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Abstract. Size-resolved and vertical profile measurements of single particle chemical composition (sampling altitude range

50 - 3000 m) were conducted in July 2014 in the Canadian high Arctic during the aircraft-based measurement campaign

NETCARE 2014. We deployed the single particle laser ablation aerosol mass spectrometer ALABAMA (vacuum aerodynamic

diameter range approximately 200 - 1000 nm) to identify different particle types and their mixing states. On basis of the single

particle analysis, we found that a significant fraction (23 %) of all analyzed particles (in total: 7412) contained trimethylamine5

(TMA). The identification of TMA in ambient mass spectra was confirmed by laboratory measurements. From the maximum

occurrence of particulate TMA in the Arctic boundary layer and the higher abundance of smaller TMA-containing particles

(maximum in the size distribution at 300 nm), we conclude that the TMA component of these particles resulted from emissions

within the Arctic boundary layer. Air mass history according to FLEXPART backward simulations and associated wind data

give evidence of a marine-biogenic influence on particulate TMA. The marine influence on particle chemical composition in10

the summertime Arctic is further demonstrated by the existence of larger sodium and chloride (“Na/Cl-”) containing particles

which are mainly abundant in the boundary layer. Some of these sea spray particles were internally mixed with carbohydrates

(e.g., cellulose) which likely originated from a sea surface microlayer enriched with microorganisms and organic compounds.

The external mix of sea spray particles and TMA-containing particles suggests the latter result from secondary conversion

of precursor gases from marine inner-Arctic sources. In contrast to TMA- and Na/Cl-containing aerosol types, particles with15

biomass-burning markers (such as levoglucosan) showed a higher fraction at higher altitudes, thereby indicating long-range

transport as their source. Our measurements highlight the importance of natural, marine inner-Arctic sources for summertime

Arctic aerosol.
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1 Introduction

A remarkable increase in Arctic near-surface air temperature (e.g., Chapman and Walsh, 1993; Serreze et al., 2009) has led

to rather drastic changes of several climate parameters, in particular a decreasing sea ice extent of 3.5 % to 4.1 % per decade

since 1979 (IPCC, 2014, with further evidence up to 2017 from the National Snow and Ice Data Center, Boulder, Colorado,

https://nsidc.org). Among the processes driving Arctic warming aerosol particles play a key role due to their direct and indirect5

radiative effects. The impact of aerosol particles on the radiation budget strongly depends on number concentration, size and

chemical composition (e.g., Haywood and Boucher, 2000). Different measurements at Arctic sites show a strong annual cycle

in these aerosol characteristics (e.g., Tunved et al., 2013; Leaitch et al., 2013). Three main processes drive the annual cycle

in Arctic aerosol. First, a smaller polar dome surface extent in summer leads to reduced pollution sources within the Arctic.

Second, efficient wet removal processes in liquid clouds leading to a smaller condensation sink in the summertime Arctic.10

Third, the substantial change in duration of daylight in Arctic summer leads to increased photochemical processes and/or in-

creased biological activity, which further result in a higher nucleation potential. (e.g., Law and Stohl, 2007; Quinn et al., 2007;

Schmale et al., 2011; Rahn and McCaffrey, 1980; Barrie, 1986; Stohl, 2006; Engvall et al., 2008; Kupiszewski et al., 2013;

Heintzenberg et al., 2017; Croft et al., 2016a; Burkart et al., 2017; Kawamura et al., 1996, 2010).

To better understand the physical and chemical processes leading to a higher nucleation potential and a frequent appearance of15

clouds in the summertime Arctic, it is crucial to study emissions of the terrestrial and oceanic biosphere. So far, a few studies

have discussed the importance of methanesulfonic acid (MSA), an oxidation product of dimethylsulfide emitted from ocean

biomass, to take part in aerosol chemistry in the Arctic (e.g., Croft et al., 2016b; Leaitch et al., 2013; Sharma et al., 2012;

Willis et al., 2016; Mungall et al., 2016). It is further known that marine biota also release certain gas-phase amines, such as

trimethylamine (TMA), into the atmosphere (e.g., Ge et al., 2011a; Van Neste et al., 1987; Gibb et al., 1999; Facchini et al.,20

2008) which subsequently may contribute to aerosol chemistry. Numerous chamber, modeling and field studies at southern

latitudes (e.g., Almeida et al., 2013; You et al., 2014; Bergman et al., 2015; Müller et al., 2009) have focused on sources,

emission rates and gas-to-particle partitioning processes of atmospheric amines. So far, this research has shown that amines

may take part in aerosol chemistry in several ways. These include acid-base reactions to form aminium salts and dissolution

in cloud droplets (owing to their high water-solubility) where subsequent acid-base reactions can occur in the aqueous phase25

(e.g., Glasoe et al., 2015; Dawson et al., 2012; Erupe et al., 2011; Ge et al., 2011b; Jen et al., 2016, 2014; Youn et al., 2015; Yu

et al., 2012; Rehbein et al., 2011; Pankow, 2015). Amines compete with ammonia (NH3) in neutralizing acidic aerosol. Which

base is favored by these reactions depends on several parameters, such as acidity of the aerosol, Henry’s law coefficient and

the concentration of both substances in the atmosphere (e.g., Pratt et al., 2009; Barsanti et al., 2009). Amines further may take

part in aerosol chemistry via gas-phase oxidation processes leading to the formation of species such as amides, nitramines and30

imines. Resulting lower volatility products can go on to form secondary organic aerosol (SOA) (e.g., Murphy et al., 2007; Ge

et al., 2011b; Angelino et al., 2001).

Despite these considerable advances in studies of atmospheric amines, very little is known about their abundance in Arctic

regions. Scalabrin et al. (2012) reported marine influence on amino acids in Arctic aerosol. Further particle measurements at
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Mace Head, Ireland have shown the presence of organic compounds, such as amines, in aerosol that originated in polar marine

air masses (Dall’Osto et al., 2012). However, our knowledge about the influence of amines on Arctic aerosol number concen-

tration, size and chemical composition remains incomplete. Based on a study of Almeida et al. (2013), Leaitch et al. (2013)

and Croft et al. (2016b) speculated about the contribution of amines to particle nucleation in the Arctic. Amines can further

essentially contribute to condensational growth of summertime Arctic aerosol particles.5

For this reason the main objective of this research is to investigate emission sources and aerosol chemistry processes of partic-

ulate TMA in the summertime Arctic. We used aircraft-based single particle chemical composition measurements conducted

in the Arctic summer. In addition, we analyze concurrent data from further aerosol and trace gas instruments as well as La-

grangian modeling simulations by FLEXPART. This study provides an important opportunity to advance our understanding of

the strong biological control over the summertime Arctic aerosol.10

2 Experimental and modeling section

2.1 Description of the sampling site and measurement platform

As one part of the NETCARE project (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian

Environments), aircraft-based measurements were deployed from Resolute Bay, Nunavut (Canada) during 4 - 21 July 2014. In

this study, we focus on measurements made during 4 - 12 July 2014. During this time, six research flights (around 20 flight15

hours) were performed. Flight tracks covered altitudes from 50 to 3000 m above continental as well as marine (partly covered

with sea ice) regions (Fig. 1). The satellite image from 4 July 2014 shown in Fig. 1 presents sea ice and open water conditions

around Resolute Bay, which can be regarded as typical during 4 - 12 July. Three flights aimed to sample above two polynyas

north of Resolute Bay. Notably, the sea ice south-east of Resolute Bay and close to the ice edge in Lancaster Sound was largely

covered with melt ponds.20

The instrument platform was the research aircraft Polar 6, a modified Basler BT-67 maintained by Kenn Borek and operated

by the Alfred Wegener Institute for Polar and Marine Research (Herber et al., 2008). The aircraft was equipped with instru-

ments to measure meteorological state parameters, several trace gases as well as aerosol particle number, size and chemical

composition. In general, aerosol instruments were connected to a forward-facing near-isokinetic stainless steel inlet, which

was followed by a 1 inch-stainless steel manifold inside the cabin. All instruments were connected to the common inlet line25

system with 1/4-inch stainless steel tubing. Reactive trace gases were measured via a second PTFA inlet line. Further detailed

information on the inlet and sampling strategy can be found in Leaitch et al. (2016), Willis et al. (2016), Burkart et al. (2017)

and Aliabadi et al. (2016b).
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Figure 1. Satellite image (visible range from MODIS) from 4 July 2014 showing sea ice and open water conditions around Resolute Bay, in

Lancaster Sound, Nares Strait and Baffin Bay. The inset shows a compilation of flight tracks conducted during 4 - 12 July 2014 (indicated

with different colors). Image are courtesy of NASA Worldview: https://worldview.earthdata.nasa.gov.

2.2 Instrumentation

The following section provides a brief description of the instrumentation that is relevant to this discussion.

Number concentrations of particles greater than 5 nm in diameter (Nd>5nm) were measured with a TSI 3787 water-based ul-

trafine condensation particle counter (UCPC). Particle size distributions of particles greater than 250 nm (Nd>250nm) were

measured using an optical particle counter from GRIMM (model 1.129 Sky-OPC). Measurements of carbon monoxide (CO)5

were conducted with an Aerolaser ultra-fast CO monitor (model AL 5002). State parameters and meteorological measurements

were made using an AIMMS-20 from Aventech Research Inc. Detailled information on measurement principles and instrument

calibrations are given in Leaitch et al. (2016), Aliabadi et al. (2016b) and Bozem et al. (2017), in prep.

In order to provide information about the chemical composition of single aerosol particles, the ablation aerosol mass spec-

trometer ALABAMA (Aircraft-based Laser Ablation Aerosol Mass Spectrometer; Brands et al. (2011)) was deployed on the10

Polar 6 during NETCARE 2014. The basic measurement principle of the ALABAMA is as follows: first, the particles enter

the system through a pressure-controlled inlet (PCI). While ambient pressure changes, this device (custom-made at the Max

Planck Institute for Chemistry) maintains a constant pressure in the following aerodynamic lens by varying the volume flow

rate into the instrument. A flexible orifice is either squeezed or relaxed, depending on atmospheric pressure, by a bottom and
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top plate which are connected to a rotor (Molleker et al. (2017), in prep.). After passing through the PCI, particles are focused

into a narrow beam with the help of a Liu-type aerodynamic lens (Liu et al., 1995a, b). The focused particles are detected by

two light scattering signals (using 405 nm laserdiodes and photo-multipliers) allowing the determination of the size-dependent

particle velocity. By comparing these values with the velocity of manufactured monodisperse polystyrene latex (PSL) particles

in different sizes, we can derive the particle vacuum aerodynamic diameter (dva). Next, the particles enter the ablation and5

ionization region in the high-vacuum system. The particles are ablated and ionized by a single triggered laser shot (266 nm,

frequency-quadrupled Nd:YAG laser). In the final step, cations and anions produced by laser ablation are guided into a bipolar

Z-ToF (Z-shaped Time of Flight) mass spectrometer, which provides bipolar mass spectra. Due to limitations of the aerody-

namic lens transmission efficiency and the lower detection limit of the photo-multipliers, the ALABAMA covers a particle size

range from approximately 200 to 1000 nm.10

2.3 FLEXPART- Lagrangian particle dispersion model

FLEXPART (FLEXible PARTicle dispersion model (here: version 10.0 beta)) is a Lagrangian particle dispersion model (e.g.,

Stohl et al., 2005). For our analysis, we used operational analysis data from the European Centre for Medium-Range Weather

Forecast (ECMWF) with 0.125° spatial and three hour time resolution. FLEXPART was operated in backward mode to provide15

potential emission sensitivity (PES) maps. We used PES maps together with sea ice and open ocean coverage derived from the

satellite image in Fig. 1 to determine the total residence time of the measured air mass above open water regions three days

prior to sampling in altitudes up to 340 m. The model output frequency was set up to one hour and 0.125° spatial resolution.

2.4 Single particle spectra analysis

Particle mass spectra collected by the ALABAMA are analyzed using the software package CRISP (Concise Retrieval of20

Information from Single Particles) which includes m/z (mass to ion charge ratio) calibration of bipolar mass spectra, peak area

integration and analysis of mass spectra using marker peaks for different substances (Klimach, 2012).

The marker method requires knowledge of certain marker peaks in the spectrum belonging to a certain substance and a certain

marker threshold (ion peak area threshold). The typical fragmentation pattern of a substance due to laser ablation is crucial for

defining the distinct marker peaks. Fragmentation depends on laser wavelength and energy. Marker peaks of many substances25

are already well-known from laboratory measurements with the ALABAMA (Schmidt et al., 2017) and additionally from

literature of other single particle mass spectrometers using the same ablation laser wavelength. Table 1 lists marker peaks of

substances used in this study to identify the external and internal mixing state of particles. In addition to the listed references,

we performed further laboratory measurements with the ALABAMA in order to identify the fragmentation pattern of TMA-

containing particles (Sect. 2.5).30

To decide whether a signal is present, we used an ion peak area threshold of 10 mV, respectively 25 mV for positive and negative

mass spectra. Both thresholds are chosen as a conservative measure on the basis of the signal intensities of the non-occupied

m/z values. A detailed explanation on this topic can be found in the Supplement S1.
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Table 1. Chemical classes and their acronyms used in this study. Associated marker peaks and the compilation of different marker peaks due

to fragmentation of the particle (“Marker conditions”), additional comments and used references are given.

Chemical class (Acronym) Marker conditions Comments References

Trimethylamine m/z +59 ((CH3)3N
+); +58 (C3H8N

+) Additionally examined in laboratory (1), (2), (3), (4)

(TMA) measurements with ALABAMA

(Sect. 2.5)

Sodium and chloride m/z +23 (Na+); Indicator for sea spray particles (1), (5), (6), (7)

(Na/Cl) (at least two of the following ions)

+46 (Na2
+), +62 (NaO+), +63 (NaOH+); Isobaric interference with MSA

(at least two of the following ions) at m/z -95

+81/+83 (Na2Cl+), -35/-37 (Cl−),

-93/-95 (NaCl2
−)

Elemental carbon (at least six of the following ions) Except m/z -96 (C8
−) (7)

(EC) m/z +36, +48, +60, ..., +144 (C3−12
+) due to the isobaric interference with

and/or SO4
−

(at least six of the following ions)

m/z -36, -48, -60, ..., -144 (C3−12
−)

Carbohydrates (at least two of the following ions) Levogluosan as indicator (8), (9), (10), (11), (12)

(e.g., levoglucosan, m/z -45 (CHO2
−), -59 (C2H3O2

−), for biomass burning particles

cellulose) -71 (C3H3O2
−)/ 73 (C6H

−/C3H5O2
−)

Potassium m/z +39 (K+) (1), (7), (13)

(K)

Ammonium m/z +18 (NH4
+) (1), (7), (13)

(NH4)

Methanesulfonic acid m/z -95 (CH3O3S
−) Isobaric interference with PO4

− (14)

(MSA) can be excluded due to missing ion

signal for PO3
− at m/z -79

Sulfate (at least one of the following ions) (1), (7)

(S) m/z -97 (HSO4
−), -96 (SO4

−)

The semicolon (;) serve as “and”. Given reference numbers are defined as follows: (1)Roth et al. (2016); (2)Angelino et al. (2001); (3)Healy et al. (2015) (4)Rehbein et al.

(2011); (5)Sierau et al. (2014); (6)O’Dowd and de Leeuw (2007) ; (7)Schmidt et al. (2017); (8)Silva et al. (1999); (9)Corbin et al. (2012); (10)Simoneit (2002); (11)Simoneit et al.

(1999); (12)Lakshmanan et al. (1969); (13)Brands et al. (2011); (14)Gaston et al. (2010).
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Figure 2. Mean cation spectrum of 88 single particle spectra analyzed within the TMA laboratory measurements.

2.5 Laboratory measurements of TMA-containing particles

In order to identify specific marker peaks of TMA, we conducted laboratory measurements. A mixture of TMA dissolved in

water, additional milli-q water and sulfuric acid was nebulized with an aerosol generator (PALAS model AGK2000). After-

wards, these droplets passed through a diffusion dryer filled with silica gel to remove water. The particles were size selected

with a Differential Mobility Analyzer (TSI model 3080) (set to 300 nm) and then guided into the ALABAMA and an optical5

particle counter (GRIMM model 1.129). The energy of the ablation laser was around 1 mJ/pulse. The ablation laser energy

deployed during the NETCARE 2014 campaign was between 3 and 4 mJ/pulse. However, we expect no significant differences

regarding marker peaks for TMA.

As can be seen in Fig. 2, the most common fragmentation pattern shows peaks at m/z +59 ((CH3)3N) (molecular ion of TMA)

and m/z +58 (C3H8N). These measurements confirm previous observations with the ALABAMA (Roth et al., 2016) and with10

other single particle mass spectrometers using the same wavelength (e.g., Angelino et al., 2001; Healy et al., 2015; Rehbein

et al., 2011). Further ion signals at m/z +60 and m/z +76 could be explained by protonation and oxidation of TMA (Angelino

et al., 2001).

Despite the addition of sulfuric acid, negative ion mass spectra show poor signals (not shown here). Potential reasons are

discussed in the Supplement S2.15

3 Results and Discussions

3.1 Meteorological conditions during the NETCARE 2014 campaign

The measurement period from 4 - 12 July 2014 was characterized by generally clear skies, calm wind speeds (Fig. 3) and

occasional scattered to broken stratocumulus clouds (Leaitch et al., 2016) due to a high pressure system prevailing around

Resolute Bay. Based on low CO mixing ratios, low aerosol number concentrations (Fig. 3) and backward trajectory analysis20

(Bozem et al., 2017, in prep), air masses measured in this period experienced a weak mid-latitudinal influence and were mainly
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relative humidity (RH), wind speed, particle number concentration measured by the UCPC (Nd>5nm) and Sky-OPC (Nd>250nm) as well as CO

mixing ratio (including all conducted flights from 4 - 12 July 2014). Measurements of Nd>250nm started on 8 July due to prior technical issues.

The red line depicts the derived mean upper height of the boundary layer during this measurement period (approximately 340m).

affected by local emission sources (also denoted as “Arctic air mass period” in Burkart et al. (2017)).

As shown in Fig. 1, our measurements took place largely over remote areas, which are dominated by Arctic vegetation, open

water regions (e.g., polynyas, Lancaster Sound) and sea ice coverage. Furthermore, seabird colonies were located close to the

ice edge in Lancaster Sound and are likely a source of ammonia (Wentworth et al., 2016). Anthropogenic emissions might have

affected our measurements, but are mainly related to the sparse Arctic settlements (Aliabadi et al., 2015) and can be ruled out5

by comparison with other tracers (e.g., CO). We can therefore expect that our observations were mainly influenced by biogenic

emissions (in particular marine-biogenic emissions) during this measurement period.

As evident from vertical profiles of equivalent potential temperature (Thetae) (Fig. 3), the mean upper boundary layer (BL)

height for this measurement period was at around 340 ± 100 m. The vertical resolution of the profile in Fig. 3 (100 m) justifies

the range of the mean BL height. The mean BL height within its range can be confirmed by results from an extensive study10

on BL height, mixing and stability during the NETCARE 2014 campaign (Aliabadi et al., 2016a). The capping temperature

inversion above 390 m, inferred from values of Thetae, represents a transport barrier for air masses between the BL and the free

troposphere (FT). The BL, compared to the FT, was characterized by lower wind speeds, higher relative humidity (RH) and

enhanced particle number concentration Nd>5nm in contrast to Nd>250nm, indicating an enhanced number of ultrafine particles

due to nucleation in the Arctic BL. A detailed discussion on this topic is given in Burkart et al. (2017).15

3.2 Size- and vertically resolved aerosol composition

In total, 7412 particles were analyzed by the ALABAMA during the first phase of this measurement campaign (4 - 12 July

2014), whereby 6970 particle spectra included size information. Applying the marker method (Sect. 2.4), we obtained four dis-

tinct particle types. According to the chemical composition, we classified the particles as TMA-, Na/Cl-, EC- and levoglucosan-

containing particles. TMA- and levoglucosan-containing particles, with relative fractions of 23 % and 20 %, respectively, ap-20

pear to be the most prominent particle types. Only 2 % and, respectively, 1 % of all analyzed particles are assigned as EC-
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Figure 4. Bipolar mean spectrum of 1688 (23 %) TMA-containing single particle spectra (a), 106 (1 %) Na/Cl-containing single particle

spectra (b), 138 (2 %) EC-containing single particle spectra (c) and 1517 (20 %) levoglucosan-containing single particle spectra (d).

and Na/Cl-containing particles. The mean spectra in Fig. 4 combined with the listed additional ion signals in Tab. 2 give an

overview of the average chemical composition of each particle type.

In order to describe the unique characteristics of TMA-containing particles compared to other particle groups, Fig. 5 and 6

depict the size and vertical distribution, respectively, of each particle type. Both figures show the fractional abundance of each

particle type per size bin, respectively, per altitude bin. We show relative numbers of particles in order to eliminate the size-5

dependent transmission and detection efficiency of the ALABAMA (Fig. 5) and the sampling time dependence on particle

number at different altitudes (Fig. 6).
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Table 2. Overview of the obtained four particle types and their internal mixing state (chemical composition) derived from the mean spectra

in Fig. 4 and 7. Signals for sulfate (m/z -97/99 (HSO4
−), -96 (SO4

−)) and potassium (m/z +39/41 (K+)) were present in every mean spectra

and have therefore not been listed here.

Particle type Characteristic ion signals Additional ion signals Corresponding chemical

denotation in mean spectrum in mean spectrum composition

TMA- m/z +59 (N(CH3)3
+), +58 (NC3H8

+) TMA

containing m/z +18 (NH4
+), C1−3

+, ammonium, carbon

+27 (C2H3
+/CHN+), +37 (C3H

+), cluster ions,

+43 (C3H5
+/CH3CO+/CHNO+) hydrocarbons,

m/z -95 (CH3O3S
−) oxidized organics, MSA

Na/Cl- m/z +23 (Na+), +46 (Na2
+), sodium, chloride

containing +62 (NaO+), +63 (NaOH+),

+81/+83 (Na2Cl+)

m/z -35/-37 (Cl−), -93/-95 (NaCl2
−)

m/z +24/25/26 (Mg+), +40 (Ca+), magnesium, calcium,

+56 (CaO+) carbohydrates

m/z -45 (CHO2
−), -59 (C2H3O2

−), (e.g., cellulose), nitrate

-71 (C3H3O2
−)/ 73 (C6H

−/C3H5O2
−),

-46 (NO2
−), -62 (NO3

−)

EC- C1−7
+, C1−8

− carbon cluster ions

containing m/z -26 (CN−), -42 (CNO−), -45 (CHO2
−), cyanide, levoglucosan,

-59 (C2H3O2
−), -73 (C6H

−/C3H5O2
−), MSA

-95 (CH3O3S
−)

Levoglucosan- m/z -45 (CHO2
−), -59 (C2H3O2

−), levoglucosan

containing -71 (C3H3O2
−)/ 73 (C6H

−/C3H5O2
−)

m/z -26 (CN−), -42 (CNO−), cyanide, MSA

-95 (CH3O3S
−)

3.2.1 Levoglucosan- and EC-containing particle types

Both levoglucosan and EC-containing particle types are known to be primarily produced from fossil fuel and biomass com-

bustion processes (e.g., Bond et al., 2007; Andreae and Merlet, 2001; Simoneit et al., 1999; Simoneit, 2002). In particular,

levoglucosan is formed via the breakdown of cellulose during biomass burning processes. Internal mixing with sulfate and

MSA (Fig. 4c,d and Tab. 2) indicates that those particles were exposed to condensational growth with sulfuric and methane-5
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Figure 6. Vertically resolved aerosol composition of the main four particle types analyzed by the ALABAMA: Absolute number of par-

ticles analyzed by the ALABAMA (white), TMA-containing (yellow), levoglucosan-containing (brown), Na/Cl-containing (blue) and EC-

containing (black) particles. There are in general two levels (below 340 m and above 2700 m) with enhanced number of particles analyzed

by the ALABAMA which is caused by a longer sampling time within these altitudes.

sulfonic acid. This may be consistent with observations of their particle size distribution shifted towards larger sizes with

maximum diameter at around 700 to 800 nm (Fig. 5). Furthermore, the concurrent presence of cyanide on particulate lev-

oglucosan (Fig. 4d and Tab. 2) confirms the biomass burning source (e.g., Li et al., 2000). From the vertical profiles given

in Fig. 6, it can be seen that the fraction of levoglucosan-containing particles increases with increasing altitude, whereas the

profile of EC-containing particles shows no vertical dependence. For the levoglucosan-containing particles, the vertical profile5

corresponds slightly to enhanced CO mixing ratios and Nd>250nm (Fig. 3) suggesting a connection to polluted air masses.
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Taken together, enhanced signals at higher altitudes of levoglucosan, Nd>250nm and CO likely originate from long-range trans-

port of polluted air masses.

3.2.2 Na/Cl-containing particle type

A number of studies have reported on the primary production of sea spray particles via bubble bursting at the sea surface (e.g.,

Blanchard and Woodcock, 1980; O’Dowd and de Leeuw, 2007). Na/Cl-containing particles observed in this study show particle5

diameters mainly larger than 600 nm and they primarily exist at lowest altitudes which indicates that we also measured locally

emitted sea spray particles. The occurrence of sulfate and nitrate ion signals in the mean spectrum (Fig. 4b and Tab. 2) suggests

that some particles have already been exposed to chemical aging via reactions with sulfuric and nitric acid forming nitrate and

sulfate and releasing HCl in the gas phase (e.g., Sorensen et al., 2005; O’Dowd et al., 1999; Sierau et al., 2014). Moreover,

Na/Cl-containing particles are internally mixed with magnesium and calcium, a finding that has recently been reported also by10

Salter et al. (2016). A further internal mixing of Na/Cl-containing particles with MSA cannot be finally ruled out since NaCl2

and MSA have an isobaric interference at m/z -95 (Tab. 1). However, due to the concurrent existence of other Na and Cl ion

signals as well as signals at m/z -93 (isotope of NaCl2), it is likely that ion signals at m/z -95 are largely produced by NaCl2.

Interestingly, approximately 50 % of the Na/Cl-containing spectra show ion signal peaks at m/z -45, -59 and -71/-73 (Fig. 7)

indicating the concurrent existence of carbohydrates such as cellulose. Previous studies have already reported the occurrence of15

organic-rich sea spray particles originating from microorganisms and organic compounds enriched in the sea surface microlayer

and their importance for cloud formation especially in remote regions (e.g., Quinn et al., 2014; Hawkins and Russell, 2010;

Frossard et al., 2014; Wilson et al., 2015; Blanchard and Woodcock, 1980).

3.2.3 TMA-containing particle type

In contrast to the other particle types, the size distribution of TMA-containing particles is shifted towards much smaller diame-20

ters (Fig. 5) and the fractional abundance is increasing with decreasing altitude (Fig. 6). Figure 8, a size and vertically resolved

profile of particulate TMA, further illustrates that particles detected at the lowest altitudes are smaller compared to particles
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aloft, indicating the presence of younger aerosol particles at lower levels. According to these results together with the existence

of a stable stratified BL (Fig. 3), we can infer that those particles originate from inner-Arctic sources.

Possible inner-Arctic sources of TMA, referring to Ge et al. (2011a), are given by oceanic phytoplankton biomass (or other

marine organisms) and various human activities (e.g., waste incineration, vehicle exhaust, residential heating). As was pointed

out in the introduction to this paper, gaseous TMA emissions may then take part in aerosol chemistry in several ways including5

acid-base reactions, oxidation processes, dissolution in cloud droplets and nucleation (e.g., Ge et al., 2011a, b; Murphy et al.,

2007; Angelino et al., 2001; Rehbein et al., 2011; Erupe et al., 2011).

The mean spectrum of TMA-containing particles (Fig. 4a) shows no indications that further N-containing compounds (such as

amine oxidation products, e.g., amides, nitramines and imines) than TMA with the specific ion signals at m/z +59 and +58 were

present on the particles. This result suggests that oxidation of TMA did not take part in the formation of particulate TMA. Fig-10

ure 4a and Table 2 further illustrate the internal mixing of sulfate and TMA which indicates that aminium sulfate salts may be

present (e.g., Murphy et al., 2007; Barsanti et al., 2009; Smith et al., 2010). We can therefore hypothesize that the formation of

particulate TMA was accompanied with acid-base reactions including TMA, sulfuric and methanesulfonic acid and/or sulfate

(e.g., Facchini et al., 2008). It is further possible, due to the occasional presence of low-level clouds (Leaitch et al., 2016), that

the formation of TMA-containing particles was favored by the presence of pre-existing wet and acidic particles. Rehbein et al.15

(2011) reported enhanced gas-to-particle partitioning of TMA by dissolution in cloud/fog droplets and subsequent formation

of aminium salts.

3.3 Internal mixing state of TMA-containing particles

The internal mixing state of TMA-containing particles was further analyzed by applying the marker method introduced in Sect.

2.4 for compounds which are apparent in the mean spectrum (Fig. 4a and Tab. 2), such as potassium (K), ammonium (NH4),20

MSA and sulfate .

The diagram in Fig. 9 illustrates the classification algorithm as follows: the upper branch always refers to a positive re-
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Figure 9. Classification of TMA-containing particles on basis of their different internal mixing states. Each branch describes the existence

or non-existence of several substances (potassium (K), ammonium (NH4), MSA and sulfate) on TMA-containing particles with relative

abundances normalized to the occurrence of 1688 TMA-containing particles. Based on this classification four TMA-containing particle sub-

types arise ”K,NH4,MSA-cont.”,”K,NH4-cont.”,”K-cont.” and ”Non-K,NH4,MSA-cont.” as noted behind the braces. We further considered

an internal mixing of all TMA-containing particles with levoglucosan (9 %), Na/Cl and EC, whereby the latter two types with relative

fractions of less than 1 % are negligible for the further analysis.

sponse (“yes”) for whether different marker ion signals are present in spectra or not; the lower branch shows the opposite

answer (“no”). Besides the substances which already appeared in the mean spectrum of TMA-containing particles, here TMA-

containing spectra are also marked on the concurrent existence of levoglucosan, Na/Cl and EC. The particle sub-group notation

is based on the existing or non-existing substances in TMA-containing particles. We do not consider in detail the concurrent

existence of carbon cluster ions (m/z +12, +24, ..), different hydrocarbons (m/z +27 and +37) and oxidized organics (m/z +43)5

since 90 % of all TMA-containing particles contain at least one of these ion signals. For reasons of clarity, particle types with

equal and less than 7 % fractional abundance (correspond to a total number of 118 particles) are not explicitly considered in

the further analysis, but summarized to “Others”.

Following the categorization in Fig. 9, 13 groups of different internal mixing states arise. Notably, in total around 35 % of all

TMA-containing spectra do not include sulfate. Moreover, in most cases, when ions with m/z -97 and/or m/z -96 are missing10

(below ion peak threshold of 25 mV, Sect. 2.4), the negative mass spectrum generally shows no anion signals. Reasons for

missing anion signals are further discussed in Supplement S2. Briefly summarized, we cannot definitively determine whether

14

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-505
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 6 June 2017
c© Author(s) 2017. CC BY 3.0 License.



1.0

0.8

0.6

0.4

0.2

0.0

P
ar

tic
le

 fr
ac

tio
n 

in
 e

ac
h 

bi
n 

3x10
2 4 5 6 7 8 9

dva (nm)

1

10

100

1000

T
otal particle num

ber  in each bin

TMA-containing particle types:
 K,NH4,MSA-cont.
 K,NH4-cont.
 K-cont.
 Non-K,NH4,MSA-cont.
 Levoglucosan-cont.

 
 Total number of particles

Figure 10. Cumulative size-resolved aerosol composition of the five TMA-containing particle sub-types (normalized to all particles an-

alyzed by the ALABAMA): ”K,NH4,MSA-containing” (dark green), ”K,NH4-containing” (light green), ”K-containing” (orange), ”Non-

K,NH4,MSA-containing” (yellow) and ”levoglucosan-containing” (brown) particles. The number of particles analyzed by the ALABAMA

per size bin is shown with red dots.

0.20.10.0

2500

2000

1500

1000

500

0

A
lti

tu
de

 (
m

)

0.20.10.0 0.20.10.0
Fraction of different TMA-containing particle types

0.20.10.0 0.20.10.0

TMA-containing particle 
types:

 Non-K,NH4,MSA-cont.
 K-cont.
 K,NH4-cont.
 K,NH4,MSA-cont.
 Levoglucosan-cont.

Figure 11. Vertically resolved aerosol composition of the five TMA-containing particle sub-types: ”K,NH4,MSA-containing” (dark
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the missing anion signal (and thereby the sulfate signal) is real or caused by other factors such as higher RH values (Neubauer

et al., 1998). The TMA-containing particle sub-groups and their denotations are therefore independent on the presence of sul-

fate. Taken together, five TMA-containing particle sub-types (given with braces in Fig. 9) are considered for further analysis:

”K,NH4,MSA-”, ” K,NH4-” ”K-”, ”Non-K,KNH4,MSA”- and ”levoglucosan-containing” particles.

A large fraction (25 %, Fig. 9) of particulate TMA is neither internally mixed with potassium nor with any other primary5

particulate matter. Earlier studies reported potassium particles to be primary in origin and emitted from biomass burning and

other biogenic sources (e.g., Andreae, 1983; Li et al., 2003; Pöhlker et al., 2012). From the absence of any primary component

in these particles, we can infer that these TMA-containing particles resulted from SOA formation. In particular, spectra of

the TMA-containing particle sub-type “Non-K,NH4,MSA-containing“ (18 %, Fig. 9) show ion signals only for sulfate and
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fragments of hydrocarbons (not shown here). The associated particle size distribution (Fig. 10) demonstrates that these parti-

cles are mainly present in a size range between 280 and 380 nm. These findings suggest that this TMA sub-type experienced

less condensational growth and coagulation in comparison with other sub-types. Furthermore, “Non-K,NH4,MSA-containing“

particles are most abundant at lowest levels (Fig. 11), which further supports the hypothesis that gaseous TMA is emitted from

inner-Arctic sources.5

Further, 74 % of TMA-containing particles are additionally composed of primary components potassium (Fig. 9, 65 %) and

levoglucosan (Fig. 9, 9 %). According to Pöhlker et al. (2012), this internal mixture can be explained by potassium-containing

particles acting as seeds for the condensation of different organic material. Thus, the measured particulate TMA can be con-

sidered as a secondary component on pre-existing primary particles. The main abundance of these particles at sizes larger than

400 nm, in contrast to “Non-K,NH4,MSA-containing“ particles, further confirms this conclusion. Moreover, the presence of10

potassium in a single particle spectrum must be interpreted with caution since laser ablation single particle aerosol spectrome-

ters are rather sensitive to this compound due to the very low ionization energy of potassium.

Approximately 39 % of the measured particulate TMA is not internally mixed with ammonium (Fig. 9) but partly with MSA

and/or sulfate indicating the presence aminium salts. It shows that amines, beside ammonia, may take part in the neutralization

of acidic aerosol. This is of particular interest considering the reduced sources of ammonia in the Arctic and the ocean as a net15

sink of NH3 in the summertime Canadian Arctic (Wentworth et al., 2016).

Thus far, our analysis of the size and vertical distribution as well as the internal mixing state of TMA-containing particles

indicates the presence of secondary particulate TMA in the Arctic BL, whereby gaseous TMA is emitted from inner-Arctic

sources. However, the abundance of TMA-containing particles above the local BL (mainly the sub-types of ”K,NH4,MSA-

containing”, ”K,NH4-containing”, ”K-containing” and ”levoglucosan-containing”, Fig. 11) may be explained by transport of20

air masses aloft to our measurement site.

3.4 Source apportionment analysis of TMA-containing particles

This section will explore potential emission sources of TMA in the Arctic BL. Thus, the further analysis was restricted to

measurements below 340 m (mean upper BL height, Sect. 3.1).

Figure 12 shows the temporal distribution of “non-TMA-containing” particles, such as Na/Cl-, EC- and levoglucosan-containing25

particles and all TMA-containing sub-types. Figure 13 depicts the spatially resolved fraction of TMA-containing particles be-

low 340 m (left panel) as well as the measured wind direction (right panel) for measurements on 4, 7 and 8 July. We further

used three-day FLEXPART backward simulations (Sect. 2.3) for air mass history analysis of the respective three measurement

legs (Fig. 14).

Potential emission sensitivity maps combined with sea ice coverage (Fig. 1) show that air masses measured on 4 and 7 July30

spent less than one hour and around seven hours, respectively, in the last three days in regions of open water (polynyas north

of Resolute Bay and Nares Strait). On both days the air was mainly advected above sea ice and snow covered regions north of

Resolute Bay (Fig. 14 compared with Fig. 1). The prevailing wind direction on 4 and 7 July along the flight tracks (Fig. 13) is

from the north and east and therefore consistent with FLEXPART backward simulations (Fig. 14). From measurements on 4
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Figure 12. Temporally resolved aerosol composition of Na/Cl-cont. (blue), EC-cont. (black) and levoglucosan-cont. (brown) particle types

and ”Others” (grey) as well as all TMA-containing particle sub-groups (”levoglucosan-containing” (light brown), ”K,NH4,MSA-containing”

(dark green), ”K,NH4-containing” (light green), ”K-containing” (orange), ”Non-K,NH4,MSA-containing” (yellow) particle types and ”Oth-

ers” (light yellow)). Fractional abundances of the particle types were calculated for 10 minutes time intervals. Only time intervals with a total

number of measured particles larger than 20 were considered. Measurements inside the BL on 5, 10 and 12 July did not provide any 10-min

time interval with more than 20 spectra.

and 7 July it is not possible to attribute TMA emissions to marine-biogenic or anthropogenic (e.g., vehicle exhaust, residential

heating and waste incineration emissions in Resolute Bay) sources, therefore a more detailed air mass history analysis was

done with the data of 8 July.

On 8 July the prevailing wind direction along the presented flight leg is from the east (Fig. 13) with wind speeds up to 5 m/s

(not shown here). The fraction of TMA-containing particles decreases with a shift to a more southerly wind direction (yellow5

to green colors, Fig. 13) and the highest fractional abundance of particulate TMA was measured close to the ice edge (Fig.

13) at low wind speeds close to 0 m/s. We can therefore hypothesize that air masses with enhanced fraction of particulate

TMA measured during this flight segment were influenced by marine-biogenic emissions, which is further supported by an

increased fractional abundance of Na/Cl-containing particles on 8 July (Fig. 12). This inference is confirmed by the analysis

of air mass history with three-day FLEXPART backward simulations (Fig. 14) for the presented flight leg in Fig. 12. The10

PES map illustrates that these air masses were mainly marine influenced from Lancaster Sound and Baffin Bay regions and

partly from open water regions in Nares Strait (compare with Fig. 1). Air masses measured during the considered flight leg

on 8 July resided for more than 17 hours during the three days prior to sampling above regions of open water. With regard

to the measured low CO values, anthropogenic influences on gaseous amine emissions from Resolute Bay are negligible. It is

further conceivable that the ice edge in the western section of Lancaster Sound where the highest surface phytoplankton pro-15

duction rate and chlorophyll a concentration were measured (M. Gosselin, personal communication) and/or large bird colonies

at Prince Leopold Island (Fig. 1) (Wentworth et al., 2016) contribute to TMA emissions into the atmosphere. Previous aerosol

chemical composition measurements on Bird Island in the South Atlantic (> 50°S) have already shown the presence of amines

and amino acids emitted from local fauna including seabirds, penguins and fur seals (Schmale et al., 2013).

Another important finding is that primary sea spray particles (Na/Cl-containing) and TMA-containing particles measured on 820
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Figure 13. Spatially resolved fraction of TMA-containing particles (left column, color-coded) and wind direction (right column, color-coded)

below 340 m. Different rows present different measurement days. The first graph additionally shows the satellite image on 4 July in the visible

range. Further satellite images are not presented here due to negligible changes in sea ice coverage from 4 - 8 July. Abbreviations N, E, S

and W refer to North, East, South and West. The black triangle presents the location of Resolute Bay on the map.

July are externally mixed (Fig. 12) although both substances seems to be released from the ocean. This analysis solidifies the

earlier hypothesis (Sect. 3.3) that particulate TMA presents secondary aerosol (Facchini et al., 2008). The higher abundance of

the TMA-containing particle sub-type “Non-K,NH4,MSA-containing” on 8 July (Fig. 12) further supports the conclusion of

SOA formation.

It is further relevant to discuss that on 8 July from 15:50 UTC until 17:20 UTC (respective flight leg in Fig. 12) we flew low5

over sea ice in the vicinity of dissipating low-level clouds. These clouds had formed above the open water regions east of

our flight leg (Burkart et al., 2017; Leaitch et al., 2016). We can therefore assume that cloud processing likely contributed to

enhanced gas-to-particle partitioning of TMA as earlier reported in Rehbein et al. (2011).
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4 Conclusions

We presented results from aircraft-based single particle aerosol measurements in the summertime Canadian High Arctic. Our

study has shown the presence of TMA-containing particles in the Arctic summer, comprising 23 % of all analyzed particles

(total number of all particles: 7412). We confirmed the identification of TMA marker peaks in single particle mass spectra by

laboratory measurements.5
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Further, we investigated potential emission sources and aerosol chemistry processes of particulate TMA in the summertime

Arctic. Observations of an increasing fraction of particulate TMA with decreasing altitude (maximum approximately 60 % in

the local BL) suggested the existence of inner-Arctic sources of TMA. Further analysis of wind direction along the flight track

and FLEXPART backward simulations demonstrated a marine-biogenic influence on air masses containing particulate TMA.

The local oceanic influence on aerosol composition is further evident by the presence of larger (> 600 nm) Na/Cl-containing5

particles (sea spray particles) in the BL. Some of these sea spray particles were found to be internally mixed with carbohydrates

(e.g., cellulose) indicating the existence of a sea surface microlayer enriched with microorganisms and organic compounds.

We additionally found that primary sea spray particles and TMA-containing particles are externally mixed although both

substances are thought to be released from the ocean. This is one important finding suggesting that TMA acts as a precursor

gas for secondary organic aerosol in the Arctic BL. We further conclude that gas-phase TMA, after the release by the ocean,10

was taken up by acidic aerosol forming aminium sulfate salts as evident by the concurrent existence of sulfate and TMA in

single particle spectra. Moreover, the absence of ammonium on 39 % of particles containing TMA shows that TMA may take

part in neutralizing acidic aerosol instead of NH3. It is further possible that gas-to-particle partitioning of TMA was enhanced

in the vicinity of clouds and fog through dissolution of TMA in cloud/fog droplets and subsequent acid-base reactions as earlier

reported in Rehbein et al. (2011).15

In contrast to the discussed marine inner-Arctic sources for summertime Arctic aerosol, we have indications for long-range

transport as a further source for particles. Levoglucosan-containing particles (as biomass-burning marker) showed, compared to

TMA-containing particles, a higher fraction at higher altitudes as well as larger particles sizes (maximum in the size distribution

at 700-800 nm).

Taken together, these findings extend our knowledge of marine-biogenic influences on secondary aerosol chemical composition20

in the summertime Canadian Arctic. Future wide-spread and long-term Arctic measurements of atmospheric amines would

greatly help to extend our results to other Arctic regions.
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