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Abstract 20 

We investigated the seasonal trends of OA sources affecting the air quality of Marseille 21 

(France) which is the largest harbor of the Mediterranean Sea. This was achieved by 22 

measurements of nebulized filter extracts using an aerosol mass spectrometer (offline-AMS). 23 

In total 216 PM2.5 (particulate matter with an aerodynamic diameter <2.5 m) filter samples 24 

were collected over 1 year from August 2011 to July 2012. These filters were used to create 25 

54 composite samples which were analyzed by offline-AMS. The same samples were also 26 

analyzed for major water-soluble ions, metals, elemental and organic carbon (EC/OC), and 27 

organic markers, including n-alkanes, hopanes, polyaromatic hydrocarbons (PAHs), lignin 28 



 2 

and cellulose pyrolysis products and nitrocatechols. The application of positive matrix 1 

factorization (PMF) to the water-soluble AMS spectra enabled the extraction of five factors, 2 

related to hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), 3 

oxygenated OA (OOA), and an industry-related OA (INDOA). Seasonal trends and relative 4 

contributions of OA sources were compared with the source apportionment of OA spectra 5 

collected from the AMS field deployment at the same station but in different years and for 6 

shorter monitoring periods (February 2011 and July 2008). Online- and offline-AMS source 7 

apportionment revealed comparable seasonal contribution of the different OA sources. 8 

Results revealed that BBOA was the dominant source during winter representing on average 9 

48% of the OA, while during summer the main OA component was OOA (63% of OA mass 10 

on average). HOA related to traffic emissions contributed on a yearly average 17% to the OA 11 

mass, while COA was a minor source contributing 4%. The contribution of INDOA was 12 

enhanced during winter (17% during winter and 11% during summer), consistent with an 13 

increased contribution from light alkanes, light PAHs (fluoranthene, pyrene, phenantrene) and 14 

selenium, which is commonly considered as an unique coal combustion and coke production 15 

marker. Online- and offline-AMS source apportionments revealed evolving 16 

levoglucosan:BBOA ratios, being higher during late autumn and March. A similar seasonality 17 

was observed in the ratios of cellulose combustion markers to lignin combustion markers, 18 

highlighting the contribution from cellulose rich biomass combustion, possibly related to 19 

agricultural activities.  20 

 21 

1 Introduction 22 

Outdoor particulate air pollution is estimated to be responsible for approximately 3.3 million 23 

premature deaths each year worldwide, and this number is projected to double by 2050 24 

(Lelieveld et al., 2015). Organic aerosols (OA) can contribute up to 90% of the PM1 (Jimenez 25 

et al., 2009), therefore understanding their main emission sources and formation processes is a 26 

key prerequisite for the development of appropriate mitigation policies.  27 

In the Mediterranean basin, sources and trends of OA remain scarcely investigated, despite 28 

their deleterious impact in such a densely populated region. The Mediterranean region is 29 

characterized by an intense photochemistry during summer. Not surprisingly, the majority of 30 

the OA source apportionment studies conducted in the region using aerosol mass 31 

spectrometry (AMS) focused on the summer period (e.g., El Haddad et al., 2013; Minguillón 32 
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et al., 2011, 2016; Hildebrandt et al., 2011). Through positive matrix factorization (PMF) 1 

techniques, these studies revealed that during summer the oxygenated organic aerosol (OOA) 2 

fraction formed by oxidation of gaseous precursors, represented the largest part of OA. 3 

Amongst these studies, the field deployment of the AMS in Marseille, the largest port in the 4 

Mediterranean, has demonstrated that this instrument is well suited for quantifying the 5 

contribution of industrial emissions (El Haddad et al., 2013). In that work, the industrial OA 6 

factor was identified by the high correlation with heavy metals and AMS-polycyclic aromatic 7 

hydrocarbons (AMS-PAHs), moreover strong increments of the industrial factor 8 

concentrations were systematically observed when winds shifted to the west/south west, 9 

consistent with back-trajectory analysis highlighting the transport of industrial emissions from 10 

an industrial pole. Overall the industry-related OA contributed on average 7% of the bulk OA 11 

mass (El Haddad et al., 2011; 2013). However, these results were limited to 2 weeks of 12 

measurements during summer while the contribution of industrial emissions during the rest of 13 

the year remains unknown.   14 

There is a general paucity of AMS and ACSM datasets in the Mediterranean region during 15 

winter. Exceptions include AMS campaigns (Mohr et al. 2012; Hildebrandt et al., 2011) 16 

covering a few weeks during late winter-early spring, and studies with an aerosol chemical 17 

speciation monitor (ACSM) (e.g., Minguillón et al., 2015, covering three weeks of 18 

monitoring). The measurement of organic markers and elements (e.g., Salameh et al., 2015; 19 

Reche et al., 2012) at different stations indicate a substantial contribution from biomass 20 

burning (BB). However, the sources and chemical composition of this fraction and its 21 

evolution during the year remain uncertain. Modelling results within the European Monitoring 22 

and Evaluation Programme (EMEP) have shown that the South of France, together with 23 

Portugal, can be a major hot spot in Europe for OA during February-March, possibly due to 24 

agricultural fires (Dernier van der Gon et al., 2015; Fountoukis et al., 2014). In this region, 25 

BBOA can derive from various processes such as agricultural land clearing activities, 26 

wildfires, and domestic heating, and therefore may have a variable chemical composition.  27 

The current study capitalizes on the AMS measurements of offline samples collected over one 28 

year (2011-2012), in Marseille, an ideal environment for the characterization of urban 29 

emissions from biomass burning, traffic and industrial activities and their transformation 30 

under high photochemical activity. The source apportionment results obtained from PMF 31 

applied to the OA mass spectra are corroborated using a comprehensive set of offline 32 



 4 

measurements including elemental and organic carbon (EC/OC) measurements, as well as 1 

measurements of elements by inductively coupled plasma mass spectrometry (ICP-MS), of 2 

molecular markers by gas chromatography mass spectrometry (GC-MS) and ultra-3 

performance liquid chromatography mass spectrometry (UPLC-MS), and of major ions by ion 4 

chromatography (IC). We mainly focus on the sources and trends of winter OA and therefore 5 

we additionally analyzed an online AMS dataset acquired at the same location during the 6 

winter of the previous year. The comparison of online- and offline-AMS data, and organic 7 

marker concentrations enables an in-depth characterization of OA sources in Marseille, and in 8 

particular the identification of the main processes by which biomass smoke is emitted and 9 

transformed in this region.  10 

 11 

2 Methods 12 

2.1 Site description  13 

Marseille is the second largest city in France with more than 1 million inhabitants (2010). It 14 

hosts the largest harbor in France and in the Mediterranean Sea. Many port-related industries, 15 

especially petrochemical companies, are located in a big cluster. These facilities are situated 16 

about 40 km NW from the city and include steel facilities, coke production plants, oil storing, 17 

refining plants, and several shipyards. The Marseille commercial harbor is located in the 18 

vicinity of this industrial cluster and represents the third-largest harbor of the world for crude 19 

oil storage and treatment. During summer, typical wind patterns in the city of Marseille favor 20 

the transport of polluted air masses from the industrial cluster to the city, including the sea 21 

breeze and the light Mistral wind from the Rhone valley. At night, the land breeze may 22 

transport air masses from an agricultural valley located east of the sampling site. A more 23 

detailed description of wind patterns in Marseille can be found in Drobinski et al. (2007) and 24 

Flaounas et al. (2009). The sampling location is classified as an urban background station and 25 

is situated in the urban park “Cinq Avenue” in a traffic-free zone near the city center 26 

(43°18’20’’ N, 5°23’40’’E; 64 m a.s.l.).  27 



 5 

2.2 Yearly cycle dataset 1 

Sample collection.  2 

In total, 216 24-h (from midnight-to-midnight) integrated PM2.5 pre-baked (500°C for 3 h) 3 

quartz fiber filters (150 mm diameter, Tissuquartz) were collected between 30 July 2011 and 4 

20 July 2012 using a High-Volume sampler (Digitel DA80) operated at 500 L min
-1

 (Batch 1). 5 

Filter samples were subsequently wrapped in aluminum foil, sealed in polyethylene bags and 6 

stored at -18°C.  7 

Offline-AMS analysis. This work discusses the offline-AMS analysis of 55 composite samples 8 

(created from the batch of 216 PM2.5 filters collected) which were analyzed by Salameh et al. 9 

(submitted) for major ions, molecular markers and elements (Table S1). A thorough 10 

description of the offline-AMS analysis can be found in Daellenbach et al. (2016). One punch 11 

per filter sample (from 5 to 25 mm diameter depending on the filter loading and on the 12 

number of punches per composite sample) was prepared for analysis. Punches from the same 13 

composite sample were extracted together in 15 mL of ultrapure water (18.2 M cm, total 14 

organic carbon < 5ppb, 25°C) in an ultrasonic bath for 20 min at 30°C. After extraction, filters 15 

were vortexed for 1 min, and the resulting liquids were filtered with 0.45 m nylon membrane 16 

syringe filters. 17 

The generated liquid extracts were atomized in air using a custom-made two-nozzle nebulizer. 18 

The generated aerosol was dried using a silica gel diffusion drier and then measured by a high 19 

resolution time-of-flight AMS (HR-ToF-AMS, running in V-mode). In the AMS, particles are 20 

flash vaporized (600°C) and the resulting gas is then ionized by electron impact  (EI, 70eV), 21 

yielding quantitative mass spectra of the non-refractory submicron aerosol components, 22 

including OA, NO3
-
, SO4

2-
, NH4

+
, and Cl

-
. A detailed description of the AMS operating 23 

principles, calibration protocols, and analysis procedures are provided by DeCarlo et al. 24 

(2006). In total about 10 mass spectra (mass range 12-300 Da, 60 sec averaging time) were 25 

collected per composite sample. Between each sample, a measurement blank was recorded via 26 

nebulization of ultra-pure water to minimize and monitor the possible memory effects of the 27 

system. In total five mass spectra were collected per each measurement blank. Offline-AMS 28 

data were processed and analyzed using the HR-ToF-AMS analysis software SQUIRREL 29 

(SeQUential Igor data RetRiEvaL) v.1.52L and PIKA (Peak Integration by Key Analysis) 30 

v.1.11L for IGOR Pro software package (Wavemetrics, Inc., Portland, OR, USA). HR 31 
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analysis of the mass spectra was performed in the mass range 12-115 Da and in total 217 ion 1 

fragments were fitted. 2 

The interference of NH4NO3 on the CO2
+
 signal was corrected according to Pieber et al. 3 

(2016) as follows: 4 

𝑪𝑶𝟐,𝒓𝒆𝒂𝒍 = 𝑪𝑶𝟐,𝒎𝒆𝒂𝒔 − (
𝑪𝑶𝟐,𝒎𝒆𝒂𝒔

𝑵𝑶𝟑,𝒎𝒆𝒂𝒔
)

𝑵𝑯𝟒𝑵𝑶𝟑,𝒑𝒖𝒓𝒆
∗ 𝑵𝑶𝟑,𝒎𝒆𝒂𝒔       5 

 (1) 6 

where the (
𝐶𝑂2,𝑚𝑒𝑎𝑠

𝑁𝑂3,𝑚𝑒𝑎𝑠
)

𝑁𝐻4𝑁𝑂3,𝑝𝑢𝑟𝑒
 correction factor was 2.5% as determined from aqueous 7 

NH4NO3 measurements conducted regularly during the measurement period. 8 

Other offline measurements. A complete list of the measurements performed can be found in 9 

Table S1. To summarize, major ions (Ca
2+

, Mg
2+

, K
+
, Na

+
, NH4

+
, NO3

-
, SO4

2-
, Cl

-
, oxalate, 10 

malate, succinate, and malonate) were measured by ion chromatography (IC) according to the 11 

methodology described by Jaffrezo et al. (1998). A subset of the filters was selected for CO3
2-

 12 

quantification following the method described by Karanasiou et al. (2011). The method 13 

encompasses the fumigation of the filter samples with HCl. The CO2 evolved by this 14 

acidification of the carbonates deposited on the filters is detected by thermal optical 15 

transmittance determination. The CO3
2-

 measurements agreed fairly well with the CO3
2-

 16 

estimate from ion balance calculations based on IC data (Fig. S1). In the following discussion, 17 

ion concentrations from filter samples always refer to the IC measurements unless otherwise 18 

specified. 19 

Elemental and organic carbon (EC and OC) were determined for each filter by thermal optical 20 

transmittance using a Sunset Lab analyzer (Birch and Cary, 1996) following the EUSAAR2 21 

protocol (Cavalli et al., 2010). The CO3
2-

 concentration determined from the IC ion balance 22 

was then subtracted from OC concentration. The water soluble OC (WSOC) was measured 23 

with a total organic carbon analyzer (TOC) following the methodology described in Bozzetti 24 

et al. (2016a) and references therein. Before the analyses, the liquid extracts were treated with 25 

a 2 M HCl solution for 1-30 min to remove the inorganic C fraction. Total nitrogen (TN) was 26 

determined using a TOC analyzer combustion tube. The NO2 generated from the water 27 

soluble (WS) N decomposition was detected by a chemiluminescence TNM-1 unit detector. 28 

Organic markers were measured via GC-MS analysis, following the methodology described 29 

in El Haddad et al. (2009; 2011), Favez et al. (2010) and Piot et al. (2012). In total 15 30 

different polycyclic aromatic hydrocarbons (PAH), 19 alkanes (C19-C36), 8 hopanes, 5 31 
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phtalate esters,  levoglucosan, 6 lignin pyrolysis compounds, 6 fatty acids, and 3 sterols were 1 

determined (Table S1). 33 chemical elements (Table S1) were quantified using ICP-MS 2 

according to the procedure described in Chauvel et al. (2010) and the modifications suggested 3 

in El Haddad et al. (2011). A subset of 20 composite samples was selected for the 4 

quantification of methyl-nitrocatechol isomers (Table S1) via Ultra Performance Liquid 5 

Chromatography coupled with an Electro Spray Ionization – ToF - MS (UPLC-ESI-ToF-MS), 6 

following the procedure described in Iinuma et al. (2010).  7 

2.3 Intensive winter campaign 8 

A HR-ToF-AMS was deployed at the same station (urban park “Cinq Avenue”) between 25 9 

January 2011 and 2 March 2011 to monitor the real-time NR-PM1 aerosol chemical 10 

composition. Although February 2011 is not included in the sampling period covered by 11 

offline-AMS, these online measurements nonetheless provide a good opportunity to compare 12 

the separation, relative contributions and winter seasonal trends of the OA sources retrieved 13 

by the offline- and online-AMS source apportionment procedures. Summer offline-AMS 14 

results were instead compared with online-AMS source apportionment results reported by El 15 

Haddad et al. (2013). The AMS was operated with an averaging time of 8 minutes, and in 16 

total 5633 mass spectra were collected during the monitoring period. We performed an 17 

ionization efficiency (IE) calibration by NH4NO3 nebulization, and the resulting IE value of 18 

1.76∙10
-7

 was applied to the dataset. The standard relative ionization (RIE) efficiency was 19 

assumed for organics (1.4), SO4
2-

 (1.2), NH4
+
 (4) and Cl

-
 (1.3), while the collection efficiency 20 

(CE) was estimated using the composition dependent collection efficiency model 21 

(Middlebrook et al., 2012). Total AMS-PAHs were estimated from AMS data according to 22 

Dzepina et al. (2007).  23 

Similarly to offline-AMS, online-AMS data were also processed and analyzed using HR-ToF-24 

AMS Analysis software SQUIRREL (SeQUential Igor data RetRiEvaL) v.1.52L and PIKA 25 

(Peak Integration by Key Analysis) v.1.11L for IGOR Pro software package (Wavemetrics, 26 

Inc., Portland, OR, USA). HR analysis of the mass spectra was performed in the mass range 27 

12-115 Da and in total 215 ion fragments were fitted.  28 

A NOx analyzer was run in parallel to the AMS to monitor the real-time NOx concentration. A 29 

set of pre-baked (500°C for 3h) 24-h integrated PM2.5 filter samples was also collected during 30 

this campaign (Batch 2) following the same sampling and storage procedure described in 31 
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Section 2.2. Filters were analyzed for major ions, metals, elemental and organic carbon 1 

(EC/OC), and organic markers, including n-alkanes, hopanes, polyaromatic hydrocarbons 2 

(PAHs), lignin and cellulose pyrolysis products using the techniques previously described in 3 

Section 2.2 (Table S1). 4 

 5 

Table 1. Monitoring periods. 6 

 7 

2.4 Source apportionment 8 

Implementation. The online- and offline-AMS source apportionment results discussed in this 9 

work were obtained from PMF analysis (Paatero and Tapper, 1994) of AMS spectra using the 10 

Multilinear Engine (ME-2, Paatero 1999). The Source Finder toolkit (SoFi, Canonaco et al., 11 

2013, v.5.1) for Igor Pro (Wavemetrics, Inc., Portland, OR, USA) served as interface for data 12 

input and results evaluation. PMF is a multilinear statistical tool used to describe the 13 

variability of a multivariate dataset as the linear combination of static factor profiles times 14 

their corresponding time series, as described in Eq. 2: 15 

𝑥𝑖,𝑗 =  ∑ 𝑔𝑖,𝑧  ∙  𝑓𝑧,𝑗  +  𝑒𝑖,𝑗
𝑝
𝑧=1         (2) 16 

Here xi,j, gi,z, fz,j, and ei,j represent respectively elements of the data matrix, factor time series 17 

matrix, factor profile matrix and residual matrix, while subscripts i,j and z denote time 18 

elements, variables (in our case AMS fragments), and discrete factor numbers, respectively. p 19 

represents the total number of factors selected by the user for current given PMF solution. The 20 

PMF algorithm returns only gi,z and fz,j values ≥ 0, and solves Eq. 2 by minimizing the object 21 

function Q, defined as: 22 

𝑄 =  ∑ ∑ (
𝑒𝑖,𝑗

𝑠𝑖,𝑗
)

2

𝑗𝑖                  (3) 23 

Online-AMS Offline-AMS 

28 January 2011 – 02 March 2011 30 July 2011 – 20 July 2012 
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Here si,j is an element of the error input matrix. PMF is subject to rotational ambiguity, i.e. 1 

different GˑF combinations characterized by the same Q can exist. The ME-2 implementation 2 

of the PMF algorithm offers an efficient exploration of the solution space by directing the 3 

solution toward environmentally-meaningful rotations by constraining the factor profile 4 

elements fz,j for one or more z factors. In the a-value implementation of ME-2, the elements of 5 

the factor profile matrix F (in our case AMS fragments) are forced to predefined values fz,j 6 

allowing a certain variability defined by the a-value, such that the modelled element fz,j’ 7 

satisfies Eq. 4: 8 

(1−𝑎)𝑓𝑧,𝑛

(1+𝑎)𝑓𝑧,𝑚
 ≤  

𝑓𝑧,𝑛′

𝑓𝑧,𝑚′
 ≤  

(1+𝑎)𝑓𝑧,𝑛

(1−𝑎)𝑓𝑧,𝑚
                        (4) 9 

where n and m represent any two arbitrary variables in the normalized F matrix. A complete 10 

description of the a-value approach can be found elsewhere (Canonaco et al., 2013). 11 

For the offline–AMS source apportionment, the PMF input data matrix was constructed as 12 

follows: each composite sample is represented by approximately 10 time points i, 13 

corresponding to the ~10 mass spectra collected per filter sample (section 2.4). Each point of 14 

the data matrix is subtracted by the average corresponding measurement blank.  15 

The error matrices were instead constructed as follows. For online-AMS source 16 

apportionment, the error matrix elements si,j were calculated according to Allan et al. (2003) 17 

and Ulbrich et al. (2009), and included the uncertainty deriving from electronic noise, ion-to-18 

ion variability at the detector, and ion counting statistics. si,j included also a minimum error 19 

which was applied according to Ulbrich et al. (2009). For the offline-AMS source 20 

apportionment, the error term i,j was calculated in the same way, but a further term (i,j) 21 

including the blank subtraction uncertainty was propagated according to Eq. 5: 22 

𝑠𝑖,𝑗 =  √𝑖,𝑗
2 + 𝑖,𝑗

2                  (5) 23 

Finally for both online- and offline-AMS we applied a down-weighting factor of 3 to all 24 

variables with an average signal to an average error ratio lower than 2 (Ulbrich et al., 2009). 25 

No variable with an average signal to error value lower than 0.2 was detected.  26 

Dust and ash can contain significant amount of inorganic CO3
2-

. Both the IC balance and the 27 

CO3
2-

 measurements revealed non-negligible contributions from CO3
2-

 in the PM2.5 fraction 28 

(Fig. S1). Preliminary PMF results also resolved a factor correlating with Ca
2+

 (SI) which was 29 

characterized by high fCO2
+
, suggesting a possible solubilisation of CO3

2-
 from dust which 30 
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could affect the OA mass spectral fingerprint. Overall, as discussed in the SI, we could not 1 

achieve a clear inorganic dust separation using PMF, therefore we opted for a correction of 2 

the PMF input matrices. The measured pH of our filter extracts was never >8, therefore we 3 

can exclude the presence of CO3
2-

 in the extracts, but rather assume all solubilized CO3
2-

 to 4 

exist as HCO3
-
.
 
Direct measurements of nebulized standard NaHCO3 aqueous solutions, 5 

revealed that thermal decomposition of HCO3
-
 on the AMS vaporizer (600°C) releases CO2 6 

(Fig. S2). Currently no HCO3
-
 correction for the OA spectra is implemented in the standard 7 

AMS fragmentation table (Aiken et al., 2008), therefore the measured CO2
+
 signal needs to be 8 

subtracted from the OA AMS spectra. Offline-AMS PMF input matrices were corrected for 9 

HCO3
-
 and rescaled for WSOMi (= WSOCTOC∙(OM:OC) offline-AMS)i according to the procedure 10 

described in the Supplementary information, SI. 11 

Online-AMS source apportionment optimization. In the following we describe the 12 

optimization of the online-AMS source apportionment results. In order to optimize the source 13 

separation we performed sensitivity analyses on PMF solutions. We adopted different 14 

optimization strategies for online- and offline-AMS source apportionments (SI) as we 15 

encountered dissimilar mixings between sources. This is not surprising as the two methods are 16 

characterized by different time resolution and different monitoring time extension (1 year for 17 

offline-AMS, 1 month for online-AMS), which in turn result in different variabilities 18 

apportioned by the PMF algorithm (daily for online-AMS vs. seasonal for offline-AMS). 19 

In order to optimize the source separation, we performed sensitivity analyses on PMF 20 

solutions according to the following scheme: 21 

I) Selection of the number of factors based on residual analysis.  22 

II) Qualitative evaluation of the unconstrained PMF solution in comparison with 23 

the constrained PMF solutions (a-value approach: COA and/or HOA 24 

constraints) 25 

III) Constrain of both the HOA and COA factors profiles adopting an a-value 26 

approach. a-value sensitivity analysis (121 PMF runs performed scanning all 27 

the COA and HOA a-value combinations, a-value scanning steps: 0.1). 28 

IV) Classification of the 121 PMF runs based on the cluster analysis of the COA 29 

diurnal cycles. Selection of the best clusters, and corresponding PMF solutions.  30 

V) PMF rotational ambiguity exploration. 100 bootstrap (Davison and Hinkley, 31 

1997; Brown et al., 2015) PMF runs were performed by simultaneously 32 
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varying the COA and HOA a-value combinations (using only the optimal a-1 

value combinations identified from step IV). The average of the 100 bootstrap 2 

runs represented the online-AMS source apportionment average solution. The 3 

corresponding standard deviation represents the source apportionment 4 

uncertainty. 5 

For online-AMS we selected a 4-factor solution based on residual analysis. We investigated 6 

the time dependent Q(t)/Qexp(t) evolution when increasing the number of factors. Q/Qexp is 7 

defined as the ratio between Q (as defined in Eq. 3) and the remaining degrees of freedom of 8 

the model solution (Qexp) calculated as iˑj-(j+i)p (Canonaco et al., 2013). A decrease of the 9 

Q/Qexp, from lower to higher order solutions indicates an improvement in the variation 10 

explained by the model. In particular we calculated the (Q/Qexp(t)) obtained as the difference 11 

between the Q/Qexp(t) for a (z)–factor solution minus the Q/Qexp(t) value obtained from the (z-12 

1)–factor solutions, where z indicates the number of factors. We observed a large reduction of 13 

(Q/Qexp(t)) until 4 factors (Fig. S4). Higher order solutions provided only minor 14 

contributions to the explained variability and in terms of solution interpretability resulted in a 15 

splitting of primary sources which could not be unambiguously associated to specific aerosol 16 

sources or processes.  17 

Using an a-value approach, we constrained HOA and COA profiles from Mohr et al. (2012) 18 

and Crippa et al. (2013b) respectively. Leaving COA and/or HOA unconstrained enabled 19 

resolving COA only by increasing the number of factors (>5 factor solutions) while in the 4 20 

factor solutions we observed a splitting of an OOA factor which could not be attributed to 21 

specific processes. Unconstrained PMF yielded HOA and COA time series well correlating 22 

with the constrained solutions; however in the unconstrained case, HOA and COA factor 23 

profiles showed higher fCO2
+
 in comparison with literature studies (Crippa et al., 2013b; 24 

Mohr et al., 2012; Bruns et al., 2015; Docherty et al., 2011; Setyan et al., 2012; He et al., 25 

2010,) and in comparison with the constrained PMF runs. This in turn resulted in higher HOA 26 

and COA concentrations, with background night concentrations 2-3 times higher than in the 27 

constrained solutions, possibly indicative of mixings with oxidized aerosols (Fig. S5). Similar 28 

differences between constrained and unconstrained PMF runs were also observed in Elser et 29 

al. (2016). Also the HOA:NOx ratio (g m
-3

/g m
-3

) matched typical literature values reported 30 

for France (0.02 Favez et al., 2010) in the constrained PMF case (0.023), while for the 31 

unconstrained approach it showed higher values (0.033). 32 
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For both offline- and online-AMS the constrained HOA profiles were from Mohr et al. 1 

(2012), while the COA profiles were from Crippa et al. (2013b). The HOA profile from Mohr 2 

et al. (2012) was selected for offline-AMS consistently with Daellenbach et al. (2016), since 3 

the same factor recovery distributions were applied in this work. The same profile was 4 

applied to online-AMS for consistency. Overall, as discussed in the SI, the HOA profiles from 5 

literature showed high cosine similarities with each other, indicating that the AMS mass 6 

spectral fingerprints from traffic exhaust are relatively stable from station to station and 7 

consistent also with direct emission studies, making the selection of the constrained factor 8 

profiles not crucial. More variability instead is observed among COA literature profiles. For 9 

COA we selected the profile from Crippa et al. (2013b) which showed the lowest fC2H4O2
+
 10 

value among the considered ambient literature spectra (Crippa et al., 2013b; Mohr et al., 11 

2012). This guaranteed a better separation of COA from BBOA, as C2H4O2
+
 is strongly 12 

related to levoglucosan fragmentation (Alfarra et al., 2007). 13 

An a-value sensitivity analysis was performed by scanning all possible a-value combinations 14 

for HOA and COA given by an a-value range 0-1 with a step size of 0.1. In order to optimize 15 

the source apportionment results, we retained only the PMF solutions satisfying an acceptance 16 

criterion described hereafter.  17 

PMF factors were associated to specific aerosol emissions/processes based on mass spectral 18 

features, diurnal cycles, and time series correlations with tracers. The identified factors were 19 

associated to traffic (HOA), cooking (COA), biomass burning (BBOA), and oxygenated 20 

organic aerosol (OOA). A thorough interpretation of the PMF factors will be discussed in the 21 

Results section. Given the absence of widely accepted tracers for COA emissions, the 22 

optimization of the COA contributions was based on the analysis of the COA diurnal cycles. 23 

From the HOA and COA a-value sensitivity analysis we obtained a set of 121 PMF solutions 24 

each one including both factor profiles and factor time series. PMF solutions obtained in this 25 

way were categorized according to a cluster analysis of the normalized COA diurnal cycles 26 

(Elser et al. 2016 and references therein). The k-means clustering approach enables 27 

classifying the PMF solutions into k clusters, by minimizing a cost function (C): 28 

C =  i,z(( xi-µz,i )
2
)          (6) 29 

where C represents the sum of the Euclidian distances between each observation (xi) and its 30 

respective cluster centre (µzi), according to Eq. 6. 31 

The number of clusters (k) that best represents the data is a critical choice in order to 32 

perform a proper cluster analysis. The addition of a cluster (k+1) on one hand adds 33 
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complexity to the solution, while on the other hand decreases the cost function. A typical 1 

strategy to select the right number of clusters is to explicitly penalize the addition of new 2 

clusters by using Bayesian information criteria. This approach consists in adding a penalty 3 

term to Eq. 6 proportional to the number of clusters (k):  4 

C ‘=   i,z(( xi-µz,i )
2
) + k∙ln(D)            (7) 5 

where D denotes the dimensionality of the clusters (24 in our case, as we consider diurnal 6 

cycles with hourly time resolution). In this study the C’ function showed the minimum at 5 7 

clusters (Fig. S6). The absence of convexity properties (i.e. several local minima can exist and 8 

the solution strongly depends on the initialization) represents a possible drawback of the k-9 

means algorithm, therefore 100 random initializations of the k-means algorithm were 10 

conducted.  11 

The best clusters are selected based on a novel statistical analysis of the HOA, COA and 12 

BBOA average cluster spectra (SI). Briefly, a cluster was retained if the HOA, COA, and 13 

BBOA average cluster spectra were not statistically different from the average reference 14 

HOA, COA, and BBOA spectra from literature (Crippa et al., 2013b; Mohr et al., 2012; Bruns 15 

et al., 2015; Docherty et al., 2011; Setyan et al., 2012; He et al., 2010, Table S3). A complete 16 

description of the best clusters selection is reported in the SI (Figs. S6-S10). Overall, three 17 

clusters were retained and 2 were rejected. Finally, we retained only the PMF solutions that 18 

were attributed to the 3 best clusters in more than 95% of the k-means random initializations 19 

(Fig. S9). 20 

In order to explore the rotational ambiguity of our PMF model we performed 200 PMF runs 21 

by initiating the PMF algorithm using different input matrices. The 200 different input 22 

matrices were generated using a bootstrap approach (Davison and Hinkley, 1997; Brown et 23 

al., 2015). In short, the bootstrap approach creates new input matrices by randomly 24 

resampling mass spectra (i elements) from the original input matrices. Note that some mass 25 

spectra are resampled multiple times, while others are not represented at all. On average we 26 

randomly resampled 63±1% of the original spectra per bootstrap PMF run. Finally, each 27 

bootstrap PMF run was initiated by randomly varying the HOA and COA a-values using the 28 

{a-value HOA; a-value COA} combinations previously selected as optimal from the cluster 29 

analysis (Fig. S10). Only solutions showing a higher COA diurnal correlation with the three 30 

selected clusters than with the two rejected clusters were retained. In this way we rejected 31 

3.7% of the solutions. In the following we present the average bootstrap solution. The source 32 

apportionment uncertainty is calculated as the variability of the retained bootstrap PMF runs. 33 
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 1 

Offline-AMS source apportionment optimization.  2 

In this section we discuss the optimization of the offline-AMS source apportionment. The 3 

PMF input matrices included 217 ions and 538 time elements deriving from about 10 AMS 4 

mass spectral repetitions collected for each of the 54 composite samples.  5 

In order to optimize the source separation, we performed sensitivity analyses on PMF 6 

solutions according to the following scheme: 7 

I) Selection of the number of factors based on residual analysis.  8 

II) Qualitative evaluation of the unconstrained PMF solution in comparison with 9 

the constrained PMF solutions (a-value approach: COA and/or HOA 10 

constraints) 11 

III) PMF rotational ambiguity exploration. 1080 bootstrap (Davison and Hinkley, 12 

1997; Brown et al., 2015) PMF runs were performed by simultaneously 13 

varying the COA and HOA a-value combinations. PMF solutions were 14 

retained based on the correlation of the PMF factors with external tracers. The 15 

PMF solutions retrieved from this step are relative to the water-soluble 16 

fraction. The corresponding water-soluble OC factor concentrations were 17 

determined by dividing the water-soluble OM factor concentrations (PMF 18 

output) by the OM:OC ratio determined from the corresponding factor mass 19 

spectrum. 20 

IV) Retained water-soluble OC PMF solutions from step (III) were rescaled to the 21 

total OC concentrations by applying factor recoveries. Factor recoveries were 22 

fitted (using a-priori information) to match total OC. Only PMF solutions and 23 

factor recoveries fitting OC with yearly and seasonally homogenous residuals 24 

were retained. The average of the retained PMF solutions represented the 25 

average source apportionment results. The corresponding standard deviation 26 

represented the source apportionment uncertainty. 27 

Based on analysis of the PMF residuals, we selected a 5-factor solution to explain the 28 

variability of our dataset (Fig. S11). Similar to online-AMS, we monitored the decrease in 29 

Q/Qexp when increasing the number of factors (z). In this study, a large Q/Qexp decrease was 30 

observed until 5 factors. We also observed a clear Q/Qexp structure removal until 5 factors, 31 

with higher order solutions leading to additional factors that were not attributable to specific 32 
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aerosol sources/processes. The 5 separated factors included HOA, COA, BBOA, OOA, and 1 

industry-related OA (INDOA). The complete validation of the PMF factors will be discussed 2 

in the Results section. 3 

As already mentioned, the HOA and COA profiles were constrained using an a-value 4 

approach. Consistently with online-AMS we constrained the profiles according to Mohr et al. 5 

(2012) and Crippa et al. (2013b) respectively. Unconstrained PMF runs for offline-AMS did 6 

not resolve HOA and COA factors. To explore the rotational ambiguity of our PMF model we 7 

performed 1080 bootstrapped PMF runs. In this case we performed a higher number of 8 

bootstrap runs than online-AMS because the COA and HOA a-value combinations could not 9 

be separately optimized because the offline-AMS method cannot resolve diurnal patterns. 10 

Each PMF run was also initiated using different input matrices. As previously mentioned the 11 

input matrices contained about 10 mass spectral repetitions per filter sample, therefore the 12 

bootstrap algorithm was implemented to randomly resample 54 filters samples, each one with 13 

all the corresponding mass spectral repetitions. The final generated matrices included 54 14 

samples; note that some filter samples could be resampled more times, while others were not 15 

resampled at all. On average 63±5% of the original samples were resampled. Finally, each of 16 

the PMF runs was initiated by randomly varying the HOA and COA a-values. The optimal 17 

PMF solutions were selected based on 6 acceptance criteria including: 18 

1) Significantly (p=0.05) positive Pearson correlation coefficient R between BBOA and 19 

levoglucosan. 20 

2) Significantly positive R between HOA and NOx. 21 

3) Significantly positive R between INDOA and Se. 22 

4) BBOA correlation with levoglucosan (R) significantly higher than the correlation 23 

between COA and levoglucosan. 24 

5) HOA correlation with NOx significantly higher than the correlation between COA and 25 

NOx. 26 

6) COA correlation with Se significantly smaller than the correlation between INDOA 27 

and Se. 28 

Criteria 1-3 analyse the correlation between factor and marker time series. The significance of 29 

a correlation was determined by calculating the Fisher transformed correlation coefficient z 30 

(Garcia, 2011): 31 
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𝑧 = 0.5 ∗ ln (
1+𝑅

1−𝑅
) = arctan(𝑅)         (8) 1 

where R is the Pearson correlation coefficient between factor and marker time series. 2 

Subsequently we conducted a t-test to verify the significance (α=0.95) of the correlation: 3 

𝑡 =
𝑅

√1−𝑅2

𝑁−2

            (9) 4 

Here, N represents the number of samples (54). For a confidence interval of 95% the 5 

minimum significant correlation was R = 0.23. For criteria 4-6, in order to evaluate whether 6 

HOA, BBOA and INDOA correlated significantly better than COA with their corresponding 7 

markers, we compared the z values obtained between each factor and its corresponding tracer 8 

(e.g. BBOA and levoglucosan) and between COA and the same tracer (e.g. levoglucosan), 9 

using a standard error on the z distribution of 1 √𝑁 − 3⁄   (Zar, 1999). 10 

In total, we retained 1.5% of the PMF runs. The criteria that discarded the largest number of 11 

solutions were the ones based on COA (4-6) correlation with tracers of other sources. This 12 

suggests that for this dataset the COA separation from other sources was particularly difficult 13 

due to the absence of high temporal resolved data which aids the separation of a distinct COA 14 

diurnal cycle. Moreover, this separation is also complicated by the small COA contribution 15 

estimated by both online- and offline-AMS source apportionments (on average 0.4 g m
-3

 as 16 

discussed in the following sections).
 
Furthermore, the relatively small COA factor recovery 17 

(RCOA median 0.54) hampers the COA apportionment by offline-AMS. 18 

The PMF performed on offline-AMS mass spectra returned water-soluble OA factor 19 

concentrations, WSKOAi. To rescale the water-soluble OA concentration to the total OA, 20 

KOAi, we used the factor recoveries (Rk) reported by Daellenbach et al. (2016) for the HOA, 21 

COA, BBOA, and OOA factors (RHOA, RCOA, RBBOA, ROOA).  22 

KOAi = WSKOAi/RKOA         (10) 23 

This is the first offline-AMS study where an INDOA factor was identified. Therefore, we 24 

determined the INDOA recovery (RINDOA) in this study, by performing a single parameter fit 25 

according to Eq. 11: 26 

OCi = 
𝑊𝑆𝐻𝑂𝐴𝑖

𝑂𝑀

𝑂𝐶 𝐻𝑂𝐴
∙𝑅𝐻𝑂𝐴

  + 
𝑊𝑆𝐶𝑂𝐴𝑖

𝑂𝑀

𝑂𝐶 𝐶𝑂𝐴
∙𝑅𝐶𝑂𝐴

 + 
𝑊𝑆𝐵𝐵𝑂𝐴𝑖

𝑂𝑀

𝑂𝐶 𝐵𝐵𝑂𝐴
∙𝑅𝐵𝐵𝑂𝐴

 + 
𝑊𝑆𝑂𝑂𝐴𝑖

𝑂𝑀

𝑂𝐶 𝑂𝑂𝐴
∙𝑅𝑂𝑂𝐴

 + 
𝑊𝑆𝐼𝑁𝐷𝑂𝐴𝑖

𝑂𝑀

𝑂𝐶 𝐼𝑁𝐷𝑂𝐴
∙𝑅𝐼𝑁𝐷𝑂𝐴

   (11) 27 
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500 different fits were performed for each of the retained PMF solutions. Moreover each fit 1 

was initiated using different RKOA combinations randomly selected from the RKOA 2 

combinations determined by Daellenbach et al. (2016) and reported in Bozzetti et al. (2016a). 3 

In order to account for possible WSOC and OC systematic measurement biases, each fit was 4 

initiated by also perturbing the OCi, WSKOAi/(OM:OC)WSKOC, and RKOA inputs assuming for 5 

each parameter a possible bias of 5%, corresponding to the WSOC and OC measurement 6 

accuracy (we note that the sum of the WSKOCi/(OM:OC)WSKOC terms equals WSOCi neglecting the 7 

PMF residuals). Finally the input OCi was randomly perturbed within its measurement 8 

uncertainty assuming a normal distribution of the errors. Among the performed fits we 9 

retained the recovery combinations and factor time series associated with OCi unbiased 10 

residuals (residual distribution centered on 0 within the 1
st
 and 3

rd
 quartiles) for all seasons 11 

together and for summer and winter separately (Fig. S12). Accordingly, we retained 13% of 12 

the solutions. All the retained factor recovery combinations can be found at 13 

http://doi.org/10.5905/ethz-1007-75. The median INDOA recoveries were estimated as 0.69 14 

(1
st
 quartile 0.65, 3

rd
 quartile 0.73, Fig. S13), while the retained RKOA for the other sources 15 

were consistent within the quartiles with the RKOA values reported by Daellenbach et al. 16 

(2016) despite their input value was perturbed as described above. The variability of the 17 

retained solutions is considered as our best estimate of the source apportionment uncertainty, 18 

which accounts for offline-AMS repeatability, model rotational uncertainty explored 19 

bootstrapping the input matrices and scanning the HOA and COA a-value sensitivity, and 20 

RKOA uncertainties. Overall, for a generic factor KOA, we estimated the corresponding 21 

average relative uncertainty as follows: we calculated the campaign averages of the KOA 22 

concentrations for each of the v retained PMF solutions (𝐾𝑂𝐴𝑣
̅̅ ̅̅ ̅̅ ̅̅ ). The relative uncertainty of 23 

the KOA concentration was calculated as the standard deviation of 𝐾𝑂𝐴𝑣
̅̅ ̅̅ ̅̅ ̅̅  divided by its 24 

average.  25 

We also explored a 4-factor solution without constraining the COA profile. In this case we 26 

performed 100 bootstrap PMF runs by randomly varying the HOA a-value. Results revealed 27 

the COA separation (in the 5-factor solution with COA constrained) affected the HOA 28 

separation more than the other factors (BBOA, OOA, INDOA). Overall, when comparing the 29 

4- and 5-factor solutions (without and with COA constrained, respectively) HOA showed not 30 

statistically different concentrations within our estimated source apportionment uncertainty 31 

for 85% of the samples, BBOA and OOA for 96%, and INDOA for 94%. This is probably due 32 

http://doi.org/10.5905/ethz-1007-75
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to the high similarity between COA and HOA spectra (SI, “Best cluster selection” Section), 1 

which are both characterized by high contributions from hydrocarbons. 2 

 3 

3 Source apportionment validation 4 

Figure 1 displays the stacked seasonal average concentrations of the measured PM2.5 5 

components (ions measured by IC, elements measured by ICP-MS, EC by the EUSAAR 6 

method, and OM estimated as the sum of the offline-AMS PMF factors). Higher 7 

concentrations were observed during winter than in summer due to the enhanced contributions 8 

of NO3
-
 and OM. NO3

-
 increased during winter and autumn due to NH4NO3 partitioning into 9 

the particle phase at lower temperatures. OM concentrations were higher during winter due to 10 

the strong BBOA contributions.  11 

Overall OM was the dominant PM2.5 component over the whole year highlighting the 12 

importance of studying its sources. OM represented 46% of the total mass with higher relative 13 

contributions during winter (51%) than in summer (37%). SO4
2-

 represented the second most 14 

abundant PM2.5 component, contributing on average 12% of the mass. Among the other 15 

components, EC contributed 9% of the mass, NO3
-
 9% (13%avg during winter and 3%avg 16 

during summer), NH4
+
 8%, the sum of the elements 7% (3% during winter and 13% during 17 

summer, possibly because of dust resuspension), CO3
2-

 6%, Ca
2+

 2%. K
+
, Cl

-
, Na

+
, and Mg

2+
 18 

individually did not exceed 1% of the mass. In the following, subscripts avg, and med denote 19 

average and median values, respectively. 20 

3.1 Online-AMS source apportionment validation 21 

PMF factors were associated to aerosol sources/processes based on mass spectral features 22 

(Fig. 2), correlation with tracers (Fig. 3), and diurnal cycles (Fig. 4). The HOA was well-23 

correlated with NOx (R=0.86), with peaks during rush hours (centered on 8h and 19h) and 24 

higher concentrations during the first half of the campaign. The average HOA:NOx ratio (g 25 

m
-3

/g m
-3

) was 0.023, consistent with Favez et al. (2010). The COA diurnal variation showed 26 

two peaks at lunch and dinner time (12.00 and 21.00), as observed in other cities (Elser et al., 27 

2016; Mohr et al., 2012). The BBOA factor profile showed the highest fC2H4O2
+
 and 28 

fC3H5O2
+
 contributions among the apportioned factors. Previous studies (Alfarra et al., 2007) 29 

associated the high fC2H4O2
+
 and fC3H5O2

+
 contributions in BBOA AMS spectra to the 30 

fragmentation of anhydrous sugars from cellulose pyrolysis. The BBOA time series was well-31 
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correlated with levoglucosan (R=0.74) and AMS-PAHs (R=0.88). Note that AMS-PAHs are 1 

not unique BBOA tracers, but in general they derive from combustion sources (see SI for the 2 

comparison between AMS-PAHs and GC-MS PAHs). In this specific dataset they could 3 

partially derive from traffic, although from the AMS-PAHs multilinear regression, we 4 

estimated that 79% of the AMS-PAHs are related to BBOA and 21% to HOA, indicating that 5 

BBOA dominates the PAH emissions. The AMS-PAHs:HOA ratio was 0.0020, while the 6 

AMS-PAHs:BBOA was 0.0028.  7 

In general, industrial emissions can be an important source of PAHs at this location as 8 

discussed in El Haddad et al. (2013). In presence of an industrial contribution, the BBOA vs. 9 

AMS-PAHs correlation would decrease. In this work the correlation between AMS-PAHs and 10 

the C2H4O2
+
 fragment, typically related to levoglucosan fragmentation (Alfarra et al., 2007), 11 

was high (R=0.87) and no AMS-PAHs spike was observed without a simultaneous increase of 12 

C2H4O2
+
 (Fig. S15). Moreover the industrial-related OA factor resolved by El Haddad et al. 13 

(2013) was clearly associated to wind directions from W/SW (225°-270°), while in this work 14 

wind directions were oriented from W/SW only for 7% of the monitoring time, furthermore 15 

without being associated to any significant increase in the AMS-PAHs concentration (Fig. 16 

S16), indicating the absence of clear industrial episodes.  17 

The BBOA diurnal cycle, similarly to AMS-PAHs, showed higher values at night than during 18 

the day (Fig. 4). In addition, the BBOA highest concentrations were detected at night and 19 

associated to slow wind speeds from the E/NE which is consistent with the night land breeze 20 

direction. Moreover, strong enhancements of the BBOA factor concentrations were perceived 21 

when the wind direction shifted to the E/NE (typically around 18 o’clock during the 22 

monitoring period) suggesting that BBOA could be transported from the valleys nearby 23 

Marseille (Fig. S18).  24 

We calculated the BBOC time series by dividing the BBOA concentrations by the 25 

OM:OCBBOA ratio calculated from the average BBOA HR spectrum (1.60). The average 26 

BBOC:levoglucosan ratio [g m
-3

/g m
-3

] was 0.15, comparable to other European studies 27 

(Zotter et al., 2014; Herich et al., 2014; Minguillón et al., 2011).  28 

The OOA profile showed the most oxidized mass spectral fingerprint with an O:C ratio of 29 

0.67 in comparison to the values of 0.35 retrieved for BBOA, 0.12 for COA and 0.03 for 30 

HOA. The OOA time series was well correlated with the NH4
+
 time series (R=0.86), 31 

suggesting a probable secondary origin of the OOA factor (Lanz et al., 2008). The OOA 32 
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diurnal cycle was flat, suggesting OOA to be representative of regionally-transported 1 

oxygenated aerosols, consistent with the conclusions of El Haddad et al. (2013). 2 

3.2 Offline-AMS source apportionment validation 3 

PMF factors from the offline-AMS dataset were related to aerosol sources/processes based on 4 

mass spectral features (Fig. 5), seasonal trends and correlation with tracers (Fig. 6). A 5 

comparison of the online-AMS and offline-AMS factor profiles is reported in the SI. In the 6 

following, for a generic k factor, we calculated the corresponding KOCi time series dividing 7 

KOAi by the OM:OC ratio determined from the average HR-AMS factor profile. 8 

During summer, when biomass burning contributions to EC are low, HOA correlated well 9 

with EC (R = 0.76) and yielded an HOC:EC (Hydrocarbon-like OC = HOA/(OM:OC)HOA) 10 

ratio of 0.64, similar to other European studies (El Haddad et al., 2009 and references 11 

therein). Over the whole year, the retained PMF solutions showed an HOA correlation with 12 

NOx (R) spanning between 0.23 and 0.49. These low correlations are comparable to the ones 13 

found by El Haddad et al. (2013) at the same station by online-AMS. In this case, the 14 

relatively low HOA correlation with NOx is probably due to the low RHOA (median 0.11) 15 

which together with the low HOA concentration (1.5 g m
-3

avg, Results section), results in 16 

small water-soluble HOA concentrations, leading to an uncertain HOA apportionment. This 17 

was already reported in previous offline-AMS studies (Daellenbach et al., 2016; Bozzetti et 18 

al., 2016a). Although the HOA variability could not be well captured, the estimated HOA 19 

concentration was corroborated by the average HOA/NOx (0.02 g m
-3

/g m
-3

) which was 20 

found to be consistent with El Haddad et al. (2013) for the same station and with Favez et al. 21 

(2010) for an alpine location in France.  22 

BBOA was identified from its mass spectral features, with the highest fC2H4O2
+
 and fC3H5O2

+
 23 

contributions among the apportioned factors, consistent with the findings of Alfarra et al. 24 

(2007). BBOA correlated well with biomass combustion tracers measured by GC-MS, such as 25 

levoglucosan (R=0.76), acetosyringone (R=0.71) and vanillic acid (R=0.84). The winter 26 

average levoglucosan:BBOC [g m
-3

/g m
-3

] ratio was equal to 0.12, consistent with other 27 

studies in Europe (Zotter et al., 2014; Herich et al., 2014; Minguillón et al., 2011). 28 

The fourth factor (INDOA) was related to industrial emissions due to the high correlation 29 

with light alkanes (C19-C22, 0.77≤R≤0.86), Se (R=0.54), Pb (R=0.44) and with some PAHs 30 
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such as pyrene (R=0.74), fluoranthene (R=0.77), and phenantrene (R=0.74). Among the 1 

measured PAHs, pyrene, fluoranthene and phenantrene showed the lowest correlations with 2 

levoglucosan (Table S1, R = 0.31, 0.29, and 0.27 respectively), suggesting that these 3 

particular PAHs were overwhelmingly emitted by INDOA rather than BBOA. We note that 4 

phenanthrene, pyrene, and fluoranthene together represent 9.6%avg of the PAHs mass 5 

quantified by GC-MS, indicating that PAHs are overwhelmingly emitted by BBOA. While Se 6 

is considered to be a unique coal marker in the literature (Weitkamp et al., 2005; Park et al., 7 

2014), in Marseille this source is likely related to coke and steel production facilities (El 8 

Haddad et al., 2011). The average INDOA OM:OC (1.60) was intermediate between the 9 

OM:OC ratios of HOA (1.23) and COA (1.28), and those of BBOA (1.85) and OOA (1.82). 10 

El Haddad et al. (2013) resolved an industrial OA factor at the same station by online-AMS 11 

PMF. In that work the authors suggested a probable contribution of oxygenated OA to the 12 

resolved industrial factor, probably deriving from (photo)chemical aging during the transport 13 

from the industrial facilities to the receptor site occasionally accompanied by new particle 14 

formation processes within the industrial plume (as observed by the increased ultrafine 15 

particle number concentration associated to W/SW wind directions) . Considering the average 16 

wind speed from W/SW (0.8 km/h), and the distance between the receptor site and the 17 

Marseille commercial harbor (~ 40 km) we estimate an aging time of several hours, which 18 

could lead to a more oxidized fingerprint in comparison to the fresh primary emissions 19 

(Huang et al., 2014). Overall this factor explained the largest fraction of the variability of S- 20 

and Cl-containing organic fragments such as C2HSO
+
, CH2SO

+
, CH3Cl2

+
, CH4SO3

+
, 21 

C3H3SO2
+
, and C7H16

+
. 22 

The last factor was defined as OOA as it showed a highly oxygenated fingerprint with the 23 

largest CO2
+
 fractional contributions (fCO2

+
) among the apportioned factors (14%, in 24 

comparison with 11% for BBOA, 2% for HOA, and 1% for COA and INDOA). This factor 25 

showed on average the largest contributions over the year. Overall, the OOA:NH4
+
 ratio was 26 

2.3avg, in line with the values reported by Crippa et al. (2014) for 25 different European sites 27 

(2.0avg; minimum value 0.3; maximum 7.3).  28 

Previous offline-AMS (Bozzetti et al., 2016a; Bozzetti et al., 2016b; Daellenbach et al., 2016) 29 

and online-ACSM studies (e.g., Canonaco et al., 2015) conducted in Switzerland and 30 

Lithuania reported the separation of two OOA factors characterized by different seasonal 31 

trends and different C2H3O
+
:CO2

+
 ratios. In particular, the OOA factor characterized by the 32 
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highest C2H3O
+
:CO2

+
 ratio contributed mostly during summer and was linked to secondary 1 

OA from biogenic emissions. Here we calculated a (C2H3O
+
:CO2

+
)OOA ratio by subtracting the 2 

C2H3O
+
 and CO2

+
 contributions deriving from primary sources, from the measured C2H3O

+
 3 

and CO2
+
 (Canonaco et al., 2015): 4 

𝐶2𝐻3𝑂+

𝐶𝑂2
+

𝑂𝑂𝐴,𝑖
=  

𝐶2𝐻3𝑂+
𝑚𝑒𝑎𝑠,𝑖 − 𝐻𝑂𝐴𝑖∙𝑓𝐶2𝐻3𝑂+

𝐻𝑂𝐴 − 𝐵𝐵𝑂𝐴𝑖∙𝑓𝐶2𝐻3𝑂+
𝐵𝐵𝑂𝐴 − 𝐼𝑁𝐷𝑂𝐴𝑖∙𝑓𝐶2𝐻3𝑂+

𝐼𝑁𝐷𝑂𝐴− 𝐶𝑂𝐴𝑖∙𝑓𝐶2𝐻3𝑂+
𝐶𝑂𝐴 

𝐶𝑂2
+

𝑚𝑒𝑎𝑠,𝑖
 − 𝐻𝑂𝐴𝑖∙𝑓𝐶𝑂2

+
𝐻𝑂𝐴

 − 𝐵𝐵𝑂𝐴𝑖∙𝑓𝐶𝑂2
+

𝐵𝐵𝑂𝐴
 − 𝐼𝑁𝐷𝑂𝐴𝑖∙𝑓𝐶𝑂2

+
𝐼𝑁𝐷𝑂𝐴

 − 𝐶𝑂𝐴𝑖∙𝑓𝐶𝑂2
+

𝐶𝑂𝐴

 (12) 5 

Overall, C2H3O
+

OOA, and CO2
+

OOA did not show a clear seasonality (Fig. S19), which 6 

hampered the separation of two OOA sources. Even though another OOA factor was not 7 

separated, El Haddad et al. (2013) estimated for the same location during summer a 8 

substantial contribution of secondary biogenic aerosol using 
14

C measurements (no 9 

measurements conducted in other seasons). As a consequence the OOA factor resolved in this 10 

work explains both secondary biogenic and aged/secondary anthropogenic sources. The 11 

absence of a clear increase in the (C2H3O
+
:CO2

+
)OOA ratio in Marseille during summer could 12 

be explained by the large emissions of anthropogenic secondary OA (SOA) precursors during 13 

winter, leading to a different (C2H3O
+
:CO2

+
)OOA seasonality in comparison with previous 14 

offline-AMS studies (Daellenbach et al., 2016, Bozzetti et al. 2016a), which were conducted 15 

either at rural sites characterized by different types of vegetation, or in smaller urban areas. In 16 

general, several parameters affect the biogenic SOA concentrations and their separation, e.g. 17 

intensity of the biogenic precursor sources, air masses photochemical age, and NOx 18 

concentrations. All those parameters were different in Marseille from previous offline-AMS 19 

studies which were conducted in central/northern Europe.   20 

 21 

4. Results and discussion 22 

4.1 OA source apportionment results and uncertainties. 23 

In this study, we present one of the first OA source apportionments conducted over an entire 24 

year in the Mediterranean region. This work represents also the first comparison between HR 25 

online-AMS and HR offline-AMS source apportionments conducted at the same location, 26 

despite in two different periods. Previous studies (Daellenbach et al., 2016) reported a 27 

comparison between offline-AMS and online-ACSM results. 28 

Although related to different years and size-fractions (PM1 online-AMS, PM2.5 offline-AMS), 29 

the offline-AMS source apportionment returned average seasonal factor concentrations not 30 



 23 

statistically different to online-AMS for both winter (Fig. 7) and summer (comparison with El 1 

Haddad et al., 2013, Fig. 8). We note that the total OC concentration quantified by online-2 

AMS for PM1 and by the thermal-optical procedure used for the offline-AMS source 3 

apportionment of PM2.5 was not different on a seasonal scale considering our uncertainty 4 

which includes time variability and measurements uncertainties. 
 

5 

Both online and offline-AMS source apportionment revealed that BBOA was the largest OA 6 

source during winter. Offline-AMS source apportionment estimated an average BBOA 7 

concentration during winter 2011-2012 of 5.2 g m
-3

avg, representing 43%avg of the OA.  8 

Similarly, online-AMS source apportionment revealed a BBOA concentration of 4.4avg g m
-3

  9 

(corresponding to 42% of OA) during February 2011. During summer, the offline-AMS 10 

BBOA concentration dropped to an average of 0.3 g m
-3

avg representing 5% of the OA. Not 11 

surprisingly such low BBOA contributions were not resolved by online-AMS source 12 

apportionment during summer (El Haddad et al., 2013). On average the offline-AMS BBOA 13 

relative uncertainty was 9%. As a comparison, the online-AMS BBOA average relative 14 

uncertainty was 6%. Overall for both online- and offline-AMS, the BBOA contributions were 15 

the least uncertain among the primary sources, possibly because of the high loadings and the 16 

distinct seasonal and diurnal BBOA variability in comparison with the other separated factors. 17 

A comparison between the offline- and online-AMS source apportionment uncertainties can 18 

be carried out with the caveat that the online-AMS source apportionment uncertainties 19 

estimated in this work should be considered as a low estimate as they do not account for the 20 

AMS mass error deriving mostly from CE, and particle transmission. This source of 21 

uncertainty affects the total OA mass but not the relative contribution of the factors. By 22 

contrast, the OA mass uncertainty was accounted for in the offline-AMS source 23 

apportionment as the OA mass was rescaled to external measurements (WSOC and OC), the 24 

uncertainty of which was propagated in the final source apportionment error (Section 2.4).  25 

On a yearly scale, the offline-AMS source apportionment revealed that OOA was the largest 26 

OA source, with the highest relative contributions during summer due to the reduced BBOA 27 

emissions. The OOA concentration during summer was estimated from offline-AMS at 3.0 g 28 

m
-3

avg, corresponding to 55% of the OA mass. El Haddad et al. (2013) also reported OOA to 29 

be the dominant OA fraction during summer with a similar average concentration of 2.9 g m
-

30 

3
. During winter, the OOA concentration was estimated by online-AMS to be 3.9avg g m

-3 
31 

corresponding to 38% of the OA, while the OOA relative uncertainty was 4%. As a 32 



 24 

comparison, the OOA relative uncertainty from offline-AMS was 6%avg. The offline-AMS 1 

source apportionment revealed similar OOA concentrations during winter (3.4 g m
-3

avg 2 

corresponding to 27%avg of the OA). Even though during winter the OOA concentration was 3 

higher than in summer, possibly due to partitioning and due to the shallower boundary layer, 4 

the relative contribution decreased because of the strong BBOA contributions. 5 

HOA is one of the most uncertain factors, with an average relative uncertainty of 39% 6 

estimated from offline-AMS and 10% from online-AMS analysis, where the larger 7 

uncertainty observed for offline-AMS derives mostly from the low RHOA and from the lower 8 

time resolution which does not capture the traffic diurnal variability. On average, the HOA 9 

concentration predicted by offline-AMS was 1.5 g m
-3

, corresponding to 17% of the OA. 10 

The estimated HOA concentration by online-AMS during February 2011 was 1.6 g m
-3

avg 11 

(16% of OA). These values are higher than the ones of El Haddad et al. (2013) who estimated 12 

a traffic contribution of 0.8 g m
-3

avg during July 2008. 13 

The COA contributions were only minor (average of 0.3 g m
-3

), representing on average 4% 14 

of the OA mass according to the offline-AMS source apportionment. The online-AMS winter 15 

source apportionment returned similar concentrations with 0.4 g m
-3

avg, equivalent to 4%avg 16 

of the OA. Overall, due to the low concentrations, the COA contributions were uncertain in 17 

both source apportionments (6% for online-AMS, 73% for offline-AMS).Similarly to HOA, 18 

the larger uncertainty observed for offline-AMS was most possibly due to the low RCOA, and 19 

the low time resolution which did not enable the COA separation based on the diurnal 20 

variability. The summer COA contribution was not resolved from HOA by El Haddad et al. 21 

(2013), possibly because the COA reference mass spectrum was not constrained and because 22 

of the lack of HR data which typically aid the separation of the two sources.  23 

Finally, the INDOA factor concentration estimated from offline-AMS was on average 2.1 g 24 

m
-3

 during winter and 0.6 g m
-3

avg during summer, where this seasonal trend was driven by a 25 

strong episode that occurred during early February. The offline-AMS relative uncertainty was 26 

estimated as 17%. As previously discussed (Section 3.1), this factor was not separated by 27 

online-AMS analysis (February 2011) because of the absence of clear events, which in the 28 

offline-AMS dataset were observed only over a short period during January-February 2012. 29 

An industrial factor was instead resolved by El Haddad et al. (2013) during summer 2008, 30 

with an average concentration of 0.3 g m
-3

avg. In that study, the industrial OA factor was also 31 

characterized by a low background intercepted by ten-fold spiking episodes. 32 



 25 

From the sum of the offline-AMS factor concentrations we estimated the total OM mass. 1 

Using this OM and the measured OC we calculated the OM:OC ratio to be 1.40 on average. 2 

Specifically, during winter this ratio was 1.55, which is consistent with the online-AMS 3 

values determined from the HR-AMS spectra (median = 1.52, 1
st
 quartile = 1.46; 3

rd
 quartile 4 

1.59). The bulk OM:OC variability was driven by the source variabilities. Indeed the relative 5 

contribution of the most oxidized source (OOA) was higher during summer (mostly due to the 6 

absence of BBOA), however also the relative contributions of the less oxidized sources (such 7 

as HOA and COA) were higher during summer mostly due to low BBOA contributions. The 8 

BBOA mass spectrum instead was associated with intermediate OM:OC ratios comprised 9 

between the values of COA and OOA, and therefore influenced less strongly the bulk OM:OC 10 

ratio. Overall the combination of these effects led to a higher bulk OM:OC during winter. 
 

11 

 12 

4.2 Insights into the BBOA origin during winter 13 

Methyl-nitrocatechols measurements showed high correlations with BBOA (Fig. 9, R=0.95) 14 

and no correlation with OOA (R=0.06, offline-AMS source apportionment). Similarly high 15 

correlations were already observed in other studies (e.g. Poulain et al., 2011). This large 16 

correlation difference suggests that the variability of the methyl-nitrocatechols is likely 17 

explained by the BBOA source. However, methyl-nitrocatechols are secondary compounds 18 

deriving from the nitration of catechols which can be either directly emitted by wood 19 

combustion (Schauer et al., 2001), or generated by OH∙ oxidation of cresols directly released 20 

by wood combustion (Iinuma et al., 2010). m-cresol/NOx photooxidation experiments (Iinuma 21 

et al., 2010) revealed a total contribution of all methyl-nitrocatechol isomers to the catechol 22 

SOA of approximately 10%. Assuming methyl-nitrocatechols to be entirely apportioned to the 23 

BBOA factor, we estimate a methyl-nitrocatechol-SOA contribution to BBOA on the order of 24 

8%, indicating that part of the BBOA factor is of secondary origin. Previous studies (Atkinson 25 

and Arey, 2003) revealed an o-cresol life-time in the atmosphere of 2.4 minutes towards NO3, 26 

and 3.4 h towards OH (at 298 K, dark conditions). This would suggest that such fast SOA 27 

formation can be better traced by the high time resolution online-AMS source apportionment 28 

(8 minutes) than by the offline-AMS with 24 h time resolution, and in any case only in the BB 29 

plume or in the vicinity of the emission source. Nevertheless we did not observe statistically 30 

different ratios (within 1, error calculated as the time variability) of OOA:NH4
+
 (1.5avg and 31 



 26 

1.25avg for the offline-AMS and online-AMS source apportionments, respectively), 1 

OOA:BBOA (0.65avg and 0.89avg respectively), and levoglucosan:BBOC (1.13avg and 1.15avg 2 

respectively, Fig. 10) during winter, suggesting that despite the different time resolutions, the 3 

online and offline methods provide a comparable BBOA-SOA separation. Overall these 4 

findings suggest that rapid SOA formation is not well captured by PMF and rapidly formed 5 

SOA compounds (such as nitrocatechols) can be systematically attributed by PMF to factors 6 

commonly considered as “primary” (BBOA in this case).Both online- and offline-AMS 7 

source apportionment revealed for the two different winter seasons a comparable temporal 8 

evolution of the levoglucosan:BBOC ratio (Fig. 10, and Fig. 11). This ratio showed typical 9 

literature values for domestic wood combustion in Europe during January and early February 10 

(0.05-0.2, Zotter et al., 2014; Herich et al., 2014; Minguillón et al., 2011), while during late 11 

autumn and March (Fig. 11) it increased up to 0.3, highlighting an evolution of the BBOA 12 

chemical composition. A similar seasonal trend was observed for the levoglucosan:vanillic 13 

acid, levoglucosan:syringic acid, and levoglucosan:non sea salt-K
+
 (nss-K

+
, calculated 14 

according to Seinfeld and Pandis, 2006) ratios (Fig. 11). Although the online dataset was 15 

limited to one month of measurements, the levoglucosan:vanillic acid ratio also showed a 16 

statistically significant increasing trend from early February to the beginning of March 17 

(confidence interval of 95%, Mann-Kendall test). These results suggest the occurrence of 18 

different types of biomass combustions during low temperature winter days compared to late 19 

autumn and early spring: as levoglucosan derives from cellulose pyrolysis (>300°C), while 20 

vanillic and syringic acid result from lignin combustion (Simoneit et al., 1998, Sullivan et al., 21 

2008).  Different reactivities / volatilities of BBOA markers may complicate this analysis. For 22 

this reason we discuss in the following the levoglucosan stability, and propose that the major 23 

driver of the observed seasonal trends is the occurrence of different BBOA combustions.  24 

Previous studies revealed the levoglucosan reactivity toward OH∙ radical oxidation (Hennigan 25 

et al., 2010) both in gas and aqueous phase (Hoffmann et al., 2010). In the following we 26 

analyze the levoglugocan and nss-K
+
 time series in order to investigate the possible effects of 27 

levoglucosan chemical stability and different types of biomass combustions on the seasonal 28 

evolution of the levoglucosan:nss-K
+
 ratio. During summer nss-K

+
 derives mostly from dust, 29 

while levoglucosan is depleted by both photochemistry (Hennigan et al., 2010) and low 30 

BBOA emissions. Not surprisingly the levoglucosan:nss-K
+
 ratio showed lower average 31 

values in summer (0.23) than in winter (3.14). During winter nss-K
+
 is considered to be 32 

mostly emitted by BBOA, and consistently in our dataset it shows a good correlation with 33 



 27 

BBOA tracers (R=0.66 with syringic acid). Overall, the levoglucosan:nss-K
+
 ratio during the 1 

cold season manifests a behavior that is opposite to the photochemical activity (with 2 

temperature considered as a proxy) as it shows higher values during March and late autumn 3 

(up to 7.11) and lower in January, February (minimum = 2.79; Fig. 11) when temperature is 4 

lower and photochemistry is less intense. For these reasons we relate the winter 5 

levoglucosan:nss-K
+
 variability to different types of combustion rather than to a levoglucosan 6 

depletion due to photochemistry. Furthermore we observed the highest levoglucosan 7 

concentrations (late autumn) simultaneously with the highest relative humidity (89%) values, 8 

suggesting the depletion of levoglucosan by OH∙ radical oxidation in aqueous phase to be not 9 

significant (Hoffmann et al., 2010).  10 

A similar winter seasonal behavior was observed also for plant waxes. Plant waxes 11 

concentrations were estimated from high molecular weight n-alkanes (C24-C35) according to 12 

the methodology described by Li et al. (2010).  This  methodology is based on the observation 13 

that alkanes from epicuticular waxes preferentially contain an odd number of carbon atoms 14 

(Aceves and Grimalt, 1993; Simoneit et al., 1991). This was observed for a large variety of 15 

plants including broad leaf trees, conifers, palms, shrubs, grasses, and groundcover 16 

(Hildemann et al., 1996 and references therein). Waxes showed the highest concentrations 17 

during late autumn (up to 0.16 g m
-3

) and in May (up to 0.17 g m
-3

), while the minima were 18 

observed during winter (minimum 0.007 g m
-3

). In general, high molecular weight n-alkanes 19 

are typically detected in atmospheric aerosol in significant amounts during the growing 20 

season. In a similar way, Hildemann et al. (1996) estimated the highest plant waxes 21 

concentrations in April-May in Los Angeles and Pasadena where the climate is similar to 22 

Marseille. Similarly we observed the highest concentrations during May. However, 23 

comparable plant waxes concentrations were observed also in late autumn during the period 24 

characterized by the highest levoglucosan:lignin combustion tracers (Fig 11), suggesting a 25 

possible emission from open combustion of green wastes. 26 

Taken together the above observations suggest the occurrence of combustion of cellulose-rich 27 

material during March and late autumn, compared to lignin rich biomass burning for 28 

residential heating during January. The combustion of cellulose-rich material is possibly 29 

related to agricultural waste burning at the beginning and at the end of the agricultural cycle. 30 

The occurrence of emission of biomass plumes due to land clearing episodes during March 31 

has already been reported in other parts of Europe (Ulevicius et al., 2016), and has been 32 
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previously modelled for southern France (Dernier van der Gon et al., 2015, Fountoukis et al., 1 

2014).  2 

In this study we related the evolution of the BB composition over the cold season to the 3 

combustion of cellulose-rich and lignin-rich fuels, considering that lignin end cellulose are 4 

contained in different ratios in different biomass fuels. This designation should not be 5 

considered as an oversimplification of the combustion processes or of the fuel complexity, but 6 

rather as a classification of the BB aerosol based on our observations of increasing lignin 7 

pyrolysis products over cellulose pyrolysis products during the coldest days. 8 

We note that BB is described in our PMF models by only one factor which therefore 9 

potentially represents a combination of several types of biomass burning sources. Increasing 10 

the number of factors did not lead to an unambiguous separation of different BBOA sources, 11 

however, the comparison with source-specific markers revealed a real BBOA composition 12 

evolution over the winter season with higher cellulose to lignin combustion tracer ratios 13 

observed during late autumn and early spring in comparison to January/February. This 14 

hypothesis of at least two types of BB sources (one linked to domestic heating, another to 15 

agricultural activities) is also supported by the direct PMF analysis of the organic and 16 

inorganic markers measured for batch 1 (Salameh et al., submitted). 17 

 18 

5 Conclusions 19 

PM2.5 filter samples were collected during an entire year (August 2011 to July 2012) at an 20 

urban site in Marseille, France. Filter samples were analyzed by water extraction followed by 21 

nebulization of the liquid extracts and subsequent measurement of the generated aerosol with 22 

an HR-ToF-AMS (Daellenbach et al., 2016).  23 

PMF analysis was conducted on the offline-AMS mass spectra and on online-AMS data 24 

collected at the same station during February 2011. Offline-AMS source apportionment 25 

results were also compared with a previous online-AMS source apportionment study of two 26 

weeks during July 2008 at the same location (El Haddad et al., 2013). The methods returned 27 

statistically similar seasonal factor concentrations, although different years and size fractions 28 

were considered (PM1 for online-AMS, PM2.5 for offline-AMS). OOA was the major source 29 

of OA during summer representing on average 55% of the OA mass, while BBOA was the 30 

dominant OA source during winter contributing on average 43% of the OA. Smaller 31 



 29 

contributions were estimated for HOA, INDOA and COA, representing 17%, 12%, and 4% of 1 

the OA mass, respectively. The contribution of primary anthropogenic sources (HOA + 2 

BBOA + COA + INDOA) was substantial over the year (62%avg of OA), with larger absolute 3 

and relative contributions during winter (73% of OAavg) associated with an intense biomass 4 

burning activity.  5 

Coupling offline- and online-AMS data with molecular markers showed increasing 6 

levoglucosan:BBOC ratios during the late winter-early spring period in both 2011 and 2012. 7 

This trend was also observed for the ratios between cellulose and lignin combustion markers 8 

(e.g. levoglucosan:vanillic acid), with ratios approaching more typical domestic wood 9 

combustion European values during January/early February, and values characterized by 10 

higher values of cellulose-combustion markers during late autumn and March indicative of 11 

the influence of different types of fuels, possibly related to agricultural-related activities.  12 

From the offline-AMS source apportionment, we observed a high BBOA correlation with 13 

nitrocatechols deriving from the nitration of catechols directly emitted by biomass 14 

combustion. These secondary components are rapidly formed in the atmosphere in presence 15 

of NO3∙ (life time of a few minutes). Overall, despite the different time resolution, online- and 16 

offline-AMS provided a comparable SOA-BBOA separation during winter. Nevertheless, in 17 

case of fast SOA formation (relative to the time scale of the online-AMS time resolution, or 18 

relative to the transport time to the receptor site) this separation can be hindered, and further 19 

efforts are needed to improve the SOA separation from BBOA. 20 
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  1 

 2 

Figure 1. PM2.5 composition: stacked average seasonal concentrations. Measured PM2.5 error 3 

bars represent the seasonal standard deviation. OM was estimated as the sum of the offline-4 

AMS source apportionment factors.  5 
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 1 

Figure 2. Online-AMS: average PMF factor mass spectra. 2 

 3 

Figure 3. Online-AMS: a) PMF factors relative contributions. b) Time series of PMF factors 4 

and corresponding tracers. Shaded areas denote the model uncertainties. 5 
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 1 

 2 

Figure 4. Online-AMS: average diurnal cycles of PMF factors and corresponding tracers. 3 
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1 
Figure 5. Offline-AMS: water soluble average mass spectra. 2 

 3 

 4 

 5 

 6 

Figure 6. Offline-AMS: a) PMF factors relative contributions. b) Time series of PMF factors 7 

and corresponding tracers. Bars denote the model uncertainties. 8 
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 1 

 2 

Figure 7. Online (PM1) and offline-AMS (PM2.5) comparison. Bars represent the error 3 

including temporal variability and model uncertainty. 4 

 5 

Figure 8. Online (PM1, El Haddad et al., 2013) and offline-AMS (PM2.5) comparison. For 6 

offline-AMS bars represent the error including temporal variability and model uncertainty. 7 

For online-AMS bars represents only the temporal variability. 8 
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 1 

Figure 9. Correlation between the sum of nitrocatechols (Table S1) with levoglucosan and 2 

BBOC. 3 
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Figure 10: Offline-AMS (February 2012) and online-AMS (February 2011) smoothed time-1 

dependent levoglucosan:BBOC ratios. We note that the levoglucosan:BBOC comparison 2 

should not be considered on a day-to-day basis where the levoglucosan:BBOC ratio in the two 3 

different years can be coincidentially equal or different, but rather on a monthly time scale 4 

where, as discussed in the manuscript, we observed a statistically significant (p=0.05) 5 

evolution of the levoglucosan:BBOC ratio which is similarily captured by the two models. 6 

 7 

 8 

 9 

Figure 11: Online- and offline-AMS time-dependent levoglucosan:BBOC, 10 

levoglucosan:vanillic acid, levoglucosan:syringic acid, and levoglucosan:K
+
 ratios. The plant 11 

waxes concentrations were determined from GC-MS measurements of alkanes with an odd 12 

number of carbons (Li et al., 2010). As discussed in the main text the spike observed in late 13 

autumn could be related to incomplete green waste combustion.   14 
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