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Abstract

This paper presents new laboratory measurements of the mass absorption efficiency (MAE) between
375 and 850 nm for twelve individual samples of mineral dust from different source areas worldwide
and in two size classes: PMio.c (mass fraction of particles of aerodynamic diameter lower than 10.6 um)
and PM2.s (mass fraction of particles of aerodynamic diameter lower than 2.5 pm). The experiments
were performed in the CESAM simulation chamber using mineral dust generated from natural parent

soils and included optical and gravimetric analyses.

The results show that the MAE values are lower for the PMio.s mass fraction (range 37-135 10 m? g’!
at 375 nm) than for the PM2s (range 95-711 10~ m? g'! at 375 nm), and decrease with increasing wave-
length as A"AAE| where the Angstrom Absorption Exponent (AAE) averages between 3.3-3.5, regardless
of size. The size independence of AAE suggests that, for a given size distribution, the dust composition
did not vary with size for this set of samples. Because of its high atmospheric concentration, light ab-
sorption by mineral dust can be competitive with black and brown carbon even during atmospheric
transport over heavy polluted regions, when dust concentrations are significantly lower than at emission.
The AAE values of mineral dust are higher than for black carbon (~1), but in the same range as light-
absorbing organic (brown) carbon. As a result, depending on the environment, there can be some ambi-
guity in apportioning the aerosol absorption optical depth (AAOD) based on spectral dependence, which
is relevant to the development of remote sensing of light-absorbing aerosols and their assimilation in
climate models. We suggest that the sample-to-sample variability in our dataset of MAE values is related
to regional differences in the mineralogical composition of the parent soils. Particularly in the PMa:s
fraction, we found a strong linear correlation between the dust light-absorption properties and elemental
iron rather than the iron oxide fraction, which could ease the application and the validation of climate
models that now start to include the representation of the dust composition, as well as for remote sensing

of dust absorption in the UV-VIS spectral region.
1. Introduction

Mineral dust aerosols emitted by wind erosion of arid and semi-arid soils account for about 40% of the
total emitted aerosol mass per year at the global scale (Knippertz and Stuut, 2014). The episodic but
frequent transport of intense mineral dust plumes is visible from spaceborne sensors, as their high con-
centrations, combined with their ability to scatter and absorb solar and thermal radiation, give rise to the

highest registered values of aerosol optical depth (AOD) on Earth (Chiapello, 2014). The instantaneous
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radiative efficiency of dust particles, that is, their radiative effect per unit AOD, is of the order of tens
to hundreds of W m? AOD"! in the solar spectrum, and of the order of tens of W m? AOD"! in the
thermal infrared (e.g., Haywood et al., 2003; di Sarra et al., 2011; Slingo et al., 2006 and the compilation
of Highwood and Ryder, 2014). Albeit partially compensated by the radiative effect in the thermal in-
frared, the global mean radiative effect of mineral dust in the shortwave is negative both at the surface
and the top of the atmosphere (TOA) and produces a local warming of the atmosphere (Boucher et al.,
2013). There are numerous impacts of dust on global and regional climate, which ultimately feed back
on wind speed and vegetation and therefore on dust emission (Tegen and Lacis, 1996; Solmon et al.,
2008; Pérez et al., 2006; Miller et al., 2014). Dust particles perturb the surface air temperature through
their radiative effect at TOA, can increase the atmospheric stability (e.g., Zhao et al. 2011) and might
affect precipitation at the global and regional scale (Solmon et al., 2008; Xian, 2008; Vinoj et al., 2014;

Miller et al., 2014 and references therein).

All models indicate that the effect of mineral dust on climate has great sensitivity to their shortwave
absorption properties (Miller et al., 2004; Lau et al., 2009; Loeb and Su, 2010; Ming et al., 2010; Perlwitz
and Miller, 2010). Absorption by mineral dust started receiving a great deal of interest when spaceborne
and ground-based remote sensing studies (Dubovik et al., 2002; Colarco et al., 2002; Sinyuk et al., 2003)
suggested that mineral dust was less absorbing than had been suggested by in situ observations (e.g.,
Patterson et al., 1977; Haywood et al., 2001), particularly at wavelengths below 600 nm. Balkanski et
al. (2007) showed that lowering the dust absorption properties to an extent that reconciles them both
with the remote-sensing observations and the state-of-knowledge of the mineralogical composition, al-
lowed calculating the clear-sky shortwave radiative effect of dust in agreement with satellite-based ob-
servations. A significant number of observations has quantified the shortwave light-absorbing properties
of mineral dust, by direct measurements (Alfaro et al., 2004; Linke et al., 2006; Osborne et al., 2008;
McConnell et al., 2008; Derimian et al., 2008; Yang et al., 2009; Miiller et al., 2009; Petzold et al., 2009;
Formenti et al., 2011; Moosmiiller et al., 2012; Wagner et al., 2012; Ryder al., 2013a; Utry et al., 2015;
Denjean et al., 2015c; 2016), and indirectly by quantifying the amount and the speciation of the light-
absorbing compounds in mineral dust, principally iron oxides (Lafon et al., 2004; 2006; Lazaro et al.,
2008; Derimian et al., 2008; Zhang et al., 2008; Kandler et al., 2007; 2009; 2011; Formenti et al., 2014a;
2014b).
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However, existing data are often limited to a single wavelength, which moreover is not the same for all
experiments. Also, frequently they do not represent the possible regional variability of the dust absorp-
tion, either because they are obtained from field measurements integrating the contributions of different
source regions, or conversely, by laboratory investigations targeting samples from a limited number of
locations. This might lead to biases in the data. Indeed, iron oxides in mineral dust, mostly in the form
of hematite (Fe203) and goethite (Fe(O)OH), have specific absorption bands in the UV-VIS spectrum
(Bédidi and Cervelle, 1993), and have a variable content depending on the soil mineralogy of the source

regions (Journet et al., 2014).

In this study, experiments on twelve aerosol samples generated from natural parent top soils from various
source regions worldwide were conducted with a large atmospheric simulation chamber. We present a
new evaluation of the ultraviolet to near-infrared (375-850 nm) light-absorbing properties of mineral
dust by investigating the size-segregated mass absorption efficiency (MAE, units of m? g'!) and its spec-

tral dependence, widely used in climate models to calculate the direct radiative effect of aerosols.
2. Instruments and methods

At a given wavelength, A, the mass absorption efficiency (MAE, units of m? g'!) is defined as the ratio

of the aerosol light-absorption coefficient babs(A) (units of m™) and its mass concentration (in pg m™)

MAE(2) = —2abs®_ (1)

Mass Conc

MAE values for mineral dust aerosol are expressed in 10~ m? g'!. The spectral dependence of the aerosol

absorption coefficient babs (1) is described by the power-law relationship

baps(A) ~ A744F 2)

where the AAE is the Absorption Angstrom Exponent, representing the negative slope of bavs (1) in a
log-log plot (Moosmiiller et al., 2009)
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AAE = 2ineh (3)

2.1. The CESAM simulation chamber

The experiments in this work have been performed in the 4.2 m® stainless-steel CESAM (French acro-
nym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber (Wang et al.,
2011). The CESAM chamber has been extensively used in recent years to simulate, at sub and super-
saturated conditions, the formation and properties of aerosols at concentration levels comparable to those
encountered in the atmosphere (Denjean et al., 2015a; 2015b; Brégonzio-Rozier et al., 2015; 2016; Di
Biagio et al., 2014; 2017).

CESAM is a multi-instrumented platform, equipped with twelve circular flanges to support its analytical
environment. Basic instrumentation comprises sensors to measure the temperature, pressure and relative
humidity within the chamber (two manometers MKS Baratrons (MKS, 622A and MKS, 626A) and a
HMP234 Vaisala® humidity and temperature sensor). The particle size distribution is routinely meas-
ured by a combination of (i) a scanning mobility particle sizer (SMPS, mobility diameter range 0.02—
0.88 wm), composed of a Differential Mobility Analyzer (DMA, TSI Inc. Model 3080) and a Conden-
sation Particle Counter (CPC, TSI Inc. Model 3772); (ii) a SkyGrimm optical particle counter (Grimm
Inc., model 1.129, optical equivalent diameter range 0.25-32 um); and (iii) a WELAS optical particle
counter (PALAS, model 2000, optical equivalent diameter range 0.5-47 um). Full details of operations

and data treatment of the particle counters are provided in Di Biagio et al. (2017).
2.2. Filter sampling

Three filter samples per top soil sample were collected on different types of substrate based on the anal-
ysis to be performed. Sampling dedicated to the determination of the aerosol mass concentration by
gravimetric analysis and the measurement of the absorption coefficients by optical analysis was per-
formed on 47-mm quartz membranes (Pall Tissuquartz™, 2500 QAT-UP). Two samples were collected
in parallel. The first quartz membrane sample (“total”) was collected without a dedicated size cut-off
using an in-house built stainless steel sampler operated at 5 L min''. However, as detailed in Di Biagio
et al. (2017), the length of the sampling line from the intake point in the chamber to the filter entrance
was 50 cm, resulting in a 50% cut-off of the transmission efficiency at 10.6 um particle aerodynamic

diameter. This fraction is therefore indicated as PMio in the following discussion. The second quartz
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membrane sample was collected using a 4-stage DEKATI impactor operated at a flow rate of 10 L min!

to select the aerosol fraction of particles with aerodynamic diameter smaller than 2.5 pm, indicated as
PMa.s. Sampling for the analysis of the iron oxide content was performed on polycarbonate filters (47-
mm Nuclepore, Whatman; pore size 0.4 um) using the same sample holder as used for the total quartz
filters, and therefore corresponding to the PMi0.6 mass fraction. Samples were collected at a flow rate of
6 L min!. All flow rates were monitored by a thermal mass flow meter (TSI Inc., model 4140). These
samples were also used to determine the elemental composition (including Fe) and the fraction of iron

oxides in the total mass.
2.3. The Multi-Wavelength Absorbance Analyzer (MWAA)

The aerosol absorption coefficient, babs(A), at 5 wavelengths (A = 375, 407, 532, 635, and 850 nm) was
measured by in sSitu analysis of the quartz filter samples using the Multi-Wavelength Absorbance Ana-
lyzer (MWAA), described in detail in Massabo et al. (2013; 2015).

The MWAA performs a non-destructive scan of the quartz filters at 64 different points, each ~ 1 mm?
wide. It measures the light transmission through the filter as well as backscattering at two different angles
(125° and 165°). This is necessary to constrain the multiple scattering effects occurring within the par-
ticle-filter system. The measurements are used as input to a radiative transfer model (Hénel, 1987; 1994)
as implemented by Petzold and Schonlinner (2004) for the Multi-Angle Absorption Photometry
(MAAP) measurements. In this model, a two stream approximation is applied (Coakley and Chylek,
1975), in which the fractions of hemispherical backscattered radiation with respect to the total scattering
for collimated and diffuse incident radiation are approximated on the basis of the Henyey-Greenstein
scattering phase function (Hénel, 1987). This approximation assumes a wavelength-independent asym-
metry parameter (g) set to 0.75, appropriate for mineral dust (Formenti et al., 2011; Ryder et al., 2013b).
The total uncertainty, including the effects of photon counting and the deposit inhomogeneity, on the

absorption coefficient measurement is estimated at 8% (Petzold et al., 2004; Massabo et al., 2013)
2.4. Gravimetric analysis

The aerosol mass deposited on the filters (jg) was obtained by weighing the quartz filter before and after
sampling, after a period of 48 hours of conditioning in a room with controlled atmospheric conditions
(temperature, T ~ 20 + 1 °C; relative humidity, RH ~ 50 + 5%). Weighing is performed with an analytical
balance (Sartorius model MCS5, precision of 1 pg), and repeated three times to control the statistical

variability of the measurement. Electrostatic effects are removed by exposing the filters, prior weighing,
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to a de-ionizer. The error in the measured mass is estimated at 1 pg, including the repetition variability.
The aerosol mass concentration (ug m™) is obtained by dividing the mass deposited on the filter to the
total volume of sampled air (m®) obtained from the mass flowmeter measurements (+-5%). The percent

error on mass concentrations is estimated to 5%.
2.5. Dust composition measurements
2.5.1. Elemental composition

Elemental concentrations for the major constituents of mineral dust (Na, Mg, Al, Si, P, S, Cl, K, Ca, Fe,
Ti, Mn) were obtained by Wavelength Dispersive X-ray Fluorescence (WD-XRF) of the Nuclepore fil-
ters using a PW-2404 spectrometer by Panalytical. Excitation X-rays are produced by a Coolidge tube
(Imax = 125 mA, Vmax = 60 kV) with a Rh anode; the primary X-ray spectrum can be controlled by
inserting filters (Al, at different thickness) between the anode and the sample. Each element was ana-
lyzed three times, with specific conditions (voltage, tube filter, collimator, analyzing crystal, and detec-
tor). Data collection was controlled by the SuperQ software provided with the instrument. The elemental
mass thickness (ug cm?), that is, the analyzed elemental mass per unit surface, was obtained by com-
paring the elemental yields with a sensitivity curve measured in the same geometry on a set of certified
mono- or bi-elemental thin layer standards by Micromatter Inc. The certified uncertainty of the standard
deposit (+ 5%) determines the lower limit of the uncertainty of the measured elemental concentrations,
which ranges between 8% and 10% depending on the element considered. Thanks to the uniformity of
the aerosol deposit on the filters, the atmospheric elemental concentrations (ug m™) were calculated by
multiplying the analyzed elemental mass thickness by the ratio between the collection and analyzed
surfaces of each sample (41 and 22 mm, respectively), then dividing by the total sampled volume (m?).
Finally, concentrations of light-weight elements (atomic number Z < 19) were corrected for the under-
estimation induced by the self-absorption of the emitted soft X-rays inside aerosol particles according

to Formenti et al. (2010).

Additional XRF analysis of the quartz filters was performed both in the PM1o.6 and the PM2s fractions,
to verify the absence of biases between the experiments dedicated to the determination of particle com-

position and those where the optical properties where measured.
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2.6.2. Iron oxide content

The content and the mineralogical speciation of the iron oxides, also defined as free-iron, i.e., the fraction
of iron that is not in the crystal lattice of silicates (Karickhoff and Bailey, 1973), was determined by
XANES (X-ray absorption near-edge structure) in the Fe K-range (K, 7112 eV) at the SAMBA (Spec-
troscopies Applied to Materials based on Absorption) beamline at the SOLEIL synchrotron facility in
Saclay, France (Briois et al., 2011). The position and shape of the K pre-edge and edge peaks were
analyzed as they depend on the oxidation state of iron and the atomic positions of the neighboring ions,

mostly O" and OH .

As in Formenti et al. (2014b), samples were mounted in an external setup mode. A Si(220) double-
crystal monochromator was used to produce a monochromatic X-ray beam, which was 3000 x 250 um?
in size at the focal point. The energy range was scanned from 6850 eV to 7800 eV at a step resolution
varying between 0.2 eV in proximity to the Fe-K absorption edge (at 7112 eV) to 2 eV in the extended
range. Samples were analyzed in fluorescence mode without prior preparation. One scan acquisition

lasted approximately 30 minutes, and was repeated three times to improve the signal-to-noise ratio.

The same analytical protocol was applied to five standards of Fe(IIl)-bearing minerals (Table 1), includ-
ing iron oxides (hematite, goethite) and silicates (illite, montmorillonite, nontronite). The standard spec-
tra were used to deconvolute the dust sample spectra to quantify the mineralogical status of iron. The
linear deconvolution was performed with the Athena IFEFFIT freeware analysis program (Ravel and
Newville, 2005). This provided the proportionality factors, ai, representing the mass fraction of ele-
mental iron to be assigned to the i-th standard mineral. In particular, the values of anem and agoe represent
the mass fractions of elemental iron that can be attributed to hematite and goethite, and are ox (ahem +

0tgoe), the mass fraction of elemental iron that can be attributed to iron oxides.
2.6.3. Calculation of the iron oxide content

The measured elemental concentrations obtained by X-ray Fluorescence (XRF) are expressed in the
form of elemental oxides and summed to estimate the total mineral dust mass concentration MCaust ac-

cording to the equation from Lide (1992)

1.658[Mg]+1.889[A1]+2.139[Si]+1.399[Ca]+1.668[Ti]+1.582[Mn]}

[Mcdu“]zl'lzx{ +(0.5%1.286+0.5x1.42940.47x1.204)[Fe]

“)
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The relative uncertainty in MCaust, estimated from the analytical error in the measured concentrations,
does not exceed 6%. As it will be explained in the result section (paragraph 3.1), the values of MCaust
estimated from Equation 4 were found in excellent agreement with the measured gravimetric mass on

the filters.

The fractional mass ratio (in percent) of elemental iron (MRre%) with respect to the total dust mass con-

centration, MCaust, is then calculated as

[Fe]
[McDust]

MRy, = x 100 (5)

The mass concentration of iron oxides or free-iron (MCre ox), representing the fraction of elemental iron

in the form of hematite and goethite (Fe2O3 and FeOOH, respectively), is equal to

MCpe ox = MCpem + MCgoe (6)

where MChem and MCgoe are the total masses of hematite and goethite. These can be calculated from the
values amem and agoe from XANES analysis, which represent the mass fractions of elemental iron at-

tributed to hematite and goethite, as

em X [Fe]

MCpem = 0= (7.2)
Agoe X [Fe)

MCgoe = gOT (7b)

where the values of 0.70 and 0.63 represent the mass molar fractions of Fe in hematite and goethite,
respectively. The relative errors of MChem and MCgoe are obtained from the uncertainties of the values of

omem and agoe from XANES analysis (less than 10%).

The mass ratio of iron oxides (MRFe ox%) With respect to the total dust mass can then be calculated as
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MRge oxop = MCpe ox X MR o, (8)

3. Experimental protocol

At the beginning of each experiment, the chamber was evacuated to 10*-10"° hPa. Then, the reactor was
filled with a mixture of 80% N2 and 20% O2 at a pressure slightly exceeding the current atmospheric
pressure, in order to avoid contamination from ambient air. The experiments were conducted at ambient
temperature and at a relative humidity <2%. As in Di Biagio et al. (2014; 2017), dust aerosols were
generated by mechanical shaking of the parent soils, previously sieved to < 1000 um and dried at 100
°C for about 1 h to remove any residual humidity. About 15 g of soil was placed in a Buchner flask and
shaken for about 30 min at 100 Hz by means of a sieve shaker (Retsch AS200). The dust particles pro-
duced by the mechanical shaking, mimicking the saltation processing that soils experience when eroded
by strong winds, were injected in the chamber by flushing the flask with N2 at 10 L min™! for about 10-
15 min, whilst continuing shaking the soil. Di Biagio et al. (2014; 2017) have demonstrated the realism
of the generation system concerning the composition and the size distribution of the generated dust with

respect to the properties of mineral dust in the atmosphere.

The dust remained suspended in the chamber for approximately 120 min thanks to the 4-wheel fan
located in the bottom of the chamber body. Previous measurements at the top and bottom of the chamber
showed that the fan ensures a homogeneous distribution of the dust starting approximately 10 minutes

after the end of the injection (Di Biagio et al., 2014).

To compensate for the air extracted from the chamber by sampling, a particle-free flow of N2/O2, regu-
lated in real time as a function of the total volume of sampled air, was re-injected in the chamber. To
avoid excessive dilution the flow was limited to 20 L min™!. Two experiments per soil type were con-
ducted: a first experiment for sampling on the nuclepore polycarbonate filters (determination of the ele-
mental composition and the iron oxide fraction) and in situ measurements of the infrared optical con-
stants (D1 Biagio et al., 2017), and a second experiment sampling on total quartz filter and impactor for

the study of dust MAE presented in this paper.
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Figure 1 illustrates as typical example the time series of the aerosol mass concentration during the two
experiments conducted for the Libyan sample. The comparison demonstrates the repeatability of the dust
concentrations, both in absolute values and in temporal dynamics. It also shows that the mass concen-
trations decreased very rapidly by gravitational settling within the first 30 minutes of the experiment
(see also the discussion in Di Biagio et al., 2017), after which concentrations only decrease by dilution.
The filter sampling was started after this transient phase, and then continued through the end of the
experiments, in order to collect enough dust on the filter membranes for subsequent chemical analysis.
Blank samples were collected before the start of the experiments by placing the holders loaded with filter
membranes in line with the chamber and by flushing them for a few seconds with air coming from the

chamber.

At the end of each experimental series with a given soil sample, the chamber was manually cleaned in
order to remove carry-over caused by resuspension of particles deposited to the walls. Background con-
centrations of aerosols in the chamber vary between 0.5 and 2.0 pg m?, i.e., a factor of 500 to 1000

below the operating conditions.
4. Results and discussion

The geographical location of the soil collection sites is shown in Figure 2, and the coordinates are sum-
marized in Table 2. The selection of these soils and sediments was made out of 137 individual top-soil
samples collected in major arid and semi-arid regions worldwide and representing the mineralogical
diversity of the soil composition at the global scale. As discussed in Di Biagio et al. (2017), this large
sample set was reduced to a set of 19 samples representing the mineralogical diversity of the soil com-
position at the global scale and based ontheir availability in sufficient quantities for injection in the
chamber. Because some of the experiments did not produce enough dust to perform good-quality optical
measurements, in this paper we present a set of twelve samples distributed worldwide but mostly from
Northern and Western Africa (Libya, Algeria, Mali, Bodél¢) and the Middle East (Saudi Arabia and
Kuwait). Individual samples from the Gobi desert in Eastern Asia, the Namib Desert, the Strzelecki
desert in Australia, the Patagonian deserts in South America, and the Sonoran Desert in Arizona were

also investigated.
4.1. Elemental composition and iron oxide content

A total of 41 filters including 15 polycarbonate filters (12 samples and 3 blanks) and 25 quartz filters

(12 for the total fraction, 10 for the fine fraction and 3 blanks) were collected for analysis. The dust mass

11
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concentration found by gravimetric analysis varied between 50 pg m™ and 5 mg m?, in relatively good
agreement with the dust mass concentrations, MCadust, from Equation 4, based on XRF analysis: the slope
of the linear regression between the calculated and the gravimetric values of MCaust is 0.90 with R? =
0.86. Di Biagio et al. (2017) showed that clays are the most abundant mineral phases, together with
quartz and calcite, and that significant variability exists as function of the compositional heterogeneity
of the parent soils. Here we use the Fe/Ca and Si/Al elemental ratios obtained from XRF analysis to
discriminate the origin of dust samples. These ratios have been extensively used in the past to discrimi-
nate the origin of African dust samples collected in the field (Chiapello et al., 1997; Formenti et al.,
2011; 2014a). The values obtained during our experiments are reported in Table 3. There is a very good
correspondence between the values obtained for the Mali, Libya, Algeria, and (to a lesser extent) Mo-
rocco experiments to values found in environmental aerosol samples by Chiapello et al. (1997) and For-
menti et al. (2011; 2014a). These authors indicate that dust from local erosion of Sahelian soils, such as
from Mali, have Si/Al ratios in the range of 2-2.5 and Fe/Ca ratios in the range 3-20, depending on the
time proximity to the erosion event. Dust from sources in the Sahara, such as Libya and Algeria, show
Si/Al ratios in the range of 2-3 and Fe/Ca ratios in the range 0.7-3, whereas dust from Morocco has Si/Al
ratios around 3 and Fe/Ca ratios around 0.4. The only major difference is observed for the Bodél¢é ex-
periment, for which the Fe/Ca ratio is enriched by a factor of 6 with respect to the values of 1 found
during the field observations (Formenti et al., 2011; 2014a). This could reflect the fact that the Bodélé
aerosol in the chamber is generated from a sediment sample and not from a soil. As a matter of fact, the
Bod¢l¢ sediment sample consists of a very fine powder which becomes very easily airborne., This pow-
der is likely to be injected in the chamber with little or no size fractionation. Hence, the aerosol generated
from it should have a closer composition to the original powder than the other samples. On the other
hand, Bristow et al. (2010) and Moskowitz et al. (2016) showed that the iron content and speciation of
the Bodél¢é sediments is very heterogeneous at the source scale. For samples from areas other than north-
ern Africa, the largest variability is observed for the Fe/Ca values, ranging from 0.1 to 8, whereas the
Si/Al ratio varied only between 2.5 and 4.8. In this case, values are available in the literature for com-
parison (e.g., Cornille et al., 1990; Reid et al., 1994; Eltayeb et al., 2001; Lafon et al., 2006; Shen et al.,
2007; Radhi et al., 2010; 2011; Formenti et al., 2011; 2014a; Scheuvens et al., 2013, and references
within). Values in the PM2 s fraction are very consistent with those obtained in the PMio.: their linear
correlation has a slope of 1.03 (£ 0.05) and a R? equal to 0.97, suggesting that the elemental composition

is relatively size independent.
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The mass fraction of total Fe (MCre% from Equation 5), also reported in Table 3, ranged from 2.8 (Na-
mibia) to 7.3% (Australia). These are in the range of values reported in the literature, taking into account
that differences might be also due to the method (direct measurement/calculation) and/or the size fraction
over which the total dust mass concentration is estimated (Chiapello et al., 1997; Reid et al., 1994; 2003;
Derimian et al., 2008; Formenti et al., 2001; 2011; 2014a; Scheuvens et al., 2013). The agreement of
MCre% values obtained by the XRF analysis of polycarbonate filters (Equation 5) and those obtained
from the XRF analysis of the quartz filters, normalized to the measured gravimetric mass is well within
10% (the percent error of each estimate). Exceptions are the samples from Bodélé and Algeria, for which
the values obtained from the analysis of the quartz filters are significantly lower than those obtained
from the nuclepore filters (3.1% versus 4.1% for Bod¢l¢ and 4.3% versus 6.8% for Algeria). We treat
that as an additional source of error in the rest of the analysis, and add it to the total uncertainty. In the
PMas fraction, the content of iron is more variable, ranging from 4.4% (Morocco) to 33.6% (Mali),
showing a size dependence. A word of caution on this conclusion is that the two estimates are not nec-
essarily consistent in the way that the total dust mass is estimated (from Equation 4 for the PMio.¢ fraction

and by gravimetric weighing for the PM2:s).

Finally, between 11 and 47% of iron in the samples can be attributed to iron oxides, in variable propor-
tions between hematite and goethite. The iron oxide fraction of total Fe in this study is at the lower end
of the range (36-72%) estimated for field dust samples of Saharan/Sahelian origin (Formenti et al.
2014b). The highest value of Formenti et al. (2014b), obtained for a sample of locally-emitted dust col-
lected at the Banizoumbou station in the African Sahel, is anyhow in excellent agreement with the value
of 62% obtained for an experiment (not shown here) using a soil collected in the same area. Likewise,
the proportions between hematite and goethite (not shown) are reproduced, showing that goethite is more
abundant than hematite. The mass fraction of iron oxides (MRFe ox%), estimated from Equation 8 and
shown in Table 3, ranges between 0.7% (Kuwait) and 3.6% (Australia), which is in the range of available
field estimates (Formenti et al., 2014a; Moskowitz et al., 2016). For China, our value of MRFre ox% is
lower by almost a factor of 3 compared to that obtained on dust of the same origin by Alfaro et al.
(2004) (0.9% against 2.8%), whereas on a sample from Niger (not considered in this study) our estimates
and that by Alfaro et al. (2004) agree perfectly (5.8%). A possible underestimate of the iron oxide frac-
tion for samples other than those from the Sahara-Sahel area could be due to the fact that - opposite to
the experience of Formenti et al. (2014b) - the linear deconvolutions of the XANES spectra were not

always satisfactory (see Figure S1 in the supplementary). This resulted in a significant residual between
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the observed and fitted XANES spectra. In fact, the mineralogical reference for hematite is obtained
from a soil from Niger (Table 1) and might not be fully suitable for representing aerosols of different
origins. Additional differences could arise from differences in the size distributions of the generated
aerosol. As a matter of fact, the number fraction of particles in the size classes above 0.5 um in diameter
is different in the dust aerosol generated in the Alfaro et al. (2004) study compared to ours. In the study
by Alfaro et al. (2004), the number fraction of particles is lowest in the 0.5-0.7 size class and highest
between 1 and 5 um. In contrast, in our study the number fraction is lowest in the 1-2 um size range and
highest between 0.5 and 0.7 um. These differences could either be due to differences in the chemical

composition and/or in the total mass in the denominator of Equation 8.
4.2. Spectral and size variability of the mass absorption efficiency

The spectral mass absorption efficiencies (MAE) at 375, 407, 532, 635, and 850 nm for the PM10.6 and
the PM2.s dust fractions are summarized in Table 4 and displayed in Figure 3. Regardless of particle
size, the MAE values decrease with increasing wavelength (almost one order of magnitude between 375
and 850 nm), and display a larger variability at shorter wavelengths. The MAE values for the PMio.6
range from 37 (£3) 102 m? g to 135 (£ 11) 10° m? g'' at 375 nm, and from 1.3 (£ 0.1) 10° m? g to 15
(£ 1) 10° m? g'! at 850 nm. Maxima are found for the Australia and Algeria samples, whereas the minima
are for Bodélé and Namibia, respectively at 375 and 850 nm. In the PMas fraction, the MAE values
range from 95 (£ 8) 10° m? g to 711 (£ 70) 10 m?> g'' at 375 nm, and from 3.2 (£ 0.3) 10° m? g to 36
(£3) 10° m? g at 850 nm. Maxima at both 375 and 850 nm are found for the Morocco sample, whereas
the minima are for Algeria and Namibia, respectively. The MAE values for mineral dust resulting from
this work are relatively in good agreement with the estimates available in the literature (Alfaro et al.,
2004; Linke et al., 2006; Yang et al., 2009; Denjean et al., 2016), reported in Table 5. For the China
Ulah Buhn sample, Alfaro et al. (2004) reported 69.1 10~ and 9.8 10~ m? g”! at 325 and 660 nm, respec-
tively. The former is lower than the value of 99 10> m? g'! that we obtain by extrapolating our measure-
ment at 375 nm. Likewise, our values for the Morocco sample are higher than reported by Linke et al.
(2006) at 266 and 660 nm. Conversely, the agreement with the estimates of Yang et al. (2009) for mineral
dust locally re-suspended in Xianghe, near Beijing (China) is very good at all wavelengths between 375
and 880 nm. As expected, the MAE values for mineral dust resulting from this work are almost one
order of magnitude smaller than for other absorbing aerosols. For black carbon, MAE values are in the
range of 6.5-7.5 m? g'! at 850 nm (Bond and Bergstrom, 2006; Massabo et al., 2016), and decrease in a

linear way with the logarithm of the wavelength. For brown carbon, the reported MAE range between
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2.3-7.0 m? g'! at 350 nm (Chen and Bond, 2010; Kirchstetter et al., 2004; Massabo et al., 2016), 0.05—
1.2 m? g'! at 440 nm (Wang et al., 2016) and 0.08-0.72 m? g'! at 550 nm (Chen and Bond, 2010).

The analysis of Table 4 indicates that, at every wavelength, the MAE values in the PM25 fraction are
equal or higher than those for PMio.6. The PM2.5s/PMi0.6 MAE ratios reach values of 6 for the Mali sam-
ple, but are mostly in the range 1.5-3 for the other aerosols. The values decrease with wavelength up to
635 nm, whereas at 850 nm they have values comparable to those at 375 nm. The observed size depend-
ence of the MAE values is consistent with the expected behavior of light absorption of particles in the
Mie and geometric optical regimes that are relevant for the two size fractions. Light absorption of parti-
cles of sizes smaller or equivalent to the wavelength is proportional to their bulk volume, whereas for
larger particles absorption occurs on their surface only (Bohren and Huffmann, 1983). On the other hand,
the size-resolved measurements of Lafon et al. (2006) show that the proportion (by volume) of iron
oxides might be higher in the coarse than in the fine fraction, which would counteract the size-depend-
ence behavior of MAE. To validate the observations, we calculated the spectrally-resolved MAE values
in the two size fractions using the Mie code for homogeneous spherical particles (Bohren and Huffmann,
1983) and the number size distribution estimated by Di Biagio et al. (2017) and averaged over the dura-
tion of filter sampling. We estimated the dust complex refractive index as a volume-weighted average
of a non-absorbing dust fraction having the refractive index of kaolinite, the dominant mineral in our
samples (see Di Biagio et al., 2017), from Egan et Hilgeman (1979) and an absorbing fraction estimated
from the mass fraction of iron oxides and having the refractive index of hematite (Bedidi and Cervelle,
1993). The results of this calculation indicate that the observed size-dependent behavior is well repro-
duced at all wavelengths, even in the basic hypothesis that the mineralogical composition does not
change with size. The only exception is 850 nm, where at times, PM2.s/PM10.c MAE ratio is much higher
than expected theoretically. We attribute that to the relatively high uncertainty affecting the absorbance
measurements at this wavelength, where the signal-to-noise ratio is low. Indeed, the two sets of values
(MAE in the PM2s fraction and MAE in the PMio¢ fraction) are not statistically different according to a
two-pair t-test (0.01 and 0.05 level of confidence), confirming that any attempt of differentiation of the

size dependence at this wavelength would require a stronger optical signal.

The analysis of the spectral dependence, using the power-law function fit (Equation 2), provides the
values of the Angstrom Absorption Exponent (AAE), also reported in Table 4. Contrary to the MAE
values, there is no statistically significant size dependence of the AAE values, ranging from 2.5 (+ 0.2)

to 4.1 (= 0.3), with an average of 3.3 (= 0.7), for the PMio. size fraction and between 2.6 (£ 0.2) and 5.1
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(+ 0.4), with an average of 3.5 ( 0.8), for the PM2s fraction. Our values are in the range of those pub-
lished in the literature (Fialho et al., 2005; Linke et al., 2006; Miiller et al., 2009; Petzold et al., 2009;
Yang et al., 2009; Weinzierl et al., 2011; Moosmiiller et al., 2012; Denjean et al., 2016), shown in Table
5. AAE values close to 1.0 are found for urban aerosols where fossil fuel combustion is dominant, while
AAE values for brown carbon (BrC) from incomplete combustion are in the range 3.5-4.2 (Yang et al.,

2009; Chen et al., 2015; Massabo et al., 2016).

Finally, Figure 4 shows correlations between the MAE values in the PM1o. fraction (Figure 4.a) and in
the PM2 s fraction (Figure 4.b) and the estimated percent mass fraction of iron and iron oxides (MCre%
and MCreox), respectively. Regardless of the size fraction, the correlation between the MAE values and
the percent mass of total elemental iron are higher at 375, 407 and 532 nm . Best correlations are
obtained when forcing the intercept to zero, indicating that elemental iron fully accounts for the meas-
ured absorption. At these wavelengths, linear correlations with the mass fraction of iron oxides are low
in the PMio6 mass fraction (R? up to 0.38-0.62), but higher in the PMz.s fraction (R? up to 0.83-0.99),
where, however, one should keep in mind that they have been established only indirectly by considering
the ratio of iron oxides to elemental iron independent of size. At 660 and 850 nm, little or no robust
correlations are obtained, often based on very few data points and with very low MAE values. It is
noteworthy that, in both size fractions, the linear correlation yields a non-zero intercept, indicating a

contribution from minerals other than iron oxides to the measured absorption.
5. Conclusive remarks

In this paper, we report new laboratory measurements of the shortwave mass absorption efficiency
(MAE) of mineral dust of different origins and as a function of size and wavelength in the 375-850 nm
range. Our results were obtained in the CESAM simulation chamber using mineral dust generated from

natural parent soils, in combination with optical and gravimetric analysis on extracted samples.

Our results can be summarized as follows: at 375 nm, the MAE values are lower for the PM1o.6 mass
fraction (range 37-135 10 m? g!) than for the PM2 s fraction (range 95-711 10~ m? g'!), and vary oppo-
site to wavelength as AAAE, where AAE (Angstrom Absorption Exponent) averages between 3.3-3.5

regardless of size fraction. These results deserve some concluding comments:

. The size dependence, characterized by significantly higher MAE values in the fine fraction

(PMz25) than in the bulk (PMaos) aerosol, indicates that light absorption by mineral dust can be
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important even during atmospheric transport over heavily polluted regions, where dust concen-
trations are significantly lower than at emission. This can be shown by comparing the aerosol
absorption optical depth (AAOD) at 440 nm for China, a well-known mixing region of mineral
dust and pollution (e.g., Yang et al., 2009; Laskin et al., 2014; Wang et al., 2013), as well as
offshore western Africa where large urban centers are downwind of dust transport areas (Petzold
etal., 2011). Laskin et al. (2014) reports that the average AAOD in China is of the order of 0.1
for carbonaceous absorbing aerosols (sum of black and brown carbon; Andreae and Gelencsér,
2006). This is lower or comparable to the AAOD of 0.17 and 0.11 at 407 nm (total and fine mass
fractions, respectively) that we derive by a simple calculation (AAOD = MAE x MCaust X H),
from MAE values estimated in this study, MCadust, the dust mass concentrations typically observed

in urban Beijing during dust storms (Sun et al., 2005), and H, a scale height factor of 1 km.

The spectral variability of the dust MAE values, represented by the AAE parameter, is equal in
the PM2s and PMio.6 mass fractions. This suggests that, for a given size distribution, the possible
variation of dust composition with size does not affect in a significant way the spectral behavior
ofthe absorption properties. Our average value for AAE is 3.3 £ 0.7, higher than for black carbon,
but in the same range as light-absorbing organic (brown) carbon. As a result, depending on the
environment, there can be some ambiguity in apportioning the AAOD based on spectral depend-
ence. Bahadur et al. (2012) and Chung et al. (2012) couple the AAE and the spectral dependence
of the total AOD (and/or its scattering fraction only) to overcome this problem. Still, Bahadur et
al. (2012) show that there is an overlap in the scatterplots of the spectral dependence of the scat-
tering and absorption fractions of the AOD based on an analysis of ground-based remote sensing
data for mineral dust, urban, and non-urban fossil fuel over California. A closer look should be
taken at observations in mixing areas where biomass burning aerosols may have different chem-
ical composition and/or mineral dust has heavy loadings in order to generalize the clear separa-
tion observed in the spectral dependences of mineral dust and biomass burning (Bahadur et al.,
2012). This aspect is relevant to the development of remote sensing retrievals of light absorption
by aerosols from space, and their assimilation in climate models (Torres et al., 2007; Buchard et

al., 2015; Hammer et al., 2016).

There is an important sample-to-sample variability in our dataset of MAE values for mineral dust

aerosols. At 532 nm, our average MAE values are 34 + 14 m? g! and 78 £ 70 m? g! in the PMio.6
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and PM:2s mass fractions, respectively. Figure 3, showing the correlation with the estimated mass
fraction of elemental iron and iron oxides, suggests that this variability could be related to the
regional differences of the mineralogical composition of the parent soils. These observations lead
to further conclusions. To start with, our study reinforces the need for regionally-resolved repre-
sentation of the light absorption properties of mineral dust in order to improve the representation
of its effect on climate. As a matter of fact, the natural variability of the absorption properties
that we obtain from our study is in the range 50-100%, even when we limit ourselves to smaller
spatial scales, for example those from north Africa (samples from Libya, Algeria, Mali and Bo-
délé). As a comparison, Solmon et al. (2008) showed that varying the single scattering albedo of
mineral dust over western Africa by =+ 5%, that is, varying the co-albedo (or absorption) by 45%

(0.1£ 0.045) could drastically change the climate response in the region.

The question is then “how to represent this regional variability?” Like Moosmiiller et al. (2012)
and Engelbrecht et al. (2016), we found that elemental iron is a very good proxy for the MAE,
especially in the PMa2 s fraction, where iron-bearing absorbing minerals (hematite, goethite, illite,
smectite clays) are more concentrated. In the coarse fraction, Ca-rich minerals, quartz, and feld-
spars could also play a role, and that could result in the observed lower correlation (although
adding a term proportional to elemental Ca does not improve the correlation in the present study).
The correlation of the spectral MAE values with the iron oxide fraction is satisfactory but rather
noisy, also owing to some uncertainty in the quantification of iron oxides from X-Ray absorption
measurements. In this case, the intercept is significantly different from zero, again indicating that
a small but distinct fraction of absorption is due to minerals other than iron oxides. There are
contrasting results on this topic: Alfaro et al. (2004) found an excellent correlation between MAE
and the iron oxide content, whereas Klaver et al. (2011) found that the single scattering albedo
(representing the capacity of an aerosol population to absorb light in relation to extinction) was
almost independent on the mass fraction of iron oxides. Moosmiiller et al. (2012) disagreed,
pointing out the uncertainty in the correction procedure of the measurement of absorption by
Klaver et al. (2011). As a matter of fact, Klaver et al. (2011) and Alfaro et al. (2004) used the
same correction procedure. It is more likely that the lack of correlation found in Klaver et al.
(2011) is due to the fact that minerals other than iron oxides contribute to absorption, in particular

at their working wavelength (567 nm), where the absorption efficiency of iron oxides starts to
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weaken. Clearly, the linear correlation between elemental iron in mineral dust and its light-ab-
sorption properties could ease the application and validation of climate models that are now start-
ing to include the representation of the mineralogy (Perlwitz et al., 2015a; 2015b; Scanza et al.,
2015). Also, this would facilitate detecting source regions based on remote sensing of dust ab-
sorption in the UV-VIS spectral region (e.g., Hsu et al., 2004). However, such a quantitative
relationship cannot be uniquely determined from these studies, including the present one, which
use different ways of estimating elemental iron, iron oxides, and the total dust mass. A more
robust estimate should be obtained from the imaginary parts of the complex refractive indices
associated with the measurements of absorption, and their dependence on the mineralogical com-

position.
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Table captions

Table 1. Characteristics of the standards used for the quantification of the iron oxides in the XAS anal-

ysis.
Table 2. Geographical information on the soil samples used in this work.

Table 3. Chemical characterisation of the dust aerosols in PMio.s and PM2s (in parentheses) size frac-
tions. Columns 3 and 4 give the Si/Al and Fe/Ca elemental ratios obtained from X-Ray Fluorescence
analysis. The uncertainty of each individual value is estimated to be 10%. Column 5 shows MRFe%, the
fractional mass of elemental iron with respect to the total dust mass concentration (uncertainty 10%).
Column 5 reports MRFew, the mass fraction of iron oxides with respect to the total dust mass concentra-
tion (uncertainty 15%). For PM2 s the determination of the Si/Al ratio is impossible due to the composi-

tion of the filter membranes (quartz).

Table 4. Mass absorption efficiency (MAE, 10 m? g'!) and Angstrdém Absorption Exponent (AAE) in

the PM1os and PM25 size fractions. Absolute errors are in brackets.

Table 5. Mass absorption efficiency (MAE, 10 m? g'!) and Angstrdm Absorption Exponent (AAE)

from the literature data discussed in the paper

Figure captions

Figure 1. Time series of aerosol mass concentration in the chamber for two companion experiments
(Libyan dust). Experiment 1 (top panel) was dedicated to the determination of the chemical composition
(including iron oxides) by sampling on polycarbonate filters. Experiment 2 (bottom panel) was dedicated

to the determination of the absorption optical properties by sampling on quartz filters.
Figure 2. Locations (red stars) of the soil and sediment samples used to generate dust aerosols.

Figure 3. Spectral dependence of the MAE values for the samples investigated in this study in the PMio.6
(left) and in the PM2.s (right) mass fractions.

Figure 4. Illustration of the links between the MAE values and the dust chemical composition found in
this study. Left column, from top to bottom: linear regression between the MAE values in the range from
375 to 850 nm and the fraction of elemental iron relative to the total dust mass (MRFe%) in the PMio.

fraction; Middle column: same as left column but for the mass fraction of iron oxides relative to the total
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879  dust mass (MRFe ox%) in the PMio. size fraction; Right column: same as left column but in the PM2 5 size
880  fraction.
881
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Table 1. Characteristics of the standards used for the quantification of the iron oxides in the XAS anal-

ysis.
Standard Stoichiometric Formula Origin
Illite of Puy (Si3.55Al0.45)(Al1.27Fe0.36Mg0.44)O10(OH)2(Ca0.01Na0.01Ko.53X(1)0.12) ~ Puy, France
Goethite FeO OH Minnesota
Hematite Fe203 Niger
Montmorillonite  (Na,Ca)o,3(Al,Mg)2S14010(OH)2'n(H20) Wyoming
Nontronite Nao.3Fez2(S1,A1)4010(0OH)2-nH20 Pennsylvania
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887  Table 2. Geographical information on the soil samples used in this work.
Geographical area Sample Desert area Geographical coordinates
Morocco East of Ksar Sahli 31.97°N, 3.28°W
Sahara Libya Sebha 27.01°N, 14.50°E
Algeria Ti-n-Tekraouit 23.95°N, 5.47°E
Mali Dar el Beida 17.62°N, 4.29°W
Sahel .
Bodé¢leé Bodél¢é depression 17.23°N, 19.03°E
Saudi Arabia Nefud 27.49°N, 41.98°E
Middle East
Kuwait Kuwaiti 29.42°N, 47.69°E
Southern Africa Namibia Namib 21.24°S, 14.99°E
Eastern Asia China Gobi 39.43°N, 105.67°E
North America Arizona Sonoran 33.15°N, 112.08°W
South America Patagonia Patagonia 50.26°S, 71.50°W
Australia Australia Strzelecki 31.33°S, 140.33°E
888
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890  Table 3. Chemical characterisation of the dust aerosols in PMio.s and PMa:s (in parentheses) size frac-
891  tions. Columns 3 and 4 give the Si/Al and Fe/Ca elemental ratios obtained from X-Ray Fluorescence
892  analysis. The uncertainty of each individual value is estimated to be 10%. Column 5 shows MRre», the
893  fractional mass of elemental iron with respect to the total dust mass concentration (uncertainty 10%).
894  Column 5 reports MRre%, the mass fraction of iron oxides with respect to the total dust mass concentra-
895  tion (uncertainty 15%). For PM2 s the determination of the Si/Al ratio is impossible due to the composi-

896  tion of the filter membranes (quartz)

897
898

Geographical area Sample Si/Al Fe/Ca MCreo% M Cre-0x%

Morocco 3.12 (--) 0.24 (0.28) 3.6 (4.4) 1.4 (1.8)

Sahara Libya 2.11 (--) 1.19 (1.12) 5.2 (5.6) 3.1(3.4)

Algeria 2.51 (---) 3.14 (4.19) 6.6 (5.4) 2.7(2.2)

Sahel Mali 3.03 (---) 2.99 (3.67) 6.6 (33.6) 3.7 (18.7)

Bodélé 5.65 (---) 12.35 (----) 4.1 (----) 0.7 (----)

Middle East Saudi Arabia  2.95 (---) 0.29 (0.27) 3.8(5.1) 2.6 (3.5

Kuwait 3.15(--) 0.89 (1.0) 5.0 (13.6) 1.54.2)

Southern Africa Namibia 341 (--) 0.11 (0.10) 2.4(6.9) 1.1 (3.1)

Eastern Asia China 2.68 (---) 0.77 (0.71) 5.8 (13.6) 0.9 (2.5)

North America Arizona 3.30 (--) 0.95 (----) 53(----) 1.5 (----)

South America Patagonia 4.80 (---) 4.68 (4.64) 5.1 () 1.5 (--)

Australia Australia 2.65 (---) 5.46 (4.86) 7.2 (11.8) 3.6(5.9)
899
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901  Table 4. Mass absorption efficiency (MAE, 10~ m? g'') and Angstrém Absorption Exponent (AAE) in
y g g p p

902  the PMio.s and PM2 s size fractions. Absolute errors are in brackets.

PMios
Geogarggh'ca' sample  375nm  407nm  532nm  635nm  850nm  AAE
Morocco - (=) () (=) (=) () ()
Sahara Libya 89 (11) 75 (9) 30 (5) —(--) - (-) 3.2(0.3)
Algeria 99 (10) 80 (10) 46 (7) 16 (3) 15(3) 2.5(0.3)
Sahel Mali — (=) 103(18) 46(12) --—-(--) (=) ()
Bodélé 37 (4) 25 (3) 13 (2) 6 (1) 3(1) 3.3(0.3)
Middle East Saudi Artabia 90 (9) 79 (8) 28 (3) 6 (1) 4 (1) 4.1 (0.4)
Kuwait (=) () () () () 2.8(03)
Southern Africa Namibia 52 (7) 49 (7) 13 (3) 512) 1(2) 4.7 (0.5)
Eastern Asia China 65 (8) 58 (7) 32 (4) 8(2) 7(2) 3(0.3)
North America Arizona 130 (15) 99 (12) 47 (7) 21 (4) 13 (4) 3.1(0.3)
South America Patagonia 102 (11) 80 (9) 29 (4) 17 (2) 10(2) 29(0.3)
Australia Australia 135(15) 121 (13)  55(7) 26 (4) 14(3) 29(0.3)
903
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PMa2s

Geographical

area Sample 375nm 407 nm  532nm  635nm 850 nm AAE
Morocco 107 (13) 88 (11) 34 (6) 14 (3) 15(4)  2.6(0.3)
Sahara Libya 132(17) 103 (14)  33(7)  ——-(—-) (=) 4.1(04)
Algeria 95(8)  71(11) 37 (7) 12 (5) 12(5) 2.8(0.3)
Sahcl Mali (m) 621 (124)  227(78) () -—(--) 3.4(0.3)
Bodele (o) () (o) wmem) () ()
Saudi Arabia 153 (18) 127(15)  42(7) 8 (4) 6(4)  45(0.5)
Middle East . 270
Kuwait (100) 324 (96)  ---(---) 54 (52) — () 3.4(0.3)
Southern Africa Namibia 147 (36) 131 (32) 31 (21) 6(16) 3(15) 5.1 (0.5)
Eastern Asia China 201 (30) 176 (26) 89 (17) 14 (10) 23 (10) 3.2(0.3)
North America Arizona () --(--) - (--) - (--) - (--) - (=)
South America Patagonia  ---(---) ---(--) () (=) -—-(-) 29(0.3)
Australia Australia  335(39) 288(33) 130(19) 57(11) 36 (9) 2.9(0.3)
905
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907
908

909
910
911
912
913
914
915
916
917
918

Table 5. Mass absorption efficiency (MAE, 10 m? g'!) and Angstrdm Absorption Exponent (AAE)

from the literature data discussed in the paper

Geo-

106
g_raph Sample 266 325 428 532 660 880 4 AAE
ical nm nm nm nm nm nm nm
area
. 2.25—
Morocco 513
Morocco, PM; 5 2.0-6.5
Morocco, submicron® 1100 60 30 4.2
Sa. Egypt, submicron” 810 20 5.3
hara Tunisia® 83 11
Saharan, transported" 2.9+0.2
Saharan, transported %% Iy
0 37 277%%  15%%% 2.9
(PM,0)”
Saharan, transported %% %%
(PM,)"* 60 40 30 2.0
Sahel Niger® 124 19
East- China® 69 10
ern & &&&
Asin China® 877 somae 2T 13 1 38
Ara-
bian
Penin-
sula,
N/NE Various locations® 2.5-39
Af-
rica,
Cen-
tral
Asia

* Miiller et al. (2008)
£ Petzold et al. (2009)
# Linke et al. (2006)

$ Alfaro et al. (2004)
* Fialho et al. (2005)

% Denjean et al. (2016); % at 528 nm, **" at 652 nm

& Yang et al. (2009); €% at 375 nm, 4% at 470 nm, 4¢%% at 590 nm

@ Mossmiiller et al. (2012)
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924
925

Figure 1. Time series of aerosol mass concentration in the chamber for two companion experiments
(Libyan dust).. Experiment 1 (top panel) was dedicated to the determination of the chemical composition
(including iron oxides) by sampling on polycarbonate filters. Experiment 2 (bottom panel) was dedicated

to the determination of the absorption optical properties by sampling on quartz filters.
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929

Figure 2. Locations (red stars) of the soil and sediment samples used to generate dust aerosols.
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930  Figure 3. Spectral dependence of the MAE values for the samples investigated in this study in the PMio.6

931  (left) and in the PM2.s (right) mass fractions.
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Figure 4. Illustration of the links between the MAE values and the dust chemical composition found in
this study. Left column, from top to bottom: linear regression between the MAE values in the range from
375 to 850 nm and the fraction of elemental iron relative to the total dust mass (MRFe%) in the PMio.
fraction; Middle column: same as left column but for the mass fraction of iron oxides relative to the total
dust mass (MRFe ox%) in the PMio.6 size fraction; Right column: same as left column but in the PM2 5 size

fraction.
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