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Abstract. 

Eleven of the world’s 20 most polluted cities are located in India and poor air quality is already a major public health issue. 15 

However, anthropogenic emissions are predicted to increase substantially in the short-term (2030) and medium-term (2050) 

futures in India, especially if no more policy efforts are made. In this study, the EMEP/MSC-W chemical transport model has 

been used to predict changes in surface ozone (O3) and fine particulate matter (PM2.5) for India in a world of changing emissions 

and climate. The reference scenario (for present-day) is evaluated against surface-based measurements, mainly at urban 

stations. The evaluation has also been extended to other data sets which are publicly available on the web but without quality 20 

assurance. The evaluation shows high temporal correlation for O3 (r=0.9) and high spatial correlations for PM2.5 (r=0.5 and 

r=0.8 depending on the data set) between the model results and observations. While the overall bias in PM2.5 is small (lower 

than 6%), the model overestimates O3 by 35%. The underestimation in NOx titration is probably the main reason for the O3 

overestimation in the model. However, the level of agreement can be considered satisfactory in this case of a regional model 

being evaluated against mainly urban measurements, and given inevitable uncertainties in much of the input data 25 

For the 2050s, the model predicts that climate change will have distinct effects in India in terms of O3 pollution, with a region 

in the North characterized by a statistically significant increase by up to 4% (2 ppb) and one in the South by a decrease up to 

-3% (-1.4 ppb). This variation in O3 is assumed to be partly related to changes in O3 deposition velocity caused by changes in 

soil moisture and, over a few areas, partly also by changes in biogenic NMVOCs.  

Our calculations suggest that PM2.5 will increase by up to 6.5% over the Indo-Gangetic Plain in the 2050s. The increase over 30 

India is driven by increases in dust, particulate organic matter (OM) and secondary inorganic aerosols (SIA), which are mainly 

affected by the change in precipitation, biogenic emissions and wind speed. 
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The large increase in anthropogenic emissions has a larger impact than climate change, causing O3 and PM2.5 levels to increase 

by 13% and 67% in average in the 2050s over the main part of India, respectively. By the 2030s, secondary inorganic aerosol 

is predicted to become the second largest contributor to PM2.5 in India, and the largest in 2050s, exceeding OM and dust. 35 
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1. Introduction 

Air pollution is a serious health concern in the world and especially over Asia (Atkinson et al., 2012). It has been identified as 

the fifth most important cause of mortality in India (WHO, 2014). India is one of the countries experiencing an increase in the 

number of high pollution events during this last decade. With a population of 1.3 billion inhabitants, a density of 420 inhabitants 65 

per km2 (12 times the population density of the United States) and a Gross domestic product (GDP) growth of 7.6% per year 

in 2015 (www.worldbank.org), India is one of the fastest growing economies in the world. Thus, India has to cope with many 

different challenges in order to continue its economic development without a negative environmental impact. Nonetheless, air 

pollution is progressing up in the list of policy priorities. 

Heavy air pollution results from a combination of high emissions of pollutants and unfavorable weather conditions. In order 70 

to limit air pollution or to regulate the emissions of pollutants, policy measures are starting to be implemented in India at a 

national level (e.g. National Environment Policy, 2006: http://iced.cag.gov.in/?page_id=1037) or at city level, as in New Delhi, 

which banned cars with odd and even license plate numbers (UNICEF 2016 and references therein) on alternate days. In order 

to meet clean-air standards for reducing the public health risk and improving air quality in urban areas, the Union 

Environmental Ministry of Government of India launched a national Air Quality Index as a major aggressive initiative in 2015 75 

for air pollution mitigation (Ghude et al., 2016). 

Changes in air quality are nevertheless not only driven by regulations. Climate change may also have a non-negligible impacts 

on air quality, by modifying atmospheric circulation (e.g. wind speed, mixing depth and transport directions), precipitations, 

dry deposition, emissions and the chemical production or loss rates of pollutants (e.g. Jacob and Winner, 2009; Fiore et al. 

2015). The impact of climate change on air quality has been extensively studied in recent years with regional models (e.g. 80 

Langner et al., 2005; 2012; Hedegaard et al., 2008; Simpson et al., 2014; Trail et al., 2014; Lacressonnière et al, 2016) but to 

our knowledge, no study was focused on India. Climate change is however a main worry in India, especially in the occurrence 

and in the intensity of extreme events as floods and cyclones (e.g. Ministry of Environment and Forests, 2010; Dash et al., 

2007). 

Two of the main pollutants having an impact on air quality and health effects are ozone (O3) and particulate matter with an 85 

aerodynamic diameter lower than 2.5 µm (PM2.5) (e.g. Fann et al., 2012; Silva et al., 2013, Lelieveld et al., 2013; 2015). Ghude 

et al. (2016) showed around 570 000 and 31 000 premature deaths were due to PM2.5 and O3 exposure respectively in 2011. 

This caused an economic cost of 640 billion USD, which is a factor of 10 higher than total expenditure on health by public 

and private expenditure in India. 

O3 is a highly oxidative pollutant formed from precursors. O3 pollution mostly occurs in summer due to warmer weather 90 

driving photochemical reactions. O3 levels depend on the balance between reactive nitrogen oxide (NOx) and volatile organic 

compounds (VOCs). In the troposphere, the main sink of O3 is the reaction with the hydroxyl radical (OH) through HOx 
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reactions (e.g. Crutzen et al., 1999). In the atmospheric boundary layer, dry deposition (uptake by the vegetation) is usually 

the dominant sink (e.g. Monks et al., 2015). 

O3 is known to be associated with respiratory morbidity and mortality (e.g. Jerrett et al., 2009; Orru et al., 2013) but has 95 

increased strongly in Asia in recent decades with industrialization and urbanization (e.g. Cooper et al., 2014). Long-term 

exposure to high concentration of surface O3 can also damage vegetation with substantial reductions in crop yields and crop 

quality (e.g. Ainsworth et al., 2012, Mills et al., 2011, Morgan et al., 2006). The amount of damaged crops over India is 

estimated at 3.5 million tons per year (Ghude et al., 2014), which would be sufficient to feed about 94 million people living 

below the poverty line in India. 100 

PM2.5 consists of both primary and secondary components. Primary PM2.5 components include organic matter (OM), elemental 

carbon (EC), dust, sea salt (SS) and other compounds. Secondary PM2.5 comprises compounds formed through atmospheric 

processing of gas-phase precursors. This includes various compounds as nitrate (𝑁𝑂3
−) from NOx, ammonium (𝑁𝐻4

+) from 

ammonia (NH3), sulphate (𝑆𝑂4
2−) from sulphur dioxide (SO2), and a large range of secondary organic aerosol (SOA) 

compounds from both anthropogenic and biogenic VOCs. Important sources of both primary and secondary PM2.5 emissions 105 

in India are domestic heating in winter, wood burning (mainly used for cooking), road transport with contributions from both 

exhaust (mostly diesel) as well as non-exhaust emissions from brake and tyre wear, and industrial combustion. The main sink 

of PM2.5 is wet deposition, associated with rain-out and wash-out by precipitation. 

Long-term exposure to elevated PM2.5 levels leads to increased risk for a variety of diseases, such as cardiovascular disease 

and respiratory diseases (Lim et al., 2012). The World Health Organization (WHO) states a guideline value of 10 µg/m3 annual 110 

mean concentration (25 µg/m3 for the daily mean) that should not be exceeded in order to ensure healthy conditions. Moreover, 

the Global Burden of Disease (GBD) study (Forouzanfar et al., 2015) ranked exposure to PM2.5 as the seventh most important 

risk factor contributing to global mortality, responsible for 2.9 million premature deaths in 2013. Nevertheless, at the country-

level, India presents one of the highest population-weighted mean concentrations in the world for 2013 (Brauer et al., 2016). 

This study aims to evaluate the effect of the regional climate change and future emissions change in realistic air pollutant 115 

emission scenarios, focusing on surface O3 and PM2.5 concentrations. For this purpose, the EMEP/MSC-W chemical transport 

model (Sect. 2) was used, hereafter referred to as the EMEP model. In this study we conducted a 10-year simulation of air 

quality in India driven by downscaled meteorological fields for three periods: 2006-2015 labelled as the reference, 2026-2035 

and 2045-2055. In this study, the physical and chemical processes that are responsible for the modelled changes are 

investigated in detail. 120 
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Section 2 describes the model set-up. Section 3 focuses on the evaluation of the reference scenario against surface-based 

measurements. Section 4 highlights the impact of the climate change on the level of surface O3 and PM2.5 and section 5 

investigates the joint impact of the future emission scenarios. The conclusions are provided in section 6. 

2. Model set-up 

The EMEP model is a 3-D Eulerian model described in detail in Simpson et al. (2012), but for global scale modelling, some 125 

important updates have been done. Although the model has traditionally been aimed at European simulations, global scale 

modelling has been possible for many years (Jonson et al., 2010; 2015a; Wild et al., 2012). These updates, resulting in EMEP 

model version rv4.9 as used here, have been described in Simpson et al. (2016) and references cited therein. The main changes 

concern a new calculation of aerosol surface area (now based upon the semi-empirical scheme of Gerber, 1985), revised 

parameterizations of N2O5 hydrolysis on aerosols, additional gas-aerosol loss processes for O3, HNO3 and HO2, a new scheme 130 

for ship NOx emissions, and the use of new maps for global leaf-area (used to calculate biogenic VOC emissions) – see Simpson 

et al. (2015) for details. The value of the N2O5 uptake coefficient (γN2O5 ) is very uncertain, but here we use the ‘SmixTen’ 

scheme described in 2015, which seemed to provide the best predictions of O3 for global O3 sites with this model version. In 

addition, the source function for sea salt production was updated to account for whitecap area fractions, following the work of 

Callaghan et al. (2008).  135 

The domain of each simulation covers the latitudes 5.6°N-40.7°N and the longitudes 56.2°E-101.7°E, and the horizontal 

resolution of the simulations follows the resolution of the meteorological data described in Section 2.1. However, the studied 

region is more centered over India (e.g. Fig. 4b). 

As in the standard EMEP model, the boundary conditions for most PM2.5 components are defined as prescribed concentrations 

(Simpson et al., 2015), and O3 boundary conditions (lateral and top) are defined by the climatological O3 data from Logan 140 

(1998). For dust, concentrations from a global simulation for 2012 (EMEP Status Report 1/2015) have been used as boundary 

conditions. The influence of the changes in inflow of O3 or PM2.5 from outside the Asian domain is not taken into account.  

PM emissions are split into EC, OM (here assumed inert) and the remainder, for both fine and coarse PM. The OM emissions 

are further divided into fossil-fuel and wood-burning compounds for each source sector. As in Bergström et al. (2012), the 

OM/OC ratios of emissions by mass are assumed to be 1.3 for fossil-fuel sources and 1.7 for wood-burning sources. The model 145 

also calculates windblown dust emissions from soil erosion, but these emissions are negligible over our studied domain 

compared to the dust transported from the boundary conditions.  
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Secondary PM2.5 aerosol consists of inorganic sulphate, nitrate and ammonium, and SOA; the latter is generated from both 

anthropogenic and biogenic emissions (ASOA, BSOA respectively), using the ‘VBS’ scheme detailed in Bergström et al 

(2012) and Simpson et al (2012). 150 

The main loss process for particles is wet-deposition, and the model calculates in-cloud and sub-cloud scavenging of gases 

and particles as detailed in Simpson et al (2012). Gas and particle species are also removed from the atmosphere by dry 

deposition. Calculations of O3 deposition in the EMEP model are rather detailed compared to most chemical transport models. 

We make use of the stomatal conductance algorithm (now commonly referred to as DO3 SE) originally presented in Emberson 

et al. 2000, 2001), which depends on temperature, light, humidity and soil moisture. Calculation of non-stomatal sinks, in 155 

conjunction with an ecosystem specific calculation of vertical O3 profiles, is an important part of this calculation as discussed 

in Tuovinen et al. (2004, 2009) or Simpson et al. (2003). The methodology and robustness of the calculations of O3 deposition 

and stomatal conductance have been explored in a number of publications (Tuovinen et al. 2004, 2007, 2009, Emberson et al., 

2007, Büker et al., 2012). 

An initial spin-up of one year (2005) was conducted, followed by ten 1-year simulations from 2006 to 2015. Each simulation 160 

was used as spin-up of the following year of simulation. The initial spin-up (2005) was excluded from the analysis. To conduct 

the evaluation on the impact of future climate, similar runs were done with spin-ups of one year (2025 and 2045), followed by 

ten 1-year simulations from 2026 to 2035 and from 2046 to 2055, respectively. In this way, short-term (towards 2030) and 

medium-term (towards 2050) future climate changes have been analyzed. These short-term and medium-term Future Climate 

(FC) scenarios used the same anthropogenic emissions as the reference scenario. In addition to the climate change, the impact 165 

of the future emission scenarios was investigated by using anthropogenic emissions for the 2030s and the 2050s. These 

simulations, referred to as Future Climate and Emissions (FCE) scenarios, were run for the same time periods as the FC 

scenarios, but used emissions for their respective baseline year (2030 for the 2030s and 2050 for the 2050s). In order to simplify 

the reading, the four future scenarios are named as FC2030, FC2050, FCE2030 and FCE2050. 

2.1. Downscaled meteorological data 170 

In this work, the EMEP model used meteorological data from the Norwegian Earth System Model (NorESM1-M, Bentsen et 

al. 2013). These data were downscaled using the Weather Research and Forecasting (WRF) model version 3.4 following the 

RCP8.5 scenario (Riahi et al., 2011) for the years 2006-2060. The RCP8.5 combines assumptions about high population and 

relatively slow income growth with modest rates of technological change and energy intensity improvements, leading in the 

long term to high energy demand and GHG emissions in absence of climate change policies (Riahi et al., 2011). The method 175 

and the evaluation are further detailed in Jackson et al. (2017). 
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The domain used was following the CORDEX South Asia domain specifications 

(http://www.cordex.org/index.php?option=com_content&view=article&id=87&Itemid=614), yielding 193 by 130 grid points 

after removal of a 10-grid point buffer zone in each direction, on approximately 50 km horizontal resolution and with 30 

vertical levels. 180 

The different options used were Thompson microphysics, CAM radiation scheme, Noah Land-Surface Model, Mellor-

Yamada-Janjic TKE scheme and Kain-Fritsch cumulus scheme. The evaluation against ERA-Interim for the temperature and 

APHRODITE for the precipitation, indicates that the downscaled run has a cold bias especially over the ocean, but when 

comparing with seven other simulations from the CORDEX South Asia ensemble (also using the RCP8.5 scenario), it still 

performs among the best over the Indian subcontinent (Jackson et al., 2017). For precipitation, the monsoon season (July-185 

September) was simulated to be too dry, which may be at least partially caused by the too cold Indian Ocean and thus less 

evaporation. The Western Ghats region receives particularly little precipitation in all seasons, which can maybe be explained 

by the relatively coarse resolution leading to too little orographic precipitation. 

For the future scenarios, NorESM1-M predicts an increase in temperature close to the mean of the CORDEX South Asia 

ensemble. For many areas there is no consensus concerning the sign of the precipitation change, except during the monsoon 190 

and the post-monsoon (October-November) in the 2050s where most of the models, including NorESM1-M, predict an increase 

in precipitation over the major part of India, in comparison with the 2006-2015 period. During the pre-monsoon (April-June) 

in the 2050s, half of the models, including NorESM1-M, show a decrease in precipitation which is larger over the Indo-

Gangetic Plains. NorESM1-M also presents this decrease in the 2030s. In winter (December-March), the western coast is 

characterized by an increase in precipitations, even if this change is lower in NorESM1-M than in the other models (not shown). 195 

2.2. Emissions 

Anthropogenic emissions of SOx, NOx, CO, PM and NMVOC over India were taken from Sharma and Kumar (2016). These 

data have a resolution of 36km × 36km and are available for 2011 (used for the reference, the FC2030 and the FC2050 

scenarios) and for 2030 and 2050 (used for the FCE2030 and the FCE2050 scenarios, respectively). 

For NH3 (not available from Sharma and Kumar, 2016), and for all areas outside India, anthropogenic emissions from the 200 

ECLIPSEv5a baseline data set (http://www.iiasa.ac.at/web/home/research/researchPrograms/air/Global_emissions.html) were 

used (2010 for the reference, FC2030 and FC2050 scenarios; 2030 for the FCE2030 scenario; 2050 for the FCE2050 scenario). 

The ECLIPSEv5a baseline emission data set was created with the GAINS model (Greenhouse gas–Air pollution Interactions 

and Synergies; http://www.iiasa.ac.at/web/home/research/researchPrograms/GAINS.en.html) (Amann et al., 2011), which 

provides emissions of long-lived greenhouse gases and shorter-lived species in a consistent framework.  205 
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The anthropogenic emissions used for India are presented in Fig. 1. These future scenarios are characterized by sharp increases 

in all emissions even if the CO and the NH3 emissions increase somewhat less in relative terms (close to 30% by 2030 and 

60% by 2050) in comparison to the other components. Indeed, the predicted increases between 2011 and 2050 are very large, 

amounting to 304% (SOx), 287% (NMVOC), 162% (NOx and PMcoarse) and 100% (PM2.5).   

The scenario estimating the emissions used by Sharma and Kumar (2016) only incorporates the policies which were already 210 

implemented before 2014/15. Thus future road maps of stringent standards in transport and power sectors have been taken into 

account, but not in the industrial sector. For example, there are no standards for NOx and SO2 for many coal consuming 

industries. Similarly, despite reduction in biomass based combustion, there are limited controls over the fugitive NMVOC 

emissions which are expected to grow immensely in future. Consequently, the increase in these gases is larger than pollutants 

like PM2.5, which shows much lesser increase due to interventions taken/planned by the Government of India. Although current 215 

policies have likely led to reductions in emission intensities, this may not be enough for controlling absolute emissions in 

future. This explains the large increase in emissions in contrast to other scenarios described for example in the recent report 

from the International Energy Agency (IEA, 2016). Indeed, IEA (2016) forecasts that existing and planned policies in India 

will help contain pollutant emissions growth in the New Policies Scenario. Thus SO2 and NOx emissions each grow by only 

10% by 2040, and by 7% for the PM2.5 emissions. In their pessimistic scenario, i.e. in the absence of policy efforts, they 220 

estimated that SO2 and PM2.5 emissions would roughly double by 2040 and NOx emissions would grow almost 2.5 times. 

While the NOx and PM2.5 emissions used hereafter follow the same trend as in the IEA report, the SOx emissions are projected 

to increase more, by around 4 times from 2011 to 2050. It is noteworthy there are differences in economic growth rates assumed 

in the IEA report and the assessments used in Sharma and Kumar (2016). Sharma and Kumar (2016) assumed higher growth 

rates for India than in the IEA report. This comparison shows that the emissions used in this work reflect a pessimistic scenario. 225 

The emissions will continue to grow if no stringent standards are set up and our FCE scenarios highlight the air quality issue 

in India without policy effort. 

For comparison, the ECLIPSEv5a emissions are also plotted in Fig. 1 since the NH3 emissions from ECLIPSEv5a were used 

as complement of the emissions from Sharma and Kumar (2016). The emissions used in this study show larger increase, and 

the amount of pollutants is also higher for all compounds compared to ECLIPSEv5a, except for NOx in 2050. It is also 230 

interesting to note that the emissions used in the FCE scenarios are higher than the emissions used in the RCP8.5 scenarios for 

all species over India, except NH3 (not shown). One of the drawback of these RCP8.5 emissions is that only elemental carbon 

and organic carbon emissions are reported and not PM2.5 and PMcoarse emissions (e.g. Zhang et al., 2016). Moreover, the RCP 

scenarios were not developed with a primary focus on air pollution concerns but for greenhouse gases (e.g. Amann et al., 

2013). 235 
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For the other emissions, biogenic emissions of isoprene and monoterpene are calculated in the model by emission factors as a 

function of temperature and solar radiation (Simpson et al., 2012). The land-cover data underlying these calculations are from 

GLC-2000 (http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php). 

The forest fire emissions used correspond to the mean of “Fire INventory from NCAR version 1.5” FINNv1.5 emissions 

(Wiedinmyer et al., 2014) from 2005 to 2015.  240 

3. Evaluation of the reference simulation with measurements 

In this section, we evaluate the levels of the simulated surface O3 and PM2.5 for the reference scenario to ensure the validity of 

this scenario. The pollutant concentrations were averaged over their respective decade of simulation. It is important to do this 

evaluation in order to identify the biases or the errors of the reference runs, and give confidence in the model’s ability to 

analyze future air quality projections. It should be noted that many factors can affect such evaluations, including accuracy of 245 

the emissions, model processes, the quality of the observations, the resolution and the quality of the downscaled meteorological 

fields, but good agreements found with the reference scenario increase our confidence in predicted concentrations. The details 

of the statistical numbers are provided in the Appendix. 

3.1 O3 

Surendran et al. (2015) presented an evaluation of surface O3 mixing ratios simulated by the global atmospheric chemistry and 250 

transport model MOZART-4 against surface-based measurements. We have used an updated version of this catalogue of 

surface observations. In total, 22 stations were available for this comparison with different periods of measurements as shown 

in Fig. S1. This data set corresponds to monthly means over their corresponding period. The discrepancies between the periods 

of all the stations may have an impact on the evaluation, since the measurements do not necessarily match the emissions year 

used for the reference scenario. The observations compiled by Surendran et al. (2015) are a mixture of data from the Modelling 255 

Air Pollution and Networking (MAPAN), observational network of the Ministry of Earth Sciences (MoES) and from the Indian 

Institute of Tropical Meteorology (IITM) over urban, suburban and rural sites, with 11, 4 and 7 stations respectively (the 

individual time-series are shown in Fig. S2). 

Averaging the concentrations over all these sites, the simulated O3 shows a high temporal correlation (r=0.9) with the data set 

(Fig. 2a). This shows that EMEP captures rather well the seasonal variation of the surface O3 over the different sites but it 260 

overestimates the mean value. The mean overestimation is 35% (11 ppb) but it varies from site to site, between -1.4% and 

around 130%. There is no clear geographical pattern of this overestimation and for the temporal correlation (Figs. 2b & 2c) 

but the comparison shows the lowest bias for the rural sites (15%) and the highest biases for the urban and suburban sites (Fig. 

3), as expected due to the coarse scale of the model and the titration effect discussed below. The overestimation in O3 found 
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in this work is in agreement with previous studies (e.g. Kumar et al., 2012; Chatani et al., 2014; Sharma et al., 2016), although 265 

of course there are many differences in both emissions and models between these studies. It has also been noted that the EMEP 

model slightly overestimates O3, especially with the global version of the model in spring and in winter (e.g. Jonson et al., 

2015b). This bias can however be impacted by the parameters used as for example the boundary conditions and the emissions. 

Stadtler et al. (2017) who used PANHAM anthropogenic emissions also reported an overestimation in O3 over different regions 

such as Asia. 270 

Several hypotheses could explain the overestimation in monthly averaged surface O3. These include general uncertainties in 

anthropogenic and biogenic emissions, an overestimation in the transported O3 from the boundary conditions (including 

stratospheric-tropospheric exchange), inadequate accounting for the impacts of the large PM concentrations on gas-aerosol 

interactions, or systematic biases in the deposition estimates. There is also very likely a misrepresentation of the NOx-O3 

equilibrium. Under titration conditions (typically when fresh urban NO emissions are reacting with incoming O3 to create NO2) 275 

an underestimation in NO2 is associated with an overestimation in O3. Sharma et al. (2016) and Chatani et al. (2014) also show 

overestimation in O3 by the models mainly due to coarser resolutions which are not able to account for titration chemistry at 

the local scales. Titration of O3 with NO can occur over Indian cities (e.g. Sinha et al., 2014, Sharma and Khare, 2017) and is 

difficult to reproduce in regional models (e.g. Engardt, 2008). There were unfortunately no co-located NO2 or NO 

measurements available for this O3 data set over India. However, a comparison was attempted with NO2 and O3 measurements 280 

provided by https://openaq.org for 2016 over Indian cities and shown in Fig. S3. We only used sites measuring both compounds 

simultaneously and continuously during all months. Moreover, https://openaq.org archives worldwide real-time air quality 

measurements without validating the data. This highlights the difficulty to evaluate the model results without reliable co-

located measurements of trace gases and meteorological parameters. For India, the source of these data is the Central Pollution 

Control Board of India (CPCB, http://www.cpcb.gov.in/CAAQM/frmUserAvgReportCriteria.aspx). As the comparison with 285 

the updated version of O3 data from Surendran et al. (2015), these observations reflect the O3 peak around April-May. It also 

illustrates the underestimation by EMEP in NO2 surface concentrations and the clear overestimation in O3 over urban sites. 

Figure S3 may also suggest that Ox (NO2+O3) concentrations are over-predicted. As Ox is conserved under titration reactions, 

this suggest an overestimate of photochemical activity in the region. Some possible reasons for this might be problems with 

the anthropogenic and/or biogenic emissions, or over-active chemistry, e.g. over-predictions in photolysis rates for Indian 290 

conditions (as EMEP photolysis calculations assume standard atmospheric conditions, and thus do not account for attenuation 

of radiation due to enhanced aerosols over polluted regions) or problems with heterogeneous reactions. However it is important 

to remind that the observations are provided without quality assurance, so data quality may also play a role.  

The dilution of the urban emissions into large grid boxes for urban scale could also partly explain the overestimated O3 (e.g. 

Sillman et al., 1990; Pleim and Ching, 1993), especially by considering that downscaled meteorological fields were used at a 295 
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coarse resolution (50 km) for a comparison at city level. This statement needs however to be tested because an increased grid 

resolution does not necessarily lead to a better simulation of O3 or NO2 as explained by Pleim and Ching (1993). Sharma et al. 

(2017) also concluded that improving the models resolutions leads to better performance only to an extent, and may not always 

show improvement with finer resolutions.  

3.2 PM2.5 300 

In contrast to the O3 evaluation, three different data sets were available for the evaluation of the surface PM2.5 concentrations. 

Two data sets correspond to the means over a specific period over Indian cities and are originally in-situ observations from the 

CPCB of India. Among these two data sets, one corresponds to the WHO database 

(http://www.who.int/phe/health_topics/outdoorair/databases/cities/en - database 2015). This is a database containing annual 

means from 2009 to 2013. The other data set corresponds to averaged concentrations over the period from 2000 to 2010 305 

published by Dey et al. (2012). The third data set corresponds to hourly measurements at the US embassy and consulates in 

India available for 2014 (i.e. over New Delhi, Chennai, Kolkata, Mumbai, Hyderabad; available on 

https://in.usembassy.gov/embassy-consulates/new-delhi/air-quality-data/). 

As for O3, this evaluation remains challenging due to the location of each site, i.e. downtown, without information about the 

representativeness of the measured concentrations for a larger area. Despite the difficulty of comparing urban stations with 310 

simulations from a regional model, a fair agreement (spatial correlation of 0.5 and a bias of 4%) with the data from WHO was 

found with the simulated surface PM2.5 concentrations (Fig 4a). A better agreement is found for the coastal sites, especially in 

the South and the East of India (Fig. 4b). 

The agreement between the simulated concentrations with observations is largely improved in the comparison with the data 

provided in Dey et al. (2012) (Fig. 5). The correlation is around 0.8 and the bias is about 6%. It is worth noting that a few 315 

discrepancies are observed between the data sets provided by WHO and by Dey et al. (2012). For example, Dey al. (2012) 

presented higher concentrations for a city as Patna than the value published by WHO. It is also probable that a change in the 

emissions and thus in the observed PM2.5 concentrations between the periods of both data sets has an impact on the comparison. 

Similar patterns are however noted in the measurements since a city such as Delhi is characterized by higher observed 

concentrations in both data sets than the value simulated by the model. The bias from the model can be expected given its 320 

resolution.  

Despite the differences in both data sets, the comparison with the observations shows limited biases from EMEP (even though 

the mean normalized gross errors are large) and good correlations.  

Compared to the five urban sites provided by the US Embassy and consulates, a limited agreement is found (Fig. 6) with an 

underestimation in PM2.5 by EMEP for all sites, especially in winter. This comparison shows however a fair agreement 325 
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especially by noting the large variability in the observations, as over New Delhi on 16 July 2014 with a PM2.5 surface 

concentration ranging from 5 to 955 µg/m3. Our reference simulation has also been compared with the data provided by 

https://openaq.org for 2016 (Fig S.4). The observations show a large variability within each month, making the interpretation 

of this comparison difficult. A chemical speciation in the measurements will be helpful to interpret the biases found over these 

cities. Indeed, the EMEP model predicts a large contribution from primary particulate matter (PPM) to PM2.5, reaching 50% 330 

in December and in January, mainly composed by primary organic matter (not shown), over the sites presented in Figs 6 and 

S4. The model also predicts a main natural contribution to PM2.5 from May to September over these sites. For example, the 

site of Hyderabad reaches up to 70% in dust in July. An evaluation of the source attribution of the PM2.5 simulated by the 

EMEP model will be an instructive information.   

Finally, it should be noted that for these simulations, the EMEP model is driven by climate-model meteorology. Such 335 

meteorology is more statistical in nature than the assimilated Numerical Weather Prediction meteorology normally used with 

the EMEP model, and by its nature (non-assimilated), such climate meteorology cannot reproduce actual meteorology for the 

periods studied. It is also important to recall that, even with the use of recent inventories, uncertainties in emissions may persist 

(e.g. Saikawa et al., 2017).  

Overall, however, the results suggest that the PM2.5 concentrations simulated by the EMEP model with this setup provide a 340 

fair representation of the surface concentrations observed at the Indian monitoring sites, even if the model tends to 

underestimate the highest concentrations and overestimate the lowest ones. 

4. Impact of climate 

In this section, we analyze the differences between the FC scenarios (at short-term and medium-term, i.e. FC2030 and FC2050) 

and the reference scenario. All meteorological fields and pollutant concentrations were averaged over their respective decade 345 

of simulation. It is important to recall that uncertainties in the representation of meteorological conditions can impact our 

chemical results even if consistencies in the projections were simulated, especially during the monsoon and the pre-monsoon, 

as explained in Section 2.1.  

4.1 O3 

The reference scenario shows large surface O3 over Tibet, East India and over the Bay of Bengal along the Indian coast (Fig. 350 

7). The large values seen over Tibet are mainly the result of topographical effects, since O3 values generally increase with 

altitude (e.g. Loibl et al, 1994). High O3 near coastal areas is also expected since the deposition velocity of O3 is very low over 

sea (e.g. Ganzeveld et al., 2009), thus minimizing the near-surface sink which usually affects land areas.  
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Increased temperatures associated to climate change would be expected to coincide with a rise in surface O3 due to the 

correlation between O3 production and temperature in polluted areas as explained in Jacob and Winner (2009), although such 355 

relationships are often weak (Langner et al., 2005, 2012) and less clear in background areas. This correlation is not obvious in 

our simulated projections, presumably due to the large number of other factors which change, such as humidity levels, mixing 

heights, other meteorological changes, and biogenic emissions which are affected by climate change. As our model does not 

include any CO2 inhibition effect on isoprene emissions (e.g. Guenther et al., 1991; Arneth et al., 2007), or potential changes 

in vegetation in a different climate, these biogenic emissions are simply a function of temperature and increase in the FC 360 

scenarios. The uncertainties associated with these assumptions are however difficult to quantify. For example, Hantson et al., 

(2017) found global isoprene emissions for the period 2071-2100 to be 544 TgC/yr without CO2 inhibition, but only 377 

TgC/yr with this effect (i.e -31%). For monoterpenes the equivalent figures were 35.7 TgC/yr and 24.8 TgC/yr (also -31%). 

Young et al. (2009) estimated even bigger changes for isoprene, from 764 TgC/yr to 346 TgC/yr, and showed that this 

uncertainty can indeed have strong effects on surface O3 levels. The largest changes were found in South America and Africa, 365 

though annual changes over India were only around 5-10%. Although significant, these changes are model estimates only. The 

experimental data behind the CO2 inhibition effect are extremely limited, and as noted in Simpson et al. (2014) and reference 

therein, current knowledge is insufficient to make reliable predictions on this issue. 

While the regions with a change in O3 by using the FC2030 scenario are relatively scattered, the use of the FC2050 scenario 

highlights a clear North-South difference over land (Fig. 7). This is characterized by an increase in surface O3 concentrations 370 

over the Northern part of India  (by up to 4.4% - 2 ppb) and a decrease over the Southern peak of India reaching -3.4% (-1.4 

ppb) (Fig. 7). The changes are statistically significant at the 95 % level for both FC scenarios showing a robust change due to 

the climate change. 

The correlation between the temporal change in O3 (∆O3) and ∆T over land is limited in FC2030 and FC2050 scenarios. This 

shows that for both FC scenarios, even though the change in temperature is statistically significant (not shown), other processes 375 

are occurring which impact on the thermal influence on the photochemical production of O3. 

Figure S5 shows the change in one important process, the O3 deposition velocity, Vd(O3). The distribution of relative difference 

in O3 is linked to the distribution of relative difference in Vd(O3) for both FC scenarios, especially in the FC2050 scenario. 

Wu et al. (2012) already showed a slight increase in O3 deposition in the South of India and over the Western Ghats due to an 

increase in the leaf area of broadleaf forests but such processes are not included in our model. Instead the changes in Vd are 380 

due to the factors which control stomatal conductance (gs) in the EMEP model, namely temperature, humidity (vapour pressure 

deficits), radiation, and soil moisture (Emberson et al., 2001, Simpson et al. 2012). In northern European conditions, an increase 

in temperature will usually result in an increase in gs, but in India, temperatures are often above the optimum values, and 

increases in temperatures may decrease gs. The other factors will also affect the sign of changes in gs, such as soil moisture, 
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shown in Fig. S6. Figure S6 shows the large impact of changes in soil moisture on the variation in Vd(O3) for both FC scenarios. 385 

The monthly variation in soil moisture matches the variation in Vd(O3) rather well.  

With regard to seasonal changes and focusing on the FC2050 scenario (Fig. 8), where the signatures in the change in O3 are 

more significant (similar plots for the FC2030 scenario shown in Fig. S7), the impact of Vd(O3) is clearly visible. Exceptions 

are modelled over three regions as annotated in Fig. 8, where they are labelled as (A), (B) and (C) in the distribution of the 

relative differences. For these regions, the deposition velocity is correlated with the surface O3, in contrast to the anti-390 

correlation found over the rest of the domain.  

During the pre-monsoon, region (A) is characterized by a high level of NMVOCs and NOx. During the winter, the regions (B) 

and (C) are characterized by a high level of NMVOCs and a low level of NOx (Fig. S8).  

During the pre-monsoon, a decrease in NOx and NMVOC is simulated over region (A) (Fig. S8). The reduction of these two 

precursors may explain the decrease in O3. The two other regions, regions (B) and (C) are both characterized during winter by 395 

a decrease in NOx and an increase in NMVOCs. Combined with the increase in O3, this result gives an indication of the 

presence of a VOC-sensitive regime. This contrasts with the NOx-sensitive regime otherwise prevailing in India as calculated 

by Sharma et al. (2016) and observed by Mahajan et al. (2015). It is however interesting to note that the presence of a VOC-

limited regime over region (A) during the pre-monsoon and over region (B) in winter, was already observed by satellite 

measurements (Mahajan et al., 2015). 400 

The NMVOCs for the reference scenario over region (C), corresponding mainly to Myanmar, are probably from biomass 

burning as the forest fire peak season over this region occurs in winter (e.g. Pommier et al., 2017 or van der Werf et al., 2010).  

For the FC2030 scenario, an identical pattern is observed with an anti-correlation between the relative difference in O3 and the 

relative difference in Vd(O3), also with the exception of three other regions (A’, B’ and C’) as shown in Fig. S7. This shows 

the change in O3 is related to the change in Vd(O3), except over three regions, as for the FC2050 scenario. Over these three 405 

regions, the complementary effect of NOx-NMVOCs is also obvious in this scenario (Fig. S9). The change in location of the 

three regions between the 2030s and the 2050s shows that the local meteorology has an impact on the change in the chemistry, 

such as the surface temperature. Indeed, the changes in temperature are not homogeneous over the domain and vary with the 

seasons. 

4.2 PM2.5 410 

In the reference scenario, the largest surface PM2.5 concentrations are located over the Indo-Gangetic Plain (Fig. 9), known to 

be a highly populated area (e.g. Chowdhury and Maithani 2014; or http://www.census2011.co.in/states.php) and as a large 

source of pollutants emissions (e.g. Clarisse et al., 2009; Mallik and Lal 2014; Tiwari et al., 2016). 
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According to these calculations, climate change has a larger impact, in terms of absolute values, on PM2.5 than on O3. Climate 

change is predicted to lead a fairly homogeneous rise in surface PM2.5 levels over India, especially for the FC2050 scenario, 415 

by up to 6.5% (4.6 µg/m3) (Fig. 9). This maximum increase is located over the Indo-Gangetic Plain where a decrease in surface 

wind speed is predicted (not shown). The decrease in wind speed may limit the emission of dust and the dispersion of the PM2.5 

emitted over this area. In both FC scenarios, an increase in surface PM2.5 concentrations is predicted for the Western part of 

the domain (Arabian Sea) and a decrease over the Eastern part of the domain (Bay of Bengal). It is worth noting that with a 

mesoscale model, Glotfelty et al. (2016) also simulated an increase in PM2.5 over India. However, a proper comparison with 420 

other studies remains difficult, as different models or scenarios were used. It is also noteworthy that the changes in PM2.5 are 

statistically significant at the 95 % confidence level. 

The distribution of the relative difference in PM2.5 is roughly homogeneous in the FC2050 scenario over India (Fig. 9) but it 

does not match the pattern of precipitation change (Fig. S10). As PM2.5 is highly sensitive to wet scavenging, we would expect 

an impact of changes in precipitation on the change in PM2.5, but this relationship is not shown in these distributions (Figs. 9 425 

& S10). 

The composition of PM2.5 is mainly dominated by dust, OM and secondary inorganic aerosol (SIA). SIA includes 𝑆𝑂4
2−, 𝑁𝑂3

−, 

and 𝑁𝐻4
+. The seasonal distribution of their contribution on PM2.5 provides complementary information on the composition of 

PM2.5 (Fig. S11). Generally speaking, dust dominates during the pre-monsoon and monsoon periods over India, while the 

amounts of OM and SIA are large during the post-monsoon and in winter. It is also worth noting that PM2.5 over the Arabian 430 

Sea and Tibet are mostly influenced by dust for each season. Dust over the Arabian Sea originates from the Sahara desert, 

while the Tibet plateau is a known regional source of dust (e.g. Xu et al., 2015; Xin et al., 2016). PM2.5 over the Bay of Bengal 

is largely impacted by dust during the monsoon and OM during the winter.  

The simulated OM is mainly composed of SOA. It is also interesting to note that the OM over Myanmar (region C in Fig. 8) 

is strongly influenced by primary emissions from fires and spatially coincides with the O3 production seen previously in Fig. 435 

8. SOA is predicted to increase, by up to 19% for FC2030 and up to 33% for FC2050 over India. This rise is probably due to 

an increase in biogenic VOCs as suggested by Heald et al., (2008) (see also Fig. S8b) as a result of temperature increases. As 

noted above though, isoprene emissions might actually be inhibited by CO2 effects in a future climate, and neither Heald’s 

model nor ours accounts for such effects.  

In order to better interpret the seasonal process, more detailed examples over India for the FC2050 scenarios with three regions 440 

are shown in Fig. 10. The results with the FC2030 scenario (not shown) lead to similar conclusions. The composition of PM2.5 

over these regions coincides with the overall description provided by Fig. S11, i.e. there is a large amount of dust during the 

pre-monsoon and the monsoon; and OM and SIA during the post-monsoon and the winter. Wind speed is also higher during 
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the pre-monsoon and the monsoon for these three regions, explaining the large amount of dust during these seasons. The budget 

of dust is sensitive to precipitation while OM and SIA are also highly related to chemistry as described hereafter. 445 

Indeed, region (1), representing mainly a rural area, is subject to a large decrease in PM2.5 by 8% during the monsoon. This is 

mainly due to the reduction in dust, representing 55% of PM2.5, largely scavenged by the increased precipitation (+36%) (as 

explained in Section 2.1). The increase in PM2.5 during the pre-monsoon and during the winter is linked to the increase in dust 

by 15% and in OM by 10%, respectively. This increase in dust depends on the change in precipitation (10% decrease) and 

probably also on the increase in wind speed by 3%. The augmentation in OM is related to the increase in biogenic emissions 450 

as isoprene (+14%) and monoterpene (+11%). During the post-monsoon, the slight rise in PM2.5 is mainly due to the increase 

in OM and SIA.  

The impact of dust is also still high for the region located far from the desert as region (2), but the change in the PM2.5 level is 

also largely related to the change in SIA and OM in all seasons. Region (2) experiences a larger change in PM2.5 during the 

monsoon (-5%) related to the increased precipitation (+35%) and the post-monsoon (+7%) probably linked to the increase in 455 

isoprene and in monoterpene emissions (+13% and +11%, respectively). The reduction in precipitation by 25% during the pre-

monsoon probably explains the increase in PM2.5. 

For region (3), located within the Indo-Gangetic Plain and which includes Delhi, the largest variation in PM2.5 by 20% is 

modeled during the post-monsoon. This shows that this region is affected by a large penalty from the climate change on surface 

PM2.5 concentrations during the post-monsoon. This increase is caused by the rise in both SIA (+29%) and OM (+21%) and 460 

probably by the reduction of the dispersion as predicted by the decrease in the surface wind speed by 5%. The augmentation 

in SIA and OM may be related to the large increase in isoprene and in monoterpene emissions (+19% both), explained by 

increased temperature. Among all the seasons and among the three selected regions, the larger increase in temperature (+0.6%) 

occurs in this case. It is also worth noting that it coincides with the larger growth in O3 among these three regions (+6%). The 

changes during the pre-monsoon and the winter are mainly due to the variation in SIA, and the joint changes in SIA and OM, 465 

respectively. The decrease in PM2.5 during the monsoon is linked to the reduction in dust and in SIA (by 5% for both), which 

are linked to the increase in precipitations (+16%) over this wet region (2.8 mm/day). 

In addition to confirm the seasonal variation in the composition of PM2.5 over India as shown in Fig. S11, these three cases 

show that the main parameters influencing the changes in the main components (SIA, OM and dust), are the precipitation, the 

biogenic emissions and the wind speed. 470 

5. Impact of future emission scenarios combined with climate change 
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By combining the climate effect with future changes in emissions, we explore the differences between the FCE scenarios (2030 

and 2050) and the reference scenario. As in the previous sections, the simulated fields were averaged over their respective 

period of simulation. 

5.1. O3 475 

For both FCE scenarios, a substantial increase in O3 over India is modeled, as shown in Fig. 11. This augmentation in O3 

reaches 13% or 5 ppb in the 2030s (mean = 3% or 1 ppb) and reaching 45% or 18 ppb in the 2050s (mean = 13% or 6 ppb) 

within the domain defined by the black box in Fig. 11 (latitudes 08-38°N and the longitudes 68-90°E). The increase in O3 is 

noticeable during the four seasons but it is more intense during the monsoon as shown by Fig. 12. It is worth noting that there 

is a decrease in O3 over the Western Ghats during the monsoon (e.g. region α in Fig. 12: -12% in 2030 – not shown and -4% 480 

in 2050) while the rise in O3 over the rest of the country is larger than for the other seasons. This contrast between the Western 

Ghats and the rest of India is more pronounced in the FCE2030 scenario. Another region (labelled as β) in winter, is also 

characterized by a decrease in O3 (-11% in 2030 – not shown, -4% in 2050) (Fig. 12). Both reductions can be explained by the 

NOx-VOC chemistry. Both precursors largely increase in the FCE2030 and FCE2050 scenarios as shown by the large relative 

differences presented in Fig. S12. However, regions (α) and (β) present a decrease in their NMVOC/NOx ratio in the future 485 

(Fig. S12). This ratio is already lower in the reference scenario for both regions (≤16, Fig. S12) than in the rest of India since 

the mean ratio over land covering the area defined in Fig. 11 is close to 60. This means that NOx increases more for these 

regions than NMVOC probably developing a NOx-saturated regime and causing the O3 depletion. Thus both regions, for their 

respective season, suggest a VOC-sensitive regime for the FCE2030 and FCE2050 scenarios. 

This substantial increase in O3 leads to a large increase in the ozone health indicator, SOMO35. The SOMO35 metric is defined 490 

as the annual sum of daily maximum running 8h average O3 concentrations over 35 ppb. The SOMO35 levels for the reference 

scenario are already higher (Fig. S13) than over Europe (e.g. van Loon  et al., 2007; EMEP Status Report 1/2017) probably 

related to the warmer climate and the large emissions of O3 precursors over India, and the overestimation in O3 from the model 

as shown in Section 3.1. SOMO35 is predicted to significantly increase for both FCE scenarios (Fig. S13) 

5.2. PM2.5 495 

Climate change has a non-negligible impact on surface PM2.5 concentrations, but this impact is small compared with the effects 

of emissions in the FCE scenarios. Looking at the PM2.5 in Fig. 13, a large increase is simulated throughout the domain. This 

rise in surface concentrations is larger in the FCE2050 scenario than in the FCE2030 scenario. Within the region delimited by 

the black box in Fig. 13 (same as Fig. 11), the mean rise in PM2.5 is equal to 37% (13 µg/m3) in 2030s and to 67% (23 µg/m3) 

in 2050s. These increments alone are comparable to the annual threshold that WHO recommends not to exceed, i.e. 10 µg/m3, 500 
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for the FCE2030 scenario, and the double for the FCE2050 scenario. This increase in concentrations is also large for each 

season (Fig. S14). It has a maximum during the post-monsoon in both scenarios, reaching 117% (119 µg/m3) in the 2030s (not 

shown) and 172% (168µg/m3) in the 2050s. These huge numbers prefigure an enormous increase in fine particulate matter 

over India, as already suggested by Amann et al. (2017), and imply serious health issues for the population, especially children 

(UNICEF 2016). 505 

As expected by the large increase in emissions as for SOx and NOx presented in Fig. 1, the future concentrations of PM2.5 are 

influenced by 𝑆𝑂4
2−, 𝑁𝑂3

−, and 𝑁𝐻4
+  for each season. These compounds also show the largest increase during the post-

monsoon season. This is particularly obvious for the three selected regions of Fig. 10 since SIA increases by at least 100% in 

the FCE2030 scenario and by at least 200% in the FCE2050 scenario (Fig. S15). The larger increase in PM2.5 is simulated over 

region (2) for both FCE scenarios during the post-monsoon; by 75% in the 2030s and 132% in the 2050s (Fig. S15). Region 510 

(3), characterized by the large impact of climate on its PM2.5 during the post-monsoon as shown previously in Fig. 10, has an 

increase in PM2.5 by around 69% in FCE2030 and 112% in FCE2050. 

While the surface PM2.5 over the land region delimited in Fig. 13 is composed on average by 5.1% of 𝑁𝐻4
+, 6.8% of 𝑁𝑂3

−, and 

9.7% of 𝑆𝑂4
2−

 for the reference scenario; their mean contribution grows and becomes respectively 6.7%, 7.2% and 13.6% in 

the 2030s and 7.8%, 7.5% and 16.8% in the 2050s. OM and the dust remain two major components of surface PM2.5 but in the 515 

2030s, SIA becomes the second largest component since it represents 28% of PM2.5 (29% for dust and 19% for OM) and the 

main component in the 2050s with 32%, while dust represents 25% and OM corresponds to 18% of PM2.5. It is also worth 

noting that even though the PPM are high for the three scenarios (close to 20% of PM2.5), the amount of EC within these PPM 

remains low, around 15%. 

It is interesting to note that even under increasing anthropogenic emissions a significant fraction of PM2.5 comes from sources 520 

(dust and some fraction of SOA) that are challenging to control through policy measures. Still, even biogenic, SOA is partly 

the product of anthropogenic emissions (and certainly land-use policy, e.g. Tsigaridis and Kanakidou, 2007, Ashworth et al., 

2012), and dust is also partly a function of land-use and climate change, but such interactions are beyond the scope of our 

study 

6. Conclusions 525 

Driven by downscaled meteorological fields, the EMEP model was applied to investigate the impact of changes in regional 

climate and emissions on surface O3 and PM2.5 over India. The evaluation of the reference scenario with surface-based 

observations suggests a fair simulation of the seasonal variation of O3 and a good representation of surface PM2.5 concentrations 

over Indian cities. Additional information as the chemical components in PM2.5 will be helpful to interpret the differences and 
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confirm the large part of primary organic matter simulated in winter by EMEP and the high ratio of dust during the monsoon. 530 

EMEP overestimates O3 by 11 ppb and we suspect that NOx titration over cities, unresolved by a rather coarse grid (ca. 50 km) 

and possibly uncertainties in the emissions, are the main cause, especially in winter. However, there is a lack of reliable 

available measurements of NOx and O3 to fully validate this assumption. 

The O3 change due to regional climate change for the medium-term (FC2050) scenario highlights a clear North-South gradient 

over India, with an increase over the North, by up to 4.4% (2 ppb) and a decrease over the South, by up to -3.4% (-1.4 ppb). 535 

This O3 budget is highly impacted by the change in O3 deposition velocity due to the change in soil moisture, and over a few 

areas by the biogenic NMVOCs. Climate change leads to increases in the PM2.5 levels at short and medium-terms, reaching a 

maximum of 6.5% (4.6 µg/m3) over the Indo-Gangetic Plain by the 2050s. The PM2.5, mainly composed by dust, OM and SIA, 

are mainly controlled by change in precipitations and biogenic emissions. For example, over the Indo-Gangetic Plain, an 

increase by 20% during the post-monsoon is predicted, related to a rise in isoprene and in monoterpene emissions, while a 540 

rural region is characterized by a 8% decrease in PM2.5 during the monsoon, linked to the increased precipitations in 2050. 

A large increase in anthropogenic emissions is predicted if no further policy efforts are made. Combined with climate change 

impacts; these emissions are predicted to lead to large changes in surface O3 and PM2.5. For surface O3, these changes reach 

45% over some regions in 2050. This augmentation is substantial for each season, with the exception of two regions as e.g. 

over the Western Ghats during the monsoon characterized a decrease in O3 around -12% in 2030 (-4% in 2050) related the 545 

dependence of O3 production on the NOx and VOC concentrations.  

India is predicted to suffer large increases in PM2.5 levels due to the increases in anthropogenic emissions in this no-further 

control scenario. The increase in PM2.5 will occur rapidly since the mean rise is close to 37% for the short-term scenario (2030s) 

and 67% for the medium-term scenario (2050s) over the main part of the country. The PM2.5 levels are predicted to reach very 

high levels, up to a maximum of 117% (119 µg/m3) increase in the 2030s and 172% (168 µg/m3) in the 2050s during the post-550 

monsoon season. In the 2030s, the SIA will become the second largest component of PM2.5 over India, exceeding the amount 

of OM by reaching a ratio close to 28% and the main component in the 2050s with 32%. 

Finally, we can note that this is the first serious attempt to use the EMEP model over the Indian subcontinent, and there are 

likely many improvements needed before modeling skill achieves the same level as obtained in European simulations. For 

example, the vegetation characterization used in the EMEP model was focused on European vegetation, and is probably not 555 

fully suitable for India, which may affect the response in temperature over India. Many issues affect any modelling study for 

this region. For example, emission rates of biogenic VOC from vegetation over India are also largely unknown; Guenther et 

al. (2006) show only one site in or near the Himalayas – and nothing over the rest of the Indian sub-continent. Emissions of 

other compounds are also rather uncertain. Proper model evaluation in this region would require quality-assured measurements 

of a range of compounds in rural as well as urban areas. Still, given the rapidly increasing emission and pollution levels in 560 
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India, it is clear that further efforts are warranted, and increasing attention will improve the basis for future model verification 

and hence for a sounder basis for emissions policy assessments in future. 
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Appendix 570 

Error statistics used to evaluate the model performance (M and O refer, respectively, to model and observation data, and N is 

the number of observations). 

 

Validation metrics Formula Range Ideal Score 

Mean Bias (MB) ∑ (𝑀𝑖 − 𝑂𝑖)
𝑁
𝑖=1

𝑁
 

-∞ to +∞ 0 

Normalized Mean Bias 

(NMB) 

∑ (𝑀𝑖 − 𝑂𝑖)𝑁
𝑖=1

∑ 𝑂𝑖
𝑁
𝑖=1

 × 100% 
0 to +∞ 0 

Mean Normalized Gross 

Error (MNGE) 

1

𝑁
 ∑

|𝑀𝑖−𝑂𝑖|

𝑂𝑖

𝑁
𝑖=1  × 100% 0 to +∞ 0 

Root-Mean-Square Error 

(RMSE) 
√

∑ (𝑀𝑖 − 𝑂𝑖)2𝑁
𝑖=1

𝑁
 

0 to +∞ 0 

 

 The MB provides the information about the absolute bias of the model, with negative values indicating 575 

underestimation and positive values indicating overestimation by the model.  

 The NMB represents the model bias relative to observations.  

 The MNGE represents mean absolute difference between model and observations relative to the observations. 

 The RMSE considers error compensation due to opposite sign differences and encapsulates the average error 

produced by the model.  580 
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Figure 1. Annual emissions (in Gg/yr) used for the reference (2010), FC2030 and FC2050 scenarios (dark blue), and for 

2030 (dark green) and 2050 (dark red), used for the FCE2030 and the FCE2050 scenarios over India, respectively. The 935 

variation of each compound with respect to the reference scenario is also provided by colored percent. The ECLIPSE 

emissions are also plotted for comparison and represented by light colored bars. The variation of each compound with 

respect to ECLIPSE2010 scenario is also provided by italic black percent given in parenthesis. 
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Figure 2. a: Monthly surface O3 mean concentrations for the 22 stations (red) and EMEP (averaged over the period of 

simulation) (blue). EMEP concentrations are collocated to each station. The shade error corresponds to the standard 

deviation. The correlation coefficient (r), the mean bias (MB), the normalized mean bias (NMB), the Root-Mean-Square 945 

(RMS) error, and the mean normalized gross error (MNGE) are provided. b: Correlation coefficient for each site. c: 

Normalized mean bias for each site. The type of station is given by a letter in parenthesis (u = urban, s = suburban, r = 

rural). 
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Figure 3. Monthly surface O3 mean concentrations for the urban (a), suburban (b) and rural (c) stations shown in Fig. 

2 (red) and EMEP (averaged over the period of simulation) (blue). EMEP concentrations are collocated to each station. 

The number of stations is given. The shade error corresponds to the standard deviation. The correlation coefficient (r), 

the mean bias (MB), the normalized mean bias (NMB), the Root-Mean-Square (RMS) error, and the mean normalized 

gross error (MNGE) are provided. 955 
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Figure 4. a) Scatterplot between the surface PM2.5 concentrations from EMEP (averaged over the period of simulation) 

and the concentrations from WHO in µg/m3. Each data is represented by a different symbol for the corresponding 

year. The correlation coefficient (r), the mean bias (MB), the normalized mean bias (NMB), the root-mean-square 

(RMS) error and the mean normalized gross error (MNGE) are provided. b) Distributions of the mean surface PM2.5 960 

concentrations for the period 2006-2015 (reference scenario). The WHO measurements from 2009 to 2013 are 

superimposed on the map and represented by colored symbols following the symbols shown on the scatterplot. 
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Figure 5. a) Scatterplot between the surface PM2.5 concentrations from EMEP (averaged over the period of simulation) 

and the concentrations listed in Dey et al. (2012) in µg/m3. The correlation coefficient (r), the mean bias (MB), the 

normalized mean bias (NMB), the root-mean-square error (RMS) and the mean normalized gross error (MNGE) are 

provided. b) Distributions of the mean surface PM2.5 concentrations for the period 2006-2015 (reference scenario). The 970 

measurements from Dey et al. (2012) are superimposed on the map and represented by colored dots. 
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Figure 6. Time-series of monthly surface PM2.5 mean concentrations in µg/m3 for the observations in 2014 (red) and 

EMEP for the reference scenario (averaged over the period of simulation) (blue) over New Delhi, Chennai, Kolkata, 

Mumbai and Hyderabad. The red shade error corresponds to the standard deviation of the measurements. The 

correlation coefficient (r), the mean bias (MB), the normalized mean bias (NMB), the Root-Mean-Square (RMS) error, 

and the mean normalized gross error (MNGE) are provided. 980 
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Figure 7. Distribution of surface O3 mixing ratios (in ppb) for the reference scenario (top panel), distribution of the 

relative difference and absolute difference in surface O3 between the reference scenario and the FC2030 scenario 

(middle panels) and the FC2050 scenario (bottom panels). The relative differences are calculated as: ([FC – reference] 985 

/ reference) × 100%, and the absolute differences as: [FC – reference]. Grey dots mark grid points that do not satisfy 

the 95% level of significance. 
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Figure 8. Seasonal distribution of O3 and relative difference between the reference scenario and the FC2050 scenario 

(top panels), seasonal distribution of O3 deposition velocity and relative difference between the reference scenario and 

the FC2050 scenario (bottom panels). The relative differences are calculated as: ([FC2050 – reference] / reference) × 

100%. Regions discussed in the text are noted on the distributions of relative difference. Grey dots mark grid points 

that do not satisfy the 95% level of significance. 995 
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Figure 9. Distribution of surface PM2.5 concentrations (in µg/m3) for the reference scenario (top panel), distribution of 

the relative difference and absolute difference in surface PM2.5 concentrations between the reference scenario and the 

FC2030 scenario (middle panels) and the FC2050 scenario (bottom panels). The relative differences are calculated as: 

([FC – reference] / reference) × 100%, and the absolute differences as: [FC – reference]. Grey dots mark grid points 

that do not satisfy the 95% level of significance. 1005 
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Figure 10. Seasonal distribution of surface PM2.5 concentrations (in µg/m3) for the reference scenario, and seasonal 

composition of PM2.5 (in µg/m3) for the three regions highlighted by black boxes on the map for the reference and the 

FC2050 scenarios. The black percent corresponds to the relative difference in PM2.5 between both scenarios for each 1015 

region. Note the different y-axis for Region 3. 
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Figure 11. Distribution of the relative difference (a and c) and absolute difference (b and d) in surface O3 between the 

reference and the FCE2030 scenario (top panels) and the FCE2050 scenario (bottom panels). The relative differences 

are calculated as: ([FCE– reference] / reference) × 100%, and the absolute differences as: [FCE – reference]. The black 1020 

box delimits the region described in the text. 
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Figure 12. Seasonal distribution of the relative difference in surface O3 between the reference scenario and the FCE2050 

scenario. The relative differences are calculated as: ([FCE2050 – reference] / reference) × 100%. Regions discussed in 1025 

the text are noted on the distributions for their respective season. 
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Figure. 13. Distribution of the relative difference (a and c) and absolute difference (b and d) in surface PM2.5 between 1030 

the reference scenario and the FCE2030 scenario (top panels) and the FCE2050 scenario (bottom panels). The relative 

differences are calculated as: ([FCE – reference] / reference) × 100%, and the absolute differences as: [FCE – 

reference]. The black box delimits the region described in the text. 
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