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General Comments: 

 

 
 This manuscript reported the chemical composition of PM2.5 over al full year in an urban site in France, 

based on offline filter analysis. The focus is to study the sources of organic aerosol by performing PMF 

analysis on AMS data. The authors did very careful analysis to optimize PMF results. The authors found 

that BBOA is the dominant OA source in winter and OOA is the main OA source in summer. The authors 

also compared the offline-AMS results with online-AMS results, but the measurements were not 

performed simultaneously. The levoglucosan/BBOA ratio was found to evolve over time, which was 

attributed to different types of biomass burning combustions, instead of the photochemical aging. Overall, 

the analysis is adequate, the conclusions are generally solid, but none of the results are earth shattering 

or unexpected given the preexisting literature. I recommend accepting manuscript after major revisions.   

 

 

 

 

We thank Anonymous Referee #1 for the careful review and inputs which helped improving the overall 

quality of our work and its impact. We recognize that this work presents results relative only to one 

station, showing an expected pattern of source seasonality, e.g. dominance of biomass smoke in winter 

and SOA in summer. Despite this, we strongly believe that the work is incremental compared to existing 

literature and it presents innovative approaches for data analysis that can be used in future works and 

novel aspects regarding the composition of different aerosol sources. The following novel approaches and 

findings can be highlighted: 

 

  The work introduces new methods for source apportionment validation such as the systematic 

comparison of the PMF factor mass spectra with literature profiles using cosine similarity. This 

approach quantitatively examines how variable the mass spectral profiles extracted by PMF are 

for each of the different sources, and how distinguishable profiles from different sources are, 

allowing a more robust validation of the identified factors. In our opinion such systematic 

analysis of ME-2 model outputs should become a standard for the optimization and validation of 

source apportionment results. 

 While the high contribution of biomass burning aerosols during winter may not be surprising, this 

work presents one of the first identification of the origins of this fraction. Till now, the biomass 

burning fraction detected in Europe, based on the analysis of specific markers (e.g. levoglucosan), 

is often related to residential heating. Here, by combining several techniques (AMS/PMF and 

molecular speciation), we could clearly distinguish emissions from residential heating and 

agricultural burning to this fraction, with the latter process found to be very important during the 

land clearing period, at least in this region of Europe. Therefore, this work offers on the one hand 

analysis techniques that can be applied in the future to distinguish between different biomass 

burning emission processes, and on the other hand it unveil one of the reasons behind the 

observed variability in biomass burning composition (e.g. markers ratios).  

 The work also reveals that both online- and offline-AMS PMF tend to apportion rapidly formed 

SOA components to primary PMF factors, rather than to the OOA factors. We show that this is 

especially the case for nitrocatechols, formed from the oxidation of lignin-pyrolysis derived 

compounds in biomass burning fumes and is therefore most important during winter when lignin 

rich biomass is burned for residential heating. By examining the oxidation rates of these 

compounds towards OH and NO3 radicals we show that these compounds have a lifetime of 



minutes in the atmosphere, which explains the apportionment of their oxidation products to 

directly emitted primary aerosols. This has implication on the technical separation between 

primary and secondary aerosols in the atmosphere.  

 This study provides for the first time to the best of our knowledge, yearly contributions of 

industrial sources to the organic aerosol using AMS measurements and identify possible tracers 

(Se, fluoranthene, pyrene, phenantrene) which can be utilized in future studies. Although 

industrial sources can significantly change characteristics depending on the industrial processes 

involved; petrochemical activities, shipping and metallurgical industries, such as those 

encountered in the studied area, are widespread and may represent a significant aerosol source in 

many other industrialized areas. Here, we demonstrated that these processes may be efficiently 

traced by offline-AMS. 

 In addition, other novel technical aspects presented in this study could be highlighted, including 

the determination of the recovery/water solubility of industrial emissions and the first 

identification of the interference of inorganic carbonates to OA measurements. While this 

interference might be most important for the offline analysis, it can also influence online AMS 

measurements, e.g. for studies conducted at dusty locations using a PM2.5 aerodynamic lens, or 

biomass burning direct emission studies which can be affected by high concentrations of 

carbonates in the ashes. 

 

Source Apportionment 

 Major comments  
1) Instrument inter comparison.  

For the filter analysis, some ions and species (such as SO4, NO3, WSOC, etc) are quantified 

by more than one techniques. It is natural to include the instrument inter-comparison in the 

manuscript. In one previous study of the authors (Bozzetti et al., 2017), the comparison of 

SO4 concentration between offline-AMS and IC has a non-linear relationship. Does the non-

linear relationship also exist in current study? Have the authors investigated more about the 

non-linear relationship since the previous study? Also, I wonder if the AMS_SO4/IC_SO4 

ratio is similar to AMS_OC / WSOC ratio? 

 

We need to state that major ions in this work were quantified only by IC, while WSOC was quantified 

only by TOC analysis of the aqueous filter extracts. Offline-AMS did not provide quantitative 

concentrations of major ions or WSOC for reasons that shall become clear in the following. In this study, 

similarly to Bozzetti et al. (2017), we observed a non-linear relation between IC and offline-AMS SO4
2-

 

and NO3
-
 (Fig. D1). The causes of the observed non-linear relations are the following: 

I) Transmission efficiency through the aerodynamic lens. The nebulization of differently 

concentrated filter extracts generates aerosol particles characterized by different size-

distributions, i.e. the nebulization of more concentrated filter extracts generates larger 

particles. In case of highly diluted filter extracts, the generated aerosol particles approach 

the low cut size of the AMS aerodynamic lens. This yields lower transmission 

efficiencies for diluted extracts in comparison to more concentrated solutions. Also, the 

influence of particle size on the detection implies that the relationship between the 

concentrations for a certain species measured by IC and offline AMS is not constant, but 

depends on the abundance of other species. In other words, for two filter extracts 

characterized by the same e.g. NO3
-
 concentrations, the extracts characterized by the 

highest SO4
2-

 + NH4
+
 + Cl

-
 + organic concentration will show a higher NO3

-
 sensitivity in 

the offline-AMS analysis due to the nebulization of bigger particles better transmitted 

through the AMS aerodynamic lens. This implies that applying a simple transmission 



efficiency correction (i.e. only function of one component, e.g. NO3
-
) won’t provide 

accurate results. 

II) Scatter in the correlations between NO3
-
 or SO4

2-
 from IC and NO3

-
 or SO4

2-
 from offline-

AMS can derive from the AMS electron impact fragmentation of organo-NO3
-
 or organo-

SO4
2-

 which leads to the formation of fragments attributed to inorganic NO3
-
 or SO4

2-
. As 

a result a certain fraction of AMS-NO3
-
 and AMS-SO4

2-
 is of organic origin.  

III) Another source of scatter in the correlation between IC SO4
2-

 and offline-AMS SO4
2-

, is 

the presence of refractory SO4
2-

 salts (e.g. Na2SO4 and CaSO4 which are detectable by IC, 

but not by AMS. Also, the water solubilization of non-refractory SO4
2-

 salts (e.g. 

(NH4)2SO4)) can lead to the formation of refractory SO4
2-

 species due to the possible 

recombination of SO4
2-

 with other cations in solution (e.g. Na
+
, Mg

2+
, and Ca

2+
). 

 

Because of the points I), II) and III) also the SO4
2-

AMS:SO4
2-

IC ratio differs from the 

WSOCAMS:WSOCIC ratio (Fig. D1). For these reasons only inorganic ion concentrations from IC 

were reported in the main text. Fig. D1 a) shows that relation between SO4
2-

AMS:SO4
2-

IC and 

WSOCAMS:WSOCIC tends to deviate from a 1:1 line for high Ca
2+

 concentrations. Specifically, 

SO4
2-

 is
 

less efficiently detected than WSOC by offline-AMS in presence of high Ca
2+

 

concentrations, indicative of the probable recombination of SO4
2-

 with Ca
2+

 in solution, leading 

to the formation of refractory SO4
2-

 salts (e.g. CaSO4) not detected by AMS 
 



  
Figure D1. a) SO4

2-
AMS:SO4

2-
IC correlation with WSOCAMS:WSOCIC. b) and c) NO3

-
 and SO4

2-
: Offline-

AMS comparison with IC. 
 

 
  

2) The interpretation of recovery ratio and extract the water solubility of OA factors.  

If I understand correctly, the recovery ratio is a function of nebulizer efficiency (i.e., species 

loss during nebulization), AMS collection efficiency (i.e., include the lens transmission 

efficiency. The collection efficiency at the vaporizer may or may not be included, depending 

on whether the CE has been applied), and the water solubility of OA factors. Since the 

species are internally mixed in the solution and in the nebulized particles, the nebulizer 

efficiency and AMS collection efficiency should be the same for all OA factors. Thus, the 

recovery ratio only depends on the water solubility of OA factors. Figure S12 shows that 

OOA has the largest recovery ratio and HOA has the smallest recovery ratio, which is 

consistent with that OOA is more water soluble than HOA. Thus, this provides a potential 

opportunity to estimate the water-solubility of OA factors. For example, could the authors 
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make use of the instrument inter-comparison (i.e., SO4 between offline AMS and IC) to 

correct for the efficiency of offline AMS system, as similarly done in Xu et al. (2016)? Then, 

use the model proposed by Psichoudaki and Pandis (2013) to relate the fraction of a 

compound extracted in WSOC as a function of compound water-solubility at dissolution 

equilibrium. The model in Psichoudaki and Pandis (2013) is designed for filter extraction 

analysis. In this way, more useful information about OA factors can be extracted. 

 

We agree with the reviewer’s interpretation of the factor recoveries. As OA factors are expected to be 

internally mixed in the nebulized particles, their nebulization efficiency and AMS collection efficiency 

should be the same and hence their recovery would be governed by their water solubility. Daellenbach et 

al. (2016) stated that the calculated factor recoveries are consistent with the water solubility of these 

fractions, with HOA being barely water soluble (~13%), BBOA moderately water soluble (65%) and 

OOA almost entirely water soluble (90%). These factor recoveries have been revaluated in this study (see 

“Offline-AMS source apportionment optimization” section) and are consistent with the estimates of 

Daellenbach et al. (2016) (Fig. S12), based on collocated ACSM and offline-AMS measurements at 

another site. In addition, here the recovery for industrial OA has been assessed to be similar to that of 

BBOA (69%). 

Based on the reviewer comment we have assessed the link between the factor recoveries and the water 

solubility of the compounds therein. We have assumed each of the components to comprise a single 

average surrogate in equilibrium between the aqueous solution and an ideal solution of water insoluble 

organic species. The adaptation of the equations in Psichoudaki and Pandis (2013) to our problem yield 

the following expression of the surrogate extracted fraction/recovery. We will refer to this fraction as 𝑅′𝑘, 

to draw a distinction between measured and calculated recoveries.  

 

𝑅′𝑘 =
𝑚𝑘 + 𝑉𝑊𝑆𝑘 +𝑚𝑂𝐴(1 − 𝑓𝑊𝑆𝑂𝐶) − ((𝑚𝑘 + 𝑉𝑊𝑆𝑘 +𝑚𝑂𝐴(1 − 𝑓𝑊𝑆𝑂𝐶))

2
− 4𝑚𝑘𝑉𝑊𝑆𝑘)

1 2⁄

2𝑚𝑘
 

 

Here, mk and mOA are the total mass of a factor k and of the organic aerosol on the extracted sample. VW is 

the volume of water used for extraction, fWSOC the fraction of water soluble organics and the Sk the water 

solubility of the average surrogate compound representative of the bulk composition of the component k. 

This formulation should provide a highest estimate of Sk compared for example to considering the 

extraction of a single component k to be independent of the presence of the other organics (k forms its 

own phase). Using this formulation, we estimate the recoveries obtained under our conditions to be 

consistent with Sk values of 10
-3

 g L
-1

, 10
-2 

g L
-1

 and 10
-1

g L
-1

, for HOA, BBOA/COA/INDOA, and OOA, 

respectively. We have also assessed the sensitivity of 𝑅′𝑘 towards the bulk aerosol composition, by 

varying 𝑓𝑊𝑆𝑂𝐶, the total organic aerosol concentrations and the contribution of the factor of interest 

within the observed ranges. This sensitivity analysis suggests that for a similar solubility, the variability in 

the extraction conditions may influence the recoveries by 10 percentage points on average (see the upper 

and lower curves in Figure D2). These variations are relatively small, within our confidence interval of 

the determined recovery parameters. We note that the extraction procedure adopted here favors the 

compounds’ partitioning into the aqueous phase, given the high extraction volume compared to the 



sampled volume per extracted filter fraction: ~0.5 cm
3
 m

-3
 vs. 0.1 cm

3
 m

-3
 in the other studies 

(Psichoudaki and Pandis, 2013 and references therein). Under these conditions, all typical functionalized 

compounds would be extracted (Cappelli et al., 2013; Meylan and Howard, 1994a,b; Meylan et al., 1996) 

We also note that the model used here is rather simplistic and the different components are expected to 

comprise a suite of compounds with a wide range of water solubility. This can be expressed in a solubility 

basis set by analogy to the volatility basis set (VBS). This simplification implies on the one hand that the 

solubility values provided here are only weighted average values for the solubility of different compounds 

contained in these components. On the other hand, the model provided here would significantly over-

predict the sensitivity of the recoveries to the extraction procedure adopted (filter loading, bulk OA 

solubility and extraction volume).  Again by analogy to the VBS, most of the compounds contained in 

one component may be either water soluble or insoluble under most of the extraction conditions, and only 

a minor fraction of semi-soluble compounds would be sensitive to the extraction procedure. Therefore, we 

note that the data we present here cannot be directly extrapolated to other studies and establishing a 

solubility basis set for the different components would require significantly varying the extraction 

conditions of the different samples followed by an assessment of the recovery, which is beyond the scope 

of this study.  

http://ac.els-cdn.com/S004896971300733X/1-s2.0-S004896971300733X-main.pdf?_tid=2a9603be-0355-11e7-8a14-00000aacb361&acdnat=1488905178_330e44bfbf1e3211573dbf1af13990c6


 

Figure D2. Sensitivity of the calculated factor recoveries R’K to the factor solubility SK (g L
-1

). Vertical 

lines define the factor solubility calculated from the median factor recoveries (R’K, horizontal lines) 

determined in this work . 

This discussion was added to the revised SI. 

 

 
3) The selection of PMF solutions is very careful, but some related descriptions require more 

clarifications.  

I) Did the author constrain all OA factors or only COA and HOA? More importantly, 

it should be clearly stated that how the anchor profiles are selected? If the authors 

use the average reference mass spectra of HOA and COA as anchor profiles, would 

it make the analysis easier?  

 

For both offline- and online-AMS we constrained HOA and COA profiles from Mohr et al. (2012) and 

Crippa et al. (2013b) respectively. The HOA profile from Mohr et al. (2012) was selected for offline-

AMS consistently with Daellenbach et al. (2016), since the same factor recovery distributions were 
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applied in this work. The same profile was applied to online-AMS for consistency. Overall, as discussed 

in the SI, the HOA profiles from literature show high cosine similarities with each other’s, suggesting that 

the AMS mass spectral fingerprints from traffic exhaust are relatively stable from station to station and 

consistent also with direct emission studies, making the selection of the constrained factor profiles not 

crucial. In addition, for practical reasons, the profile from Mohr et al. (2012) is the most useful because of 

the low amounts of missing ions.  

More variability instead is observed among COA literature profiles. For COA we selected the profile 

from Crippa et al. (2013b) which showed the lowest fC2H4O2
+
 value among the considered ambient 

literature spectra. This guaranteed a better separation of COA from BBOA, as C2H4O2
+
 is strongly related 

to levoglucosan fragmentation (Alfarra et al., 2007). The use of average literature profiles is practically 

not straightforward because different HR peak fittings are performed in literature studies which yields 

different peak list and increases the amounts of missing variables. While this is indeed an issue for the 

PMF analysis, for the cosine similarity calculations we have overcome this issue by retaining only 

fragments associated with a small variability among the literature profiles. In this way, the generated 

profiles were characterized by a smaller number of fragments compared to the original literature spectra. 

This hampers the utilization of average spectra in the a-value approach, because anchor values for the 

missing/discarded fragments have to be assumed. For these reasons the calculated average profiles were 

not constrained. 

The discussion about the choice of the reference spectra was added in the main text at P10 L23: 

For both offline- and online-AMS the constrained HOA profiles were from Mohr et al. (2012), while the 

COA profiles were from Crippa et al. (2013b). The HOA profile from Mohr et al. (2012) was selected for 

offline-AMS consistently with Daellenbach et al. (2016), since the same factor recovery distributions 

were applied in this work. The same profile was applied to online-AMS for consistency. Overall, as 

discussed in the SI, the HOA profiles from literature showed high cosine similarities with each other’s, 

indicating that the AMS mass spectral fingerprints from traffic exhaust are relatively stable from station 

to station and consistent also with direct emission studies, making the selection of the constrained factor 

profiles not crucial. More variability instead is observed among COA literature profiles. For COA we 

selected the profile from Crippa et al. (2013b) which showed the lowest fC2H4O2
+
 value among the 

considered ambient literature spectra (Crippa et al., 2013b; Mohr et al., 2012). This guaranteed a better 

separation of COA from BBOA, as C2H4O2
+
 is strongly related to levoglucosan fragmentation (Alfarra et 

al., 2007). 

 and P12 L21: 

As already mentioned, the HOA and COA profiles were constrained using an a-value approach. 

Consistently with online-AMS we constrained the profiles from Mohr et al. (2012) and Crippa et al. 

(2013b) respectively. Unconstrained PMF runs for offline-AMS did not resolve HOA and COA factors. 

 

II)  Did the authors constrain industry-related OA (INDOA) in the offline analysis? The 

INDOA factor is resolved in whole year offline dataset and 2008 July online dataset, 

but not in 2011 February online dataset. Have the authors tried to constrain the 

INDOA for the 2011 February online dataset? 

 



 

The INDOA mass spectrum was not constrained in the offline-AMS source apportionment. The INDOA 

factor profile displayed in Fig. 5 was resolved by the PMF model and represents the INDOA mass 

spectrum (WSINDOA) of the water-soluble fraction. As mentioned in the manuscript, El Haddad et al. 

(2013) resolved by unit mass resolution online-AMS PMF an industrial profile at the same location 

during summer. This factor, similarly to offline-AMS showed abruptly changing contributions correlating 

with PAH concentrations. In particular El Haddad et al. (2013) reported simultaneous INDOA and AMS-

PAHs increasing concentrations associated with wind directions from W/SW. By contrast, as discussed in 

the manuscript (section 3.1), the AMS-PAH variability was well explained by the BBOA factor and did 

not show increasing concentrations with wind directions oriented from W/SW (225°-270°, Fig. S14). For 

these reasons we preferred a more conservative approach without constraining of an INDOA factor since 

no clear evidences of significant contributions were found. Constraining an HR industrial profile, which is 

currently lacking in the literature and has similar features as other more important primary sources (e.g. 

COA and HOA), would result in much more uncertainties than currently is the case, where already 

selection criteria of the PMF solutions were set to well separate the primary sources.  

 

III) The application of cluster analysis to select PMF solutions is very nice, but the 

description of cluster analysis is not clear in the main text. For example, what does 

“PMF solutions” refer to in Page 10 Line 33? Please be more clear that “PMF 

solution” is a full set of solution (i.e., including both time series and mass spectra of 

all OA factors). I suggest to remove some descriptions from the SI to the main text. 

 

As suggested by anonymous reviewer #1 we modified the text as follows: 

 

P10 L33: From the HOA and COA a-value sensitivity analysis we obtained a set of 121 PMF solutions 

each one including both factor profiles and factor time series.  

 

In addition, we introduced a summary of the PMF solution optimization for both online- and offline-AMS 

in the main text following anonymous reviewer #1 and #2 suggestions (see reply to anonymous reviewer 

#2). 

 

IV) After all the discussions on the optimization of PMF solutions, it is not clear what is 

the final PMF results. Did the authors use the average of all retained PMF 

solutions? It would be useful to comment on how the finally optimized PMF solution 

is different from that by using PMF2 solver without any constrain, since the PMF2 

solver is most widely used method. 

 

As described in the manuscript (P12 L6-8 for online-AMS, and P14 L 21-24 for offline-AMS), the source 

apportionment results for both offline- and online-AMS represent the average of the retained PMF 

solutions. For online-AMS, we identified a subset of HOA and COA a-value combinations optimizing the 

resolution of the two factors. This was performed by systematically analyzing the COA diurnal cycles 

using cluster analysis and systematically comparing PMF mass spectra with literature profiles using 

cosine similarity. The selected COA and HOA a-value combinations were subsequently randomly 

resampled when exploring the model rotational ambiguity by performing bootstrap PMF runs. The 

average of the bootstrap runs represented our source apportionment final results.  

Similarly to online-AMS, for offline-AMS we performed bootstrap PMF runs by randomly resampling 

COA and HOA a-value combinations. The PMF analysis in this case provided water-soluble factor 

concentrations. We subsequently selected the solutions in two steps. The first selection step was based on 

factor correlations with external tracers (6 criteria listed at P13, L3-12). Subsequently we applied factor 

recoveries combinations (Daellenbach et al., 2016) to the retained PMF solutions in order to rescale the 

water-soluble factor concentrations to corresponding total OC concentration. Only solutions showing 



unbiased OC residuals for all seasons together and for summer and winter separately were retained. The 

average of the retained solutions represented the offline-AMS final source apportionment results. 

A summary of online- and offline-AMS source apportionment optimization strategies were added at P10 

L11, and at P12 L13, as also requested by anonymous reviewer #2 (see answer to the 3
rd

 major comment). 

 

Unconstrained PMF runs for offline-AMS did not resolve HOA and COA factors. In the case of online-

AMS source apportionment, leaving COA and/or HOA unconstrained enabled resolving COA only by 

increasing the number of factors (>5 factor solutions) while in the 4 factor solutions we observed a 

splitting of an OOA factor which could not be attributed to specific processes. Unconstrained PMF 

yielded HOA and COA time series well correlating with the constrained solutions (see Fig. below); 

however in the unconstrained case, HOA and COA factor profiles showed higher fCO2
+
 in comparison 

with literature studies (Crippa et al., 2013b; Mohr et al., 2012; Bruns et al., 2015; Docherty et al., 2011; 

Setyan et al., 2012; He et al., 2010) and in comparison with the constrained PMF runs. This in turn 

resulted in higher HOA and COA concentrations, with background night concentrations 2-3 times higher 

than in the constrained solutions, possibly indicative of mixing with oxidized aerosols. Similar differences 

between constrained and unconstrained PMF runs were also observed in Elser et al. (2016). Also, the 

HOA:NOx ratio (g m
-3

/g m
-3

) matched typical literature values reported for France (0.02 Favez et al., 

2010) in the constrained PMF case (0.023), while for the unconstrained approach it showed higher values 

(0.033). This discussion has been added in the main text P10 L23. 

 

Using an a-value approach, we constrained HOA and COA profiles from Mohr et al. (2012) and Crippa et 

al. (2013b) respectively. Leaving COA and/or HOA unconstrained enabled resolving COA only by 

increasing the number of factors (>5 factor solutions) while in the 4 factor solutions we observed a 

splitting of an OOA factor which could not be attributed to specific processes. Unconstrained PMF 

yielded HOA and COA time series well correlating with the constrained solutions; however in the 

unconstrained case, HOA and COA factor profiles showed higher fCO2
+
 in comparison with literature 

studies (Crippa et al., 2013b; Mohr et al., 2012; Bruns et al., 2015; Docherty et al., 2011; Setyan et al., 

2012; He et al., 2010,) and in comparison with the constrained PMF runs. This in turn resulted in higher 

HOA and COA concentrations, with background night concentrations 2-3 times higher than in the 

constrained solutions, possibly indicative of mixings with oxidized aerosols. Similar differences between 

constrained and unconstrained PMF runs were also observed in Elser et al. (2016). Also the HOA:NOx 

ratio (g m
-3

/g m
-3

) matched typical literature values reported for France (0.02 Favez et al., 2010) in the 

constrained PMF case (0.023), while for the unconstrained approach it showed higher values (0.033). 



  

Fig. D3. Comparison of COA and HOA diurnal cycles from constrained and unconstrained PMF 

solutions. 

Figure D3 was added to the SI as Fig. S5. 

Following the reviewer’s remark, we introduced in the main text a summary of the online-AMS 

optimization procedure (P10 L11). 

In order to optimize the source separation, we performed sensitivity analyses on PMF solutions 

according to the following scheme: 

I) Selection of the number of factors based on residual analysis.  

II) Qualitative evaluation of the unconstrained PMF solution in comparison with the 

constrained PMF solutions (a-value approach: COA and/or HOA constraints) 

III) Constrain of both the HOA and COA factors profiles adopting an a-value approach. 

a-value sensitivity analysis (121 PMF runs performed scanning all the COA and 

HOA a-value combinations, a-value scanning steps: 0.1). 

IV) Classification of the 121 PMF runs based on the cluster analysis of the COA diurnal 

cycles. Selection of the best clusters, and corresponding PMF solutions.  

V) PMF rotational ambiguity exploration. 100 bootstrap (Davison and Hinkley, 1997; 

Brown et al., 2015) PMF runs were performed by simultaneously varying the COA 

and HOA a-value combinations (using only the optimal a-value combinations 

identified from step IV). The average of the 100 bootstrap runs represented the 

online-AMS source apportionment average solution. The corresponding standard 

deviation represents the source apportionment uncertainty. 

 

In a similar way we introduced a summary of the offline-PMF source apportionment 

optimization (P12 L13): 

 

In order to optimize the source separation, we performed sensitivity analyses on PMF solutions 

according to the following scheme: 



I) Selection of the number of factors based on residual analysis.  

II) Qualitative evaluation of the unconstrained PMF solution in comparison with the 

constrained PMF solutions (a-value approach: COA and/or HOA constraints) 

III) PMF rotational ambiguity exploration. 1080 bootstrap (Davison and Hinkley, 1997; 

Brown et al., 2015) PMF runs were performed by simultaneously varying the COA 

and HOA a-value combinations. PMF solutions were retained based on the 

correlation of the PMF factors with external tracers. The PMF solutions retrieved 

from this step are relative to the water-soluble fraction. The corresponding water-

soluble OC factor concentrations were determined by dividing the water-soluble OM 

factor concentrations (PMF output) by the OM:OC ratio determined from the 

corresponding factor mass spectrum. 

IV) Retained water-soluble OC PMF solutions from step (III) were rescaled to the total 

OC concentrations by applying factor recoveries. Factor recoveries were fitted (using 

a-priori information) to match total OC. Only PMF solutions and factor recoveries 

fitting OC with yearly and seasonally homogenous residuals were retained. The 

average of the retained PMF solutions represented the average source apportionment 

results. The corresponding standard deviation represented the source apportionment 

uncertainty. 
 

 

4) The comparison between online and offline measurements.  

I)  It would be useful to include a table to summarize the sampling periods of online 

and offline measurements. Page 20 Line 4, it is very misleading to claim this study as 

the first comparison between HR online AMS and offline AMS, since the online and 

offline measurements are not simultaneous. Please rephrase.  

 

We rephrased P20, L3-6 as:  
In this study, we present one of the first OA source apportionment studies conducted over an entire year 

in the Mediterranean region. This work represents also the first comparison between HR online-AMS and 

HR offline-AMS source apportionments conducted at the same location, albeit in two different periods. 

 

Table 1 was also added at P8, L5 

 
Table 1. Monitoring periods. 

 

II) In Figures 7 and 8, how are winter and summer defined for offline AMS 

measurements? How many filters are included in winter and summer? The 

comparison in concentration looks generally good, but there are many 

disagreements as well. For example, INDOA is resolved in offline dataset, but not in 

2011 February online dataset. I suggest to include all factors in the figures, instead 

of only including the overlapped factors. 

 

Online-AMS Offline-AMS 

28 January 2011 – 02 March 2011 30 July 2011 – 20 July 2012 



As suggested, we inserted the INDOA factor resolved by offline-AMS in Fig. 7 and we added the COA 

factor in Fig. 8. 

In the offline-AMS source apportionment winter is defined from 21 December to 21 March. Summer is 

from 21 June to 21 September. These information are added in Fig. 7 and Fig. 8 legends. Both summer 

and winter are represented by 16 composite samples. 

 

 

 

IV) Page 17 Line 24-25, HOA from offline analysis does not correlate with NOx. This is 

consistent with 2008 July online dataset (as noted in the main text), but not 

consistent with 2011 February online dataset (i.e., R = 0.86 in Page 16 Line 6). 
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Please comment on this discrepancy. Btw, does OOA from offline analysis correlate 

with NH4
+
? 

 

These observations are correct. During summer 2008, the correlation between NOX and HOA is weak, 

although statistically significant, due to several reasons: 

1/   In 2008, the authors have demonstrated that COA, which could not be separated by PMF, 

interferes with HOA. This interference influences the correlation between NOX and HOA. 

2/  We have observed in many datasets (including online ACSM measurements) a weaker 

correlation between NOX and HOA concentrations, which we tentatively attributed to the rapid oxidation 

of NO2 in summer.  

3/  For the 2008 campaign, we have observed an increase in NOX concentrations during 

industrial episodes, which worsen the correlation between HOA and NOX.  

 

Similar reasons apply for the offline-AMS.  

 

By contrast during February 2011, we resolved a COA factor and no clear evidences of significant 

industrial contributions were observed. Therefore traffic could be well separated and can be considered as 

the main NOx source, which would explain the better correlation between NOX and HOA. 

 

OOA showed a low correlation with NH4
+
 (R = 0.3), suggesting that the OOA factor resolved in this work 

might originate from aging processes not following the seasonal formation of inorganic secondary 

components (NH4NO3 and (NH4)2SO4). El Haddad et al. (2013) resolved by online-AMS PMF two 

different OOA factors for a summer monitoring campaign conducted at the same location: LVOOA and 

SVOOA. In that work only LVOOA correlated with SO4
2-

, but not SVOOA which had the same temporal 

behavior of terpene first generation products and therefore a probable biogenic origin. Also, 
14

C 

measurements revealed that during summer the largest fraction of OOA had a non-fossil origin (El 

Haddad et al., 2013) indicating that biogenic emissions are expected to dominate OOA. A correlation 

between NH4
+
 and offline-AMS OOA would only be observed if the formation rates of OOA and 

ammonium sulfate or nitrate are very similar. In summer, biogenic emissions are expected to dominate 

OOA, but are associated with low emissions of SO2 and NOx. Therefore, for this study we do not expect a 

correlation between NH4
+
 and OOA. 

  

IV)  Were filter samples collected during 2011 February? If not, how are levoglucosan 

and vanillic acid measured for this period (Page 23 Line 23-24)? If yes, could the 

authors analyze them using offline-AMS and compare to simultaneous online AMS? 

 

As also indicated in the manuscript (P7-8 L29-4) and in Table S1, filters were also collected during 

February 2011. This batch of filter samples was defined as “Batch B2”, while the set of filters collected 

during the yearly cycle monitoring campaign was defined as “Batch 1”. A subset of the same analyses 

conducted for the Batch 1 was carried out also on Batch 2 (see Table S1), however, no filter material 

remained for offline-AMS analysis. 

Minor comment.  

1. Eqn. (11). In Bozzetti et al. (2017), there is a term TEOC (traffic emission OC) in the equation. 

Please discuss the rationale to replace TEOC with WSHOA/(RHOA*OM/OC) in current study. 

Also, WSOC is mentioned in Page 14 Line 17, but it is not clear how the WSOC is used in 

determining Rk.  

 



In Bozzetti et al. (2017), the traffic exhaust concentration was estimated using a chemical mass 

balance approach assuming hopanes measured by GC-MS to be a unique traffic tracer. This was 

necessary as constraining an HOA AMS profile returned a non-significant traffic exhaust correlation 

with typical traffic tracers such as hopanes and NOx. The traffic exhaust factor (TEOC) was not 

defined as HOA, because it was not identified from the AMS mass spectrum, but estimated from 

hopanes concentrations. In this work, as previously discussed, we resolved an HOA profile associated 

with a significant correlation with NOx (Criterion #2, P13, L5). The PMF factor was defined as 

“HOA”, because it was resolved by constraining an Hydrocarbon-like organic aerosol AMS 

spectrum. 

P14, L17. WSOC is indirectly contained within eq. 11. The sum of the PMF factors divided by their 

corresponding OM:OC ratios corresponds to WSOC (including also the PMF residuals within the 

sum). This is because the offline-AMS PMF input matrices were rescaled to WSOM = 

(WSOC∙OM:OC)i (P10, L1-3). Here WSOCi was determined by TOC analysis, and OM:OCi was 

determined from offline-AMS analysis. Since WSOC measurements might be affected by 

measurement biases we perturbed the WSKOC = WSKOA/(OM:OC)WSKOA PMF time series 

assuming a possible WSOC measurement bias of 5%.  

For the sake of clarity we added (= WSOATOC∙(OM:OC) offline-AMS)i at P10, L2, and we replaced at 

P14, L17 WSKOAi, with WSKOCi/(OM:OC)WSKOC. We also clarified that the sum of 

WSKOCi/(OM:OC)WSKOC for all PMF factors corresponds to WSOCi.(P17, L20): (we note that the 

sum of the WSKOCi/(OM:OC)WSKOC terms equals WSOCi neglecting the PMF residuals).  

 

 

2. Figure 1. Please show the detailed time series of stacked PM2.5 compositions and the measured 

total PM2.5 concentrations.  

Following anonymous reviewer #1’s suggestion we corrected figure 1 
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3. Figure 10. How and why are the data smoothed?  

Ratios are smoothed using a running average weighted by the BBOC concentrations. The variability in 

this ratio for each data point (weighted standard deviation) is displayed as a range, in order not to hide any 

of the data. Non-smoothed ratios are very noisy because of low concentrations, which hide the general 

trend in the data and averaging was necessary to show the general trends in the ratios.  

4. The discussions on PAH sources are confusing. Based on the discussions in Page 16 Line 14-29, 

it is likely that PAH is mainly from biomass burning for 2011 February. However, in Page 18 

Line 10-31, PAH is mainly from industry based on offline analysis on the whole year. Please 

clarify related discussions. Also, does AMS-PAH agree with filter PAH?  

 

The discussion at P18 L10-31 is not in contradiction with the section at P16 L14-19. In section 

P18 L10-31 we discuss that among the PAHs measured by GC-MS pyrene, fluoranthene and 

phenantrene are overwhelmingly emitted by industrial processes; however pyrene, fluoranthene 

and phenantrene represent only a minor fraction of the PAH total mass measured by GC-MS. In 

order to avoid misleading interpretation we inserted the following text at P18 L15. 

 

We note that phenanthrene, pyrene, and fluoranthene together represent 9.6%avg of the PAHs 

mass quantified by GC-MS, indicating that PAHs are overwhelmingly emitted by BBOA. 

 

Comparison between AMS-PAHs and GC-MS PAH. 

AMS-PAHs concentrations were found on average 19% higher than the sum of GC-MS 

quantified PAHs, and showed a significant correlation (R = 0.68). The concentration discrepancy 

can originate from different causes: 

a) GC-MS quantified PAHs do not represent the total PAHs mass. 

b) AMS-PAHs RIE could significantly differ from the average organic RIE (1.4) assumed in 

this work. 

c) PAHs might be formed on the AMS vaporizer surface from the pyrolysis of refractory 

organic compounds. 

This discussion was inserted in the SI. 

 

5. In Figure S18, why are there so many negative CO2
+

OOA values?  

 

Overall, only two points over 54 showed negative values within the estimated uncertainty. We 

added a “0 line” to Fig. S18 in order to guide the eye. These two points are related to the highest 

primary aerosol concentrations (due to the highest estimated BBOA concentrations), therefore 

they are affected by large uncertainties (possibly underestimated in our uncertainty model), 

because they were estimated as the difference between the measured CO2
+
 and the PMF modelled 

CO2
+ 

from primary sources. 



 

 

6. In the abstract, please mention that 216 filter were collected over a full year, but only 58 filters 

were analyzed.  

 

P1, L24-25 corrected as follows: 

  

In total 216 PM2.5 (particulate matter with an aerodynamic diameter <2.5 m) filter samples were 

collected over 1 year from August 2011 to July 2012. These filters were used to create 54 

composite samples which were analyzed by offline-AMS. 

 

7. Page 9 Line 7. What is the difference in signal between measurement blank and a sample with 

relatively low loading?  

 

Considering the liquid extract associated with the lowest offline-AMS organic signal, we 

observed an average signal/blank ratio of 102. 

8. Page 14 Line 3, RCOA is not defined yet. 

RCOA represents the COA factor recovery. This information was added to the manuscript (P14, L3) 
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