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Abstract.  Reported sulfur dioxide (SO2) emissions from U.S. and Canadian sources have declined dramatically since the 

1990s as a result of emissions control measures. Observations from the Ozone Monitoring Instrument (OMI) on NASA’s 15 

Aura satellite and ground-based in-situ measurements are examined to verify whether the observed changes from SO2 

abundance measurements are quantitatively consistent with the reported changes in emissions.  To make this connection, a 

new method to link SO2 emissions and satellite SO2 measurements was developed. The method is based on fitting satellite 

SO2 vertical column densities (VCDs) to a set of functions of OMI pixel coordinates and wind speeds, where each function 

represents a statistical model of a plume from a single point source. The concept is first demonstrated using sources in North 20 

America, and then applied to Europe.  The correlation coefficient between OMI-measured VCDs (with a local bias removed) 

and SO2 VCDs derived here using reported emissions for 1° by 1° gridded data is 0.91 and the best-fit line has a slope near 

unity, confirming a very good agreement between observed SO2 VCDs and reported emissions. Having demonstrated their 

consistency, seasonal and annual mean SO2 VCD distributions are calculated, based on reported point-source emissions for 

the period 1980-2015, as would have been seen by OMI. This consistency is further substantiated as the emissions-derived 25 

VCDs also show a high correlation with annual mean SO2 surface concentrations at 50 regional monitoring stations.   
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  1 Introduction 

Sulfur dioxide (SO2) is a designated criteria air pollutant that enters the atmosphere through anthropogenic (e.g., combustion 

of sulfur-containing fuels, oil refining processes, metal ore smelting operations) and natural processes (e.g., volcanic 

eruptions and degassing).   Over the past three decades both the US and Canada have taken measures to reduce atmospheric 

emissions of SO2 in order to combat acidification of the ecosystem (e.g., acid rain) and fine particulate matter. As a result, 5 

between 1990 and 2012, reported emissions of SO2 declined by 78 percent in the United States and 58 percent in Canada 

(IJC, 2014). In this study, we examined how well the changes in the reported emissions agree with the SO2 changes in North 

America observed by satellite and surface instruments. 

Ground-based networks such as the US Clean Air Status and Trends Network (CASTNet) and Canadian Air and 

Precipitation Monitoring Network (CAPMoN) are specifically designed to monitor long-term trends of gaseous pollutants in 10 

rural areas away from major pollution emission sources (Baumgardner et al., 1999; Park et al., 2004; Schwede et al., 2011). 

Their measurements show that over the eastern US, reductions in regional SO2 emissions have led to significant reductions in 

monitored SO2 concentrations (Sickles II and Shadwick, 2015; Xing et al., 2013). 

Satellites provide global measurements of SO2 vertical column densities (VCD): the total number of molecules or 

total mass per unit area (Krotkov et al., 2008; Li et al., 2013; Theys et al., 2015). They have been previously used to study 15 

the evolution of SO2 VCDs over large regions such as Europe (Krotkov et al., 2016), China (Jiang et al., 2012; Koukouli et 

al., 2016; Li et al., 2010; Witte et al., 2009), India (Lu et al., 2013), and the U.S. (Fioletov et al., 2011).  Satellite instruments 

can detect anthropogenic SO2 signals from large individual point sources such as copper and nickel smelters, power plants, 

oil and gas refineries , and other sources (Bauduin et al., 2014, 2016; Carn et al., 2004, 2007; Fioletov et al., 2013; de Foy et 

al., 2009; Lee et al., 2009; McLinden et al., 2012, 2014; Nowlan et al., 2011; Thomas et al., 2005). An 11-year-long record 20 

of satellite SO2 data over different regions of the globe, including the eastern US and southeastern Canada, was examined 

recently (Krotkov et al., 2016). The analysis shows a substantial (up to 80%) decline in the observed VCD values over that 

region.  

These satellite measurements can also be used as an independent source to verify reported changes in emissions.  

Methods for emission estimates from satellite measurements have been recently reviewed by (Streets et al., 2013).  One such 25 

method that does not require the use of atmospheric chemistry models has been commonly used in recent years.  By first 

merging observations from the Ozone Monitoring Instrument (OMI) with wind information, the downwind decay of several 

pollutants can be analyzed, and in so doing estimates of the total SO2 (or NO2) mass (α) near the source and its lifetime or, 

more accurately, decay time (τ) can be derived (Fioletov et al., 2011, 2015; de Foy et al., 2015; Lu et al., 2013, 2015; Wang 

et al., 2015). The emission strength (E) can be obtained using the expression E=α/τ if we assume a steady state for these 30 

quantities. The mass can be derived directly from satellite measurements, while the lifetime can either be prescribed using 

known emissions (Fioletov et al., 2013) or estimated from the measurements based on the rate of decay of VCD with 

distance downwind (Beirle et al., 2014; Carn et al., 2013; de Foy et al., 2015). Model-based comparisons of different 
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methods to estimate  E and τ  demonstrate that such methods can produce accurate estimates of τ (de Foy et al., 2014).  In our 

previous study (Fioletov et al., 2015), values of  α and τ  for anthropogenic point sources were derived from OMI 

measurements by fitting a 3-dimensional function of the geographic coordinates and wind speed.  

These methods, however, are applicable to individual point sources. When this condition is not met, as is the case for 

multiple sources, the sources can either be combined together if they are close (Fioletov et al., 2015), or the fitting domain is 5 

split and the sources are fit separately (Wang et al., 2015).  Both approaches have their limitations.  In this study, we derive a 

general relationship between emissions and VCDs that can be used for the estimation of emissions from multiple sources.  

Moreover, the approach can be used in reverse:  that is, VCDs can be estimated directly from reported emissions data, thus 

making it possible to study the link between VCDs and surface concentrations even for the period before satellite 

measurements became available.  This study is focused on the eastern U.S. and southeastern Canada, where the majority of 10 

large North American SO2 emissions sources (mainly coal-burning power plants) are located,  where the changes in both 

reported emissions and measured VCDs are particularly large, and where emissions are measured directly at the stack for 

most sources. In this region, there is also a network with long-term records of uniform SO2 surface concentration 

measurements. All of this makes it possible to study consistency between the measurements of emissions, VCDs, and surface 

concentrations. Once the link between these measurements is verified, it is possible to estimate one measured quantity from 15 

another. As an illustration, we demonstrate how European SO2 emissions can be estimated from OMI VCD data.   

2 Data Sets 

2.1 Satellite SO2 VCD data 

OMI, a Dutch-Finnish UV-Visible wide field of view nadir-viewing spectrometer flying on NASA’s Aura spacecraft 

(Schoeberl et al., 2006), provides daily global coverage at high spatial resolution (Levelt et al., 2006). OMI has the highest 20 

spatial resolution and is the most sensitive to SO2 sources among the satellite instruments of its class (Fioletov et al., 2013).  

Operational OMI Planetary Boundary Layer (PBL) SO2 data produced with the Principal Component Analysis (PCA) 

algorithm (Li et al., 2013) for the period 2005-2015 were used in this study.   Retrieved SO2 VCD values are given in 

Dobson Units (DU, 1 DU = 2.69•1026 molec•km-2).   

OMI SO2 VCD data are retrieved for 60 cross-track positions (or rows). In order to use only data with the highest 25 

spatial resolution, we excluded data from the first 10 and last 10 cross-track positions from the analysis to limit the across-

track pixel width from 24 km to about 40 km, while the along-track pixel length was about 15 km (de Graaf et al., 2016).  In 

other words, a single OMI measurement represents an SO2 VCD value averaged over a 350-500 km2 area.  

Measurements with snow on the ground were excluded from the analysis as the OMI PCA algorithm presently does 

not account for the effects of snow albedo. Only clear-sky data, defined as having a cloud radiance fraction (across each 30 

pixel) less than 20%, and only measurements taken at solar zenith angles less than 70° were used. Beginning in 2007, up to a 

half of all rows were affected by field-of–view blockage and stray light (the so-called “row anomaly”) and those affected 
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pixels were also excluded.   Additional information on the OMI PCA SO2 product can be found in other publications 

(Krotkov et al., 2016; McLinden et al., 2015). 

SO2 VCD data from the Ozone Mapping Profiler Suite (OMPS) Nadir Mapper on board the Suomi National Polar-

orbiting Partnership (or Suomi NPP) satellite operated by NASA/NOAA and launched in October 2011 were also used in the 

study to verify a potential bias in some OMI data (see the Supplement, section S1). OMPS data were processed with the 5 

same PCA algorithm as OMI data (Li et al., 2013; Zhang et al., 2017).  OMPS has a lower spatial resolution than OMI, 50 

km by 50 km, but better signal-to-noise characteristics.  

To eliminate cases of transient volcanic SO2, periods when SO2 values observed over the eastern U.S. were affected 

by volcanic emissions; we determined and excluded such cases from the analysis.  The range of analyzed SO2 VCD values 

was limited to a maximum of 3 DU. Since the average SO2 value over the largest SO2 source in the US is about 1 DU and the 10 

standard deviation of individual measurements is 0.5 DU, such a limit corresponds to the 4 standard deviations level even 

over even the largest sources.  Of the SO2 values over the eastern U.S. and southern Canada considered here, the years 2008 

and 2009 are particularly problematic due to the eruptions of Kasatochi (Aleutian Islands, Alaska, August 2008, 52N) and 

Sarychev (Kuril Islands, Eastern Russia, June 2009, 48N). High volcanic SO2 values were also observed on several days in 

2011. In addition to the filtering based on SO2 values, five time intervals were explicitly removed from the analysis to avoid 15 

misinterpretation of volcanic SO2 as anthropogenic pollution. The intervals are: 07.07.2008‒23.07.2008, 08.08.2008‒

08.09.2008, 23.03.2009‒10.04.2009, 16.06.2009‒05.07.2009, and 22.05.2011‒09.06.2011. To remove volcanic SO2 in the 

case of Europe, the analyzed data were divided into 5° by 5° cells, and for each cell, days with the 90th percentile above a 

5 DU limit were excluded from the analysis. Only about 1.5% of all data were removed by this screening. 

2.2 Wind data 20 

As in several previous studies (Fioletov et al., 2015; McLinden et al., 2016), wind speed and direction data for each satellite 

pixel were required for the analysis methods applied.  European Centre for Medium-Range Weather Forecasts (ECMWF) 

reanalysis data (Dee et al., 2011) (http://apps.ecmwf.int/datasets/) were merged with OMI measurements. Wind profiles are 

available every 6 hours on a 0.75° horizontal grid and are interpolated in time and space to the location of each OMI pixel 

center.  U- and V- (west-east and south-north, respectively) wind-speed components were first averaged in the vertical 25 

between 0 and 1 km where the majority of the SO2 mass resides.  The wind components were then interpolated spatially and 

temporally to the location and overpass time of each OMI pixel. 

Note that to reconstruct annual mean VCD maps based on annual emissions (section 3.4), it is not necessary to have 

the actual year-specific meteorological information, as annual mean wind characteristics do not vary much from year to year 

(see the Supplement, section S6), and so for convenience, we simply used wind data from 2005 for all years prior to 2005.   30 
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2.3 SO2 emissions inventories 

Monthly or annual emissions from individual US point sources available from the U.S. Environmental Protection Agency 

(EPA) National Emissions Inventory (https://www.epa.gov/air-emissions-inventories) for the period 1980-2015 were 

examined in this study. U.S. EPA national emissions inventories are available from 1980, although at that time they 

contained just annual values and were updated only every 5 years.  Regular annual emissions data for consecutive years first 5 

became available in 1995 and U.S. emissions data with higher temporal resolution (monthly, daily, and hourly) are only 

available after 2004.  Note that the inventory data for these sources after the early 1990s were based on direct stack 

measurements by Continuous Emissions Monitoring Systems as mandated by Title IV of the 1990 U.S. Clean Air Act 

Amendments (Public Law 101-549) (e.g., https://www.epa.gov/clean-air-act-overview).  The Canadian SO2 annual point-

source emissions data were obtained from the National Pollutant Release Inventory (NPRI), 10 

http://open.canada.ca/data/en/dataset/).  Canadian annual point-source emissions data sets are available back to 2002 and we 

used the 2002 emissions data for the 1980-2001 period. For Canadian sites, only annual emissions are available and seasonal 

values were calculated by dividing annual emissions by 4. This study is based on point-source emissions only, but point 

sources have contributed a large majority (>90% in the early 2000s and >70% in the recent years) of North American SO2 

emissions.  15 

Information about point source emission from the European Union (EU) countries from the European Pollutant 

Release and Transfer Register (E-PRTR) for 2004-2014 is available from http://www.eea.europa.eu/data-and-maps/data/lcp-

1 and was used for the analysis for Europe. For non-EU European countries, spatially distributed 2005-2014 TNO-MACC-

III  emission data for air pollutants from the MACC project was used (Kuenen et al., 2014) (Monitoring Atmospheric 

Composition and Climate; see http://www.gmes-atmosphere.eu/) prepared by TNO. When E-PRTR data are not available, 20 

proxy data are used by TNO, such as for power plants from the World Electric Power Plants Database (WEPP; see 

http://www.platts.com/products/world-electric-power-plants-database). WEPP provides no emission data, only listing unit 

characteristics, so emissions are allocated to individual plant units based on the reported thermal capacity, configuration and 

generic interpretations of reported fuel type(s), and installed emission control technologies. Site-specific parameters not 

provided by WEPP, such as exact fuel sulphur content, achieved pollutant removal efficiencies, and load fluctuations, are not 25 

taken into account when emissions are allocated. Therefore, the MACC-III point source emission data should be regarded as 

estimates that may differ considerably from the actual emissions. 

2.4 SO2 surface concentration data 

In-situ SO2 ground-level measurements from the U.S. Clean Air Status and Trend Network (CASTNet) (Baumgardner et al., 

1999; Park et al., 2004; Schwede et al., 2011), operated by the U.S. EPA (http://www.epa.gov/castnet), and the Canadian Air 30 

and Precipitation Monitoring Network (CAPMoN: http://www.ec.gc.ca/rs-mn/default.asp?lang=En&n=752CE271-1) 

(Schwede et al., 2011), operated by Environment and Climate Change Canada (ECCC), were used in this study.  Both 

http://www.ec.gc.ca/rs-mn/default.asp?%20lang=En&n=752CE271-1
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networks were established to assess regional trends in pollutant concentrations, atmospheric deposition, and ecological 

effects due to changes in air pollutant emissions.  CASTNet started operations in 1987 and CAPMoN started in the late 

1970s. Both networks employ filter packs to measure SO2, although CASTNet uses a one-week sampling period vs. a one-

day sampling period for CAPMoN.  It is important to note that the monitoring sites belonging to these networks are located 

in relatively remote areas, so that direct impacts of local pollution sources on the measurements are minimal.  Annual mean  5 

SO2 values in μg m-3 were used in this study.  

3 Linking satellite SO2 VCDs and SO2 emissions 

The method for linking OMI SO2 VCDs to SO2 emissions is based on a fit of OMI VCDs to an empirical plume model 

developed to describe the SO2 spatial distribution (as seen by OMI) near emission point sources (Fioletov et al., 2015), but 

unlike the previous studies, it is not limited to a single point source. The plume model assumes that the SO2 concentrations 10 

emitted from a point source decline exponentially with time and that they are affected by turbulent diffusion that can be 

described by a 2D Gaussian function. The overall behaviour can be described as a combination of exponential and Gaussian 

random variables, also known as an exponentially modified Gaussian function (see the Appendix for details). Each satellite 

measurement (or pixel) is fit by a sum of plumes from all point sources. The distribution of SO2 emanating from each source 

is described by the plume model based on a known plume function Ω (θ, φ, ω, s, θi, φi) dependent on the satellite pixel 15 

coordinates (θ, φ), pixel wind direction and speed (ω, s), and source coordinates (θi, φi) scaled by an unknown parameter (αi) 

representing the total SO2 mass from the source i. These unknown parameters are then estimated from the best fit of the OMI 

measurements. The emission rate for source i is E=αi/τ, where τ is a prescribed SO2 decay time. In other words, the method 

finds the emission rates that produce the best agreement with the observed OMI SO2 VCD values. The detailed formulas and 

prescribed seasonal decay times are given in the Appendix. 20 

 Thus, the fitting procedure allows for the isolation of the emissions-related “signal” in the data from known sources 

and can be used to check existing point-source emissions inventories. If all sources are included in the fit, it can be expected 

that the difference between the OMI data and the fit is within the noise level and the estimated emission rates E should agree 

with the reported emissions.  We used OMI observations and emissions data for the eastern U.S. and southeastern Canada to 

confirm this expectation. Sources that are not included in the fit would appear as “hotspots” on the maps of the difference 25 

between OMI VCDs that could be used for source detection. Furthermore, emissions from such sources could then be 

derived by adding their coordinates to the source list in the fitting procedure.  The suggested method can thus be used as a 

source of independent emission estimates in regions where emissions values have large uncertainties. 

 The method requires information about the point-source locations.  We used source location data available from the 

US and Canadian emission inventories mentioned in section 2.3.  As discussed by (Fioletov et al., 2015), sources that emit 30 

30 kt yr-1 or more can be detected by OMI.  Since multiple smaller sources located in a close proximity can also be seen as a 

“hotspot” in OMI data, we lowered the minimum limit and included all SO2 point sources that reported emissions of 20 kt yr-

1 or more at least once in the period 2005-2015. It should be noted that while the method does not improve the level of source 
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detectability, it gives more accurate emission estimates for clusters of small sources where the point source algorithm is not 

really applicable.  

 Earlier versions of the OMI SO2 data product have some large-scale biases (Fioletov et al., 2011) that were largely 

removed in the present PCA version.  However, we found that even the PCA version has some local biases that may interfere 

with the regression fit.  The local bias can be accounted for by introducing functions that change slowly (compared to signal 5 

from emission sources) with latitude and longitude.  We used Legendre polynomials of latitude and longitude and their 

products that are orthogonal over the analysed domain as discussed in the Appendix.  

The OMI data with and without the bias and the fitting results for four multi-year intervals are shown in the  

columns I and II of Figure 1. The additional plots of the bias itself and the residuals are available from the Supplement, 

Figures S1 -S4.  Figure 1 is based on the annual estimates averaged over two- and three-year periods.  Figure 1 confirms that 10 

there was a large decline in SO2 VCD over the eastern U.S. and southeastern Canada in the period 2005-2015 (Krotkov et al., 

2016).  In contrast, the bias estimated from the fitting procedure appears to be fairly constant over time (Figure S1), which 

suggests that it may be an artifact from the retrieval.  The lack of this feature in OMPS observations further suggests it is a 

bias in OMI PCA data as discussed in the Supplement (Section S1 and Figure S2).   

It should be mentioned that the use of an empirical plume model is appropriate when atmospheric 15 

advection/diffusion can be considered to be the dominant process and meteorological conditions can be assumed to be quasi-

steady.  This is a reasonable assumption for short time periods and transport distances and when chemical transformation and 

surface removal of SO2 can be well represented as simple first-order loss.  The consistent mid-day overpass time for OMI 

means that the vast majority of the satellite measurements will be associated with a well-developed quasi-steady planetary 

boundary layer.  A 3D atmospheric chemistry model, on the other hand, would be more appropriate for longer time periods 20 

and transport distances and for emissions occurring at all times of day, but that is not the case for this analysis. 

4 Analysis 

4.1 SO2 emission estimates from OMI data 

The functions Ω (θ, φ, ω, s, θi, φi) decline very rapidly with distance from the source located at θi, φi.  For an isolated point 

source (θi, φi) where other sources are located 100 km away or more, Ω (θ, φ, ω, s, θi, φi)is not correlated with any other Ω 25 

(θ, φ, ω, s, θj, φj,), where i ≠ j, and the regression model (1) or (2) can be simply split into two parts: a model for point-source 

emission estimates for source i and a model for all other point sources.  Then the estimate of αi is independent from estimates 

for all other sources.  If, however, there is another source  j  located at (θj, φj) that is closer to source  i  than ~100 km, then 

the functions Ω (θ, φ, ω, s, θi, φi) and Ω (θ, φ, ω, s, θj, φj,) become correlated, as do their estimates of αi and αj.  As the two Ω 

functions depend on the wind, the correlation coefficients also depend on the wind distribution and the locations of the 30 

sources relative to the prevailing wind direction and to each other, but the separation distance is the dominant factor. Typical 

absolute values for the correlation coefficients are about 0.2, 0.6, and 0.8 for distances between sources of 100 km, 50 km, 
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and 25 km, respectively.  A high correlation means that, in practice, emissions estimates for sources located in close 

proximity have large uncertainties as we may have difficulty separating signals from the individual sources. However, if 

sources i and j are located in close proximity to each other but far from all other sources, then their combined emissions can 

still be estimated accurately. Thus, such sources can be grouped into clusters, where the member sources are located in close 

proximity (20-40 km) but the clusters themselves are well-separated and total emissions from each cluster can be estimated 5 

from satellite data. 

 Another way of grouping sources into clusters is to establish a grid over the analysis region and then sum up 

estimated emissions (Ei) from all sources within each grid cell.  Of course, this does not prevent situations in which two 

sources are in close proximity but are located in adjacent grid cells.  Such cases would lead to larger uncertainties in the cell 

values, but they are uncommon.  Figures 2 a-c show examples of such estimated total emissions for three 1° by 1° cells.  10 

Seasonal emissions estimates scaled to annual values were used for this plot and winter data are not shown in this plot due to 

much higher uncertainties of OMI data. The estimated emissions agree reasonably well with the emissions calculated by 

summing up reported SO2 emissions from the point sources in each cell.  The standard deviation of the difference between 

the emission estimates for all 1° by 1° cells within the domain area shown in Figure 1 and reported SO2 emissions for the 

same cells are 112, 39, 28, and 41 kt yr-1 for winter, spring summer, and autumn, respectively.  The standard deviations of 15 

the difference are 25 kt yr-1 and 37 kt yr-1 for annual emissions without and with winter data (not shown), respectively.  

Finally, total point-source emissions for the entire region can be estimated by summing over all individual point sources.  

Such a plot is shown in Figure 2d.  The estimated SO2 emissions in Figure 2d follow the trend in the reported emissions well, 

and the correlation coefficient between the two data sets is 0.98. The agreement is particularly good in summer.  Large 

discrepancies are observed only in autumn months after 2007, when relatively high measurement noise combined with the 20 

reduction of data due to the row anomaly. In addition, the 2008 and 2009 satellite data were affected by SO2 emitted from 

volcanic eruptions (McLinden et al., 2015).  More information on the autumn data is available from Sections S2 and S3 of 

the Supplement.  

 This grid-based approach can be potentially used for area sources or when the locations of sources are not well 

known. For illustration, we used VCD measurements over the same area, but assumed that that it is an area source with no 25 

individual point sources. If we set a regular grid and assume that each grid point is a “source”, we can estimate emissions 

from such “sources” as described above. VCD can then be calculated using these estimated emissions. Such reconstruction 

for a 0.5° by 0.5° grid is also shown in Figure 1 (column V) and demonstrates a good agreement with the measured VCD 

values. Note that the grid spacing should not be too large or else the areal emissions will be underestimated. Likewise, if it is 

too fine adjacent grid cells will be highly correlated and may result in artificial structure.  As Figure 1 (column IV) shows, 30 

the fitting results based on emissions are very close to the OMI fitted data (column II). We used the OMI data with local bias 

removed because with this approach, any instrumental local bias will be interpreted as an area source, resulting in 

overestimation of emissions.  
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 Emissions estimated by this gridded method are also shown in Figure 2. Their uncertainties are higher than for the 

case of known source locations but are still reasonable. The standard deviation of the difference between the emission 

estimates for all 1° by 1° cells within the domain area shown in Figure 1 and reported SO2 emissions for the same cells are 

54, 37, and 56 kt yr-1 for spring summer, and autumn, respectively. High measurement errors and data gaps prevent 

estimation of the emissions for winter.   5 

The uncertainties of satellite-based emission estimates have been discussed in our previous studies (Fioletov et al., 

2015, 2016). They can be as high as 50%, but the two largest contributors to this uncertainty, the airmass factor (AMF; 

determined by the assumed vertical profile, surface reflectivity, and viewing geometry) and the prescribed lifetime, are 

related to site-specific conditions and can be considered primarily as systematic. They introduce a scaling factor in estimated 

emissions that affects absolute values but not relative year-to-year changes in emissions. Moreover, the constant, effective 10 

AMF embedded in the OMI SO2 product is based on measurements taken in the eastern US, and the lifetime estimates used 

here are based on data from the US power plants as well, so these errors are minimal for this region.  To further support this 

claim, AMF values were recalculated for all SO2 observations used in Fioletov et al. (2016) and its impact on these sources 

was found to minimal, typically less than 5%.    

4.2 SO2 VCDs estimated from reported emissions 15 

The equation that links emissions and VCDs (A1) can also be used for forward calculations: if coefficients αi are known, 

then SO2 VCDs can be calculated for any location for given wind conditions and these daily VCDs can be averaged to give 

annual or seasonal means for the analyzed area.  Since αi = Ei·τ, and τ is prescribed in our calculations, the available 

emission inventories that contain Ei can be used to calculate αi. In this case, there is no need to do any fitting or to use any 

OMI measurements to calculate VCDs.  In practice, we can simply use the reported emission data and available OMI pixel 20 

locations merged with the wind information and calculate VCDs for each OMI pixel based on its center coordinates. OMI 

provides daily near-global coverage, and of course, no pixel screening is required for such forward calculations, so it would 

be essentially a reconstruction of daily VCD maps with spatial resolution of about 15 km by 35 km (approximately the 

average size of the OMI pixel used in this study) assuming a constant emission rate. 

 Figure 1 (column IV)  also shows the result of such annual reconstructions averaged over 2- to 3-year periods.  25 

Annual point-source emissions from the EPA and NPRI inventories were used as inputs.  The agreement of the reconstructed 

VCDs with OMI data (with the bias removed) is very good, and the agreement with the OMI data fitting results is truly 

remarkable.  To characterize the overall agreement with the OMI data, fitting results, and reconstructed emissions-based 

VCDs, a 1° by 1° grid was established and various statistical characteristics were calculated for the gridded data.  The 

standard deviation of the residuals ε for this grid is 0.025 DU, i.e., about 20 times less than the uncertainty of individual  OMI 30 

measurements.  The standard deviation of the difference between the OMI-fitted and the reconstructed emissions-based 

VCDs is 0.016 DU.  
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Figure 3 shows the scatter plots between the annual VCDs reconstructed from emissions and the three OMI-based 

data sets shown in Figure 1 for all years. The correlation between the VCDs reconstructed from emissions with the actual 

OMI data is 0.75, but it rises to 0.91 after the local bias is removed and to 0.97 after the emission-related signal is extracted 

from the OMI data by the fitting procedure (the first term of equation A4).  Moreover, values of the latter correlation 

coefficient are above 0.88 for all seasonal averages (excluding winter) and they are substantially higher than the correlation 5 

coefficients with the actual seasonal OMI data.  This result could be used to extract an emissions-related SO2 signal from the 

OMI data when the signal is weak compared to the noise level but the source locations are known.  Additional information is 

available from the Supplement, Section S2, including a figure of the difference between the fitted VCDs and the 

reconstructed VCDs as well as seasonal and annual statistics.   

Figure 1 shows the fitting results in geographical coordinates, i.e., the first term of equation (A4) from the 10 

Appendix was calculated for each OMI pixel without any stratification by the wind speed and direction. However, the fitting 

itself is done in a four-dimensional space where the wind speed and direction are the other two coordinates. To illustrate the 

fitting results for different wind speeds, Figure 4 shows the original mean OMI SO2 values (with the bias removed) and the 

fitting results when the data are binned by the wind speed. Note that the fitting parameter estimate was done using data for 

all wind speeds and the binning applies only to the fitting outputs. In other words, the first term of equation (A4) from the 15 

Appendix was calculated using only OMI pixels where the wind speed was within the selected range.  The calculations were 

done for three wind-speed bins for the 2005-2007 period when the SO2 emissions were the highest and the measurements 

were not affected by the “row anomaly”. The wind-speed modal value is about 10 km h-1, and the first bin represent calm 

conditions, the second bin contains measurements taken within ±5 km h-1 from the modal value, and the last bin corresponds 

to relatively high wind speeds. As Figure 4 demonstrates the fitting results are able to capture the changes in SO2 distribution 20 

at different wind-speed bins. When the wind speed is low, SO2 values are high over the sources, while the plume spreads out 

over a larger area when the wind speed is high. The figure also shows that SO2 VCD values measured over the sources, or 

integrated over a small area around the source, are not good proxies for the emissions because they depend on the wind 

speed.  

4.3 Applications for other regions 25 

Direct SO2 emissions measurements are not available for many regions of the globe. The described method can be used to 

verify or even estimate SO2 emissions for other regions. To test this method further, we applied it to the European region 

using European Pollutant Release and Transfer Register (E-PRTR) and TNO-MACC emission inventory data (see Section 

2.3).  Figure 5 is similar to Figure 1, but for a part of Europe where the majority of the SO2 sources are located. Sources that 

emitted more than 10 kt in any year between 2005 and 2014 are shown on the map as black dots. The limit was lowered to 30 

10 kt yr-1 from the 20 kt yr-1 value used for North America since clusters of small sources are common in Europe. When the 

coordinates of the sources were included in the fitting procedure there appeared to be some large-scale local biases 

particularly over Spain and the Balkan region. 
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Figure 5 also shows a good general agreement between the OMI data and VCDs estimated from emissions. Both 

show a substantial SO2 VCD decline over most regions, with SO2 values the highest at the beginning of the analysed period 

(Spain, Romania, Bulgaria, Greece), No major changes are observed by OMI for power plants in Serbia and in Bosnia and 

Herzegovina, and they are now producing the highest SO2 VCD values over the domain shown. As their emissions are not in 

the E-PRTR database, TNO-MACC emission inventory data were used instead.  5 

The method produces estimates for individual sources that can be further grouped in different ways.  Estimated and 

reported annual emissions for the period 2005-2014 were grouped by nation for nine countries with large SO2 emissions, as 

shown in Figure 6.  There is good agreement qualitatively between the reported and estimated emissions.  Some differences 

in absolute values are expected due to possible multiplicative biases in OMI-based estimates (from the airmass factor and 

potential errors in τ). In some cases, however, a possible deficiency in the reported emissions cannot be ruled out. For 10 

example, OMI-based values for Romania show nearly constant emissions up to 2012 and then a 50% drop, whereas the 

reported emissions suggest a steady decline between 2005 and 2013. The uncertainty level of the OMI-based emissions is 

illustrated in Figure 6 by the panel for Hungary: the total emissions from 3 sources there are below the sensitivity of OMI-

based estimates.  Figure 6 also shows OMI-based and inventory emissions for Serbia and for Bosnia and Herzegovina. Their 

inventory emission data are available as estimates based on reported thermal capacity, configuration, and generic 15 

interpretations of reported fuel type and may not be accurate. OMI-based estimates provide an independent source for their 

verification. For example, the inventory estimates for the copper smelter at Bor, Serbia, are about 4.5 kt y-1, i.e, well below 

the OMI sensitivity level. However OMI sees this source clearly and the OMI-based mean emissions estimate for 2005-2016 

is about 70 kt y-1, a value in line with high SO2 levels observed there (Serbula et al., 2014).  See also Figure S7. 

Another clear benefit of the satellite-based method of emission estimates is that such estimates are available with 20 

almost no delay. At the time of this study (February 2017), we were able to estimate OMI-based emission for the period 

including 2016, while the E-PRTR inventory only reached until 2014. 

4.4 Reconstruction of the past VCD distribution 

If detailed emission data are available, it is also possible to calculate emissions-based VCD maps using Equation (A3) for 

years before the launch of OMI.  Figure 7 shows the annual mean VCD maps over the eastern U.S. and southeastern Canada 25 

reconstructed from the emissions inventories available since 1980.  All point sources (shown by black dots) that emitted 

more than 1 kt of SO2 in at least one year during the 1980-2015 period were included in the calculations for a total about 380 

sources.  Note that we slightly expanded the domain area in all directions to include sources that emitted large SO2 amounts 

prior to the OMI launch.  There are two major periods of dramatic changes in SO2 VCD values: first, in the early 1990s, 

corresponding to the implementation of the U.S. Acid Rain Program (ARP), established under Title IV of the 1990 Clean Air 30 

Act (CAA) Amendments (IJC, 2014).  Then beginning in 2009-2010 there are further large reductions attributable to the 

installation of additional flue‐gas desulfurization units (or “scrubbers”) at many US power plants to meet stricter emissions 
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limits introduced by the Clean Air Interstate Rule. The overall decline of total SO2 point-source emissions from the domain 

area shown in Figure 5 between 1980 and 2015 is 86%. 

4.5 SO2 surface concentrations and VCDs 

Multi-year mean surface SO2 concentrations at stations belonging to the CASTNet and CAPMoN networks (see Section 2.4) 

were compared to the estimated VCD values. Maps of multi-year mean surface SO2 concentrations at stations belonging to 5 

the CASTNet and CAPMoN networks are shown in Figure 8.  The color scheme of Figure 8 was chosen to be comparable to 

that used in Figure 1. The main features of the VCD and surface concentration distributions are very similar.  Both sets of 

maps portray a strong decline from the 1980s to 2010s with the highest values observed along the Ohio River, where many 

coal-fired power plants are located.  However, the spatial gradients in the VCD distribution appear to be sharper than in the 

surface concentration distribution and elevated surface concentrations are spread out over larger areas.  For example, SO2 10 

VCDs over Virginia were much lower compared to West Virginia, while SO2 surface concentrations were similar.   

 There are 50 network sites within the domain area shown in Figure 7 that have 15 or more years of observations in 

the period 1980-2015.  A scatter plot of annual mean SO2 surface concentration at all of these sites versus emissions-based 

SO2 VCD values is shown in Figure 9a for all available years.  While there is a clear correlation between the two quantities 

that reflects similar spatial distributions and temporal trends, the correlation coefficient is not very high (0.83).  However, 15 

correlation coefficients calculated separately for individual measurement sites are higher, ranging between 0.87 and 0.99. 

This is illustrated in Figure 9b, where a subset of the scatter plot from Figure 9a for eight sites is shown using different 

colours for each site. 

 Figure 9b also shows that the slopes of the regression lines vary from site to site.  If we calculate the slope of the 

individual regression line for each site (it is essentially the surface-concentration-to-VCD ratio) and then multiply the 20 

emissions-based VCDs by that ratio, then we obtain a very good correlation as illustrated by Figure 9c (R=0.986 for the eight 

sites shown in Figures 9b and R=0.983 for all data points).  The regression-line y-intercepts have also been analysed. A 

positive intercept means that the surface concentration could be non-zero even in the absence of any regional point-source 

emissions.  The estimated intercepts are within ±1.5 μg m-3 for all sites except one where the intercepts is 3.5 μg m-3.  The 

exception is the CASTNet Horton Station site, located in Virginia 18 km east of the Glen Lyn power plant, whose emissions 25 

were about 10 kt yr-1 in 2008 and 6.5 kt yr-1 in 2011.  However, its emissions information was largely missing for the period 

2009-2015 and this affected our VCD calculations. 

The surface-concentration-to-VCD ratio ultimately depends on the shape of the SO2 vertical profile. The shape 

could be affected by boundary-layer height, site elevation, and perhaps some local conditions. There are, however, some 

common features in the ratio distribution.  As shown in Figure 9d, the ratio is low in areas of high emissions-based VCDs 30 

and low in areas where emissions-based VCDs are low. Of course, it is not the mean VCD value itself that affects the ratio, 

but proximity to emission sources. Figure 9d is based on VCDs derived from emissions, but the same analysis for OMI-

measured VCD demonstrates similar results (the Supplement, Section S5).   It may be possible to reconstruct surface 
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concentration distribution from VCDs and additional information such as the planetary boundary layer height (Knepp et al., 

2015), but such estimates are outside of the scope of this study.  

5 Summary and discussion 

Fitting OMI SO2 VCD data by a linear combination of functions, where each function represents the plume from an 

individual source, makes it possible to estimate emission from these sources or groups of sources. If the location of all 5 

sources is known, it is expected that the fitting results and the actual OMI data will agree within the noise level as was found 

to be the case for the eastern U.S. and southeastern Canada. The same agreement is also observed for this region if the 

reported emissions are used to calculate VCDs. This suggests a simple way of interpreting satellite SO2 VCD data: they 

should agree with VCD estimates based on available emission inventories or the fitting results based on known source 

locations. 10 

By applying a statistical plume model (developed from satellite SO2 measurements) to U.S. and Canadian annual 

SO2 point-source emissions inventories, we were able to reconstruct past annual mean VCDs for the period 1980-2015.  

High correlation coefficients between the reconstructed VCDs and the OMI-based values (0.91 for OMI data with local bias 

removed) for the period 2005-2015 gives us confidence in both data sets.  It also demonstrates that the reported changes in 

SO2 point-source emissions are reflected by OMI measurements for the period 2005-2015.  Moreover, the annual surface 15 

SO2 concentrations at the CASTNet and CAPMoN sites also show high correlation coefficients (0.87-0.99) with SO2 VCDs 

reconstructed from reported emissions. All of these comparisons suggest a high degree of consistency between the reported 

SO2 point-source emissions and measured SO2 values over the entire 1980-2015 period. 

 The approach described in this study can be used in several ways. The derived emissions can serve as an 

independent data source for inventory verification (both point source and gridded): by comparing OMI-estimated SO2 20 

emissions with the inventories or by comparing VCDs calculated from emission inventories to the OMI VCD measurements.  

It can also provide emissions information for regions where there are no other information sources available. Unreported 

point and area sources can be detected and emissions from them can be estimates by subtracting VCDs calculated from 

available emission inventories from satellite VCD measurements, although emission inventories with good spatial resolution 

would be required for such an analysis.  While this study is focused on SO2, the methods can be applied to other species with 25 

relatively short lifetimes measured from space, particularly to NO2 and NH3.  

 We have also applied the method to Europe. The results strikingly illustrate the positive impact of EU legislation; 

the countries where no decreasing trends are observed are non-EU member states surrounded by EU countries with 

decreasing emissions. In general, the satellite-based results confirm the trends in reported SO2 emissions from EU member 

states over the period 2004-2014, but some discrepancies were found that deserve further attention.  In one case, for 30 

example, it seems that reported emissions already take into account certain planned or foreseen measures, but real-world 

(satellite-observation) estimates suggest that implementation of these measures was delayed by several years. Moreover, 

although the trend is clearly followed, the absolute emission levels suggested by the OMI SO2 VCD fitting method are 
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sometimes substantially above the reported emission levels for recent years (Figure 6).  Whether these differences are due to 

underreporting or to methodological issues requires further study.  

 There are certain limitations to the suggested methods. Satellite SO2 VCD data may still contain local biases that 

will interfere with emissions estimates or will themselves be interpreted as a source. As the OMI and OMPS data show, these 

biases could be different from instrument to instrument. Moreover, data from the same OMI instrument could have different 5 

biases if processed by different algorithms (Fioletov et al., 2016; their Figure 3). Although the biases could be partially 

removed using, for example, a constant (for a small fitting area) or polynomial (for larger areas) fit, further improvement of 

retrieval algorithms is required to eliminate the bias problem. The biases could be particularly large over regions of high SO2 

VCD values such as the Persian Gulf and China, so the method should be applied there with caution. The method is also 

based on the assumption that all SO2 is located near the surface, which determines the wind data used for the fitting. This 10 

may not always be the case for very large sources where SO2 can be lifted into the free troposphere. Finally, the plume 

model itself may not be optimal in some cases.  

6 Data availability 

OMI PCA SO2 data used in this study have been publicly released as part of the Aura OMI Sulphur Dioxide Data Product 

(OMSO2) and can be obtained free of charge from the Goddard Earth Sciences (GES) Data and Information Services Center.  15 
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Appendix  

This appendix contains a description of the fitting algorithm used to estimate emissions from point and multiple sources. The 

algorithm for point sources was previously published by Fioletov et al., (2015), but we briefly repeated it for reader’s 

convenience.  

Fitting algorithm, point source 5 

The first step of the fitting algorithm involves a rotation of the location of each OMI pixel about the source such that, after 

rotation, all have a common wind direction. Then, the method assumes that concentrations of SO2 emitted from a point 

source decline exponentially (i.e., as exp(-λt)) with time (t) with a constant “lifetime” (or decay rate)  τ=1/λ. In the absence 

of diffusion and with a constant wind direction and speed (s), SO2 is transported downwind (along the -y axis in the chosen 

coordinate system) with a concentration that declines exponentially with the distance from the source. Since t= -y/s, this 10 

decay is simply exp(λy/s) or exp(λ1y) where λ1= λ/s. Likewise, if the wind speed is zero, the distribution of SO2 near the 

source is governed by diffusion or, more generally, random fluctuations, and can be described by a two-dimensional 

Gaussian function of the distance from the source that depends on one parameter σ. As both exponential decay of the 

concentration along the y coordinate and diffusion take place, the overall behaviour can be described as a combination of 

exponential and Gaussian random variables, also known as an exponentially modified Gaussian function. Therefore, the 15 

statistical model of the SO2 plume employed near the point source has the form of a Gaussian function f(x, y) multiplied by 

an exponentially modified Gaussian function g(y, s): ),(),(),,( sygyxfsyx  , where x and y (in km) are the coordinates of the 

OMI pixel center across and along the wind direction, respectively, and s (in km h-1) is the wind speed at the pixel center. 

The model depends on two parameters, the decay time (τ), and the plume width (σ).  It should be multiplied by a scaling 

factor α that is proportional to the emission strength. 20 
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and . The Gaussian function f (x, y) represents the distribution across the wind direction line.  
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 The function g (y, s) is essentially a convolution of Gaussian (determined by the plume width σ) and exponential 

functions (determined by λ1 related to the lifetime) and represents an exponential decay along the y axis smoothed by a 

Gaussian function: when σ is close to 0, then g(y, s) ≈ λ1 exp (λ1y) where y≤0. The wind speed s is included in (A1) only 

through λ1= λ/s. Note that σ1 was used in f (x, y) instead of σ. The value of σ1 increased with the distance from the source to 

reflect an additional spread of the plume downwind (i.e., when y<0). 5 

 Parameters σ, λ, and α, can be derived from the fit of the OMI observations by the function α Ω(x,y,s) , i.e., from a 

nonlinear regression model. However, if the values for σ and τ=1/λ are prescribed, then the remaining value, α, can be 

determined from a simple linear regression model.   

 

Since     




















 1),(),()),((),(),( dysygdysygdxyxfdxdysygyxf , 10 

the parameter α represents the total observed number of SO2 molecules (or the SO2 mass) near the source. If is in 

DU, and σ is in km, then a is in 2.69·1026 molec or 0.029 T(SO2).  Furthermore, the emission strength (E) can be calculated 

as E= α/τ assuming a simple mass balance.    

The function Ω depends on pixels coordinates in the Cartesian coordinate system related to the wind direction with 

the center at the analysed source. These coordinates can be derived from pixel latitude (θ) and longitude (φ), the wind 15 

direction (ω), and the source latitude (θ0) and longitude (φ0), i.e., Ω(x,y,s) = Ω (θ, φ, ω, s, θ0, φ0). As OMI measurements 

were merged with the wind data, OMI SO2 VCD at each pixel can therefore be interpreted as a four-dimensional function 

OMI SO2 (θ, φ, ω, s).  The dependence of Ω on the model parameters τ and σ is rather complex and we can simplify this 

approach by assuming that τ and σ are identical for all sources in the analysed region and only the parameter α differs from 

source to source (see sensitivity analysis in reference (Fioletov et al., 2016)).  Values of τ and σ were selected based on 20 

previous estimates for point sources in the eastern U.S. (Fioletov et al., 2015) with some seasonal adjustments: τ values were 

=5.6, 6.3, 7.7, and 6.3 hours for winter, spring, summer, and autumn respectively. The plume width σ=18 km is dependent 

on multiple factors, but mostly on the OMI pixel size. 

Fitting algorithm, multiple sources 

In case of multiple sources with prescribed τ and σ, OMI SO2 VCD can be expressed as a sum of contributions αi·Ωi from all 25 

individual sources (i).  If (xi, yi) and (x′i, y′i ) are the pixel’s Cartesian coordinates (km) in the system with the origin at the 

source i before and after the wind rotation respectively, then they can be calculated from the pixel and source latitudes and 

longitudes as: 

xi= r·(φ-φi)·cos(θi);  

 yi= r·(θ-θi); 30 

 x′i =  xi · cos(-ω) + yi · sin(-ω); 

2SOOMI
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 y′i = -xi · sin(-ω) + yi · cos(-ω); 

 

where r=111.3 km·π /180; φ and θ are the pixel longitude and latitude; ω is the pixel wind direction (0 for north); φi and θi 

are the source i longitude and latitude (all in radian). 

 Then, similarly to equation (S1), the contribution ai·Ωi from the source i can be expressed as αi·Ωi = αi·f(x′i, y′i) 5 

·g(y′i, s), where:           
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 Thus, OMI SO2 VCD can be expressed as a sum of contributions from all individual sources (i) plus noise (ε): 

    
i

iSOOMI ) , s, , , ,(s) , , ,( ii2
,                                (A3) 10 

where only parameters ai are unknown. Equation (S3) represents a linear regression model where the unknown parameters αi 

can be estimated from the measured variable (OMI SO2) at many pixels and known regressors Ω (θ, φ, ω, s, θi, φi).  

Calculations can be done on an annual or seasonal basis (i.e., using all data for a particular year or for a particular season of a 

year respectively). Emission estimates for shorter time intervals, e.g., monthly emissions, may be possible for large sources, 

but they appear to be too noisy for the eastern U.S. and southeastern Canada for practical applications.   15 

 Earlier versions of the OMI SO2 data product have some large-scale biases (Fioletov et al., 2011) that were largely 

removed in the present PCA version.  However, we found that even the PCA version has some biases that may interfere with 

the regression fit if equation (S3) is used.  If the fit is done for a relatively small area, the bias can be accounted for by 

adding a parameter α0 to the equation (S3) and estimating it from the fit:           

     0ii ) , s, , , ,(s) , , ,(
2

i

iSOOMI ,                           (A3’) 20 

             For a larger area, for example for the eastern U.S. and southeastern Canada, geographic variations in the bias can be 

accounted for by introducing functions that change slowly with latitude and longitude. We used Legendre Polynomials 

(Pn(x)) that are orthogonal on the interval from -1 to +1. 

  

 25 
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  To make the polynomials orthogonal on the analyzed domain, the following transformation was applied: 

   Lj(θ) = Pj(2·(θ - θmin)/(θmax-θmin)-1); 

   Lk(φ) = Pj(2·(φ - φ min)/(φmax- φmin)-1); 

where φmin, φmax, θmin, and θmax are latitudes and longitudes that define the domain area. Then Lj(θ) and Lk(φ), and their 

products were added to the fit: 5 

  
 6

,ii )()() , s, , , ,(s) , , ,(
2

kj

kjkj

i

iSO LLOMI ,     (A4) 

where αi and βj,k are the estimated coefficients. The first sum represents the emission-related fitting and the second sum is the 

large-scale bias. Equation (S4) also represents a linear regression model and the unknown coefficients can be estimated from 

the available observations.   Polynomials up to the 6th degree were used for each one-year or one-season fit for the selected 

domain (the eastern U.S. and southeastern Canada), although a higher (or lower) degree may be more suitable for a larger 10 

(smaller) area (see also section S6). Note that the biases are related to retrieval effects such as imperfection of account for the 

ozone absorption and therefore are not related to SO2 abundances and not affected by the winds.  For this reason, no 

dependence of the bias on s is considered. 

 Figure A1 illustrates the method by using SO2 data from 2005-2007 near the Bowen power plant in Georgia, U.S. 

There are 13 sources within the ±200 km square area around the Bowen facility. The fitting was done for every year, 15 

estimated values ai·Ω (θ, φ, ω, s, θi, φi) were calculated for each satellite pixel, then summed up to obtain a SO2 VCD value 

for the fit for that pixel. For Figure S1, the actual OMI data and the fitting results were averaged over the 2005-2007 period 

and smoothed by the pixel averaging technique with a 30 km radius. The maps of estimated values for individual sources 

smoothed in the same way are also shown. The map of the residuals, or the difference between the OMI data-based map and 

the fitting results is also shown.  20 

Table A1. Legendre Polynomials. 

n Pn(x) 

0 1 

1 x 

2 (3x2-1)/2 

3 (5x3-3x)/2 

4 (35x4-30x2+3)/8 

5 (63x5-70x3+15x)/8 

6 (231x6-315x4+105x2-5)/16 
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Figure A1.  Fitting OMI data near the Bowen power plant in Georgia, U.S., 2005-2007. All sources with emissions 

>20 kt yr-1 were included in the fit. 
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Figure 1. Annual mean OMI SO2 VCDs from PCA algorithm (column I), mean OMI SO2 VCDs with a large-scale bias 

removed (column II), results of the fitting of OMI data by the set of functions that represent VCDs near emission sources 

using estimated emissions (see text) (column III), and SO2 VCDs calculated using the same set of functions but using 5 

reported emission values (column IV).  Point sources that emitted 20 kt yr-1 at least once in the period 2005-2015 were 

included in the fit (they are shown as the black dots). Results of the fitting of OMI data by the set of functions that represent 

“sources” as 0.5° by 0.5° grid cells (shown as the black dots) using estimated emissions (see text) are shown in column V. 

The maps are smoothed by the pixel averaging technique with a 30 km radius (Fioletov et al., 2011). Averages for four 

multi-year periods, 2005-2006, 2007-2009, 2010-2012, and 2013-2015 over the area 32.5°N to 43°N and 75°W to 89°W are 10 

shown.    
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Figure 2. (a-c) Examples of reported and estimated seasonal emissions (in kt yr-1) for three 1° by 1° grid cells as labeled on 

the plots. (d) Reported and estimated seasonal point-source emissions rates for the entire eastern U.S. and southeastern 

Canada (the region shown in Figure 1) for spring, summer, and autumn. Estimated emissions are shown for the statistical 

model based on the actual source location (blue lines) and on a 0.5° by 0.5° regular grid (red lines). Note that the seasonal 

emissions values are scaled to give annual emission rates. Winter data are not shown due to high uncertainties of OMI 10 

measurements.  
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Figure 3. The scatter plots between the reconstructed from emissions-based VCDs and the three OMI-based data sets shown 

in Figure 1: (a) mean OMI SO2 VCDs, (b) mean OMI SO2 VCDs with a large-scale bias removed, and (c) results of the 

fitting of OMI data by the set of functions that represent VCDs near emission sources using estimated emissions (the first 5 

term of equation (A2)). Each symbol on the plot represents the annual mean SO2 VCD value averaged over one 1° by 1° grid 

cell and all cells within the domain area shown in Figure 1 are included in the plot. Different colours represent different 

years. The correlation coefficients between the two data sets on each plot are also shown. 
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Figure 4. (left) Mean OMI SO2 VCDs grouped by wind speed with a large-scale bias removed. (right) Results of the fitting 

of OMI data by the set of functions that represent VCDs near emission sources using estimated emissions. While the fitting 

was done using all data, the results of the fitting are grouped by wind speed. Averages for 2005-2007 binned by the wind 5 

speed (0-5 km h-1, 5-15 km h-1, and 15-45 km h-1) are shown. Sources that emitted 20 kt yr-1 at least once in 2005-2015 were 

included in the fit (they are shown as black dots). 
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Figure 5. The same as Figure 1, columns I-IV, but for the part of Europe where the majority of SO2 point sources are 

located. Point sources that emitted 10 kt yr-1 at least once in the period 2005-2014 were included in the fit (they are shown as 5 

the black dots). High SO2 values related to the Mt. Etna volcano in Sicily are excluded from the OMI plots. The area 35.6°N 

to 56.6°N and 10°W to 28.4°E is shown. 
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Figure 6. OMI-based (blue bars) and reported/estimated (black lines) emissions for different European countries. E-PRTR 

reported emissions were used for all countries except Serbia and Bosnia and Herzegovina, where TNO-MACC estimates 

(Kuenen et al., 2014) were used (see Supporting Information for details). The error bars represent 2 standard errors of the 

annual mean calculated by averaging three seasonal (spring, summer, autumn) OMI-based emission estimates   
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Figure 7. Annual mean SO2 VCD calculated using the plume model applied to the reported emissions data. Annual emission 

data from ~380 SO2 sources (black dots) that emitted 1 kt yr-1 at least once in 2005-2015 were included in the calculations. 

The area 30°N to 48°N and 70°W to 90°W is shown. 
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Figure 8. Annual mean surface SO2 concentrations in μg m-3 for different periods calculated using data from the CASTNet 

and CAPMoN surface monitoring networks. The area 30°N to 48°N and 70°W to 90°W is shown. 
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Figure 9. (a) A scatter plot of annual mean surface SO2 from CASTNet and CAPMoN vs. VCDs calculated from EPA and 

NPRI point-source emission inventories. The correlation coefficient between the two data sets is 0.83. (b) A subset of the 

scatter plot from panel (a) for eight sites (shown by different colors). The correlation coefficients for individual sites are 

between 0.96 and 0.99. (c) The same plot as (b), but for mean SO2 VCDs multiplied by a site-specific surface-concentration-5 

to-column ratio. The correlation coefficient is 0.98. (d) The site-specific surface-concentration-to-column ratio as a function 

of the 1980-2015 mean SO2 VCD.  Each dot represents one site. Only the 50 regional surface SO2 sites with 15 or more 

years of data between 1980 and 2015 were used in this figure. 


