarded the largest number of 26 

solutions were the ones based on COA (4-6) correlation with tracers of other sources. This 27 

suggests that for this dataset the COA separation from other sources was particularly difficult 28 

due to the absence of high temporal resolved data which aids the separation of a distinct COA 29 
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diurnal cycle. Moreover, this separation is also complicated by the small COA contribution 1 

estimated by both online- and offline-AMS source apportionments (on average 0.4 g m
-3

 as 2 

discussed in the following sections).
 
Furthermore, the relatively small RCOA (median 0.54) 3 

hampers the COA apportionment by offline-AMS. 4 

The PMF performed on offline-AMS mass spectra returned water-soluble OA factor 5 

concentrations, KOAi. To rescale the water-soluble OA concentration to the total OA, 6 

WSKOAi, we used the factor recoveries (Rk) reported by Daellenbach et al. (2016) for the 7 

HOA, COA, BBOA, and OOA factors (RHOA, RCOA, RBBOA, ROOA).  8 

KOAi = WSKOAi/RKOA         (10) 9 

This is the first offline-AMS study where an INDOA factor was identified. Therefore, we 10 

determined the INDOA recovery (RINDOA) in this study, by performing a single parameter fit 11 

according to Eq. 11: 12 

OCi = 
𝑊𝑆𝐻𝑂𝐴𝑖

𝑂𝑀

𝑂𝐶 𝐻𝑂𝐴
∙𝑅𝐻𝑂𝐴

  + 
𝑊𝑆𝐶𝑂𝐴𝑖

𝑂𝑀

𝑂𝐶 𝐶𝑂𝐴
∙𝑅𝐶𝑂𝐴

 + 
𝑊𝑆𝐵𝐵𝑂𝐴𝑖

𝑂𝑀

𝑂𝐶 𝐵𝐵𝑂𝐴
∙𝑅𝐵𝐵𝑂𝐴

 + 
𝑊𝑆𝑂𝑂𝐴𝑖

𝑂𝑀

𝑂𝐶 𝑂𝑂𝐴
∙𝑅𝑂𝑂𝐴

 + 
𝑊𝑆𝐼𝑁𝐷𝑂𝐴𝑖

𝑂𝑀

𝑂𝐶 𝐼𝑁𝐷𝑂𝐴
∙𝑅𝐼𝑁𝐷𝑂𝐴

 .  (11) 13 

500 different fits were performed for each of the retained PMF solutions. Moreover each fit 14 

was initiated using different RKOA combinations randomly selected from the RKOA 15 

combinations determined by Daellenbach et al. (2016) and reported in Bozzetti et al. (2016a). 16 

In order to account for possible WSOC and OC systematic measurement biases, each fit was 17 

initiated by also perturbing the OCi, WSKOAi, and RKOA inputs assuming for each parameter a 18 

possible bias of 5%, corresponding to the WSOC and OC measurement accuracy. Finally the 19 

input OCi was randomly perturbed within its measurement uncertainty assuming a normal 20 

distribution of the errors. Among the performed fits we retained the recovery combinations 21 

and factor time series associated with OCi unbiased residuals (residual distribution centered 22 

on 0 within the 1
st
 and 3

rd
 quartiles) for all seasons together and for summer and winter 23 

separately (Fig. S11). Accordingly, we retained 13% of the solutions. All the retained factor 24 

recovery combinations can be found at http://doi.org/10.5905/ethz-1007-75. The median 25 

INDOA recoveries were estimated as 0.69 (1
st
 quartile 0.65, 3

rd
 quartile 0.73, Fig. S12), while 26 

the retained RKOA for the other sources were consistent within the quartiles with the RKOA 27 

values reported by Daellenbach et al. (2016) despite their input value was perturbed as 28 

described above. The variability of the retained solutions is considered as our best estimate of 29 

the source apportionment uncertainty, which accounts for offline-AMS repeatability, model 30 

rotational uncertainty explored bootstrapping the input matrices and scanning the HOA and 31 
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COA a-value sensitivity, and RKOA uncertainties. Overall, for a generic factor KOA, we 1 

estimated the corresponding average relative uncertainty as follows: we calculated the 2 

campaign averages of the KOA concentrations for each of the v retained PMF solutions 3 

(𝐾𝑂𝐴𝑣
̅̅ ̅̅ ̅̅ ̅̅ ). The relative uncertainty of the KOA concentration was calculated as the standard 4 

deviation of 𝐾𝑂𝐴𝑣
̅̅ ̅̅ ̅̅ ̅̅  divided by its average.  5 

We also explored a 4-factor solution without constraining the COA profile. In this case we 6 

performed 100 bootstrap PMF runs by randomly varying the HOA a-value. Results revealed 7 

the COA separation (in the 5-factor solution with COA constrained) affected the HOA 8 

separation more than the other factors (BBOA, OOA, INDOA). Overall, when comparing the 9 

4- and 5-factor solutions (without and with COA constrained, respectively) HOA showed not 10 

statistically different concentrations within our estimated source apportionment uncertainty 11 

for 85% of the samples, BBOA and OOA for 96%, and INDOA for 94%. This is probably due 12 

to the high similarity between COA and HOA spectra (SI, “Best cluster selection” Section), 13 

which are both characterized by high contributions from hydrocarbons. 14 

 15 

3 Source apportionment validation 16 

Figure 1 displays the stacked seasonal average concentrations of the measured PM2.5 17 

components (ions measured by IC, elements measured by ICP-MS, EC by the EUSAAR 18 

method, and OM estimated as the sum of the offline-AMS PMF factors). Higher 19 

concentrations were observed during winter than in summer due to the enhanced contributions 20 

of NO3
-
 and OM. NO3

-
 increased during winter and autumn due to NH4NO3 partitioning into 21 

the particle phase at lower temperatures. OM concentrations were higher during winter due to 22 

the strong BBOA contributions.  23 

Overall OM was the dominant PM2.5 component over the whole year highlighting the 24 

importance of studying its sources. OM represented 46% of the total mass with higher relative 25 

contributions during winter (51%) than in summer (37%). SO4
2-

 represented the second most 26 

abundant PM2.5 component, contributing on average 12% of the mass. Among the other 27 

components, EC contributed 9% of the mass, NO3
-
 9% (13%avg during winter and 3%avg 28 

during summer), NH4
+
 8%, the sum of the elements 7% (3% during winter and 13% during 29 

summer, possibly because of dust resuspension), CO3
2-

 6%, Ca
2+

 2%. K
+
, Cl

-
, Na

+
, and Mg

2+
 30 
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individually did not exceed 1% of the mass. In the following, subscripts avg, and med denote 1 

average and median values, respectively. 2 

3.1 Online-AMS source apportionment validation 3 

PMF factors were associated to aerosol sources/processes based on mass spectral features 4 

(Fig. 2), correlation with tracers (Fig. 3), and diurnal cycles (Fig. 4). The HOA was well-5 

correlated with NOx (R=0.86), with peaks during rush hours (centered on 8h and 19h) and 6 

higher concentrations during the first half of the campaign. The average HOA/NOx ratio (g 7 

m
-3

/g m
-3

) was 0.024, consistent with Favez et al. (2010). The COA diurnal variation showed 8 

two peaks at lunch and dinner time (12.00 and 21.00), as observed in other cities (Elser et al., 9 

2016; Mohr et al., 2012). The BBOA factor profile showed the highest fC2H4O2
+
 and 10 

fC3H5O2
+
 contributions among the apportioned factors. Previous studies (Alfarra et al., 2007) 11 

associated the high fC2H4O2
+
 and fC3H5O2

+
 contributions in BBOA AMS spectra to the 12 

fragmentation of anhydrous sugars from cellulose pyrolysis. The BBOA time series was well-13 

correlated with levoglucosan (R=0.74) and AMS-PAHs (R=0.88). Note that AMS-PAHs are 14 

not unique BBOA tracers, but in general they derive from combustion sources. In this specific 15 

dataset they could partially derive from traffic, although from the AMS-PAHs multilinear 16 

regression, we estimated that 79% of the AMS-PAHs are related to BBOA and 21% to HOA, 17 

indicating that BBOA dominates the PAH emissions. The AMS-PAHs:HOA ratio was 18 

0.0020, while the AMS-PAHs:BBOA was 0.0028. In general, industrial emissions can be an 19 

important source of PAHs at this location as discussed in El Haddad et al. (2013). In presence 20 

of an industrial contribution, the BBOA vs. AMS-PAHs correlation would decrease. In this 21 

work the correlation between AMS-PAHs and the C2H4O2
+
 fragment, typically related to 22 

levoglucosan fragmentation (Alfarra et al., 2007), was high (R=0.87) and no AMS-PAHs 23 

spike was observed without a simultaneous increase of C2H4O2
+
 (Fig. S14). Moreover the 24 

industrial-related OA factor resolved by El Haddad et al. (2013) was clearly associated to 25 

wind directions from W/SW (225°-270°), while in this work wind directions were oriented 26 

from W/SW only for 7% of the monitoring time, furthermore without being associated to any 27 

significant increase in the AMS-PAHs concentration (Fig. S15), indicating the absence of 28 

clear industrial episodes. The BBOA diurnal cycle, similarly to AMS-PAHs, showed higher 29 

values at night than during the day (Fig. 4). In addition, the BBOA highest concentrations 30 

were detected at night and associated to slow wind speeds from the E/NE which is consistent 31 

with the night land breeze direction. Moreover, strong enhancements of the BBOA factor 32 
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concentrations were perceived when the wind direction shifted to the E/NE (typically around 1 

18 o’clock during the monitoring period) suggesting that BBOA could be transported from 2 

the valleys nearby Marseille (Fig. S17). We calculated the BBOC time series by dividing the 3 

BBOA concentrations by the OM:OCBBOA ratio calculated from the average BBOA HR 4 

spectrum (1.60). The average BBOC:levoglucosan ratio [g m
-3

/g m
-3

] was 0.15, 5 

comparable to other European studies (Zotter et al., 2014; Herich et al., 2014; Minguillón et 6 

al., 2011).  7 

The OOA profile showed the most oxidized mass spectral fingerprint with an O:C ratio of 8 

0.67 in comparison to the values of 0.35 retrieved for BBOA, 0.12 for COA and 0.03 for 9 

HOA. The OOA time series was well correlated with the NH4
+
 time series (R=0.86), 10 

suggesting a probable secondary origin of the OOA factor (Lanz et al., 2008). The OOA 11 

diurnal cycle was flat, suggesting OOA to be representative of regionally-transported 12 

oxygenated aerosols, consistent with the conclusions of El Haddad et al. (2013). 13 

3.2 Offline-AMS source apportionment validation 14 

PMF factors from the offline-AMS dataset were related to aerosol sources/processes based on 15 

mass spectral features (Fig. 5), seasonal trends and correlation with tracers (Fig. 6). A 16 

comparison of the online-AMS and offline-AMS factor profiles is reported in the SI. In the 17 

following, for a generic k factor, we calculated the corresponding KOCi time series dividing 18 

KOAi by the OM:OC ratio determined from the average HR-AMS factor profile. 19 

During summer, when biomass burning contributions to EC are low, HOA correlated well 20 

with EC (R = 0.76) and yielded an HOC:EC (Hydrocarbon-like OC = HOA/(OM:OC)HOA) 21 

ratio of 0.64, similar to other European studies (El Haddad et al., 2009 and references 22 

therein). Over the whole year, the retained PMF solutions showed an HOA correlation with 23 

NOx (R) spanning between 0.23 and 0.49. These low correlations are comparable to the ones 24 

found by El Haddad et al. (2013) at the same station by online-AMS. In this case, the 25 

relatively low HOA correlation with NOx is probably due to the low RHOA (median 0.11) 26 

which together with the low HOA concentration (1.5 g m
-3

avg, Results section), results in 27 

small water-soluble HOA concentrations, leading to an uncertain HOA apportionment. This 28 

was already reported in previous offline-AMS studies (Daellenbach et al., 2016; Bozzetti et 29 

al., 2016a). Although the HOA variability could not be well captured, the estimated HOA 30 
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concentration was corroborated by the average HOA/NOx (0.02 g m
-3

/g m
-3

) which was 1 

found to be consistent with El Haddad et al. (2013) for the same station and with Favez et al. 2 

(2010) for an alpine location in France.  3 

BBOA was identified from its mass spectral features, with the highest fC2H4O2
+
 and fC3H5O2

+
 4 

contributions among the apportioned factors, consistent with the findings of Alfarra et al. 5 

(2007). BBOA correlated well with the biomass combustion tracers levoglucosan (R=0.76) 6 

and vanillic acid (R=0.84). The winter average levoglucosan:BBOC [g m
-3

/g m
-3

] ratio was 7 

equal to 0.12, consistent with other studies in Europe (Zotter et al., 2014; Herich et al., 2014; 8 

Minguillón et al., 2011). 9 

The fourth factor (INDOA) was related to industrial emissions due to the high correlation 10 

with light alkanes (C19-C22, 0.77≤R≤0.86), Se (R=0.54), Pb (R=0.44) and with some PAHs 11 

such as pyrene (R=0.74), fluoranthene (R=0.77), and phenantrene (R=0.74). Among the 12 

measured PAHs, pyrene, fluoranthene and phenantrene showed the lowest correlations with 13 

levoglucosan (Table S1, R = 0.31, 0.29, and 0.27 respectively), suggesting that these 14 

particular PAHs were overwhelmingly emitted by INDOA rather than BBOA. While Se is 15 

considered to be a unique coal marker in the literature (Weitkamp et al., 2005; Park et al., 16 

2014), in Marseille this source is likely related to coke and steel production facilities (El 17 

Haddad et al., 2011). The average INDOA OM:OC (1.60) was intermediate between the 18 

OM:OC ratios of HOA (1.23) and COA (1.28), and those of BBOA (1.85) and OOA (1.82). 19 

El Haddad et al. (2013) resolved an industrial OA factor at the same station by online-AMS 20 

PMF. In that work the authors suggested a probable contribution of oxygenated OA to the 21 

resolved industrial factor, probably deriving from (photo)chemical aging during the transport 22 

from the industrial facilities to the receptor site occasionally accompanied by new particle 23 

formation processes within the industrial plume (as observed by the increased ultrafine 24 

particle number concentration associated to W/SW wind directions) . Considering the average 25 

wind speed from W/SW (0.8 km/h), and the distance between the receptor site and the 26 

Marseille commercial harbor (~ 40 km) we estimate an aging time of several hours, which 27 

could lead to a more oxidized fingerprint in comparison to the fresh primary emissions 28 

(Huang et al., 2014). Overall this factor explained the largest fraction of the variability of S- 29 

and Cl-containing organic fragments such as C2HSO
+
, CH2SO

+
, CH3Cl2

+
, CH4SO3

+
, 30 

C3H3SO2
+
, and C7H16

+
. 31 
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The last factor was defined as OOA as it showed a highly oxygenated fingerprint with the 1 

largest CO2
+
 fractional contributions (fCO2

+
) among the apportioned factors (14%, in 2 

comparison with 11% for BBOA, 2% for HOA, and 1% for COA and INDOA). This factor 3 

showed on average the largest contributions over the year. Overall, the OOA:NH4
+
 ratio was 4 

2.3avg, in line with the values reported by Crippa et al. (2014) for 25 different European sites 5 

(2.0avg; minimum value 0.3; maximum 7.3).  6 

Previous offline-AMS (Bozzetti et al., 2016a; Bozzetti et al., 2016b; Daellenbach et al., 2016) 7 

and online-ACSM studies (e.g., Canonaco et al., 2015) conducted in Switzerland and 8 

Lithuania reported the separation of two OOA factors characterized by different seasonal 9 

trends and different C2H3O
+
:CO2

+
 ratios. In particular, the OOA factor characterized by the 10 

highest C2H3O
+
:CO2

+
 ratio contributed mostly during summer and was linked to secondary 11 

OA from biogenic emissions. Here we calculated a (C2H3O
+
:CO2

+
)OOA ratio by subtracting the 12 

C2H3O
+
 and CO2

+
 contributions deriving from primary sources, from the measured C2H3O

+
 13 

and CO2
+
 (Canonaco et al., 2015): 14 

𝐶2𝐻3𝑂+

𝐶𝑂2
+

𝑂𝑂𝐴,𝑖
=  

𝐶2𝐻3𝑂+
𝑚𝑒𝑎𝑠,𝑖 − 𝐻𝑂𝐴𝑖∙𝑓𝐶2𝐻3𝑂+

𝐻𝑂𝐴 − 𝐵𝐵𝑂𝐴𝑖∙𝑓𝐶2𝐻3𝑂+
𝐵𝐵𝑂𝐴 − 𝐼𝑁𝐷𝑂𝐴𝑖∙𝑓𝐶2𝐻3𝑂+

𝐼𝑁𝐷𝑂𝐴− 𝐶𝑂𝐴𝑖∙𝑓𝐶2𝐻3𝑂+
𝐶𝑂𝐴 

𝐶𝑂2
+

𝑚𝑒𝑎𝑠,𝑖
 − 𝐻𝑂𝐴𝑖∙𝑓𝐶𝑂2

+
𝐻𝑂𝐴

 − 𝐵𝐵𝑂𝐴𝑖∙𝑓𝐶𝑂2
+

𝐵𝐵𝑂𝐴
 − 𝐼𝑁𝐷𝑂𝐴𝑖∙𝑓𝐶𝑂2

+
𝐼𝑁𝐷𝑂𝐴

 − 𝐶𝑂𝐴𝑖∙𝑓𝐶𝑂2
+

𝐶𝑂𝐴

 (12) 15 

Overall, C2H3O
+

OOA, and CO2
+

OOA did not show a clear seasonality, which hampered the 16 

separation of two OOA sources. Even though another OOA factor was not separated, El 17 

Haddad et al. (2013) estimated for the same location during summer a substantial contribution 18 

of secondary biogenic aerosol using 
14

C measurements (no measurements conducted in other 19 

seasons). As a consequence the OOA factor resolved in this work explains both secondary 20 

biogenic and aged/secondary anthropogenic sources. The absence of a clear increase in the 21 

(C2H3O
+
:CO2

+
)OOA ratio in Marseille during summer could be explained by the large 22 

emissions of anthropogenic secondary OA (SOA) precursors during winter, leading to a 23 

different (C2H3O
+
:CO2

+
)OOA seasonality in comparison with previous offline-AMS studies 24 

(Daellenbach et al., 2016, Bozzetti et al. 2016a), which were conducted either at rural sites 25 

characterized by different types of vegetation, or in smaller urban areas. In general, several 26 

parameters affect the biogenic SOA concentrations and their separation, e.g. intensity of the 27 

biogenic precursor sources, air masses photochemical age, and NOx concentrations. . All 28 

those parameters were different in Marseille from previous offline-AMS studies which were 29 

conducted in central/northern Europe.   30 

 31 
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4. Results and discussion 1 

4.1 OA source apportionment results and uncertainties. 2 

In this study, we present one the first OA source apportionments conducted over an entire 3 

year in the Mediterranean region and the first comparison between HR online-AMS and 4 

offline-AMS source apportionments, as Daellenbach et al. (2016) compared offline-AMS 5 

results to online ACSM data in Zurich. Although related to different years and size-fractions 6 

(PM1 online-AMS, PM2.5 offline-AMS), the offline-AMS source apportionment returned 7 

average seasonal factor concentrations not statistically different to online-AMS for both 8 

winter (Fig. 7) and summer (comparison with El Haddad et al., 2013, Fig. 8). We note that the 9 

total OC concentration quantified by online-AMS for PM1 and by the thermal-optical 10 

procedure used for the offline-AMS source apportionment of PM2.5 was not different on a 11 

seasonal scale considering our uncertainty which includes time variability and measurements 12 

uncertainties. 
 

13 

Both online and offline-AMS source apportionment revealed that BBOA was the largest OA 14 

source during winter. Offline-AMS source apportionment estimated an average BBOA 15 

concentration during winter 2011-2012 of 5.2 g m
-3

avg, representing 43%avg of the OA.  16 

Similarly, online-AMS source apportionment revealed a BBOA concentration of 4.4avg g m
-3

  17 

(corresponding to 42% of OA) during February 2011. During summer, the offline-AMS 18 

BBOA concentration dropped to an average of 0.3 g m
-3

avg representing 5% of the OA. Not 19 

surprisingly such low BBOA contributions were not resolved by online-AMS source 20 

apportionment during summer (El Haddad et al., 2013). On average the offline-AMS BBOA 21 

relative uncertainty was 9%. As a comparison, the online-AMS BBOA average relative 22 

uncertainty was 6%. Overall for both online- and offline-AMS, the BBOA contributions were 23 

the least uncertain among the primary sources, possibly because of the high loadings and the 24 

distinct seasonal and diurnal BBOA variability in comparison with the other separated factors. 25 

A comparison between the offline- and online-AMS source apportionment uncertainties can 26 

be carried out with the caveat that the online-AMS source apportionment uncertainties 27 

estimated in this work should be considered as a low estimate as they do not account for the 28 

AMS mass error deriving mostly from CE, and particle transmission. This source of 29 

uncertainty affects the total OA mass but not the relative contribution of the factors. By 30 

contrast, the OA mass uncertainty was accounted for in the offline-AMS source 31 
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apportionment as the OA mass was rescaled to external measurements (WSOC and OC), the 1 

uncertainty of which was propagated in the final source apportionment error (Section 2.4).  2 

On a yearly scale, the offline-AMS source apportionment revealed that OOA was the largest 3 

OA source, with the highest relative contributions during summer due to the reduced BBOA 4 

emissions. The OOA concentration during summer was estimated from offline-AMS at 3.0 g 5 

m
-3

avg, corresponding to 55% of the OA mass. El Haddad et al. (2013) also reported OOA to 6 

be the dominant OA fraction during summer with a similar average concentration of 2.9 g m
-

7 

3
. During winter, the OOA concentration was estimated by online-AMS to be 3.9avg g m

-3 
8 

corresponding to 38% of the OA, while the OOA relative uncertainty was 4%. As a 9 

comparison, the OOA relative uncertainty from offline-AMS was 6%avg. The offline-AMS 10 

source apportionment revealed similar OOA concentrations during winter (3.4 g m
-3

avg 11 

corresponding to 27%avg of the OA). Even though during winter the OOA concentration was 12 

higher than in summer, possibly due to partitioning and due to the shallower boundary layer, 13 

the relative contribution decreased because of the strong BBOA contributions. 14 

HOA is one of the most uncertain factors, with an average relative uncertainty of 39% 15 

estimated from offline-AMS and 10% from online-AMS analysis, where the larger 16 

uncertainty observed for offline-AMS derives mostly from the low RHOA and from the lower 17 

time resolution which does not capture the traffic diurnal variability. On average, the HOA 18 

concentration predicted by offline-AMS was 1.5 g m
-3

, corresponding to 17% of the OA. 19 

The estimated HOA concentration by online-AMS during February 2011 was 1.6 g m
-3

avg 20 

(16% of OA). These values are higher than the ones of El Haddad et al. (2013) who estimated 21 

a traffic contribution of 0.8 g m
-3

avg during July 2008. 22 

The COA contributions were only minor (average of 0.3 g m
-3

), representing on average 4% 23 

of the OA mass according to the offline-AMS source apportionment. The online-AMS winter 24 

source apportionment returned similar concentrations with 0.4 g m
-3

avg, equivalent to 4%avg 25 

of the OA. Overall, due to the low concentrations, the COA contributions were uncertain in 26 

both source apportionments (6% for online-AMS, 73% for offline-AMS).Similarly to HOA, 27 

the larger uncertainty observed for offline-AMS was most possibly due to the low RCOA, and 28 

the low time resolution which did not enable the COA separation based on the diurnal 29 

variability. The summer COA contribution was not resolved from HOA by El Haddad et al. 30 

(2013), possibly because the COA reference mass spectrum was not constrained and because 31 

of the lack of HR data which typically aid the separation of the two sources.  32 
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Finally, the INDOA factor concentration estimated from offline-AMS was on average 2.1 g 1 

m
-3

 during winter and 0.6 g m
-3

avg during summer, where this seasonal trend was driven by a 2 

strong episode that occurred during early February. The offline-AMS relative uncertainty was 3 

estimated as 17%. As previously discussed, this factor was not separated by online-AMS 4 

analysis (February 2011) because of the absence of clear events, which in the offline-AMS 5 

dataset were observed only over a short period during January-February 2012. An industrial 6 

factor was instead resolved by El Haddad et al. (2013) during summer 2008, with an average 7 

concentration of 0.3 g m
-3

avg. In that study, the industrial OA factor was also characterized 8 

by a low background intercepted by ten-fold spiking episodes. 9 

From the sum of the offline-AMS factor concentrations we estimated the total OM mass. 10 

Using this OM and the measured OC we calculated the OM:OC ratio to be 1.40 on average. 11 

Specifically, during winter this ratio was 1.55, which is consistent with the online-AMS 12 

values determined from the HR-AMS spectra (median = 1.52, 1
st
 quartile = 1.46; 3

rd
 quartile 13 

1.59). The bulk OM:OC variability was driven by the source variabilities. Indeed the relative 14 

contribution of the most oxidized source (OOA) was higher during summer (mostly due to the 15 

absence of BBOA), however also the relative contributions of the less oxidized sources (such 16 

as HOA and COA) were higher during summer mostly due to low BBOA contributions. The 17 

BBOA mass spectrum instead was associated with intermediate OM:OC ratios comprised 18 

between the values of COA and OOA, and therefore influenced less strongly the bulk OM:OC 19 

ratio. Overall the combination of these effects led to a higher bulk OM:OC during winter. 
 

20 

 21 

4.2 Insights into the BBOA origin during winter 22 

Methyl-nitrocatechols measurements showed high correlations with BBOA (Fig. 9, R=0.95) 23 

and no correlation with OOA (R=0.06, offline-AMS source apportionment). Similarly high 24 

correlations were already observed in other studies (e.g. Poulain et al., 2011). This large 25 

correlation difference suggests that the variability of the methyl-nitrocatechols is likely 26 

explained by the BBOA source. However, methyl-nitrocatechols are secondary compounds 27 

deriving from the nitration of catechols which can be either directly emitted by wood 28 

combustion (Schauer et al., 2001), or generated by OH∙ oxidation of cresols directly released 29 

by wood combustion (Iinuma et al., 2010). m-cresol/NOx photooxidation experiments (Iinuma 30 

et al., 2010) revealed a total contribution of all methyl-nitrocatechol isomers to the catechol 31 
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SOA of approximately 10%. Assuming that methyl-nitrocatechols are apportioned entirely to 1 

the BBOA factor, we estimate a methyl-nitrocatechol-SOA contribution to BBOA on the 2 

order of 8%, indicating that part of the BBOA factor is of secondary origin. Previous studies 3 

(Atkinson and Arey, 2003) revealed an o-cresol life-time in the atmosphere of 2.4 minutes 4 

towards NO3, and 3.4 h towards OH (at 298 K, dark conditions). This would suggest that such 5 

fast SOA formation can be better traced by the high time resolution online-AMS source 6 

apportionment (8 minutes) than by the offline-AMS with 24 h time resolution, and in any case 7 

only in the BB plume or in the vicinity of the emission source. Nevertheless we did not 8 

observe statistically different ratios (within 1, error calculated as the time variability) of 9 

OOA:NH4
+
 (1.5avg and 1.25avg for the offline-AMS and online-AMS source apportionments, 10 

respectively), OOA:BBOA (0.65avg and 0.89avg respectively), and levoglucosan:BBOC 11 

(1.13avg and 1.15avg respectively, Fig. 10) during winter, suggesting that despite the different 12 

time resolutions, the online and offline methods provide a comparable BBOA-SOA 13 

separation.  14 

Both online- and offline-AMS source apportionment revealed for the two different winter 15 

seasons a comparable temporal evolution of the levoglucosan:BBOC ratio (Fig. 10, and Fig. 16 

11). This ratio showed typical literature values for domestic wood combustion in Europe 17 

during January and early February (0.05-0.2, Zotter et al., 2014; Herich et al., 2014; 18 

Minguillón et al., 2011), while during late autumn and March (Fig. 11) it increased up to 0.3, 19 

highlighting an evolution of the BBOA chemical composition. A similar seasonal trend was 20 

observed for the levoglucosan:vanillic acid, levoglucosan:syringic acid, and levoglucosan:non 21 

sea salt-K
+
 (nss-K

+
, calculated according to Seinfeld and Pandis, 2006) ratios (Fig. 11). 22 

Although the online dataset was limited to one month of measurements, the 23 

levoglucosan:vanillic acid ratio also showed a statistically significant increasing trend from 24 

early February to the beginning of March (confidence interval of 95%, Mann-Kendall test). 25 

These results suggest the occurrence of different types of biomass combustions during low 26 

temperature winter days compared to late autumn and early spring: as levoglucosan derives 27 

from cellulose pyrolysis (>300°C), while vanillic and syringic acid result from lignin 28 

combustion (Simoneit et al., 1998, Sullivan et al., 2008).  Different reactivities / volatilities of 29 

BBOA markers may complicate this analysis. For this reason we discuss in the following the 30 

levoglucosan stability, and propose that the major driver of the observed seasonal trends is the 31 

occurrence of different BBOA combustions.  32 
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Previous studies revealed the levoglucosan reactivity toward OH∙ radical oxidation (Hennigan 1 

et al., 2010) both in gas and aqueous phase (Hoffmann et al., 2010). In the following we 2 

analyze the levoglugocan and nss-K
+
 time series in order to investigate the possible effects of 3 

levoglucosan chemical stability and different types of biomass combustions on the seasonal 4 

evolution of the levoglucosan:nss-K
+
 ratio. During summer nss-K

+
 derives mostly from dust, 5 

while levoglucosan is depleted by both photochemistry (Hennigan et al., 2010) and low 6 

BBOA emissions. Not surprisingly the levoglucosan:nss-K
+
 ratio showed lower values in 7 

summer (0.25) than in winter (3.35). During winter nss-K
+
 is considered to be mostly emitted 8 

by BBOA, and consistently in our dataset it shows a good correlation with BBOA tracers 9 

(R=0.66 with syringic acid). Overall, the levoglucosan:nss-K
+
 ratio during the cold season 10 

manifests a behavior that is opposite to the photochemical activity (with temperature 11 

considered as a proxy) as it shows higher values during March and late autumn (up to 15.7) 12 

and lower in January February (minimum = 6.3; Fig. 11) when temperature is lower and 13 

photochemistry is less intense. For these reasons we relate the winter levoglucosan:nss-K
+
 14 

variability to different types of combustion rather than to a levoglucosan depletion due to 15 

photochemistry. Furthermore we observed the highest levoglucosan concentrations (late 16 

autumn) simultaneously with the highest relative humidity (89%) values, suggesting the 17 

depletion of levoglucosan by OH∙ radical oxidation in aqueous phase to be not significant 18 

(Hoffmann et al., 2010).  19 

A similar winter seasonal behavior was observed also for plant waxes. Plant waxes 20 

concentrations were estimated from high molecular weight n-alkanes (C24-C35) according to 21 

the methodology described by Li et al. (2010).  This  methodology is based on the observation 22 

that alkanes from epicuticular waxes preferentially contain an odd number of carbon atoms 23 

(Aceves and Grimalt, 1993; Simoneit et al., 1991). This was observed for a large variety of 24 

plants including broad leaf trees, conifers, palms, shrubs, grasses, and groundcover 25 

(Hildemann et al., 1996 and references therein). Waxes showed the highest concentrations 26 

during late autumn (up to 0.16 g m
-3

) and in May (up to 0.17 g m
-3

), while the minima were 27 

observed during winter (minimum 0.007 g m
-3

). In general, high molecular weight n-alkanes 28 

are typically detected in atmospheric aerosol in significant amounts during the growing 29 

season. In a similar way, Hildemann et al. (1996) estimated the highest plant waxes 30 

concentrations in April-May in Los Angeles and Pasadena where the climate is similar to 31 

Marseille. Similarly we observed the highest concentrations during May. However, 32 

comparable plant waxes concentrations were observed also in late autumn during the period 33 
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characterized by the highest levoglucosan:lignin combustion tracers (Fig 11), suggesting a 1 

possible emission from open combustion of green wastes. 2 

Taken together the above observations suggest the occurrence of combustion of cellulose-rich 3 

material during March and late autumn, compared to lignin rich biomass burning for 4 

residential heating during January. The combustion of cellulose-rich material is possibly 5 

related to agricultural waste burning at the beginning and at the end of the agricultural cycle. 6 

The occurrence of emission of biomass plumes due to land clearing episodes during March 7 

has already been reported in other parts of Europe (Ulevicius et al., 2016), and has been 8 

previously modelled for southern France (Dernier van der Gon et al., 2015, Fountoukis et al., 9 

2014).  10 

We note that BB is described in our PMF models by only one factor which therefore 11 

potentially represents a combination of several types of biomass burning sources. Increasing 12 

the number of factors did not lead to an unambiguous separation of different BBOA sources, 13 

however, the comparison with source-specific markers revealed a real BBOA composition 14 

evolution over the winter season with higher cellulose to lignin combustion tracer ratios 15 

observed during late autumn and early spring in comparison to January/February. This 16 

hypothesis of at least two types of BB sources (one linked to domestic heating, another to 17 

agricultural activities) is also supported by the direct PMF analysis of the organic and 18 

inorganic markers measured for batch 1 (Salameh et al., in prep.). 19 

 20 

5 Conclusions 21 

PM2.5 filter samples were collected during an entire year (August 2011 to July 2012) at an 22 

urban site in Marseille, France. Filter samples were analyzed by water extraction followed by 23 

nebulization of the liquid extracts and subsequent measurement of the generated aerosol with 24 

an HR-ToF-AMS (Daellenbach et al., 2016).  25 

PMF analysis was conducted on the offline-AMS mass spectra and on online-AMS data 26 

collected at the same station during February 2011. Offline-AMS source apportionment 27 

results were also compared with a previous online-AMS source apportionment study of two 28 

weeks during July 2008 at the same location (El Haddad et al., 2013). The methods returned 29 

statistically similar seasonal factor concentrations, although different years and size fractions 30 

were considered (PM1 for online-AMS, PM2.5 for offline-AMS). OOA was the major source 31 
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of OA during summer representing on average 55% of the OA mass, while BBOA was the 1 

dominant OA source during winter contributing on average 43% of the OA. Smaller 2 

contributions were estimated for HOA, INDOA and COA, representing 17%, 12%, and 4% of 3 

the OA mass, respectively. The contribution of primary anthropogenic sources (HOA + 4 

BBOA + COA + INDOA) was substantial over the year (62%avg of OA), with larger absolute 5 

and relative contributions during winter (73% of OAavg) associated with an intense biomass 6 

burning activity.  7 

Coupling offline- and online-AMS data with molecular markers showed increasing 8 

levoglucosan:BBOC ratios during the late winter-early spring period in both 2011 and 2012. 9 

This trend was also observed for the ratios between cellulose and lignin combustion markers 10 

(e.g. levoglucosan:vanillic acid), with ratios approaching more typical domestic wood 11 

combustion European values during January/early February, and values characterized by 12 

higher values of cellulose-combustion markers during late autumn and March indicative of 13 

the influence of different types of fuels, possibly related to agricultural-related activities.  14 

From the offline-AMS source apportionment, we observed a high BBOA correlation with 15 

nitrocatechols deriving from the nitration of catechols directly emitted by biomass 16 

combustion. These secondary components are rapidly formed in the atmosphere in presence 17 

of NO3∙ (life time of a few minutes). Overall, despite the different time resolution, online- and 18 

offline-AMS provided a comparable SOA-BBOA separation during winter. Nevertheless, in 19 

case of fast SOA formation (relative to the time scale of the online-AMS time resolution, or 20 

relative to the transport time to the receptor site) this separation can be hindered, and further 21 

efforts are needed to improve the SOA separation from BBOA. 22 
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 1 

 2 

Figure 1. PM2.5 composition: stacked average seasonal concentrations. Measured PM2.5 error 3 

bars represent the seasonal standard deviation. OM was estimated as the sum of the offline-4 

AMS source apportionment factors.  5 

 6 

 7 

Figure 2. Online-AMS: average PMF factor mass spectra. 8 
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 1 

Figure 3. Online-AMS: a) PMF factors relative contributions. b) Time series of PMF factors 2 

and corresponding tracers. Shaded areas denote the model uncertainties. 3 
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 1 

Figure 4. Online-AMS: average diurnal cycles of PMF factors and corresponding tracers. 2 

 3 

4 
Figure 5. Offline-AMS: water soluble average mass spectra. 5 
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 1 

 2 

 3 

Figure 6. Offline-AMS: a) PMF factors relative contributions. b) Time series of PMF factors 4 

and corresponding tracers. Bars denote the model uncertainties. 5 
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 1 

Figure 7. Online (PM1) and offline-AMS (PM2.5) comparison. Bars represent the error 2 

including temporal variability and model uncertainty. 3 

 4 

Figure 8. Online (PM1, El Haddad et al., 2013) and offline-AMS (PM2.5) comparison. For 5 

offline-AMS bars represent the error including temporal variability and model uncertainty. 6 

For online-AMS bars represents only the temporal variability. 7 
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 1 

Figure 9. Correlation between the sum of nitrocatechols (Table S1) with levoglucosan and 2 

BBOC. 3 

 4 

Figure 10: Offline-AMS (February 2012) and online-AMS (February 2011) smoothed time-5 

dependent levoglucosan:BBOC ratios. We note that the levoglucosan:BBOC comparison 6 

should not be considered on a day-to-day basis where the levoglucosan:BBOC ratio in the two 7 

different years can be coincidentially equal or different, but rather on a monthly time scale 8 
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where, as discussed in the manuscript, we observed a statistically significant (p=0.05) 1 

evolution of the levoglucosan:BBOC ratio which is similarily captured by the two models. 2 

 3 

 4 

Figure 11: Online- and offline-AMS time-dependent levoglucosan:BBOC, 5 

levoglucosan:vanillic acid, levoglucosan:syringic acid, and levoglucosan:K
+
 ratios. 6 
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