
1 

 

Interactive comment on “Multi-source SO2 

emissions retrievals and consistency of satellite 
and surface measurements with reported 
emissions” by Vitali Fioletov et al. 
 5 

Anonymous Referee #1 
Received and published: 28 June 2017 
 
Comments on "Multi-source SO2 emissions retrievals and consistency of satellite and 
surface measurements with reported emissions" (acp-2017-485) by Fioletov et al. 10 

This paper developed an algorithm to estimate multiple sources SO2 emissions from 
OMI SO2 VCD. The work is an extension of single SO2 source retrieval from the OMI 
satellite measurements by the same group. The identification of multiple SO2 emission 
sources from OMI retrievals has been a challenge. This study moved forward 
from single source retrieval and made an important contribution to the OMI data applications 15 

in a top-down approach to identify and verify the emission sources of criteria 
and precursor air pollutants. The paper is well-written and publishable in ACP 
 
We would like to thank the reviewer for the evaluation and comments that helped us improve the 
manuscript. 20 

 

I have only several minor questions and comments to the paper as outlined below. 
 
1. pg.7, line 13-15. Does Gaussian point source model take into account atmospheric advection?  
 25 

There is some confusion here.  We did use a “pure” Gaussian point source model in our early work, but this study 
is based on a plume model that combines Gaussian and exponentially modified Gaussian functions as discussed in 
the Appendix.  The latter is responsible for advection.  We have added more information about the plume model 
to the main text. 
 30 

2. pg. 7, line 17-18. "a well-developed quasi-steady planetary boundary layer", do you mean a neutral boundary-
layer or Ekman layer? 
 
We have not assumed any particular boundary-layer type.  Depending upon geographic location and time of year, 

the local boundary layer could be unstable, neutral, or stable.  But because the satellite overpass time is close to 35 

midday, we do assume that the boundary layer will have adjusted during the morning to any solar heating that 

occurred. 

 
3. pg. 8. line 23. "This grid-based approach can be potentially used for area sources...", Gaussian point source 
model differs from the area source model. If SO2 emissions derived from Gaussian model, it might not be 40 

appropriate to apply Gaussian point source model (Eq. A1) in an area source problem  
 
We assumed that an area source is a grid of emitting point sources, not just a single point source. Note that our 
model was developed for plumes as they are seen by the satellite instruments with relatively low spatial 
resolution.    45 

 
4. pg 15, line 21, SO2 mass 
is expressed as ’alpha’ after the first equal sign and becomes ’a’ after the 2nd equal sign  
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Corrected 
 
5. pg 15, line 11-12, ’ if the wind speed is zero, the distribution of SO2 near the source is governed by diffusion...’. 
Diffusion should also depend on the wind and be parameterized by wind. So diffusion should be zero if the wind 5 

speed is zero.  
 
Molecular diffusion is always present at any wind speed, and the atmospheric turbulence driving turbulent diffusion 

can be generated both by mechanical processes and by convective heating, for which the near-midday satellite 

overpass time is favorable.  Moreover, there is always some random error in the wind speed in direction that would 10 

also affect SO2 distribution near the source.  We changed the text to “…by diffusion or, more generally, random 

fluctuations...” 

 
6. pg 18., 
line 9. " Polynomials up to the 6th degree were used for each one-year or one-season fit". Why use the 6th 15 

Legendre polynomial? What is difference of retrieved emissions between, say, 6th and 2nd polynomials 
 
The problem is that we see some artificially biased SO2 values over some regions. If the area is small, say a few 
hundred km by a few hundred km, we can simply assume a constant bias.  However, for large areas, this 
assumption does not work and we instead add a function that changes relatively slow with latitude and longitude.  20 

The required polynomial degree depends on the area size and the gradients of that slowly changing bias.  
 
This issue was discussed in the Supplement (Section S2): 
 
“The correlation coefficient between OMI data with bias removed and VCDs calculated from the emission data is 25 

0.75 for the actual OMI data, and 0.80, 0.83, 0.87, 0.89, 0.90, 0.909  for the bias removed by the 1st, 2d, 3d, 4th, 
5th, and 6th degree polynomials respectively. The correlation noticeably improved if the polynomial bias removed, 
but the improvement is only marginal for the degrees above 3.” 
 
We have added three more figures to the supplement.  They show the estimated bias for different polynomial 30 

degrees, the fitting results and the emission estimates for  2nd, 4th,  and 6th  polynomials.  See also our response to 
the first comment from Reviewer #2. 
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The study links SO2 emissions as well as surface measurements to column measurements from satellite by a 
simple dispersion model. While previous studies on this topic focus on individual point sources, this study uses a 10 

generalized model function which allows to derive emission estimates for a list of sources (even close to each 
other) at once. By establishing the link between emissions and columns, even "reconstructed" SO2 columns were 
generated for the time before actual satellite measurements are 
available. The paper is well written. Results are impressive and convincing, and the method is 
innovative. It should be published in ACP after dealing with the following issues: 15 

 
We would like to thank the reviewer for the evaluation and comments that helped us improve the manuscript. 

 
General comments: 
 20 

1. OMI SO2 Bias 
 
The good results are only reached after removing a somehow mysterious "retrieval bias". When reading Page 7, 
Line 3, I was thinking about some constant, or weakly latitude dependent bias. But in fact, the bias has systematic 
spatial structure and considerable spatial gradients. The authors argue that the enhanced OMI signal at the East 25 

coast is not reflecting true SO2, and in particular the comparison to OMPS is convincing. However, the reasons for 
this OMI "bias" remain unclear. I don’t find the 
given reasons (O3 interference, stray light) convincing at all. 
 
I see the need for the high degree of Polynomials fitted to remove the unexplained spatial features. However, I 30 

would not call it a "bias" (which I would associate with something like a constant offset). 
In addition, the authors should - extend the description of the characteristics of the bias in the paper and point out 
the spatial pattern (US Eastcoast) in the main text, 
- extend the discussion of possible reasons (in paper or supplement), 
- be aware that the high degree of the fitted polynomial actually removes any unexpected 35 

signal (by adding degrees of freedom, anything can be fitted), thus the good fit results are not that surprising, 
- discuss how far the bias removal might affect the emission estimate, in particular for the study on wind 
dependency (see next point). 
 
Perhaps the importance of the polynomial-based bias is somewhat overstated in the paper. While we believe the 40 

bias is real, its magnitude is typically within +/-0.1 DU and its impact on emission estimates is rather small (unless 
we are dealing with area emissions from large areas). We have added about a page of text and three figures to the 
Supplement that illustrate how the degree of the polynomials affects the bias, the fitting results, and the emissions 
themselves.   
One of the factors that contributes to the bias is surface reflectivity and we have added some discussion about it to 45 

the Supplement. 
 
Degrees of freedom is not a big issue here since we are dealing with hundreds of thousands of satellite pixels.   
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We prefer to use the term “bias” as we used it in our previous work related to point sources where it was indeed a 
constant offset. To address the reviewer’s concern, we have highlighted in a few places that we are dealing with a 
local bias that that changes relatively slowly with latitude and longitude (compared to signal from emission 
sources). 
 5 

2. Dependency on wind speed 
The application of the model fit for different wind speed bins is quite interesting. However, the authors do not 
provide the resulting emission estimates. The authors claim that VCDs are not good proxies for emissions as they 
depend on wind speed (Page 10, Line 17). But from Figure 4, I have the impression that not only the local, but also 
the integrated VCD depends on wind speed, which should not be the case according to the model function. Is this 10 

the case? Please provide the emission estimates for the 
3 wind speed bins. If they are different, discuss possible reasons. Could the difference be related to the fitted 
Polynomial? Please provide maps of the fitted bias for each wind speed bin in the supplement. 
 
There is some confusion here. We have not estimated the emissions for three wind speed bins. The emission 15 

estimates were done using the entire data set. The purpose of Figure 4 is to show that the signal from the same 
sources would appear differently in OMI data for different wind speeds. OMI SO2 values over the same sources 
would be higher if the wind speed is low and lower if the wind speed is high. Furthermore, the right column of 
Figure 4 is not related to actual OMI measurements. It is a reconstruction of VCD distribution based on emission 
inventories, the plume model, and the actual wind data.  We show it to illustrate that we are able to capture the 20 

dependence of the OMI SO2 “signal” on the wind speed. 
 
We modified the text to make this clear. As we believe that the bias is related to the retrieval procedure, we 
assumed that it did not depend on the wind speed. So, the bias is the same for all three wind speed bins. 
 25 

Estimates for different wind speed bins were discussed in the Supplement (section 5) to our previous paper 
(Fioletov et al., GRL, 2015) 
 
Detailed comments: 
 30 

Page 4 Line 29: "...do not vary much" - have you checked this? How would the reconstructed 
VCDs look like if e.g. the wind data from 2006 would be used instead? 
 
We added such a figure to the Supplement. 
 35 

Page 6 Line 17: "prescribed SO2 decay time" - please provide details here and give the numbers used for tau for 
the different seasons. 
 
Details are given in the Appendix.  We have changed the text to “The detailed formulas and prescribed seasonal 

decay times are given in the Appendix” to highlight that. 40 

 
Page 7 Line 3: "change slowly": this would apply for a polynomial of degree 2, but not for degree 6! 
 
We have added the clarification “change slowly (compared to signal from emission sources)”.  Yes, degree 6 is high, 
but the analyzed area is huge.  45 

 
Page 7 Line 11: "artifact from the retrieval": please extend the discussion of the artifact and possible reasons (here 
or in the supplement). 
 
We added some discussion to the Supplement 50 

 
Page 8: I understand the reason for the structure of Figures 1&2, but the order of the text is a bit confusing: it first 
refers to Fig. 2b, then Fig. 1, then Fig. 2a, and in the following to particular columns of Fig. 1. Please try to make the 
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text plus references to Figures more smooth. It would also help a lot to have the columns of Fig. 1 labelled (a to e 
or I to V) to avoid references like ’Figure 1 (the "VCD from emissions" column)’. 
 
Corrected as suggested.  
 5 

Page 8 Line 26: "Figure 1" -> Figure 1 (e)" (or 1 V). 
 
Corrected 
 
Page 9 Line 32: For the correlation of reconstructed VCDs with OMI (bias removed and emission-related signal 10 

extracted), the same model is assumed for both datasets, and any non-matching measurement is removed from 
the OMI data (by bias removal). Thus, the good correlation is not that surprising. 
 
Page 11 Line 15: "reached *until* 2014". 
 15 

Corrected 
 
Page 12 Line 26 end of sentence: dot missing. 
 
Corrected 20 

 
Page 13 Line 6: 0.91 is reached after bias removal, as stated in brackets, but these are NOT the "actual OMI 
measurements" any more! 
 
Changed to “the reconstructed VCDs and the OMI-based values” 25 

 
Page 13 Line 18: I agree in general, but the requirements on spatial resolution and quality of emission inventories 
would be high, and sources from power stations, industry and traffic are often close to each other. The authors 
should add a statement that emission inventories with good spatial resolution would be required. 
 30 

Corrected as suggested 
 
Page 15 Equation A1: The division by wind actually converts the decay rate from time to space reference system. It 
would be helpful to indicate this by adding a subscript "t" to lambda, and replace "lambda_1" by "lambda_x" 
 35 

This may create some confusion: we use “y” as the up/downwind coordinate, so it is more logical to use lambda_y. 
We also prefer to use the same symbols as in the previous publications. 
 
Page 16 Line 4: For y>0, sigma_1 is just sigma, so how far does "sigma_1 increased with the distance from the 
source"? 40 

 
In chosen coordinate system, “y” is negative downwind.  We have added a reminder of this point in the text. 
 
Page 16 Line 12: "calculates" -> "calculated" 
 45 

Corrected 
 
Figures 1 and 5: 
- add lat/lon coordinates. 
- add column numbers (a to e or I to V) 50 

 
We added the column numbers (I to V) and specified the lat/lon coordinates of the area in the caption 
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Figure 2: 
- shift a, b, c to top left corner of panel or even above the panel 
- "d" is missing 
 
Corrected 5 

 
Figure 8: Why is 1980-1982 included when there have been no measurements? 
 
Corrected. The 1980-1982 panel has been removed. 
 10 

Figure 9: place labels a-d above panels. 
 
Corrected as suggested 
 

  15 
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Abstract.  Reported sulfur dioxide (SO2) emissions from U.S. and Canadian sources have declined dramatically 

since the 1990s as a result of emissions control measures. Observations from the Ozone Monitoring Instrument 15 

(OMI) on NASA’s Aura satellite and ground-based in-situ measurements are examined to verify whether the 

observed changes from SO2 abundance measurements are quantitatively consistent with the reported changes in 

emissions.  To make this connection, a new method to link SO2 emissions and satellite SO2 measurements was 

developed. The method is based on fitting satellite SO2 vertical column densities (VCDs) to a set of functions of 

OMI pixel coordinates and wind speeds, where each function represents a statistical model of a plume from a single 20 

point source. The concept is first demonstrated using sources in North America, and then applied to Europe.  The 

correlation coefficient between OMI-measured VCDs (with a local bias removed) and SO2 VCDs derived here using 

reported emissions for 1° by 1° gridded data is 0.91 and the best-fit line has a slope near unity, confirming a very 

good agreement between observed SO2 VCDs and reported emissions. Having demonstrated their consistency, 

seasonal and annual mean SO2 VCD distributions are calculated, based on reported point-source emissions for the 25 

period 1980-2015, as would have been seen by OMI. This consistency is further substantiated as the emissions-

derived VCDs also show a high correlation with annual mean SO2 surface concentrations at 50 regional monitoring 

stations.   
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  1 Introduction 

Sulfur dioxide (SO2) is a designated criteria air pollutant that enters the atmosphere through anthropogenic (e.g., 

combustion of sulfur-containing fuels, oil refining processes, metal ore smelting operations) and natural processes 

(e.g., volcanic eruptions and degassing).   Over the past three decades both the US and Canada have taken measures 

to reduce atmospheric emissions of SO2 in order to combat acidification of the ecosystem (e.g., acid rain) and fine 5 

particulate matter. As a result, between 1990 and 2012, reported emissions of SO2 declined by 78 percent in the 

United States and 58 percent in Canada (IJC, 2014). In this study, we examined how well the changes in the reported 

emissions agree with the SO2 changes in North America observed by satellite and surface instruments. 

Ground-based networks such as the US Clean Air Status and Trends Network (CASTNet) and Canadian 

Air and Precipitation Monitoring Network (CAPMoN) are specifically designed to monitor long-term trends of 10 

gaseous pollutants in rural areas away from major pollution emission sources (Baumgardner et al., 1999; Park et al., 

2004; Schwede et al., 2011). Their measurements show that over the eastern US, reductions in regional SO2 

emissions have led to significant reductions in monitored SO2 concentrations (Sickles II and Shadwick, 2015; Xing 

et al., 2013). 

Satellites provide global measurements of SO2 vertical column densities (VCD): the total number of 15 

molecules or total mass per unit area (Krotkov et al., 2008; Li et al., 2013; Theys et al., 2015). They have been 

previously used to study the evolution of SO2 VCDs over large regions such as Europe (Krotkov et al., 2016), China 

(Jiang et al., 2012; Koukouli et al., 2016; Li et al., 2010; Witte et al., 2009), India (Lu et al., 2013), and the U.S. 

(Fioletov et al., 2011).  Satellite instruments can detect anthropogenic SO2 signals from large individual point 

sources such as copper and nickel smelters, power plants, oil and gas refineries , and other sources (Bauduin et al., 20 

2014, 2016; Carn et al., 2004, 2007; Fioletov et al., 2013; de Foy et al., 2009; Lee et al., 2009; McLinden et al., 

2012, 2014; Nowlan et al., 2011; Thomas et al., 2005). An 11-year-long record of satellite SO2 data over different 

regions of the globe, including the eastern US and southeastern Canada, was examined recently (Krotkov et al., 

2016). The analysis shows a substantial (up to 80%) decline in the observed VCD values over that region.  

These satellite measurements can also be used as an independent source to verify reported changes in 25 

emissions.  Methods for emission estimates from satellite measurements have been recently reviewed by (Streets et 

al., 2013).  One such method that does not require the use of atmospheric chemistry models has been commonly 

used in recent years.  By first merging observations from the Ozone Monitoring Instrument (OMI) with wind 

information, the downwind decay of several pollutants can be analyzed, and in so doing estimates of the total SO2 

(or NO2) mass (α) near the source and its lifetime or, more accurately, decay time (τ) can be derived (Fioletov et al., 30 

2011, 2015; de Foy et al., 2015; Lu et al., 2013, 2015; Wang et al., 2015). The emission strength (E) can be obtained 

using the expression E=α/τ if we assume a steady state for these quantities. The mass can be derived directly from 

satellite measurements, while the lifetime can either be prescribed using known emissions (Fioletov et al., 2013) or 

estimated from the measurements based on the rate of decay of VCD with distance downwind (Beirle et al., 2014; 

Carn et al., 2013; de Foy et al., 2015). Model-based comparisons of different methods to estimate  E and τ  35 

demonstrate that such methods can produce accurate estimates of τ (de Foy et al., 2014).  In our previous study 
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(Fioletov et al., 2015), values of  α and τ  for anthropogenic point sources were derived from OMI measurements by 

fitting a 3-dimensional function of the geographic coordinates and wind speed.  

These methods, however, are applicable to individual point sources. When this condition is not met, as is the case 

for multiple sources, the sources can either be combined together if they are close (Fioletov et al., 2015), or the 

fitting domain is split and the sources are fit separately (Wang et al., 2015).  Both approaches have their limitations.  5 

In this study, we derive a general relationship between emissions and VCDs that can be used for the estimation of 

emissions from multiple sources.  Moreover, the approach can be used in reverse:  that is, VCDs can be estimated 

directly from reported emissions data, thus making it possible to study the link between VCDs and surface 

concentrations even for the period before satellite measurements became available.  This study is focused on the 

eastern U.S. and southeastern Canada, where the majority of large North American SO2 emissions sources (mainly 10 

coal-burning power plants) are located,  where the changes in both reported emissions and measured VCDs are 

particularly large, and where emissions are measured directly at the stack for most sources. In this region, there is 

also a network with long-term records of uniform SO2 surface concentration measurements. All of this makes it 

possible to study consistency between the measurements of emissions, VCDs, and surface concentrations. Once the 

link between these measurements is verified, it is possible to estimate one measured quantity from another. As an 15 

illustration, we demonstrate how European SO2 emissions can be estimated from OMI VCD data.   

2 Data Sets 

2.1 Satellite SO2 VCD data 

OMI, a Dutch-Finnish UV-Visible wide field of view nadir-viewing spectrometer flying on NASA’s Aura spacecraft 

(Schoeberl et al., 2006), provides daily global coverage at high spatial resolution (Levelt et al., 2006). OMI has the 20 

highest spatial resolution and is the most sensitive to SO2 sources among the satellite instruments of its class 

(Fioletov et al., 2013).  Operational OMI Planetary Boundary Layer (PBL) SO2 data produced with the Principal 

Component Analysis (PCA) algorithm (Li et al., 2013) for the period 2005-2015 were used in this study.   Retrieved 

SO2 VCD values are given in Dobson Units (DU, 1 DU = 2.69•1026 molec•km-2).   

OMI SO2 VCD data are retrieved for 60 cross-track positions (or rows). In order to use only data with the 25 

highest spatial resolution, we excluded data from the first 10 and last 10 cross-track positions from the analysis to 

limit the across-track pixel width from 24 km to about 40 km, while the along-track pixel length was about 15 km 

(de Graaf et al., 2016).  In other words, a single OMI measurement represents an SO2 VCD value averaged over a 

350-500 km2 area.  

Measurements with snow on the ground were excluded from the analysis as the OMI PCA algorithm 30 

presently does not account for the effects of snow albedo. Only clear-sky data, defined as having a cloud radiance 

fraction (across each pixel) less than 20%, and only measurements taken at solar zenith angles less than 70° were 

used. Beginning in 2007, up to a half of all rows were affected by field-of–view blockage and stray light (the so-

called “row anomaly”) and those affected pixels were also excluded.   Additional information on the OMI PCA SO2 

product can be found in other publications (Krotkov et al., 2016; McLinden et al., 2015). 35 
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SO2 VCD data from the Ozone Mapping Profiler Suite (OMPS) Nadir Mapper on board the Suomi 

National Polar-orbiting Partnership (or Suomi NPP) satellite operated by NASA/NOAA and launched in October 

2011 were also used in the study to verify a potential bias in some OMI data (see the Supplement, section S1). 

OMPS data were processed with the same PCA algorithm as OMI data (Li et al., 2013; Zhang et al., 2017).  OMPS 

has a lower spatial resolution than OMI, 50 km by 50 km, but better signal-to-noise characteristics.  5 

To eliminate cases of transient volcanic SO2, periods when SO2 values observed over the eastern U.S. were 

affected by volcanic emissions; we determined and excluded such cases from the analysis.  The range of analyzed 

SO2 VCD values was limited to a maximum of 3 DU. Since the average SO2 value over the largest SO2 source in the 

US is about 1 DU and the standard deviation of individual measurements is 0.5 DU, such a limit corresponds to the 

4 standard deviations level even over even the largest sources.  Of the SO2 values over the eastern U.S. and southern 10 

Canada considered here, the years 2008 and 2009 are particularly problematic due to the eruptions of Kasatochi 

(Aleutian Islands, Alaska, August 2008, 52N) and Sarychev (Kuril Islands, Eastern Russia, June 2009, 48N). High 

volcanic SO2 values were also observed on several days in 2011. In addition to the filtering based on SO2 values, 

five time intervals were explicitly removed from the analysis to avoid misinterpretation of volcanic SO2 as 

anthropogenic pollution. The intervals are: 07.07.2008‒23.07.2008, 08.08.2008‒08.09.2008, 23.03.2009‒15 

10.04.2009, 16.06.2009‒05.07.2009, and 22.05.2011‒09.06.2011. To remove volcanic SO2 in the case of Europe, 

the analyzed data were divided into 5° by 5° cells, and for each cell, days with the 90th percentile above a 5 DU limit 

were excluded from the analysis. Only about 1.5% of all data were removed by this screening. 

2.2 Wind data 

As in several previous studies (Fioletov et al., 2015; McLinden et al., 2016), wind speed and direction data for each 20 

satellite pixel were required for the analysis methods applied.  European Centre for Medium-Range Weather 

Forecasts (ECMWF) reanalysis data (Dee et al., 2011) (http://apps.ecmwf.int/datasets/) were merged with OMI 

measurements. Wind profiles are available every 6 hours on a 0.75° horizontal grid and are interpolated in time and 

space to the location of each OMI pixel center.  U- and V- (west-east and south-north, respectively) wind-speed 

components were first averaged in the vertical between 0 and 1 km where the majority of the SO2 mass resides.  The 25 

wind components were then interpolated spatially and temporally to the location and overpass time of each OMI 

pixel. 

Note that to reconstruct annual mean VCD maps based on annual emissions (section 3.4), it is not 

necessary to have the actual year-specific meteorological information, as annual mean wind characteristics do not 

vary much from year to year (see the Supplement, section S6), and so for convenience, we simply used wind data 30 

from 2005 for all years prior to 2005.   

2.3 SO2 emissions inventories 

Monthly or annual emissions from individual US point sources available from the U.S. Environmental Protection 

Agency (EPA) National Emissions Inventory (https://www.epa.gov/air-emissions-inventories) for the period 1980-

2015 were examined in this study. U.S. EPA national emissions inventories are available from 1980, although at that 35 
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time they contained just annual values and were updated only every 5 years.  Regular annual emissions data for 

consecutive years first became available in 1995 and U.S. emissions data with higher temporal resolution (monthly, 

daily, and hourly) are only available after 2004.  Note that the inventory data for these sources after the early 1990s 

were based on direct stack measurements by Continuous Emissions Monitoring Systems as mandated by Title IV of 

the 1990 U.S. Clean Air Act Amendments (Public Law 101-549) (e.g., https://www.epa.gov/clean-air-act-overview).  5 

The Canadian SO2 annual point-source emissions data were obtained from the National Pollutant Release Inventory 

(NPRI), http://open.canada.ca/data/en/dataset/).  Canadian annual point-source emissions data sets are available back 

to 2002 and we used the 2002 emissions data for the 1980-2001 period. For Canadian sites, only annual emissions 

are available and seasonal values were calculated by dividing annual emissions by 4. This study is based on point-

source emissions only, but point sources have contributed a large majority (>90% in the early 2000s and >70% in 10 

the recent years) of North American SO2 emissions.  

Information about point source emission from the European Union (EU) countries from the European 

Pollutant Release and Transfer Register (E-PRTR) for 2004-2014 is available from http://www.eea.europa.eu/data-

and-maps/data/lcp-1 and was used for the analysis for Europe. For non-EU European countries, spatially distributed 

2005-2014 TNO-MACC-III  emission data for air pollutants from the MACC project was used (Kuenen et al., 2014) 15 

(Monitoring Atmospheric Composition and Climate; see http://www.gmes-atmosphere.eu/) prepared by TNO. When 

E-PRTR data are not available, proxy data are used by TNO, such as for power plants from the World Electric 

Power Plants Database (WEPP; see http://www.platts.com/products/world-electric-power-plants-database). WEPP 

provides no emission data, only listing unit characteristics, so emissions are allocated to individual plant units based 

on the reported thermal capacity, configuration and generic interpretations of reported fuel type(s), and installed 20 

emission control technologies. Site-specific parameters not provided by WEPP, such as exact fuel sulphur content, 

achieved pollutant removal efficiencies, and load fluctuations, are not taken into account when emissions are 

allocated. Therefore, the MACC-III point source emission data should be regarded as estimates that may differ 

considerably from the actual emissions. 

2.4 SO2 surface concentration data 25 

In-situ SO2 ground-level measurements from the U.S. Clean Air Status and Trend Network (CASTNet) 

(Baumgardner et al., 1999; Park et al., 2004; Schwede et al., 2011), operated by the U.S. EPA 

(http://www.epa.gov/castnet), and the Canadian Air and Precipitation Monitoring Network (CAPMoN: 

http://www.ec.gc.ca/rs-mn/default.asp?lang=En&n=752CE271-1) (Schwede et al., 2011), operated by Environment 

and Climate Change Canada (ECCC), were used in this study.  Both networks were established to assess regional 30 

trends in pollutant concentrations, atmospheric deposition, and ecological effects due to changes in air pollutant 

emissions.  CASTNet started operations in 1987 and CAPMoN started in the late 1970s. Both networks employ 

filter packs to measure SO2, although CASTNet uses a one-week sampling period vs. a one-day sampling period for 

CAPMoN.  It is important to note that the monitoring sites belonging to these networks are located in relatively 

remote areas, so that direct impacts of local pollution sources on the measurements are minimal.  Annual mean SO2 35 

values in μg m-3 were used in this study.  

http://www.ec.gc.ca/rs-mn/default.asp?%20lang=En&n=752CE271-1
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3 Linking satellite SO2 VCDs and SO2 emissions 

The method for linking OMI SO2 VCDs to SO2 emissions is based on a fit of OMI VCDs to an empirical plume 

model developed to describe the SO2 spatial distribution (as seen by OMI) near emission point sources (Fioletov et 

al., 2015), but unlike the previous studies, it is not limited to a single point source. The plume model assumes that 

the SO2 concentrations emitted from a point source decline exponentially with time and that they are affected by 5 

turbulent diffusion that can be described by a 2D Gaussian function. The overall behaviour can be described as a 

combination of exponential and Gaussian random variables, also known as an exponentially modified Gaussian 

function (see the Appendix for details). Each satellite measurement (or pixel) is fit by a sum of plumes from all point 

sources. The distribution of SO2 emanating from each source is described by the plume model based on a known 

plume function Ω (θ, φ, ω, s, θi, φi) dependent on the satellite pixel coordinates (θ, φ), pixel wind direction and 10 

speed (ω, s), and source coordinates (θi, φi) scaled by an unknown parameter (αi) representing the total SO2 mass 

from the source i. These unknown parameters are then estimated from the best fit of the OMI measurements. The 

emission rate for source i is E=αi/τ, where τ is a prescribed SO2 decay time. In other words, the method finds the 

emission rates that produce the best agreement with the observed OMI SO2 VCD values. The detailed formulas and 

prescribed seasonal decay times are given in the Appendix. 15 

 Thus, the fitting procedure allows for the isolation of the emissions-related “signal” in the data from known 

sources and can be used to check existing point-source emissions inventories. If all sources are included in the fit, it 

can be expected that the difference between the OMI data and the fit is within the noise level and the estimated 

emission rates E should agree with the reported emissions.  We used OMI observations and emissions data for the 

eastern U.S. and southeastern Canada to confirm this expectation. Sources that are not included in the fit would 20 

appear as “hotspots” on the maps of the difference between OMI VCDs that could be used for source detection. 

Furthermore, emissions from such sources could then be derived by adding their coordinates to the source list in the 

fitting procedure.  The suggested method can thus be used as a source of independent emission estimates in regions 

where emissions values have large uncertainties. 

 The method requires information about the point-source locations.  We used source location data available 25 

from the US and Canadian emission inventories mentioned in section 2.3.  As discussed by (Fioletov et al., 2015), 

sources that emit 30 kt yr-1 or more can be detected by OMI.  Since multiple smaller sources located in a close 

proximity can also be seen as a “hotspot” in OMI data, we lowered the minimum limit and included all SO2 point 

sources that reported emissions of 20 kt yr-1 or more at least once in the period 2005-2015. It should be noted that 

while the method does not improve the level of source detectability, it gives more accurate emission estimates for 30 

clusters of small sources where the point source algorithm is not really applicable.  

 Earlier versions of the OMI SO2 data product have some large-scale biases (Fioletov et al., 2011) that were 

largely removed in the present PCA version.  However, we found that even the PCA version has some local biases 

that may interfere with the regression fit.  The local bias can be accounted for by introducing functions that change 

slowly (compared to signal from emission sources) with latitude and longitude.  We used Legendre polynomials of 35 

latitude and longitude and their products that are orthogonal over the analysed domain as discussed in the Appendix.  
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The OMI data with and without the bias and the fitting results for four multi-year intervals are shown in the 

two left-hand columns I and II of Figure 1. The additional plots of the bias itself and the residuals are available from 

the Supplement, Figures S1 and -S2S4.  Figure 1 is based on the annual estimates averaged over two- and three-year 

periods.  Figure 1 confirms that there was a large decline in SO2 VCD over the eastern U.S. and southeastern Canada 

in the period 2005-2015 (Krotkov et al., 2016).  In contrast, the bias estimated from the fitting procedure appears to 5 

be fairly constant over time (Figure S1), which suggests that it may be an artifact from the retrieval.  The lack of this 

feature in OMPS observations further suggests it is a bias in OMI PCA data as discussed in the Supplement (Section 

S1 and Figure S2).   

It should be mentioned that the use of an empirical plume model is appropriate when atmospheric 

advection/diffusion can be considered to be the dominant process and meteorological conditions can be assumed to 10 

be quasi-steady.  This is a reasonable assumption for short time periods and transport distances and when chemical 

transformation and surface removal of SO2 can be well represented as simple first-order loss.  The consistent mid-

day overpass time for OMI means that the vast majority of the satellite measurements will be associated with a well-

developed quasi-steady planetary boundary layer.  A 3D atmospheric chemistry model, on the other hand, would be 

more appropriate for longer time periods and transport distances and for emissions occurring at all times of day, but 15 

that is not the case for this analysis. 
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 4 Analysis 

4.1 SO2 emission estimates from OMI data 

The functions Ω (θ, φ, ω, s, θi, φi) decline very rapidly with distance from the source located at θi, φi.  For an isolated 

point source (θi, φi) where other sources are located 100 km away or more, Ω (θ, φ, ω, s, θi, φi)is not correlated with 

any other Ω (θ, φ, ω, s, θj, φj,), where i ≠ j, and the regression model (1) or (2) can be simply split into two parts: a 5 

model for point-source emission estimates for source i and a model for all other point sources.  Then the estimate of 

αi is independent from estimates for all other sources.  If, however, there is another source  j  located at (θj, φj) that is 

closer to source  i  than ~100 km, then the functions Ω (θ, φ, ω, s, θi, φi) and Ω (θ, φ, ω, s, θj, φj,) become correlated, 

as do their estimates of αi and αj.  As the two Ω functions depend on the wind, the correlation coefficients also 

depend on the wind distribution and the locations of the sources relative to the prevailing wind direction and to each 10 

other, but the separation distance is the dominant factor. Typical absolute values for the correlation coefficients are 

about 0.2, 0.6, and 0.8 for distances between sources of 100 km, 50 km, and 25 km, respectively.  A high correlation 

means that, in practice, emissions estimates for sources located in close proximity have large uncertainties as we 

may have difficulty separating signals from the individual sources. However, if sources i and j are located in close 

proximity to each other but far from all other sources, then their combined emissions can still be estimated 15 

accurately. Thus, such sources can be grouped into clusters, where the member sources are located in close 

proximity (20-40 km) but the clusters themselves are well-separated and total emissions from each cluster can be 

estimated from satellite data. 

 Another way of grouping sources into clusters is to establish a grid over the analysis region and then sum 

up estimated emissions (Ei) from all sources within each grid cell.  Of course, this does not prevent situations in 20 

which two sources are in close proximity but are located in adjacent grid cells.  Such cases would lead to larger 

uncertainties in the cell values, but they are uncommon.  Figures 2 ab-cd show examples of such estimated total 

emissions for three 1° by 1° cells.  Seasonal emissions estimates scaled to annual values were used for this plot and 

winter data are not shown in this plot due to much higher uncertainties of OMI data. The estimated emissions agree 

reasonably well with the emissions calculated by summing up reported SO2 emissions from the point sources in each 25 

cell.  The standard deviation of the difference between the emission estimates for all 1° by 1° cells within the 

domain area shown in Figure 1 and reported SO2 emissions for the same cells are 112, 39, 28, and 41 kt yr-1 for 

winter, spring summer, and autumn, respectively.  The standard deviations of the difference are 25 kt yr-1 and 37 kt 

yr-1 for annual emissions without and with winter data (not shown), respectively.  Finally, total point-source 

emissions for the entire region can be estimated by summing over all individual point sources.  Such a plot is shown 30 

in Figure 2da.  The estimated SO2 emissions in Figure 2a 2d follow the trend in the reported emissions well, and the 

correlation coefficient between the two data sets is 0.98. The agreement is particularly good in summer.  Large 

discrepancies are observed only in autumn months after 2007, when relatively high measurement noise combined 

with the reduction of data due to the row anomaly. In addition, the 2008 and 2009 satellite data were affected by SO2 

emitted from volcanic eruptions (McLinden et al., 2015).  More information on the autumn data is available from 35 

Sections S2 and S3 of the Supplement.  
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 This grid-based approach can be potentially used for area sources or when the locations of sources are not 

well known. For illustration, we used VCD measurements over the same area, but assumed that that it is an area 

source with no individual point sources. If we set a regular grid and assume that each grid point is a “source”, we 

can estimate emissions from such “sources” as described above. VCD can then be calculated using these estimated 

emissions. Such reconstruction for a 0.5° by 0.5° grid is also shown in Figure 1 (column V) and demonstrates a good 5 

agreement with the measured VCD values. Note that the grid spacing should not be too large or else the areal 

emissions will be underestimated. Likewise, if it is too fine adjacent grid cells will be highly correlated and may 

result in artificial structure.  As Figure 1 (column 4IV) shows, the fitting results based on emissions are very close to 

the OMI fitted data (column 2II). We used the OMI data with local bias removed because with this approach, any 

instrumental local bias will be interpreted as an area source, resulting in overestimation of emissions.  10 

 Emissions estimated by this gridded method are also shown in Figure 2. Their uncertainties are higher than 

for the case of known source locations but are still reasonable. The standard deviation of the difference between the 

emission estimates for all 1° by 1° cells within the domain area shown in Figure 1 and reported SO2 emissions for 

the same cells are 54, 37, and 56 kt yr-1 for spring summer, and autumn, respectively. High measurement errors and 

data gaps prevent estimation of the emissions for winter.   15 

The uncertainties of satellite-based emission estimates have been discussed in our previous studies 

(Fioletov et al., 2015, 2016). They can be as high as 50%, but the two largest contributors to this uncertainty, the 

airmass factor (AMF; determined by the assumed vertical profile, surface reflectivity, and viewing geometry) and 

the prescribed lifetime, are related to site-specific conditions and can be considered primarily as systematic. They 

introduce a scaling factor in estimated emissions that affects absolute values but not relative year-to-year changes in 20 

emissions. Moreover, the constant, effective AMF embedded in the OMI SO2 product is based on measurements 

taken in the eastern US, and the lifetime estimates used here are based on data from the US power plants as well, so 

these errors are minimal for this region.  To further support this claim, AMF values were recalculated for all SO2 

observations used in Fioletov et al. (2016) and its impact on these sources was found to minimal, typically less than 

5%.    25 

4.2 SO2 VCDs estimated from reported emissions 

The equation that links emissions and VCDs (A1) can also be used for forward calculations: if coefficients αi are 

known, then SO2 VCDs can be calculated for any location for given wind conditions and these daily VCDs can be 

averaged to give annual or seasonal means for the analyzed area.  Since αi = Ei·τ, and τ is prescribed in our 

calculations, the available emission inventories that contain Ei can be used to calculate αi. In this case, there is no 30 

need to do any fitting or to use any OMI measurements to calculate VCDs.  In practice, we can simply use the 

reported emission data and available OMI pixel locations merged with the wind information and calculate VCDs for 

each OMI pixel based on its center coordinates. OMI provides daily near-global coverage, and of course, no pixel 

screening is required for such forward calculations, so it would be essentially a reconstruction of daily VCD maps 

with spatial resolution of about 15 km by 35 km (approximately the average size of the OMI pixel used in this study) 35 

assuming a constant emission rate. 
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 Figure 1 (column IV) (the “VCD from emissions” column) also shows the result of such annual 

reconstructions averaged over 2- to 3-year periods.  Annual point-source emissions from the EPA and NPRI 

inventories were used as inputs.  The agreement of the reconstructed VCDs with OMI data (with the bias removed) 

is very good, and the agreement with the OMI data fitting results is truly remarkable.  To characterize the overall 

agreement with the OMI data, fitting results, and reconstructed emissions-based VCDs, a 1° by 1° grid was 5 

established and various statistical characteristics were calculated for the gridded data.  The standard deviation of the 

residuals ε for this grid is 0.025 DU, i.e., about 20 times less than the uncertainty of individual OMI measurements.  

The standard deviation of the difference between the OMI-fitted and the reconstructed emissions-based VCDs is 

0.016 DU.  

Figure 3 shows the scatter plots between the annual VCDs reconstructed from emissions and the three 10 

OMI-based data sets shown in Figure 1 for all years. The correlation between the VCDs reconstructed from 

emissions with the actual OMI data is 0.75, but it rises to 0.91 after the local bias is removed and to 0.97 after the 

emission-related signal is extracted from the OMI data by the fitting procedure (the first term of equation A4).  

Moreover, values of the latter correlation coefficient are above 0.88 for all seasonal averages (excluding winter) and 

they are substantially higher than the correlation coefficients with the actual seasonal OMI data.  This result could be 15 

used to extract an emissions-related SO2 signal from the OMI data when the signal is weak compared to the noise 

level but the source locations are known.  Additional information is available from the Supplement, Section S2, 

including a figure of the difference between the fitted VCDs and the reconstructed VCDs as well as seasonal and 

annual statistics.   

Figure 1 shows the fitting results in geographical coordinates, i.e., the first term of equation (A4) from the 20 

Appendix was calculated for each OMI pixel without any stratification by the wind speed and direction. However, 

the fitting itself is done in a four-dimensional space where the wind speed and direction are the other two 

coordinates. To illustrate the fitting results for different wind speeds, Figure 4 shows the original mean OMI SO2 

values (with the bias removed) and the fitting results when the data are binned by the wind speed. Note that the 

fitting parameter estimate was done using data for all wind speeds and the binning applies only to the fitting outputs. 25 

In other words, the first term of equation (A4) from the Appendix was calculated using only OMI pixels where the 

wind speed was within the selected range.  The calculations were done for three wind-speed bins for the 2005-2007 

period when the SO2 emissions were the highest and the measurements were not affected by the “row anomaly”. The 

wind-speed modal value is about 10 km h-1, and the first bin represent calm conditions, the second bin contains 

measurements taken within ±5 km h-1 from the modal value, and the last bin corresponds to relatively high wind 30 

speeds. As Figure 4 demonstrates the fitting results are able to capture the changes in SO2 distribution at different 

wind-speed bins. When the wind speed is low, SO2 values are high over the sources, while the plume spreads out 

over a larger area when the wind speed is high. The figure also shows that SO2 VCD values measured over the 

sources, or integrated over a small area around the source, are not good proxies for the emissions because they 

depend on the wind speed.  35 
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4.3 Applications for other regions 

Direct SO2 emissions measurements are not available for many regions of the globe. The described method can be 

used to verify or even estimate SO2 emissions for other regions. To test this method further, we applied it to the 

European region using European Pollutant Release and Transfer Register (E-PRTR) and TNO-MACC emission 

inventory data (see Section 2.3).  Figure 5 is similar to Figure 1, but for a part of Europe where the majority of the 5 

SO2 sources are located. Sources that emitted more than 10 kt in any year between 2005 and 2014 are shown on the 

map as black dots. The limit was lowered to 10 kt yr-1 from the 20 kt yr-1 value used for North America since 

clusters of small sources are common in Europe. When the coordinates of the sources were included in the fitting 

procedure there appeared to be some large-scale local biases particularly over Spain and the Balkan region. 

Figure 5 also shows a good general agreement between the OMI data and VCDs estimated from emissions. 10 

Both show a substantial SO2 VCD decline over most regions, with SO2 values the highest at the beginning of the 

analysed period (Spain, Romania, Bulgaria, Greece), No major changes are observed by OMI for power plants in 

Serbia and in Bosnia and Herzegovina, and they are now producing the highest SO2 VCD values over the domain 

shown. As their emissions are not in the E-PRTR database, TNO-MACC emission inventory data were used instead.  

The method produces estimates for individual sources that can be further grouped in different ways.  15 

Estimated and reported annual emissions for the period 2005-2014 were grouped by nation for nine countries with 

large SO2 emissions, as shown in Figure 6.  There is good agreement qualitatively between the reported and 

estimated emissions.  Some differences in absolute values are expected due to possible multiplicative biases in OMI-

based estimates (from the airmass factor and potential errors in τ). In some cases, however, a possible deficiency in 

the reported emissions cannot be ruled out. For example, OMI-based values for Romania show nearly constant 20 

emissions up to 2012 and then a 50% drop, whereas the reported emissions suggest a steady decline between 2005 

and 2013. The uncertainty level of the OMI-based emissions is illustrated in Figure 6 by the panel for Hungary: the 

total emissions from 3 sources there are below the sensitivity of OMI-based estimates.  Figure 6 also shows OMI-

based and inventory emissions for Serbia and for Bosnia and Herzegovina. Their inventory emission data are 

available as estimates based on reported thermal capacity, configuration, and generic interpretations of reported fuel 25 

type and may not be accurate. OMI-based estimates provide an independent source for their verification. For 

example, the inventory estimates for the copper smelter at Bor, Serbia, are about 4.5 kt y-1, i.e, well below the OMI 

sensitivity level. However OMI sees this source clearly and the OMI-based mean emissions estimate for 2005-2016 

is about 70 kt y-1, a value in line with high SO2 levels observed there (Serbula et al., 2014).  See also Figure S4S7. 

Another clear benefit of the satellite-based method of emission estimates is that such estimates are available 30 

with almost no delay. At the time of this study (February 2017), we were able to estimate OMI-based emission for 

the period including 2016, while the E-PRTR inventory only reached until 2014. 

4.4 Reconstruction of the past VCD distribution 

If detailed emission data are available, it is also possible to calculate emissions-based VCD maps using Equation 

(A3) for years before the launch of OMI.  Figure 7 shows the annual mean VCD maps over the eastern U.S. and 35 

southeastern Canada reconstructed from the emissions inventories available since 1980.  All point sources (shown 
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by black dots) that emitted more than 1 kt of SO2 in at least one year during the 1980-2015 period were included in 

the calculations for a total about 380 sources.  Note that we slightly expanded the domain area in all directions to 

include sources that emitted large SO2 amounts prior to the OMI launch.  There are two major periods of dramatic 

changes in SO2 VCD values: first, in the early 1990s, corresponding to the implementation of the U.S. Acid Rain 

Program (ARP), established under Title IV of the 1990 Clean Air Act (CAA) Amendments (IJC, 2014).  Then 5 

beginning in 2009-2010 there are further large reductions attributable to the installation of additional flue‐gas 

desulfurization units (or “scrubbers”) at many US power plants to meet stricter emissions limits introduced by the 

Clean Air Interstate Rule. The overall decline of total SO2 point-source emissions from the domain area shown in 

Figure 5 between 1980 and 2015 is 86%. 

4.5 SO2 surface concentrations and VCDs 10 

Multi-year mean surface SO2 concentrations at stations belonging to the CASTNet and CAPMoN networks (see 

Section 2.4) were compared to the estimated VCD values. Maps of multi-year mean surface SO2 concentrations at 

stations belonging to the CASTNet and CAPMoN networks are shown in Figure 8.  The color scheme of Figure 8 

was chosen to be comparable to that used in Figure 1. The main features of the VCD and surface concentration 

distributions are very similar.  Both sets of maps portray a strong decline from the 1980s to 2010s with the highest 15 

values observed along the Ohio River, where many coal-fired power plants are located.  However, the spatial 

gradients in the VCD distribution appear to be sharper than in the surface concentration distribution and elevated 

surface concentrations are spread out over larger areas.  For example, SO2 VCDs over Virginia were much lower 

compared to West Virginia, while SO2 surface concentrations were similar.   

 There are 50 network sites within the domain area shown in Figure 7 that have 15 or more years of 20 

observations in the period 1980-2015.  A scatter plot of annual mean SO2 surface concentration at all of these sites 

versus emissions-based SO2 VCD values is shown in Figure 9a for all available years.  While there is a clear 

correlation between the two quantities that reflects similar spatial distributions and temporal trends, the correlation 

coefficient is not very high (0.83).  However, correlation coefficients calculated separately for individual 

measurement sites are higher, ranging between 0.87 and 0.99. This is illustrated in Figure 9b, where a subset of the 25 

scatter plot from Figure 9a for eight sites is shown using different colours for each site. 

 Figure 9b also shows that the slopes of the regression lines vary from site to site.  If we calculate the slope 

of the individual regression line for each site (it is essentially the surface-concentration-to-VCD ratio) and then 

multiply the emissions-based VCDs by that ratio, then we obtain a very good correlation as illustrated by Figure 9c 

(R=0.986 for the eight sites shown in Figures 9b and R=0.983 for all data points).  The regression-line y-intercepts 30 

have also been analysed. A positive intercept means that the surface concentration could be non-zero even in the 

absence of any regional point-source emissions.  The estimated intercepts are within ±1.5 μg m-3 for all sites except 

one where the intercepts is 3.5 μg m-3.  The exception is the CASTNet Horton Station site, located in Virginia 18 km 

east of the Glen Lyn power plant, whose emissions were about 10 kt yr-1 in 2008 and 6.5 kt yr-1 in 2011.  However, 

its emissions information was largely missing for the period 2009-2015 and this affected our VCD calculations. 35 
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The surface-concentration-to-VCD ratio ultimately depends on the shape of the SO2 vertical profile. The 

shape could be affected by boundary-layer height, site elevation, and perhaps some local conditions. There are, 

however, some common features in the ratio distribution.  As shown in Figure 9d, the ratio is low in areas of high 

emissions-based VCDs and low in areas where emissions-based VCDs are low. Of course, it is not the mean VCD 

value itself that affects the ratio, but proximity to emission sources. Figure 9d is based on VCDs derived from 5 

emissions, but the same analysis for OMI-measured VCD demonstrates similar results (the Supplement, Section S5).   

It may be possible to reconstruct surface concentration distribution from VCDs and additional information such as 

the planetary boundary layer height (Knepp et al., 2015), but such estimates are outside of the scope of this study.  

5 Summary and discussion 

Fitting OMI SO2 VCD data by a linear combination of functions, where each function represents the plume from an 10 

individual source, makes it possible to estimate emission from these sources or groups of sources. If the location of 

all sources is known, it is expected that the fitting results and the actual OMI data will agree within the noise level as 

was found to be the case for the eastern U.S. and southeastern Canada. The same agreement is also observed for this 

region if the reported emissions are used to calculate VCDs. This suggests a simple way of interpreting satellite SO2 

VCD data: they should agree with VCD estimates based on available emission inventories or the fitting results based 15 

on known source locations. 

By applying a statistical plume model (developed from satellite SO2 measurements) to U.S. and Canadian 

annual SO2 point-source emissions inventories, we were able to reconstruct past annual mean VCDs for the period 

1980-2015.  High correlation coefficients between the reconstructed VCDs values and the actual OMI-based 

measurements values (0.91 for OMI data with local bias removed) for the period 2005-2015 gives us confidence in 20 

both data sets.  It also demonstrates that the reported changes in SO2 point-source emissions are reflected by OMI 

measurements for the period 2005-2015.  Moreover, the annual surface SO2 concentrations at the CASTNet and 

CAPMoN sites also show high correlation coefficients (0.87-0.99) with SO2 VCDs reconstructed from reported 

emissions. All of these comparisons suggest a high degree of consistency between the reported SO2 point-source 

emissions and measured SO2 values over the entire 1980-2015 period. 25 

 The approach described in this study can be used in several ways. The derived emissions can serve as an 

independent data source for inventory verification (both point source and gridded): by comparing OMI-estimated 

SO2 emissions with the inventories or by comparing VCDs calculated from emission inventories to the OMI VCD 

measurements.  It can also provide emissions information for regions where there are no other information sources 

available. Unreported point and area sources can be detected and emissions from them can be estimates by 30 

subtracting VCDs calculated from available emission inventories from satellite VCD measurements, although 

emission inventories with good spatial resolution would be required for such an analysis.  While this study is 

focused on SO2, the methods can be applied to other species with relatively short lifetimes measured from space, 

particularly to NO2 and NH3.  

 We have also applied the method to Europe. The results strikingly illustrate the positive impact of EU 35 

legislation; the countries where no decreasing trends are observed are non-EU member states surrounded by EU 



20 

 

countries with decreasing emissions. In general, the satellite-based results confirm the trends in reported SO2 

emissions from EU member states over the period 2004-2014, but some discrepancies were found that deserve 

further attention.  In one case, for example, it seems that reported emissions already take into account certain 

planned or foreseen measures, but real-world (satellite-observation) estimates suggest that implementation of these 

measures was delayed by several years. Moreover, although the trend is clearly followed, the absolute emission 5 

levels suggested by the OMI SO2 VCD fitting method are sometimes substantially above the reported emission 

levels for recent years (Figure 6).  Whether these differences are due to underreporting or to methodological issues 

requires further study.  

 There are certain limitations to the suggested methods. Satellite SO2 VCD data may still contain local 

biases that will interfere with emissions estimates or will themselves be interpreted as a source. As the OMI and 10 

OMPS data show, these biases could be different from instrument to instrument. Moreover, data from the same OMI 

instrument could have different biases if processed by different algorithms (Fioletov et al., 2016; their Figure 3). 

Although the biases could be partially removed using, for example, a constant (for a small fitting area) or 

polynomial (for larger areas) fit, further improvement of retrieval algorithms is required to eliminate the bias 

problem. The biases could be particularly large over regions of high SO2 VCD values such as the Persian Gulf and 15 

China, so the method should be applied there with caution. The method is also based on the assumption that all SO2 

is located near the surface, which determines the wind data used for the fitting. This may not always be the case for 

very large sources where SO2 can be lifted into the free troposphere. Finally, the plume model itself may not be 

optimal in some cases.  

6 Data availability 20 

OMI PCA SO2 data used in this study have been publicly released as part of the Aura OMI Sulphur Dioxide Data 

Product (OMSO2) and can be obtained free of charge from the Goddard Earth Sciences (GES) Data and Information 

Services Center.  
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Appendix  

This appendix contains a description of the fitting algorithm used to estimate emissions from point and multiple 

sources. The algorithm for point sources was previously published by Fioletov et al., (2015), but we briefly repeated 

it for reader’s convenience.  

Fitting algorithm, point source 5 

The first step of the fitting algorithm involves a rotation of the location of each OMI pixel about the source such 

that, after rotation, all have a common wind direction. Then, the method assumes that concentrations of SO2 emitted 

from a point source decline exponentially (i.e., as exp(-λt)) with time (t) with a constant “lifetime” (or decay rate)  

τ=1/λ. In the absence of diffusion and with a constant wind direction and speed (s), SO2 is transported downwind 

(along the -y axis in the chosen coordinate system) with a concentration that declines exponentially with the distance 10 

from the source. Since t= -y/s, this decay is simply exp(λy/s) or exp(λ1y) where λ1= λ/s. Likewise, if the wind speed 

is zero, the distribution of SO2 near the source is governed by diffusion or, more generally, random fluctuations, and 

can be described by a two-dimensional Gaussian function of the distance from the source that depends on one 

parameter σ. As both exponential decay of the concentration along the y coordinate and diffusion take place, the 

overall behaviour can be described as a combination of exponential and Gaussian random variables, also known as 15 

an exponentially modified Gaussian function. Therefore, the statistical model of the SO2 plume employed near the 

point source has the form of a Gaussian function f(x, y) multiplied by an exponentially modified Gaussian function 

g(y, s): ),(),(),,( sygyxfsyx  , where x and y (in km) are the coordinates of the OMI pixel center across and along 

the wind direction, respectively, and s (in km h-1) is the wind speed at the pixel center. The model depends on two 

parameters, the decay time (τ), and the plume width (σ).  It should be multiplied by a scaling factor α that is 20 

proportional to the emission strength. 
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and . The Gaussian function f (x, y) represents the distribution across the wind direction 25 

line.  

 The function g (y, s) is essentially a convolution of Gaussian (determined by the plume width σ) and 

exponential functions (determined by λ1 related to the lifetime) and represents an exponential decay along the y axis 
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smoothed by a Gaussian function: when σ is close to 0, then g(y, s) ≈ λ1 exp (λ1y) where y≤0. The wind speed s is 

included in (A1) only through λ1= λ/s. Note that σ1 was used in f (x, y) instead of σ. The value of σ1 increased with 

the distance from the source to reflect an additional spread of the plume downwind (i.e., when y<0). 

 Parameters σ, λ, and α, can be derived from the fit of the OMI observations by the function α Ω(x,y,s) , i.e., 

from a nonlinear regression model. However, if the values for σ and τ=1/λ are prescribed, then the remaining value, 5 

α, can be determined from a simple linear regression model.   

 

Since     




















 1),(),()),((),(),( dysygdysygdxyxfdxdysygyxf , 

the parameter α represents the total observed number of SO2 molecules (or the SO2 mass) near the source. If 

is in DU, and σ is in km, then a is in 2.69·1026 molec or 0.029 T(SO2).  Furthermore, the emission strength 10 

(E) can be calculateds as E= α/τ assuming a simple mass balance.    

The function Ω depends on pixels coordinates in the Cartesian coordinate system related to the wind 

direction with the center at the analysed source. These coordinates can be derived from pixel latitude (θ) and 

longitude (φ), the wind direction (ω), and the source latitude (θ0) and longitude (φ0), i.e., Ω(x,y,s) = Ω (θ, φ, ω, s, θ0, 

φ0). As OMI measurements were merged with the wind data, OMI SO2 VCD at each pixel can therefore be 15 

interpreted as a four-dimensional function OMI SO2 (θ, φ, ω, s).  The dependence of Ω on the model parameters τ 

and σ is rather complex and we can simplify this approach by assuming that τ and σ are identical for all sources in 

the analysed region and only the parameter α differs from source to source (see sensitivity analysis in reference 

(Fioletov et al., 2016)).  Values of τ and σ were selected based on previous estimates for point sources in the eastern 

U.S. (Fioletov et al., 2015) with some seasonal adjustments: τ values were =5.6, 6.3, 7.7, and 6.3 hours for winter, 20 

spring, summer, and autumn respectively. The plume width σ=18 km is dependent on multiple factors, but mostly on 

the OMI pixel size. 

Fitting algorithm, multiple sources 

In case of multiple sources with prescribed τ and σ, OMI SO2 VCD can be expressed as a sum of contributions αi·Ωi 

from all individual sources (i).  If (xi, yi) and (x′i, y′i ) are the pixel’s Cartesian coordinates (km) in the system with 25 

the origin at the source i before and after the wind rotation respectively, then they can be calculated from the pixel 

and source latitudes and longitudes as: 

xi= r·(φ-φi)·cos(θi);  

 yi= r·(θ-θi); 

 x′i =  xi · cos(-ω) + yi · sin(-ω); 30 

 y′i = -xi · sin(-ω) + yi · cos(-ω); 

 

where r=111.3 km·π /180; φ and θ are the pixel longitude and latitude; ω is the pixel wind direction (0 for north); φ i 

and θi are the source i longitude and latitude (all in radian). 

2SOOMI
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 Then, similarly to equation (S1), the contribution ai·Ωi from the source i can be expressed as αi·Ωi = αi·f(x′i, 

y′i) ·g(y′i, s), where:           
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 Thus, OMI SO2 VCD can be expressed as a sum of contributions from all individual sources (i) plus noise 5 

(ε): 

    
i

iSOOMI ) , s, , , ,(s) , , ,( ii2
,                                (A3) 

where only parameters ai are unknown. Equation (S3) represents a linear regression model where the unknown 

parameters αi can be estimated from the measured variable (OMI SO2) at many pixels and known regressors Ω (θ, φ, 

ω, s, θi, φi).  Calculations can be done on an annual or seasonal basis (i.e., using all data for a particular year or for a 10 

particular season of a year respectively). Emission estimates for shorter time intervals, e.g., monthly emissions, may 

be possible for large sources, but they appear to be too noisy for the eastern U.S. and southeastern Canada for 

practical applications.   

 Earlier versions of the OMI SO2 data product have some large-scale biases (Fioletov et al., 2011) that were 

largely removed in the present PCA version.  However, we found that even the PCA version has some biases that 15 

may interfere with the regression fit if equation (S3) is used.  If the fit is done for a relatively small area, the bias can 

be accounted for by adding a parameter α0 to the equation (S3) and estimating it from the fit:           

     0ii ) , s, , , ,(s) , , ,(
2

i

iSOOMI ,                           (A3’) 

             For a larger area, for example for the eastern U.S. and southeastern Canada, geographic variations in the 

bias can be accounted for by introducing functions that change slowly with latitude and longitude. We used 20 

Legendre Polynomials (Pn(x)) that are orthogonal on the interval from -1 to +1. 

  

 

  To make the polynomials orthogonal on the analyzed domain, the following transformation was applied: 

   Lj(θ) = Pj(2·(θ - θmin)/(θmax-θmin)-1); 25 

   Lk(φ) = Pj(2·(φ - φ min)/(φmax- φmin)-1); 

where φmin, φmax, θmin, and θmax are latitudes and longitudes that define the domain area. Then Lj(θ) and Lk(φ), and 

their products were added to the fit: 
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where αi and βj,k are the estimated coefficients. The first sum represents the emission-related fitting and the second 

sum is the large-scale bias. Equation (S4) also represents a linear regression model and the unknown coefficients can 

be estimated from the available observations.   Polynomials up to the 6th degree were used for each one-year or one-

season fit for the selected domain (the eastern U.S. and southeastern Canada), although a higher (or lower) degree 5 

may be more suitable for a larger (smaller) area (see also section S6). Note that the biases are related to retrieval 

effects such as imperfection of account for the ozone absorption and therefore are not related to SO2 abundances and 

not affected by the winds.  For this reason, no dependence of the bias on s is considered. 

 Figure A1 illustrates the method by using SO2 data from 2005-2007 near the Bowen power plant in 

Georgia, U.S. There are 13 sources within the ±200 km square area around the Bowen facility. The fitting was done 10 

for every year, estimated values ai·Ω (θ, φ, ω, s, θi, φi) were calculated for each satellite pixel, then summed up to 

obtain a SO2 VCD value for the fit for that pixel. For Figure S1, the actual OMI data and the fitting results were 

averaged over the 2005-2007 period and smoothed by the pixel averaging technique with a 30 km radius. The maps 

of estimated values for individual sources smoothed in the same way are also shown. The map of the residuals, or 

the difference between the OMI data-based map and the fitting results is also shown.  15 

 

 

Figure A1.  Fitting OMI data near the Bowen power plant in Georgia, U.S., 2005-2007. All sources with emissions 

>20 kt yr-1 were included in the fit. 
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Table A1. Legendre Polynomials. 

n Pn(x) 

0 1 

1 x 

2 (3x2-1)/2 

3 (5x3-3x)/2 

4 (35x4-30x2+3)/8 

5 (63x5-70x3+15x)/8 

6 (231x6-315x4+105x2-5)/16 
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Figure 1. Annual mean OMI SO2 VCDs from PCA algorithm (column 1I), mean OMI SO2 VCDs with a large-scale 

bias removed (column 2II), results of the fitting of OMI data by the set of functions that represent VCDs near 

emission sources using estimated emissions (see text) (column 3III), and SO2 VCDs calculated using the same set of 5 

functions but using reported emission values (column 4IV).  Point sources that emitted 20 kt yr-1 at least once in the 

period 2005-2015 were included in the fit (they are shown as the black dots). Results of the fitting of OMI data by 

the set of functions that represent “sources” as 0.5° by 0.5° grid cells (shown as the black dots) using estimated 

emissions (see text) are shown in column 5V. The maps are smoothed by the pixel averaging technique with a 30 km 

radius (Fioletov et al., 2011). Averages for four multi-year periods, 2005-2006, 2007-2009, 2010-2012, and 2013-10 

2015, over the area 32.5°N to 43°N and 75°W to 89°W are shown.    
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 5 

Figure 2. (a) Reported and estimated seasonal point-source emissions rates (in kt yr-1) for the entire eastern U.S. and 

southeastern Canada (the region shown in Figure 1) for spring, summer, and autumn. (ba-dc) Examples of reported 

and estimated seasonal emissions (in kt yr-1) for three 1° by 1° grid cells as labeled on the plots. (d) Reported and 

estimated seasonal point-source emissions rates for the entire eastern U.S. and southeastern Canada (the region 

shown in Figure 1) for spring, summer, and autumn. Estimated emissions are shown for the statistical model based 10 

on the actual source location (blue lines) and on a 0.5° by 0.5° regular grid (red lines). Note that the seasonal 

emissions values are scaled to give annual emission rates. Winter data are not shown due to high uncertainties of 

OMI measurements.  
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Figure 3. The scatter plots between the reconstructed from emissions-based VCDs and the three OMI-based data 

sets shown in Figure 1: (a) mean OMI SO2 VCDs, (b) mean OMI SO2 VCDs with a large-scale bias removed, and 

(c) results of the fitting of OMI data by the set of functions that represent VCDs near emission sources using 5 

estimated emissions (the first term of equation (A2)). Each symbol on the plot represents the annual mean SO2 VCD 

value averaged over one 1° by 1° grid cell and all cells within the domain area shown in Figure 1 are included in the 

plot. Different colours represent different years. The correlation coefficients between the two data sets on each plot 

are also shown. 

  10 
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Figure 4. (left) Mean OMI SO2 VCDs grouped by wind speed with a large-scale bias removed. and (right) Rresults 

of the fitting of OMI data by the set of functions that represent VCDs near emission sources using estimated 

emissions. While the fitting was done using all data, the results of the fitting are grouped by wind speed. Averages 5 

for 2005-2007 binned by the wind speed (0-5 km h-1, 5-15 km h-1, and 15-45 km h-1) are shown. Sources that emitted 

20 kt yr-1 at least once in 2005-2015 were included in the fit (they are shown as black dots). 
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Figure 5. The same as Figure 1, columns 1I-4IV, but for the part of Europe where the majority of SO2 point sources 

are located. Point sources that emitted 10 kt yr-1 at least once in the period 2005-2014 were included in the fit (they 5 

are shown as the black dots). High SO2 values related to the Mt. Etna volcano in Sicily are excluded from the OMI 

plots. The area 35.6°N to 56.6°N and 10°W to 28.4°E is shown. 
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 5 

Figure 6. OMI-based (blue bars) and reported/estimated (black lines) emissions for different European countries. E-

PRTR reported emissions were used for all countries except Serbia and Bosnia and Herzegovina, where TNO-

MACC estimates (Kuenen et al., 2014) were used (see Supporting Information for details). The error bars represent 

2 standard errors of the annual mean calculated by averaging three seasonal (spring, summer, autumn) OMI-based 

emission estimates   10 
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Figure 7. Annual mean SO2 VCD calculated using the plume model applied to the reported emissions data. Annual 

emission data from ~380 SO2 sources (black dots) that emitted 1 kt yr-1 at least once in 2005-2015 were included in 

the calculations. The area 30°N to 48°N and 70°W to 90°W is shown. 
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Figure 8. Annual mean surface SO2 concentrations in μg m-3 for different periods calculated using data from the 

CASTNet and CAPMoN surface monitoring networks. The area 30°N to 48°N and 70°W to 90°W is shown. 

 5 
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Figure 9. (a) A scatter plot of annual mean surface SO2 from CASTNet and CAPMoN vs. VCDs calculated from 

EPA and NPRI point-source emission inventories. The correlation coefficient between the two data sets is 0.83. (b) 

A subset of the scatter plot from panel (a) for eight sites (shown by different colors). The correlation coefficients for 

individual sites are between 0.96 and 0.99. (c) The same plot as (b), but for mean SO2 VCDs multiplied by a site-5 

specific surface-concentration-to-column ratio. The correlation coefficient is 0.98. (d) The site-specific surface-

concentration-to-column ratio as a function of the 1980-2015 mean SO2 VCD.  Each dot represents one site. Only 

the 50 regional surface SO2 sites with 15 or more years of data between 1980 and 2015 were used in this figure. 
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S1. The bias and residuals 15 

 

As discussed in the Appendix, the first term in equation A4 is the emission-related fitting results and second term 

represents the large-scale bias. Figure S1 shows the differences between the actual OMI VCD data and the emission-

related fitting results plus the bias (ε from equation A4 labeled as “Residual 1”), the estimated bias itself, and the 

difference between the fitting results and the VCDs calculated directly from the emissions inventories (Residual 2).  20 

As Figure S1 (middle column) demonstrates, the bias values are consistent over time and elevates SO2 values over 

the U.S. East Coast and its magnitude is typically within ±0.1 DU.  

 

SO2 VCD data from the Ozone Mapping Profiler Suite (OMPS) Nadir Mapper on board the Suomi National Polar-

orbiting Partnership (or Suomi NPP) satellite operated by NASA/NOAA and launched in October 2011 were also 25 

used in the study to verify a potential bias in some OMI data. OMPS data were processed with the same PCA 

algorithm as OMI data (Li et al., 2013).  OMPS has a lower spatial resolution than OMI, 50 km by 50 km, but better 

signal-to-noise characteristics. The comparison of OMI and OMPS data shows that the bias is present in OMI data 

but not in OMPS. Figure S2a shows OMI mean SO2 for 2013-2015, the estimated bias, OMI data with the bias 

removed and the mean OMPS SO2 for the same period. OMI maps with the bias removed demonstrate a good 30 

agreement with the OMPS map, while the original OMI data have elevated values along the US East Coast, 

particularly over eastern North and South Carolina. The largest bias occurs in winter month as also illustrated by 

Figure S2b.  
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Figure S1. The differences between the actual OMI VCD data and the emission-related fitting results plus the bias 

(Residual 1), the estimated bias itself, and the difference between the fitting results and the VCDs calculated directly 

from the emissions inventories (Residual 2) for four time periods.   
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The reason for the bias is not well understood.   However, the difference between OMI and OMPS data, both 

processed with the PCA algorithm, suggests  that at least some of itthe bias is of instrumental  origin. Incorrect 

retrieval assumptions could also be contributors.  lTwo possibilities here are surface reflectivity and assumed ozone 

profiles. Since this bias has a seasonal-dependence, a third possibility is a small mismatch between the measurement 

conditions and the conditions under which the principle spectral components were derived.  5 

 

If the analyzed area is small, say a few hundred km by a few hundred km, we can simply assume a constant bias. 

However, for large areas, this assumption does not work and we instead add a polynomial function that changes 

relatively slowly with latitude and longitude.  The required polynomial degree depends on the area size and the 

gradients of that slowly changing bias.   10 

 

The bias estimated using polynomials of 0, 2, 4, and 6th degree is shown in Figure S3. Note that the bias is 

estimated for every season separately and then the average bias over the entire period was calculated. Due to 

different sampling, the overall bias is not constant even if a constant (0-degree polynomial) is used.  While there is a 

noticeable difference between the biases estimated using a constant function or 2nd-degree polynomial and the bias 15 

based on a 4th-degree polynomial, further increases of the polynomial degree do not change the results very much.  

  

 

 

Figure S2.  (a) OMI and OMPS SO2 VCD data for 2013-2015. The mean OMI values, the estimated OMI large-

scale bias, the mean OMI values with the bias removed and the mean OMPS values are shown. (b) Large scale 

biases estimated from OMI 2005-2006 data for different seasons 

 

Winter                        Spring                      Summer                    Autumn          

OMI mean               OMI bias         OMI with bias removed       OMPS          

a

b
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Figure S3. The large-scale biases estimated using polynomials of 0, 2, 4, and 6th degree. 
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Figure S4. Results of the fitting of OMI data by the set of functions that represent VCDs near emission sources using 

estimated emissions (the same as column III in Figure 1) for polynomials of 0, 2, 4, and 6th degree used to fit the bias. 
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The fitting results themselves are shown in Figure S4. The fitting results, i.e., SO2 VCDs derived from estimated 

emissions using the actual wind data, show little dependence on polynomial degree, suggesting that the emission 

estimates themselves are not very sensitive to the degree of the polynomial fit. 

 5 

Figure S5 (similar to Figure 2d) shows the estimated emissions themselves for the entire eastern U.S. and 

southeastern Canada (the region shown in Figure 1 and in Figures S1-S4) for spring, summer, and autumn. The 

emission estimates for the entire region are very similar for all presented polynomial fits, i.e., the degree of the fit 

does not play a major role, at least, in that particular region.    

 

Figure S5. Reported and estimated seasonal point-source emissions rates for the entire eastern U.S. and 

southeastern Canada (the region shown in Figure 1) for spring, summer, and autumn for different degrees of the 

polynomial fit. Estimated emissions are shown for the statistical model based on the actual source location and 

different colors represent different polynomial degrees of the fitting function. As in Figure 2, the seasonal emissions 

values are scaled to give annual emission rates. Winter data are not shown due to high uncertainties of the OMI 

measurements. 
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Figure 3 shows the scatter plots between the annual VCDs reconstructed from emissions and the three OMI-based 

data sets shown in Figure 1 (columns (I-III) for all years as well as the correlation coefficients between the two data 

sets on each plot. These correlation coefficients can be used to find the optimal degree of Legendre Polynomials 

used to remove the large-scale bias. The correlation coefficient between OMI data with bias removed and VCDs 5 

calculated from the emission data is 0.75 for the actual OMI data, and 0.80, 0.83, 0.87, 0.89, 0.90, 0.909  for the bias 

removed by the 1st, 2d, 3d, 4th, 5th, and 6th degree polynomials respectively. The correlation noticeably improved if 

the polynomial bias removed, but the improvement is only marginal for the degrees above 34.  

 

S2. Seasonal and annual statistics 10 

 

 

 

Figure S3S6. Autumn mean OMI SO2 VCDs, mean OMI SO2 VCDs with a large-scale bias removed, results of 

the fitting of OMI data by the set of functions that represent VCDs near emission sources using estimated 

emissions (see the paper text), and SO2 VCDs calculated using the same set of functions but using reported 

emission values. Averages for 2010-2012 and 2013-2015 are shown. Sources that emitted 20 kt yr-1 at least 

once in 2005-2015 were included in the fit (they are shown as the black dots). 
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Table S1. The correlation coefficients between SO2 VCDs estimated from the reported emissions and OMI data, 

OMI data with local bias removed, and the results of fitting OMI data. The data were averaged over 1° by 1° grid 

cells. 

Season* OMI data OMI data with bias 

removed 

Fitting results 

All grid cells 

Winter (1731) 0.17 0.24 0.70 

Spring (1815) 0.60 0.75 0.93 

Summer (1815) 0.80 0.88 0.96 

Autumn (1815) 0.54 0.72 0.91 

Year (1815) 0.75 0.91 0.97 

Only cells with OMI SO2 values greater than 0.1 DU 

Winter (1060) 0.13 0.28 0.83 

Spring (441) 0.72 0.84 0.95 

Summer (410) 0.82 0.91 0.96 

Autumn (882) 0.61 0.81 0.94 

Year (570) 0.84 0.96 0.98 

*The number of cells is shown in brackets 

 

Table S2. The correlation coefficients between SO2 VCDs estimated from the reported emissions and OMI data, 

OMI data with local bias removed, and the results of fitting OMI data for different years. The data were averaged 

over 1° by 1° grid cells. 

Year OMI data OMI data with bias 

removed 

Fitting results 

2005 0.91 0.96 0.99 

2006 0.84 0.95 0.98 

2007 0.86 0.96 0.99 

2008 0.76 0.92 0.98 

2009 0.57 0.85 0.97 

2010 0.59 0.84 0.95 

2011 0.34 0.73 0.95 

2012 0.29 0.73 0.91 

2013 0.28 0.69 0.86 

2014 0.18 0.62 0.89 

2015 0.25 0.57 0.83 
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The correlation coefficients between SO2 VCDs estimated from the reported emissions and OMI data, OMI data 

with local bias removed, and the results of fitting OMI data for individual seasons (all years) and for individual 

years (all seasons) are shown in Tables S1 and S2 respectively. The data were averaged over 1° by 1° grid cells. The 

seasonal correlation coefficients are the highest in summer and the lowest in winter in line with the uncertainties of 

OMI measurements.  The correlation coefficients with the actual OMI data are lower than with the data with bias 5 

removed as expected from Figure S2 because the bias is comparable with the signal itself in recent years. For the 

OMI actual data, a large fraction of all cells have SO2 levels close to the noise level. Excluding these cells from the 

statistics by putting a limit for SO2 be greater than 0.1 DU increases the correlation coefficients.  The correlation 

coefficients declined with time as expected from the decline in emissions and therefore in the signal- to- noise ratio.  

 10 

There are very high correlation coefficients between all four data sets in 2005 when the signal was relatively high 

and the noise was relatively low due to a large number of pixels (as OMI data were not affected by the row 

anomaly). As the emissions decline with time, the correlation coefficients between OMI data and the estimated from 

emissions VCDs also decline. However, the correlation coefficients of the latter with the fitting results remained 

high, about 0.86 for 2013-2015, while the correlation coefficient with OMI data was only about 0.24 (Table S2). The 15 

fact that the correlation coefficients with OMI measurements were high for a strong signal suggests that the VCD 

calculations from emissions were able to accurately reproduce the SO2 VCD distribution at that time. The 

uncertainties of VCD calculations from emissions do not really depend on the emission strength suggests that VCDs 

estimated from emissions remain accurate even in the recent years. Therefore, high correlation coefficients of these 

data with the fitting results means that the fitting procedure correctly extracts emission-related signal from noisy 20 

OMI data of the recent years. This could be used for OMI data analysis in other regions.       

 

S3. Fitting results for individual seasons: autumn 

 

Most of the results presented in the paper are based on annual means. It is possible to calculate 3-month seasonal 25 

statistics, although the results will generally be less reliable as the sample size is about four times smaller.  

According to Table S1, winter OMI data have practically no correlation with the emission-based SO2 due to high 

noise level in OMI data and large number of rejected OMI pixels because of low sun elevation and snow on the 

ground. For the other seasons the correlation coefficients with emission-based SO2 estimates are much higher, 

particularly for the fitting results. Figure S66 demonstrated how a relatively weak SO2 signal for autumn in recent 30 

years can be extracted from the OMI measurements.   
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Figure S4S7. Annual mean OMI SO2 VCDs over southeastern Europe with a constant large-scale bias removed 

(column 1), results of the fitting of OMI data by the set of functions that represent VCDs near emission sources 

using estimated emissions (column 2), and SO2 VCDs calculated using the same set of functions but using reported 

emission values (column 3).  Point sources that emitted 10 kt yr-1 at least once in the period 2005‒2015 were 5 

included in the fit (shown as black dots). The maps are smoothed by the pixel averaging technique with a 30 km 

radius (Fioletov et al., 2011). Averages for four multi-year periods, 2005‒2006, 2007‒2009, 2010‒2012, and 2013‒

2015, are shown.  The location of the Serbian smelter at Bor is indicated by “1”.   
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S4. SO2 VCD over southeastern Europe.  

 

Figure S4 S7 is a “zoomed-in” version of Figure 5 that shows OMI data, the fitting results, and SO2 VCDs estimated 

from emissions over a part of southern Europe.  As shown in Figure S4, SO2 sources in Serbia and Bosnia-

Herzegovina are the largest remaining in Europe. Their emissions are not included in E-PRTR and TNO-MACC-III 5 

emission inventory data (see Section 2.3) were used in Figure S4 S7 instead. While there is general agreement 

between VCDs from TNO-MACC-III emissions for Serbia and for Bosnia-Herzegovina, there are some 

discrepancies. In particular, based on the TNO-MACC-III inventory data, the high SO2 values over the Serbian 

copper smelter at Bor, particularly from 2007‒2012, are unexpected.  OMI data from Figure S4 S7 also show that 

SO2 signals from large power plants in Romania and Bulgaria are not declining as rapidly as expected from the E-10 

PRTR emissions inventory.  

 

 

S5. SO2 surface concentrations and VCDs 

 15 

Figure S85 is similar to Figure 9d and shows the surface-concentration-to-column ratio as a function of the mean 

VCD. Unlike Figure 9, where the ratios were calculated from the slope of the regression lines and emission-based 

VCDs, the ratios in Figure S5 S8 were calculated from 3-year averages (2005-2007) of measured surface 

concentrations and OMI SO2 VCD values. In addition to CASTNet data used in the study (Figure 9a), the same 

analysis was done using data from the US AirNow network (https://www.airnow.gov/) and the results are shown in 20 

Figure S5bS8b.  

 

 

  

 25 

Figure S5S8. The site-specific surface-concentration-to-column ratio as a function of the 2005‒2007 mean OMI 

SO2 VCD.  Each dot represents one site. Surface concentration data from the CASTNet (a) and AirNow (b) surface 

monitoring networks were used for the plot. 

  

https://www.airnow.gov/
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S6. Reconstructing the past VCDs using different wind data. 

 

As mentioned in section 2.2, the actual OMI pixel locations and wind data for 2005 were used to reconstruct annual 

mean VCD maps based on annual reported emissions (section 3.4) for all years prior to 2005. To study the 

sensitivity of the results to a particular year (2005) of wind data, we repeated the calculations using 2006 wind data.   5 

Figure S9 is similar to Figure 7 and shows annual mean SO2 VCD calculated using the reported emissions data and 

pixel locations and wind data for 2005 (top) and 2006 (bottom). Annual mean wind characteristics do not vary much 

from year to year and the reconstruction results for 2005 and 2006 winds are nearly identical. 

 

 

Figure S9. Annual mean SO2 VCD calculated using the plume model applied to the reported emissions data for the 

period 1980-2003 calculated using the reported emissions data and pixel locations and wind data for 2005 (top) and 

2006 (bottom).  

a Reconstructed using 2005 winds

b Reconstructed using 2006 winds
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