

and friends

7

1 Long-term series of surface solar radiation at Athens, Greece

2

3 S. Kazadzis^{1,2}, D. Founda², B. E. Psiloglou², H. Kambezidis², N. Mihalopoulos^{2,3}, A. Sanchez-
4 Lorenzo⁴, C. Meleti⁵, P. I. Raptis^{1,2}, F. Pierros², P. Nabat⁶

5

6 [1] {Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC)
7 Dorfstrasse 33, CH-7260 Davos Dorf, Switzerland}

8 [2] {Institute of Environmental Research and Sustainable Development, National Observatory of Athens,
9 Greece}

10 [3] {Department of Chemistry, Univ. of Crete, Heraklion, Crete}

11 [4] {Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza,
12 Spain}

13 [5] {Physics Department, Aristotle University of Thessaloniki, Greece}

14 [6] {CNRM UMR 3589, Météo-France/CNRS, Toulouse, France}

15 Corresponding author: S. Kazadzis, kazadzis@noa.gr

1 Abstract

2 We present a long-term series of solar surface radiation (SSR) ^{from} for the city of Athens, Greece. ~~The~~

3 SSR measurements were performed from 195⁴³ to 2012, and before that (1900-195³²) sunshine

4 duration (SD) records have been used in order to reconstruct monthly SSR. Analysis from the whole

5 dataset (1900-2012) mainly showed ~~Very small (0.02%) changes in SSR from 1900 to 1953,~~ ^{of}

6 including a maximum decrease of 2.9% per decade in SSR ~~from when taking in to account the~~ ^{during the} 1910

7 to 1940 period, assuming a linear change ~~in SSR~~. For the dimming period ~~1955-1980~~, a -2%

8 change per decade has been observed, that matches various European long-term SSR measurement

9 related studies. This percentage ^{for} Athens is in the lower limit, compared to other studies ⁱⁿ for the

10 Mediterranean area. For the brightening period ~~1980-2012~~ we have calculated a +1.5% ~~per decade~~ ^{change}

11 which is also in the lower limit of the reported positive changes in SSR around Europe. Comparing

12 the 30-year periods ~~(1954-1983 and 1983-2012)~~ we have found a difference of 4.5%. However,

13 measurements of the first 30 year period are associated with higher uncertainties than the second ^{those of}

14 period, especially when looking at year to year changes. The difference was observed for all

15 seasons except winter. Using an analysis of SSR calculations of all sky and clear sky (cloudless)

16 conditions/days, we report that most of the observed changes in SSR after 1954 can be attributed

17 partly to cloudiness and mostly to aerosol load changes.

18

between?

1 **1 Introduction**

2 In the past decades surface solar radiation (SSR) and the transmission of the atmosphere have been
3 of increasing interest because of the related impacts on climate. Most of the energy in the Earth-
4 atmosphere system is introduced by solar radiation ~~as it~~ provides heating, which creates pressure
5 gradients and ultimately wind, ~~as well as it~~ triggers water, carbon and oxygen cycles through
6 evaporation and photosynthesis. These processes define the climatological conditions, and changes
7 of incoming solar radiation rapidly affect the energy balance (Wild et al., 2015). Interest ~~in the~~
8 solar radiation changes has also been raised after the development of solar energy applications,
9 which are continuously growing in number over the recent years. Changes in SSR have been
10 recorded over the last century and can be caused either by natural events such as volcanic eruptions
11 or human-related activities, mainly in polluted regions (Wild, 2016). At ~~larger~~ ^{Lean} scales (thousands of
12 years) changes in SSR ~~might~~ have been caused by changes in the Earth's orbit and Sun solar output
13 (Lean, 1997; Ohmura, 2006).

14 Systematic continuous measurements of SSR were established in the middle of the 20th century at
15 selected meteorological observatories. Solar variations have been investigated in several studies
16 using ground based SSR measurements from various monitoring networks worldwide (e.g.,
17 Ohmura, 2009) and also by satellite-derived estimations (e.g. Kambezidis et al., 2010). Overall,
18 most of these studies (Gilgen et al., 1998; Noris and Wild ,2009; Wild, 2009 and 2016 and
19 references therein) have reported a worldwide decrease of solar incoming radiation in the period
20 1960-1985 (known as dimming period), followed by an increase (brightening period) thereafter.
21 These changes ~~were larger reported to be higher~~ in more polluted and urban areas but have also
22 been recorded in isolated regions such as the Arctic (Stanhill, 1995) and Antarctica (Stanhill and
23 Cohen 1997). ~~More Other recent studies have tried to distinguish investigated the effect of
24 urbanization on global brightening and dimming, the local scale changes in polluted urban
25 environments in the same time and found no marked differences among urban and rural SSR time
26 series proved the existence of these trends independently of local sources (Tanaka et al., 2016) and
27 Imamovic et al. (2016) investigated the correlation among these trends and urbanization proxies and
28 found non significant linkage.~~ Changes in atmospheric transmission due to variations in cloudiness
29 and aerosol concentration are the main factors to be investigated in order to determine the possible
30 causes of such trends in SSR (Wild, 2009). ~~However, due to the aerosol-cloud interactions and the
31 aerosol indirect effect on SSR, the two factors (clouds and aerosols) are not completely mutually
32 exclusive in explaining SSR changes.~~

1 The cloud and aerosol radiative effects on solar radiation variations over the past decades have been
2 investigated by numerous studies during the last years. The inter-annual variations in cloudiness is
3 crucial for studying SSR time series, but its decadal variability is not always connected with the
4 widespread dimming and brightening effects (Wang et al., 2012; Wild, 2016). Aerosols play a
5 significant role in incoming radiation, by scattering and absorbing light and by acting as cloud-
6 condensation nuclei. Over the 20-year dimming phase (from 1960 to 1980) and the 15-year
7 brightening phase (from 1990 to 2005), it was found that the aerosol effects (direct and indirect)
8 played the most important role in SSR variation (Dudok de Wit et al., 2015). Concerning Central
9 Europe, Ruckstuhl et al. (2008) suggested that the brightening phase under cloud-free conditions is
10 in line with decreasing anthropogenic aerosol emissions (Streets et al., 2006). Nabat et al. (2013)
11 using a blending of remote sensing and model products showed that a decreasing Aerosol Optical
12 Depth (AOD) trend of 0.05 per decade has been calculated in Europe for the period of their study
13 (1979-2009). In addition, Nabat et al. (2014) reported that anthropogenic aerosol decline in Europe
14 from 1980 to 2012 statistically explains explain $81 \pm 16\%$ of the observed brightening. Overall,
15 changes in anthropogenic aerosol emissions are now considered as the major cause of brightening
16 and dimming effects (Wild, 2016). The gaseous and particulate air pollutants may reduce solar
17 radiation by up to 40% during air pollution episodes (Jauregui and Luyando, 1999). This Aerosol
18 related attenuation is much larger during forest fires, dust events and volcanic eruptions. Vautard et
19 al. (2009) have also reported on a decline of the frequency of low-visibility conditions such as fog,
20 mist and haze in Europe over the past 30 years, suggesting a significant contribution of air-quality
21 improvements. Long-term series of SSR measurements are essential for such studies. One of the main constraints in
22 studying SSR temporal changes is the small number of sites with reliable long-term records, even
23 over areas with a relatively high density of stations such as Europe, Japan or the USA. In Europe for example,
24 there are currently less than 80 stations with more than 40-years homogeneous data (Sanchez-
25 Lorenzo et al., 2015), with very few of them operating over Southern Europe. Recently, a high-
26 quality dataset of SSR has been set up over Italy (Manara et al., 2016), but there is still lack of high
27 quality long-term trends in other countries around the Mediterranean Basin.
28 In addition, even more sporadic measurements are available before the 1950s (Stanhill and
29 Achiman, 2016); the few studies of them have pointed out an SSR increase in the first decades of
30 the 20th century and a maximum around 1950 (Ohmura, 2006 and Ohmura, 2009). This topic is still
31 controversial due to the few long-term series available (Antón et al., 2014). Recently, there have
32 been efforts to reconstruct SSR series in periods with no direct measurements available, using other
33

variables such as sunshine duration (SD), which is available in a large number of sites since the late 19th century (e.g., Stanhill and Cohen, 2005, for USA; Sanchez-Lorenzo and Wild 2012, for Switzerland; Matuszko 2014, for Poland). For example, Sanchez-Lorenzo and Wild (2012) used data from 17 stations in Switzerland, considered SD as a proxy and successfully reconstructed SSR time series since the late 19th century. Thus, they calculated that the variability in SSR monthly anomalies can be explained by SD anomalies in a range of 76%-96%, and a monthly root mean squared error of 4.2 W m^{-2} between recorded and estimated SSR for all-sky conditions and of 5.5 W m^{-2} for clear-sky conditions. Other studies have tried to use pan evaporation as a proxy of SSR, for the first half of the 20th century (Stanhill and Möller, 2008). Kambezidis et al. (2016) used monthly re-analysis datasets from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and calculated shortwave radiation trends ^{over the period} from 1979-2012 for the Mediterranean basin. They reported an increase in MERRA ^{by} $+0.36 \text{ W m}^{-2}$ per decade, with higher rates over the western Mediterranean ($+0.82 \text{ W m}^{-2}$ per decade).

For the Southeastern Mediterranean, there have been a few studies discussing the brightening/dimming effect. Zerefos et al. (2009) have studied the Ultraviolet A (UVA) changes for the area of Thessaloniki (Greece) from 1984 to 2008. They calculated a 5% positive trend per decade linked to a negative trend in aerosol optical depth (AOD) for the area due to air pollution abatement strategies. The variability of shortwave downward solar irradiance received at Earth's surface over Thessaloniki, Greece for the period 1993-2011 studied the Ultraviolet A (UVA) changes (Bais et al., 2013), where they reconfirmed the upward trend in SSR after 1990 (0.33% per year). They also reported signs of a slowdown in the upward trend in SSR during the beginning of the 2000s. Founda et al., (2014) have studied the SD long-term variability over Athens area. They reported a 7% decline in the annual SD from 1951-1982 and a 3% increase from 1983-2011 under all sky conditions. Although, under near clear sky conditions, these percentages are -7% and + 9% for the dimming and brightening periods respectively. Similarly, Founda et al. (2016a) analyzed long-term SD and total cloud cover time series over 15 sites in Greece (the oldest one beginning ⁱⁿ 1897). They have shown an increase in SD almost at all stations since the mid-1980s, which in certain areas of Southeastern Greece amounts to an increase of 20 h per year. This increase is not accompanied with synchronous decrease in total cloud cover, possibly evidencing to decreasing aerosols loads, despite the fact that their impact on SD should be lower than on SSR (Sanchez-Romero et al., 2014). Yildirim et al. (2014) have analyzed 41 years of SD measurements in 36 stations in Turkey. They reported a decreasing trend (between 1970 to about 1990) ^{at} for most of the stations. After 1990 they observed either zero trend variation or a reduction in the decreasing rate of SD ^{at} for most of the locations. They concluded that the decreasing period might be attributed to ^{at}

negative power in units (not W/m^2)

1 human-induced air pollution. Founda et al. (2016b) have investigated the visibility trends over
2 Athens area from 1931 to 2013. They reported a deterioration in the visibility up to 2004 and a
3 slight recovery afterwards, negatively/positively correlated with relative humidity/wind speed and
4 positively correlated with AOD from 2000 to 2013. Finally, Alexandri et al., 2017 studied the
5 spatiotemporal variability of SSR over the Eastern Mediterranean for the 1983–2013 period using
6 the Satellite Application Facility on Climate Monitoring Solar surfAce RAdiation Heliosat satellite-
7 based product. They reported SSR trend be positive (brightening) and statistically significant at the
8 95% confidence level ($0.2 \pm 0.05 W/m^2/year$ or $(0.1 \pm 0.02)/year$) being almost the same over land
9 and sea. (SAF ...)

10 In this work, measurements of SSR, recorded for 60 years at the center of Athens, are presented. In
11 addition, with the use of the SD measurements that are conducted in Athens since 1900, we could
12 reconstruct the time series of SSR during the first half of the 20th century. These time series (1900–
13 2012) are the oldest, uninterrupted and high quality SSR time series in the SE Mediterranean and
14 one of the oldest in Europe, providing unique information about the variations and trends in the area
15 for the past decades. Time-series of SSR over Athens are presented to try answering questions such
16 as:

17 - Are the dimming–brightening patterns observed in Europe over the past century also observed, at
18 the same extent, over the Eastern Mediterranean?

19 - Is SSR variability during the first decades of the 20th century in Athens in line with the other few
20 locations reporting trends over this period? *reported at other locations*

21 - Can we verify that anthropogenic aerosols play the most important role on the brightening/dimming
22 observed SSR after 1950 in agreement with other European regions?

24 2 Data and Methodology

25 2.1 Data collection and analysis

26 The SSR data used in this study cover the period from December 1953 to December 2012 and were
27 measured by a series of pyranometers that are mentioned in Table 1. These instruments have been
28 operating continuously at the Actinometric Station of the National Observatory of Athens
29 (ASNOA) (Hill of Pnyx, Thissio), that is located near the center of Athens, Greece ($38.00^\circ N$,
30 $23.73^\circ E$, 110 m above mean sea level). Table 1 presents the instruments and the period of
31 operation, as well as the maximum error in the calculation of the integrated daily values.
32 References mentioned in Table 1 describe the exact type of errors and uncertainties related to the
33 sensors. In the period 1953–1986, the maximum daily error was about 5%, and 2% afterwards. The

1 spectral response of the sensors is in the range of 285-2800 nm; since 1986 a first-class Eppley PSP
 2 pyranometer (WMO, 1983) is operating at ASNOA. Since 1992, frequent calibrations (every two
 3 years) have been performed by the NOA's Laboratory of Meteorological Device Calibration
 4 (LMDC, 2016) in order to ensure the high quality of measurements. LMDC follows the standard
 5 calibration procedure for thermopile pyranometers (ISO 9847, 1992), with exposure to real sunlight
 6 conditions and comparison with a standard thermopile (Secondary Standard) pyranometer. LMDC's
 7 reference pyranometer, Kipp & Zonen CM21, is regularly calibrated in PMOD/WRC, Davos,
 8 Switzerland.

9

10 Table 1: History of SSR instruments used at ASNOA. SSR measurements refer to the total solar
 11 radiation on a horizontal surface.

	Instrument	Period	Class	Maximum error (daily integral)	Reference	Class	Comments	Resolution
1	Solarigraph GOREZYNSKI	1953-1959	2nd	5%	Coulson (1975)	B	One instrument being used	1 hour
2	Eppley 180° pyranometer (No. 3604)	1960-1966	2nd	5%	Coulson (1975), Drummond (1965)	B	Manual measurements archiving with mvoltmeter	1 hour
3	Eppley 180° pyranometer (No. 3604) coupled with a Leeds-Northup recorder, Speedomax, type G	1966-1968	2nd	5%	Coulson (1975), Drummond (1965)	B	Same instrument as #2 with Speedomax recorder	1 hour
4	Eppley 180° pyranometer (No. 3034) coupled with a Leeds-Northup recorder, Speedomax, type G	1968-1973	2nd	5%	Coulson (1975), Drummond (1965)	B	New instrument, same recorder	1 hour
5	Eppley pyranometer, type 8-48 and type 8-48A coupled with a Leeds-Northup recorder, Speedomax, type G	1974-1986	2nd	3-5%	Hulstrom (1989)	B	Type 8-48 and type 8-48A instruments were measuring alternatively for three years each	1 h
6	Eppley Precision Spectral Pyranometer (PSP)	1986-now	1st	1-2%	Hulstrom (1989)	A	Regular recalibrations. Coupled with a, A/D recorder (Campbell Scientific Ltd.) Datalogger, type CR-21X at the beginning	1 min

check ()

							until 2003, a CR10X	
							until 2012	

1

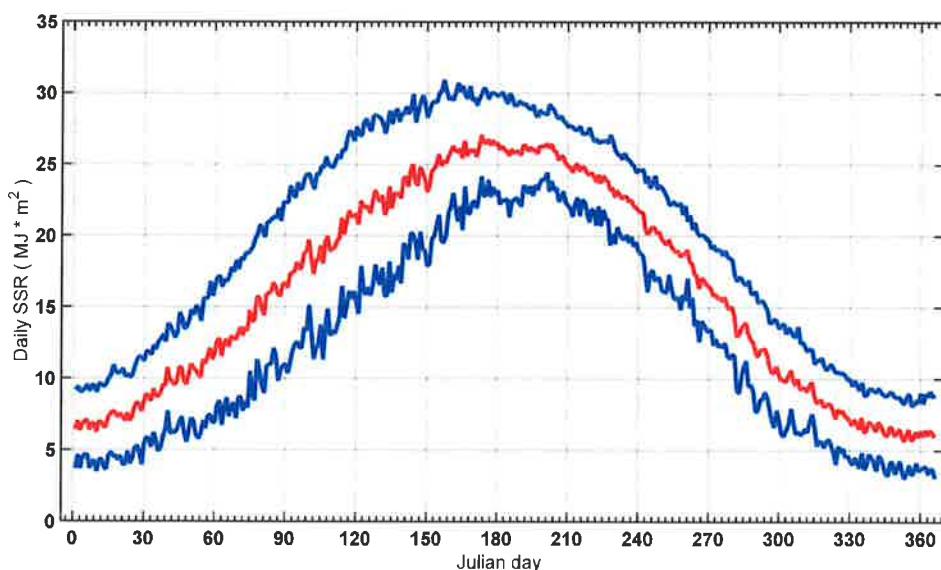
2 SSR data are processed using a set of quality-control (QC) tests in order to ensure the quality of the
3 data set. The QC procedures include rejection of:

4 • Measurements for solar elevation angles less than 5 deg;
5 • SSR values equal to or less than 5 W m^{-2} , during sunrise and sunset, due to the
6 pyranometers' sensitivity;
7 • SSR values greater than 120% of the seasonally corrected solar constant.

8 After the initiation of diffuse horizontal radiation measurements at ASNOA in 1991, the following
9 quality criteria were added for rejection:

10 • diffuse horizontal values greater than the corresponding SSR ones;
11 • diffuse horizontal values greater than 80% of the seasonally correct solar constant;
12 • direct-beam solar component exceeding the extraterrestrial solar irradiance.

13 Also, both total and diffuse horizontal measurements are corrected for the night-time dark-signal
14 offset of the pyranometers.


15 Mean daily SSR values were calculated from the data set of this study (December 1953 – December
16 2012); only months with more than 20 days of measurements were considered in the analysis. Over
17 the 60 years of measurements, only three months (January and February of 1998 and March of
18 2012) did not fulfill this criterion.

19 *When trying to use such long term series it is evident that the data quality differs as instruments have been improved.*
20 *quality assurance and quality control procedures have been standardized and finally the information flow on the day to*
21 *day instrument performance issues are much more ~~complete~~ in the recent years. More specific for ASNOA, after*
22 *1986 ~~only~~ instruments were calibrated or checked with a reference instrument ~~on~~ a yearly basis to identify changes in the*
23 *calibration and drifts. As reported, the addition of diffuse irradiance measuring instruments provided the opportunity to*
24 *improve also minute based measurement quality. Before 1986 the instruments reported in table 1 have been used.*
25 *According to the log books there has been always a certain overlap when changing from one instrument to another.*
26 *Reports mention that there were instrument drifts that have been corrected with no further information from 1953 to*
27 *1970. Instrument overlaps after 1986 were used to eliminate possible instrument related offsets. However, instrument*
28 *differences (e.g. thermal offset of PSP instrument compared with 8-48 pyranometer, Vignola et al., 2016) theoretically*
29 *could have an effect in the order of $1-2 \text{ W/m}^2$ on the series continuation. In addition, the inclusion of diffuse radiation in*
30 *the quality assurance tests after 1991 could have a major improvement on the newest data compared with the old ones.*
31 *However, there is no hint that the improvement in quality control could have a systematic impact on SSR measured*
32 *changes compared to the past, other than higher uncertainty on the integrated (monthly, yearly) values, by inclusion of*

1 "problematic" SSR minute or small period measurements that did not pass the quality control tests. For the 1953-
 2 1986 time series there is a number of publications that have been using the SSR-NOA time series. More specific:
 3 Macris (1959) have used the 1954-1956 SSR measurements to identify the relationship between SSR and sunshine duration.
 4 Katsoulis and Papachristopoulos, (1978) have used the SSR data from 1960 to 1976 in order to calculate SSR statistics
 5 for daily, seasonal and yearly solar radiation levels of Athens, Greece. Notaridou and Lalaas, (1979) have used the 1954-
 6 1976 SSR data in order to verify an empirical formula on global net radiation over Greece. Flocas, (1980) has used the
 7 1961-1975 SSR time series to compare them with sunshine duration data for the same period. Kouremenos et al. (1985)
 8 have used the SSR data from 1955-1980 in order to try to correlate their changes with various atmospheric parameters.
 9 Zabara (1986) has used the 1965-1980 time series to verify a developed method that calculated monthly solar radiation.
 10 Katsoulis and Leontaris (1981) have used the 1960-1977 data to verify tools describing the solar radiation distribution
 11 over Greece. Finally, the percentages of errors reported in table 1 are not directly linked with possible instrument drifts,
 12 that can impact the SSR time series analysis. So results of measurements before 1986 have to be used with caution and
 13 accompanied by a report on the different level of uncertainties of the past and recent data.

14 Figure 1 shows the intra-annual variability of SSR at ASNOA based on the measurements from all
 15 instruments during the period 1953-2012. Mean daily SSR at Athens ranges between approximately
 16 6 to 27 MJ m^{-2} during the year. Mean and standard deviations were calculated using the 60 year
 17 record for each day.

Daily

19 *intra*
 20 **Figure 1.** Average intra-annual variability of Surface Solar Radiation (SSR) at Actinometric Station of the
 21 National Observatory of Athens (red), along with the inter-annual variability for a given day (± 1 standard
 22 deviation, blue), calculated over the period 1953-2012.

1 The results of figure 1 show the average yearly pattern of SSR at ASNOA. The day to day
2 variability that is shown as “noise” in the plotted blue line comes from the 60 year averaging of
3 each day and is mostly related with the amount of cloudiness for each of the averaged days.
4 Minimum and maximum SSRs at solstices, compared to a cloudless sky aerosol free model, are also
5 related with the highest probability of the presence of clouds during winter months. For the
6 calculation of each of the daily averages the available data points vary from 55 to the possible
7 maximum of 60.

2.2 Solar duration

8 In addition, collocated measurements of SD recorded at ASNOA have been used. According to
9 WMO (2010), the SD during a given period is defined as the sum of the sub-periods for which the
10 direct solar irradiance exceeds 120 W m^{-2} . In Athens, SD has been recorded using classical
11 Campbell-Stokes heliographs (since 1894) and been replaced by electronic instrumentation in 1998
12 (EKO, MS-091 analog SD sensor). Monthly SD values since January 1900 have been used in this
13 study. A more analytical study of these time series can be found in Founda et al. (2014).

14 Complementary to this study, cloud-cover observations from the Hellenic National Meteorological
15 Service (HNMS) from 1954 have also been used. These observations are recorded at a site 7 km
16 away from ASNOA. All cloud observations at HNMS are conducted every 3 hours and are
17 expressed in octas.

18 Concerning the data availability for SSR and SD data, SSR monthly means calculated here have
19 been retrieved from daily calculated SSRs. Over the 59 years (708 months), 98% of the months had
20 none or one day missing, 3 months had from 10-20 missing days and 2 months from 20-30 missing
21 days. For SD, 1931-1940 monthly data have been used taken from the NOA measurement annals.
22 From 1940 on, hourly measurements have been used in order to derive daily and monthly
23 measurements. The SD time series have no gaps with only six missing days during December 1944
24 (Founda et al., 2014).

2.3 Aerosol optical depth (AOD)

25 In order to examine the AOD impact on SSR, we have used the longest satellite based AOD series
26 available for the area. This is the AOD time series from Advanced Very High Resolution
27 Radiometer (AVHRR). AOD retrievals at 630 nm over global oceans at spatial resolution of $0.1^\circ \times$
28 0.1° and one overpass per day, have been used. Data used were downloaded from NOAA Climate
29 Data Record (CDR) version 2 of aerosol optical thickness (Zho and Chan, 2014), and cover the
30 period from August 1981 to December 2009. AVHRR AOD embodies a large variety of
31 uncertainties, including radiance calibration, systematic changes in single scattering albedo and
32 ocean reflectance (Mishchenko et al, 2007). Current dataset radiances have been recalibrated using
33 more accurate MODIS data (Chan et al, 2013). We used daily data at the region around Athens

1 (longitude: 37.5°-38.2°N, latitude: 23.2°-24.4°E) which includes 50 active available (ocean) grid-
2 points. The above region was selected based on data availability on each grid with the distance up to
3 50 km from ASNOA. *in point*

4 To complement the analysis on the evolution of aerosols, the recent climatology developed by
5 Nabat et al. (2013) has been considered over the period 1979-2012. This product provides monthly
6 averages of AOD at 550 nm over the Mediterranean region at 50 km resolution. It is based on a
7 combination of satellite-derived (MODIS instrument) and model-simulated products (MACC
8 reanalysis and RegCM-4 simulations), which have been selected among many available datasets,
9 from an evaluation against ground-based measurements of the AERONET network. Thus this
10 climatology is able to give *the* best possible estimation of the atmospheric aerosol content over
11 the period 1979-2012. For the present work, the AOD time series over the grid cell of the ASNOA
12 (38.00° N, 23.73° E) has been extracted and is referred to as the ChArMEx data thereafter.

13 2.4

14 2.4 Clear-sky SSR

15 For the determination of the clear sky (defined here as the cloudless) days, we have used both the
16 cloud octas and SD data. Daily observations have been used for this analysis. We have defined as a
17 clear sky day each day that fulfills the following criteria:

18 - the mean daily cloudiness (in octas) should be less than 1.5, and
19 - the total daily SD should be higher than 90% of its theoretical (astronomical) value.

20 The procedure for calculating a single mean cloud octa value for each day was the following:

21 We have first excluded night-time cloud observations; then, we have weighted each observation
22 based on the hour of the observation. Weights have been calculated based on the solar radiation
23 contribution of the specific time slot and day of the month, compared with the daily clear sky SSR
24 integral, of the particular day and month.

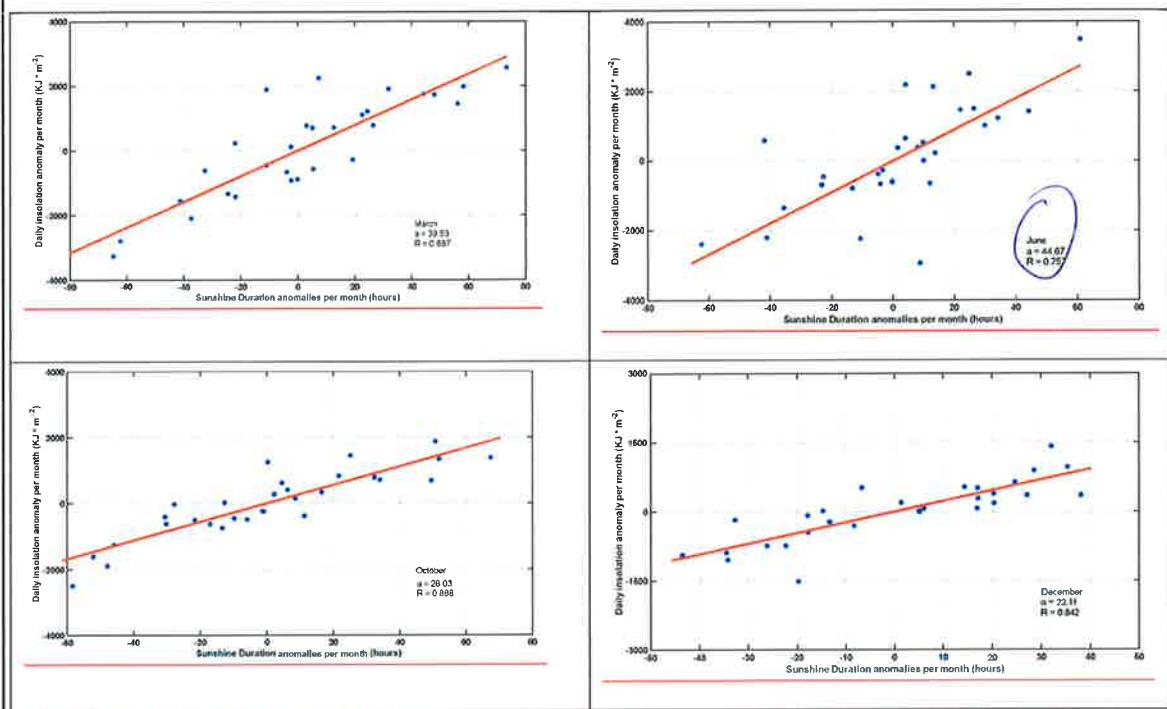
25

26 2.5 Reconstruction of SSR from SD

27 We have used the 1900-2012 SD time series in order to extend our SSR time series back to 1900.

28 There are different methods that are used in order to estimate SSR values from SD. In this work we
29 have tried two methods based on the linear regression *between* of SSR and SD (Sanchez-Lorenzo and Wild,
30 2012). For all-sky conditions the monthly anomalies, obtained as differences from the 1983-2012
31 mean, of SSR and SD have been calculated. Then for each month a linear regression has been used
32 to estimate the relationship between the SSR and the SD. *italic*

11


$$SSR = a \cancel{SD} + b \quad (1)$$

italic

1

Figure 2 shows four out of the total twelve regressions together with its' statistics.

Too small legends
- axes legends and now
- inner box

2

Figure 2. Linear regression of SSR and SD anomalies for March, June, October and December,

3

1983-2012.

4

The statistics of the monthly regressions are shown in table 2.

a, b, R in italic style

Table 2. Monthly regression statistics of SSR vs SD anomalies (see eq. 1)

month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
a	22.47	34.99	39.53	46.65	57.88	44.67	51.87	46.23	34.28	28.02	27.32	23.10
R	0.842	0.895	0.887	0.840	0.799	0.757	0.773	0.772	0.812	0.888	0.916	0.842

5

(table 2)

6

where a is the coefficient of the equation $SSR = a * SD + b$ and R the correlation coefficients that vary from 0.75 to 0.91. This implies that the SD monthly anomalies explain between 56% and 83% of the variability of the SSR monthly anomalies. It has to be noted that coefficient b is less than 10^{-3} for all months. In addition to the reported percentages this temporal resolution fitting is more sensitive to inhomogeneities present in the series, as well as local peculiarities and noise.

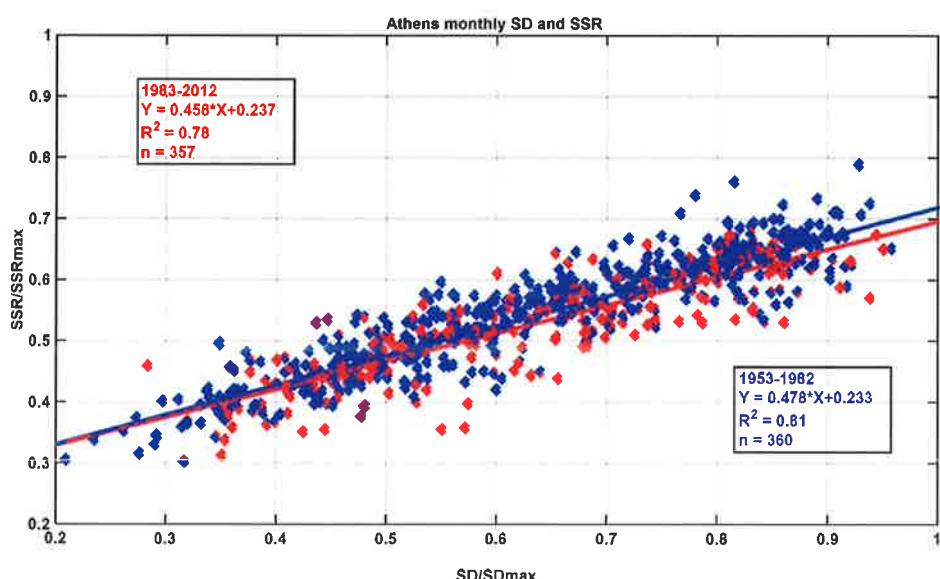
7

The second method was based on For that purpose we have used a recent period (1983-2012) in order to derive a function between SD and SSR and a testing period (1953-1982) to verify the validity of this function and results. Finally we applied this derived and tested formula for the 1900-1952 period where SD measurements were available while SSR were not. In order to derive a relationship between SD and SSR, we used the broadly accepted formula of Ångström (1924):

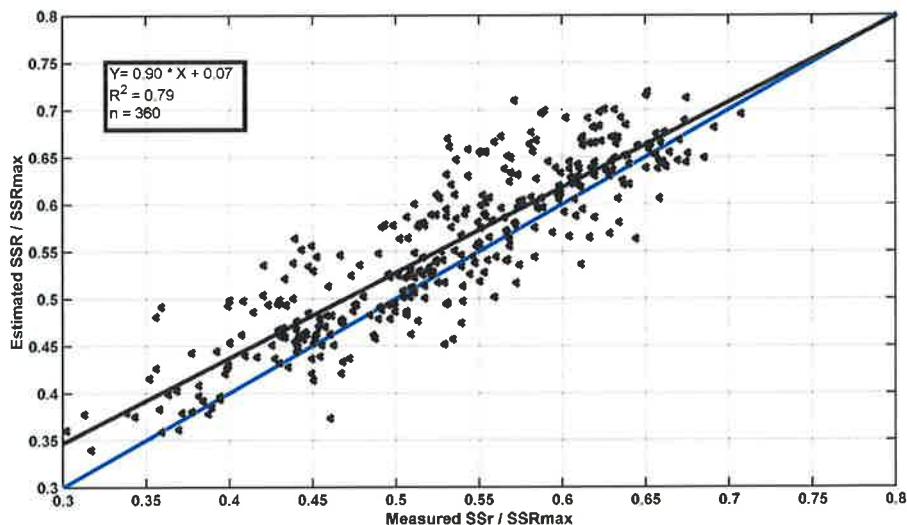
was based on 12

unclear, please rephrase

(R)
(bias)
the most?
results
are illustrated in
Figure 2
for the 12
months...


$$1 \quad \text{SSR/SSR}_{\max} = a + b(\text{SD/SD}_{\max}) \quad (1)$$

2 where SSR_{\max} and SD_{\max} refer to the theoretical extra-terrestrial value of SSR and the astronomical
 3 value of SD, respectively, while a and b are constants usually defined monthly. This formula can
 4 only be used in large data sets as a statistical approach. That is because for different cloud height,
 5 thickness and positioning, the constants can show a large variability (Angell, 1990).
 6 *es*


3 Results

3.1 Relationship between SD and SSR measurements

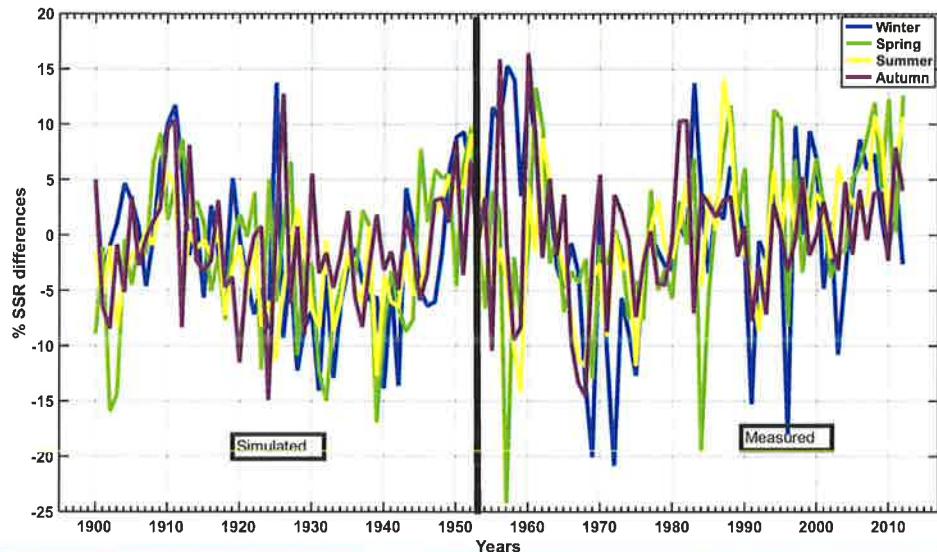
In order to benefit from the over century long time series of SD at NOA we used Eq. (1) for the period of synchronous SD and SSR measurements to estimate constants a and b for the period 1983-2012. The 1983-2012 period was chosen for determining the SSR vs. SD relationship as mainly SSR measurements have lower uncertainties compared with the 1953-2012 ^{period} one. We thus calculated $a=0.237$ and $b=0.458$ and an R^2 equal with 0.81 (as derived from the linear equation shown in Figure 2) and used them for validation in the period 1953-1982. Figure 2 shows the correlation of the monthly SSR/SSR_{\max} and SD/SD_{\max} ratios for the 1983-2012 period, together with the derived coefficients (a and b) and the coefficient of determination (R^2). In addition, we have included the testing period statistics, together with the coefficients a and b that can be determined using the whole period (1953-1982), to show that each of the two periods could provide similar results.

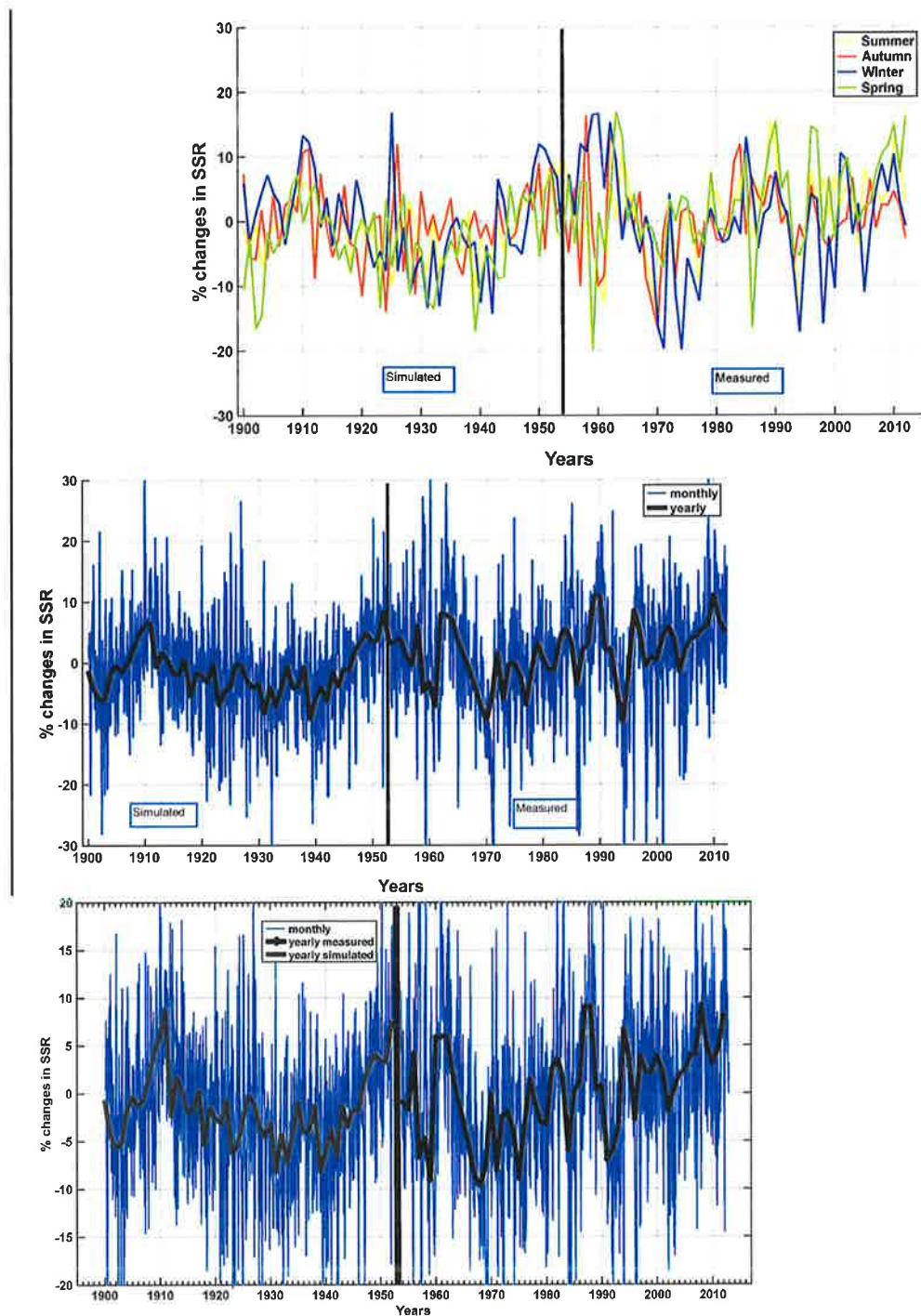
1 **Figure 2.** Plot of $Y = \text{SSR/SSR}_{\text{max}}$ vs $X = \text{SD/SD}_{\text{max}}$. Blue dots represent the 1953–1982 period and
 2 red ones 1983–2012. The red and blue lines represent the respective linear regression lines.
 3 Corresponding regression relations are given in the inner boxes.
 4 For testing the method we have applied the retrieved coefficients and calculated the SSR for the
 5 1953–1982 period. Comparing normalized simulated with the observed SSR values an $R^2 = 0.79$ has
 6 been found (see Figure 3).

7 **Figure 3.** Plot of the ratios of mean monthly SSR values to SSR maximum, of measurements in
 8 the period 1983–2012 vs the estimated ratios from Eq (1) for the same period. Blue is the 1:1 and
 9 black is the regression line.
 10
 11

12 We also followed the same procedure to calculate the coefficients of the Ångström formula
 13 separately for each month and for each season during the control period 1983–2012. For individual
 14 months, calculated $\text{SSR/SSR}_{\text{max}}$ vs $\text{SDU/SDU}_{\text{max}}$ coefficients of determination ranged from 0.5
 15 to 0.65 for winter months, 0.32 to 0.67 for spring months, 0.47 to 0.53 for autumn months and 0.1
 16 to 0.38 for summer months. So coefficients of determination using the monthly based data were
 17 ^{n_{hom}} much lower than the first reported method. The low coefficients for the summer period are related
 18 with the small range of values of $\text{SDU/SDU}_{\text{max}}$ and $\text{SSR/SSR}_{\text{max}}$ that are related with the
 19 absence of clouds. When we have calculated seasonal based Ångström formulas for winter, spring,
 20 summer, and autumn months we have found $a = [0.22, 0.22, 0.34, 0.27]$, $b = [0.48, 0.49, 0.45, 0.34]$
 21 and $R^2 = [0.6, 0.74, 0.2, 0.63]$ respectively.

22 We have used both the monthly regression coefficients from the first method and the yearly based
 23 Ångström formulas in order to investigate the impact of the different methods to the SSR
 24 reconstruction. Results of the reconstructed SSR yearly values from 1900–1953 showed maximum
 25 differences of 1% in the calculated SSR per cent anomalies, while for monthly values the higher
 14


1 differenc ² was 2%. In order to avoid the use of theoretical normalization values such as SDUmax
 2 and SSRmax needed for the second method, we have reconstructed the SSR time series based on
 3 the monthly based results of the first method as proposed in Sanchez-Lorenzo and Wild, 2012. In
 4 order not to include statistical uncertainties introduced from the correlations of individual months
 5 and seasons that are reported, we decided to use the Ångström formula derived using all months in
 6 the same dataset. Such assumption could introduce a season dependent trend to the extrapolation of
 7 SSR back to 1900 but it is considered more safe than using other least trusted seasonal Ångström
 8 formulas.


9 3 Results

10 3.12 Long-term variations and trends (1900-2012)

11 Based on ~~the results shown in methods described in~~ Section 3.12, we have reconstructed
 12 monthly SSR from 1900 to 1953. Using the full dataset of reconstructed (1900-195~~32~~³²) and
 13 measured SSR (195~~43~~⁴³-2012) we have calculated the mean monthly SSR values and used
 14 them for de-seasonalising the results shown in Figure 34. The de-seasonalizing was
 15 determined by: a. calculating the average SSR (SSR_{mi}) for each month (i) out of the 12
 16 months of the given year, for all 1983-2012 years, b. calculating the changes in % in SSR
 17 ($SSR\%(i,y)$) for each month (i) of each year (y) as:

$$18 SSR\%(i,y) = \frac{SSR_{iy} - SSR_{mi}}{SSR_{mi}} * 100 \quad (3)$$

1
2

1 wind

3 **Figure 34.** Full time series of de-seasonalised SSR per cent changes (using the 1900-2012 monthly
4 averages). Upper panel: different colors represent seasonal analysis, lower panel: black bold line
5 represents the annual series, and light grey blue-line the mean monthly values

x

1
2 According to Figure 4, the month-to-month variation (shown with light grey line) can reach more
3 than 30% in comparison with the mean monthly average of the whole data set. Annual means show
4 a 10%-12% (peak to peak) decrease in SSR from 1910 to late 1930's and then an increase of 12%
5 from 1940 to early 1950's. The simulated SSR results follow the observed decline of SD
6 reported in Founda et al., 2014, where the same (-15% decrease and increase from 1919 to early
7 1950's) is shown.

8 According to Figure 3, the month-to-month variation (shown with light grey line) can reach more
9 than 30% in comparison with the mean monthly average of the whole data set. Annual means show
10 a 10%-12% (peak to peak) decrease in SSR from 1910 to late 1930's and then an increase of 12%
11 from 1940 to early 1950's. The simulated SSR results follow the observed decline of SD reported in
12 Founda et al. (2014), where a decrease from 1910 to 1940's and an increase to early 1950's is shown.

13 Subsequently, there is a decrease during the late 1960's-1950's and then a positive change of the
14 order of 20% till today with an episode in the early 1990's that shows low SSR values. Measured
15 SSR in 1991-1993 period differs by 5% compared with the one in 1990. The latest can be linked
16 with the Pinatubo volcanic eruption and its known effect in the SSR (e.g. Zerefos et al., 2012).

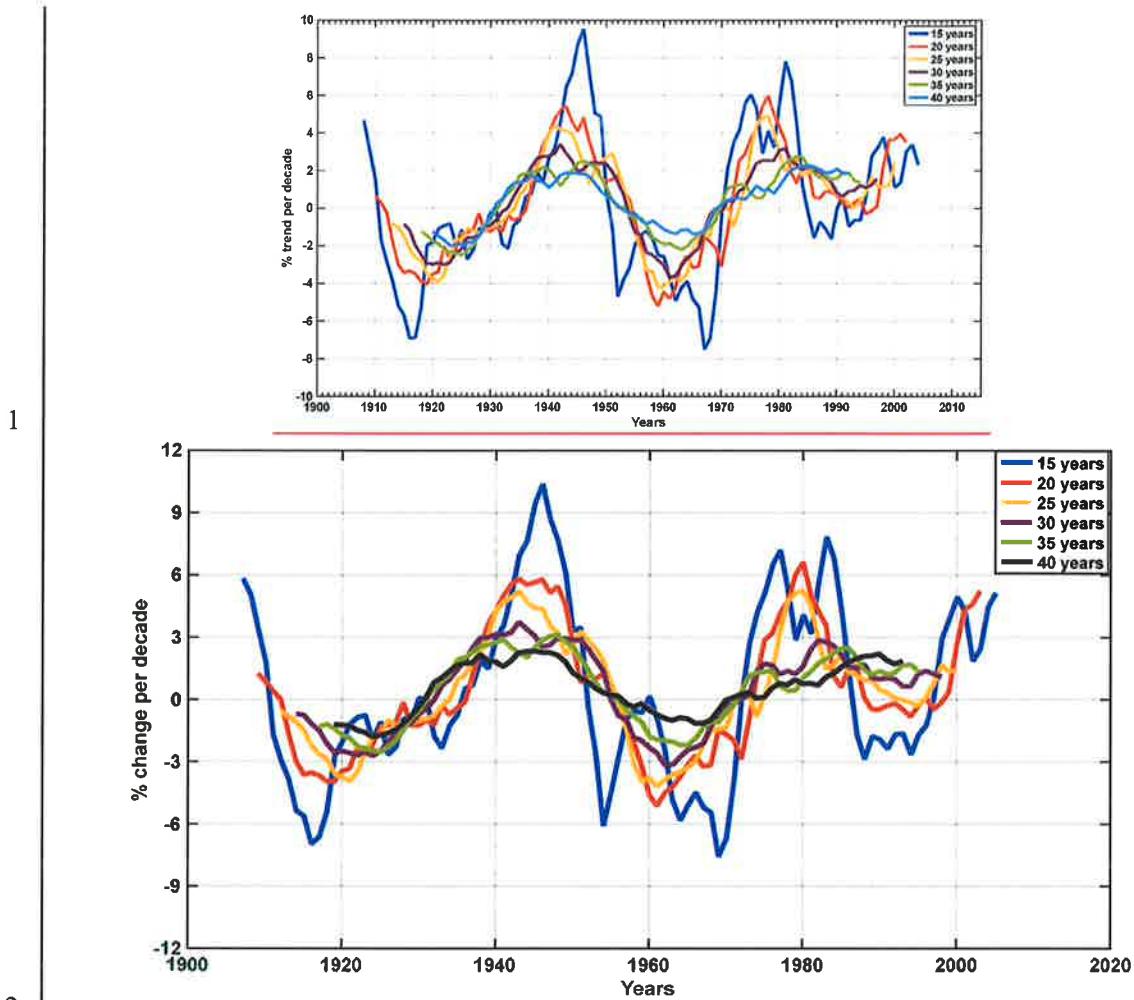
17
18 Analytical linear trends of each of the sub-periods and for every season are presented in Table 2. It
19 has to be noted that the trend determination and its statistical significance does not take into account
20 measurement or SSR reconstruction related uncertainties, which are different for the different
21 periods.

22 Table 2. Annual and seasonal SSR trends in percent per decade over the period 1900-2012 and
23 different sub-periods. Percentages in parenthesis show the limits of the 95% confidence bounds.
24

Season	1900-2012	1900-1952	1953-1982	1983-2012
Winter	-0.15 (± 0.46)	-0.68 (± 1.26)	-6.43 (± 3.83)	+0.52 (± 3.26)
Spring	+1.05 (± 0.38)	+0.15 (± 1.08)	-0.60 (± 3.10)	+2.77 (± 3.10)
Summer	+0.54 (± 0.31)	+0.43 (± 0.78)	-1.14 (± 2.90)	+1.38 (± 2.55)
Autumn	+0.14 (± 0.34)	+0.14 (± 1.02)	-1.28 (± 3.42)	-1.50 (± 1.83)
Year	+0.40 (± 0.26)	+0.02 (± 0.73)	-2.33 (± 2.28)	+0.80 (± 1.96)

Season	<u>1900-2012</u>	<u>1900-1952</u>	<u>1953-1982</u>	<u>1983-2012</u>
<u>Winter</u>	<u>-0.11 (± 0.47)</u>	<u>-0.90 (± 1.46)</u>	<u>-6.43 (± 3.83)</u>	<u>+0.52 (± 3.26)</u>
<u>Spring</u>	<u>+0.54 (± 0.37)</u>	<u>+0.38 (± 1.12)</u>	<u>-0.60 (± 3.10)</u>	<u>+2.77 (± 3.10)</u>
<u>Summer</u>	<u>+0.59 (± 0.21)</u>	<u>+0.28 (± 0.48)</u>	<u>-1.14 (± 2.90)</u>	<u>+1.38 (± 2.55)</u>
<u>Autumn</u>	<u>+0.21 (± 0.44)</u>	<u>+0.11 (± 0.97)</u>	<u>-1.28 (± 3.42)</u>	<u>-1.50 (± 1.83)</u>
<u>Year</u>	<u>+0.39 (± 0.22)</u>	<u>+0.04 (± 0.71)</u>	<u>-2.33 (± 2.28)</u>	<u>+0.80 (± 1.96)</u>

1


2

3 Looking at the 1900-2012₅ period the seasonal and annual linear trends in SSR are less than 1% per
 4 decade. A positive change of 0.39% per decade has been calculated from annual values. For the
 5 whole data set, all seasons show positive trends, except ~~for~~ winter. For the periods with simulated
 6 SSR values (1900-1952), even smaller trends have been detected for spring and summer. The
 7 measuring period of 1954-2012 has been split into two sub-periods of 1954-1982 and 1983-2012.
 8 The first sub-period shows a negative annual change of -2.33% per decade in SSR, which is also
 9 reflected in all seasons with predominant changes during winter (-6.43% per decade). The second
 10 sub-period shows a positive trend of +0.80% per decade with ^{the} highest ones in spring (+2.77% per
 11 decade) and summer (+1.38% per decade) and negative in autumn (-1.50% per decade). Looking at
 12 the trend significance described by the 95% confidence bounds, we can see significant positive
 13 trends –for 1900-2012 (yearly, summer and spring) and significant negative trends for yearly
 14 analysis and winter of 1953-1982.

x

b

15 In order to have a better understanding of the SSR changes over the 113-year period (1900-2012),
 16 we have calculated the decadal SSR trends for different time-windows (15 to 40 years). Figure 5
 17 shows the results of this analysis.

Figure 45. Trends in SSR (% per decade) calculated for different sliding time windows. The value of the trend has been calculated at the central year of each time window.

For the first two decades of the 20th century there appears a decrease in SSR, in line with other long-term SD series as recently shown by Stanhill and Achiman (2016). Then, in all calculations an increase is shown from mid 1930's to late 1940's, in line with the early brightening effect pointed out by other authors (Ohmura, 2009; Sanchez-Lorenzo et al., 2008). It should be reminded that this period is based on estimations of SSR from SD measurements, which thus include additional measurement uncertainties. Nevertheless, both the early dimming and brightening periods have been reported in Stanhill and Achiman (2016), and this study seem The results can be partly supported by to be in line with trends in anthropogenic black carbon (McConnell et al., 2007; Lamarque et al., 2010) and biomass-burning (Lamarque et al., 2010) emissions in Europepeakin

1 ~~the 1920's and then decreasing~~. The dimming period from 1950's to 1970's can be observed in all
2 time windows with a brightening effect after late 1970s.

3 The 40-year and 30-year time windows in the analysis presented in Figure 5 show the maximum
4 rate of increase in early 1940's (resulting in an increase of 2% per decade and 3% per decade,
5 respectively). Then a maximum rate of decrease is observed in early-mid 1960's, followed by a
6 positive rate of increase after 1990's. Shorter time windows (15 years) are also interesting as they
7 are able to capture the Pinatubo effect in early 1990's.

8

9 **3.2 Variations and trends in SSR for the 195~~43~~-2012 measurement period**

10 In order to further analyze the whole 59-yr SSR data set of this study, we have divided it in two 30-
11 yr climatological sub-periods: 1954-1983, and 1983-2012 (the common year is meant to have equal
12 ~~(30 full year)~~ duration for both periods). Investigating a possible seasonal dependence, the relative
13 difference in SRR for every month from its mean monthly value ~~of~~ ^{over} the whole measurement (195~~43~~-
14 2012) period was calculated.

15 Figure ~~56~~, shows the mean daily insolation for each month for the two sub-periods and the whole
16 59-year period. Examining the monthly average differences between the two periods, we observe
17 that for spring and summer months these are of the order of 6%. In addition, for all months SSR
18 differences of the 1983-2012 period compared to the 1954-1983 period are positive with an
19 exception of November (-1.9%) and December (-1.2%). In general, the second measurement period
20 shows a 3% to 8% larger monthly SSR than the first measurement period.

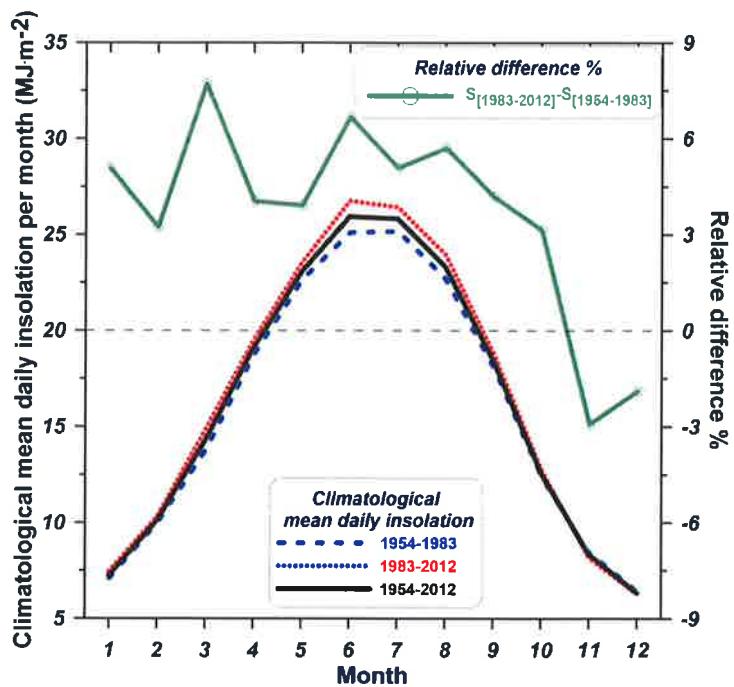


Figure 56. Intra-annual variability of monthly mean daily SSR over the sub-periods of 1954-1983 (blue line) and 1983-2012 (red line) and the entire period of 1954-2012 (black line). The green line (right axis) represents the monthly relative difference between the two 30-year sub-periods (recent minus older period).

We have also calculated decadal trends in time windows of 15 to 30 years for the entire SSR measurement period (see Figure 7). only for the 1954 to 2012 period, in the left panel of Figure 7 each of the points used for constructing the colored lines represents the percent change per decade of the SSR. Mostly positive trends are detected using any time window centered after 1975. Larger trends are calculated for time windows centered at 1975 to 1980 and after 2000 (in the order of 5% per decade using the 15 year time window). For the period 1954 to 1970 mainly negative trends are shown.

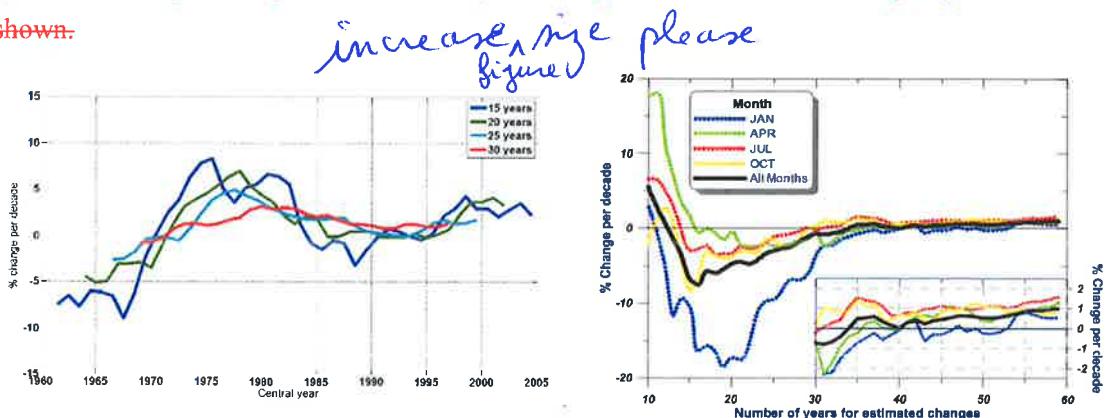
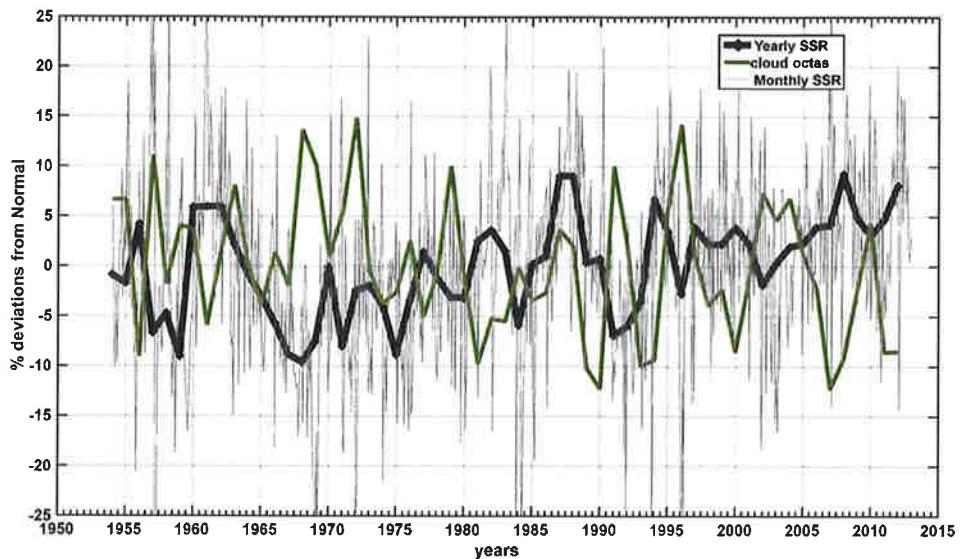


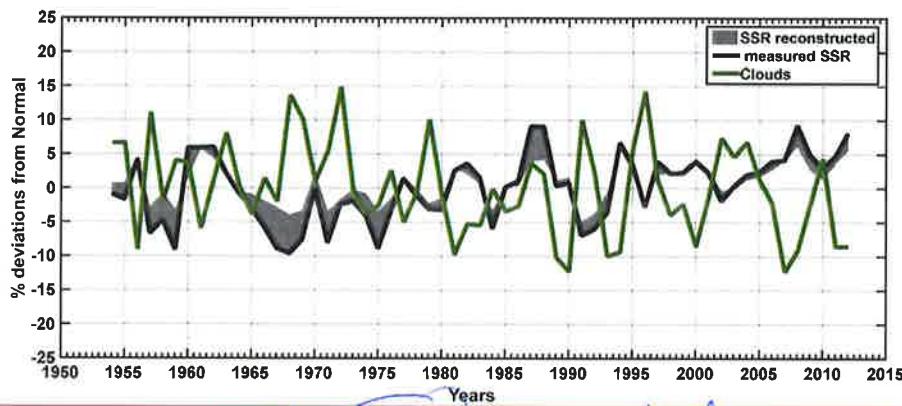
Figure 67. Left panel: calculation of SSR changes in % per decade for different time scales (15 to 30 years) used. Each point on the line represents the middle year of the time window used for the trend calculation. Right panel: Per cent% change per decade for different time scales and different

1 word

1 months using 1954 as the starting year (the last 30 year period is magnified with changes presented
2 as % per decade).


3
4 The right panel of Figure 67 shows the SSR change per decade for the months of January, April,
5 July, October and yearly (all months). The figure is showing a trend analysis for the entire data set
6 with time windows from 10 to 59 years, where each time window starts from 1953. For all months
7 SSR changes become positive for time windows of 35 years and higher (1953-1988 time window
8 and any larger window starting from 1953). Negative trends calculated from 1954 to any given year
9 up to 1989 are mainly due to the large negative changes during the winter period. Especially during
10 the 1954-1974 period, winter SSR changes show a 18% per decade decrease. Linear trends in SSR
11 from 1954-2012 showed a positive trend of the order of 1% per decade, while individual months
12 vary from 0.5% per decade to 1.5% per decade. Mostly positive trends are detected using any time
13 window centered after 1975. Larger trends are calculated for time windows centered at 1975 to
14 1980 and after 2000 (in the order of 5% per decade using the 15-year time window). For the period
15 1954 to 1970 mainly negative trends are shown.

16
17
18 **4. Comparison between all-sky and clear-sky SSR records variation**


19 We have used the 59-year data set (19543-2012) in order to quantify the factors controlling the SSR
20 variations in Athens, Greece, focusing mainly on two known dominant factors, clouds and aerosol
21 load.

22 **4.1 The role of clouds**

23 Figure 78 shows the 1954-2012 time series of the monthly and yearly anomalies based on daily
24 SSR, together with yearly total cloud coverage in weighted octas. The yearly de-seasonalised SSR
25 values for all-sky conditions show a drop of ~14% from 1960 to 1970 and then a continuous
26 increase excluding the Pinatubo period in the early 1990's. Most pronounced positive changes can
27 be seen during the last 15 years with a change of about 15%.

1

2

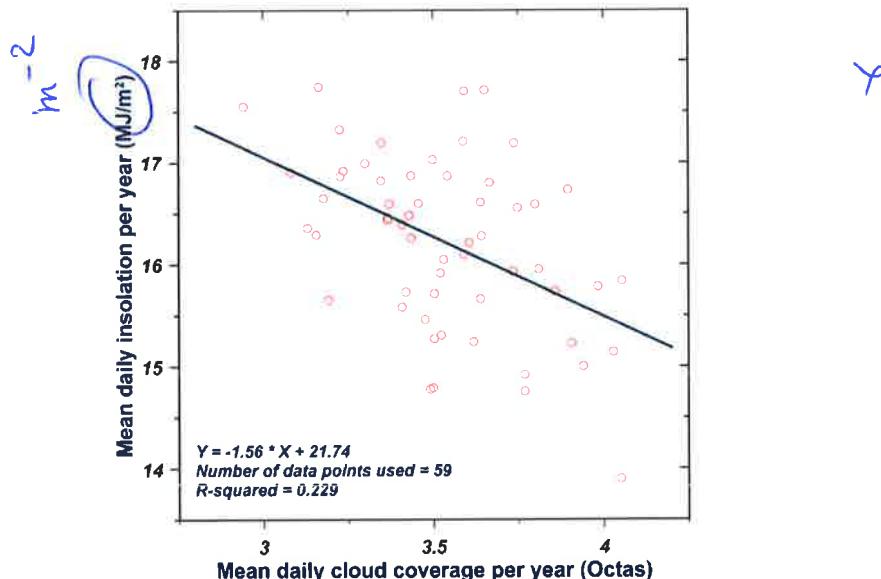
yearly (percent)... see final version

1 word

Figure 78. De-seasonalised monthly mean (i.e. deviation from the respective monthly mean calculated over the whole period; dash line) and yearly mean SSR (black line). *Grey lines are related with measurements possible uncertainties/drifts along with mean annual total cloud cover (green line).*

7

8 Figure 78 suggests anti-correlation between variations in SSR and cloud cover.


9 Going back to the measurement uncertainties for the 1954-1983 period where a number of
 10 instruments have been used in order to build the presented time series; we have tried to investigate
 11 possible instrument drifts and their effect on the calculated long term trends. In order to indirectly
 12 try to tackle this issue we included in figure 7 a shaded area representing a possible (one direction)
 13 “uncertainty” based on reconstructing the 1954-1983 series using: the 1984-2012 measured SSR
 14 data and the sunshine duration data for 1954-1983. The reconstruction has been performed in the

same way as the 1900-1953 one. The one direction “uncertainty”, points out possible drifts and instrument exchange related uncertainties. However, that does not mean that we believe more on the reconstructed through sunshine duration 1954-1983 series than the actual SSR measurements. If this was the case, we would have decided to present a 1983-2012 high quality measuring period and a 1900-1983 reconstructed one. There are various of such papers published quite recently (small measuring period compared with the reconstructed one: Garcia et al., 2014; [1992-2013 measurements reconstructed back to 1933] and Anton et al., 2017 [1887-1950 using radiative transfer modelling]) while in our case we would like to try to use the best way possible the historical SSR measurements of NOA during the 1954-83 period.

Using the 1984-2012 measurements and the 1900-1983 reconstruction data set we have recalculated all trends presented in figure 4 and table 2. Differences for the 15 year window differences on the calculated trends outside the 54-83 period are less than 1%, with maximum differences at the late 60's 1-3%. For the 30 year window maximum differences are in the order of 1-2%, while for the 40 year window, maximum differences are less than 1%.

This particular exercise cannot be defined as an uncertainty assessment on the 1954-83 measurements, as reconstructed data cannot be used as a reference. Moreover, as SSR is much more sensitive than SD especially with respect to aerosol optical depth changes. So, in locations where the number of cloudless days is relatively high SD reconstruction tends to “smooth” the SSR variability, however the opposite can be said in cases with constant cloudiness.

Figure 89 shows the correlation between annual mean SSR and cloud cover. From the best-fit linear regression line it is seen that a -1.54 MJ m^{-2} (or -9.6%) change in mean daily insolation accounts for a change of 1 octa in cloud cover.

1 | **Figure 89.** Correlation between annual means of daily insolation and cloud cover over the period
2 | 1954-2012. The straight line represents the best-fit regression line to the data points. The year 1953
3 | has not been included in the analysis since it does not include measurements for all months.
4 |

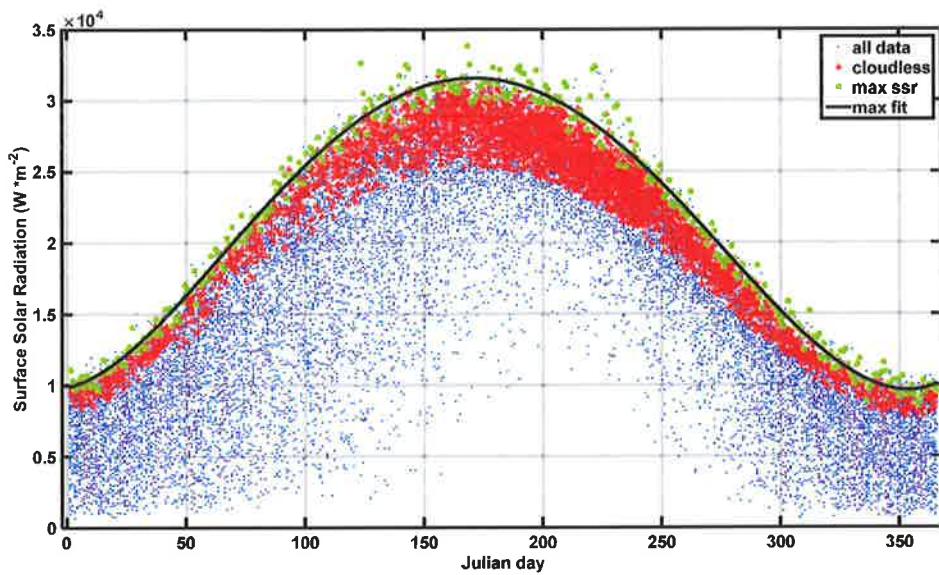
5 | However, the great scatter of the data points and the low correlation of the two parameters in Figure
6 | 9 (R²=0.229) indicate that the presence of cloud cover can only partly explain the changes in SSR.
7 |

8 |

9 | In addition, there is no significant change in cloudiness over the 59 year period for Athens, Greece.
10 | Calculating linear changes of cloudiness from data shown Figure 8, shows a non-significant
11 | change of -0.4% per decade which can practically have a limited effect on SSR changes during the
12 | examined period.

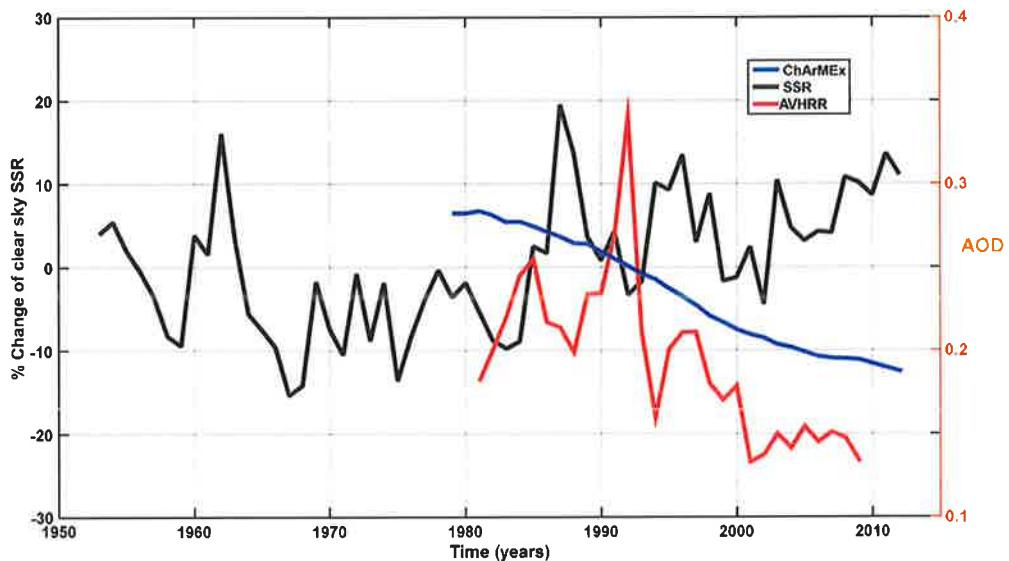
13 | Nevertheless, it is worth mentioning that different cloud properties like cloud optical thickness and
14 | cloud phase, not described by the measurements of cloud cover, can influence SSR.
15 |

15 | **4.2 Clear sky records**


16 | In order to minimize the cloud influence and investigate the possible role of direct aerosol effects on
17 | Athens SSR series, we had to select clear-sky (or cloudless) days. We have used daily SSR
18 | measurements from 1954 to 2012 and we have separated the cloudless days according to the
19 | criteria mentioned in Section 2.2.

20 | For considering the SSR seasonality, we have calculated a five-degree polynomial derived from the
21 | maximum daily SSR (for all years of the data set), as a function of the day of the year (Figure 940).
22 |

23 | Afterwards we have calculated the ratio of the daily SSR to the SSR calculated by this function.
24 | Seasonal and yearly means of this ratio have been estimated and have been used to describe
25 | cloudless-sky SSR percentage changes on a seasonal and yearly basis. This approach has been
26 | chosen since averaging a random set of cloudless days, within each month during the 59-year
27 | period, could cause solar elevation-related (due to the change of maximum solar elevation within
28 | each month) discrepancies, when calculating the monthly average SSR. It can be emphasized that
29 | the clear sky selection criterion could possibly eliminate cases with very high aerosol optical depth.


b

a few

1 | **Figure 109.** Clear-sky SSR measurements (red dots) and all-sky SSR measurements (blue dots)
 2 | derived with the cloud octa (cloudiness<1.5) and sunshine duration (SD>0.9) related criteria. The
 3 | black line represents the polynomial fit to the daily SSR_{max} values.
 4 |
 5 |

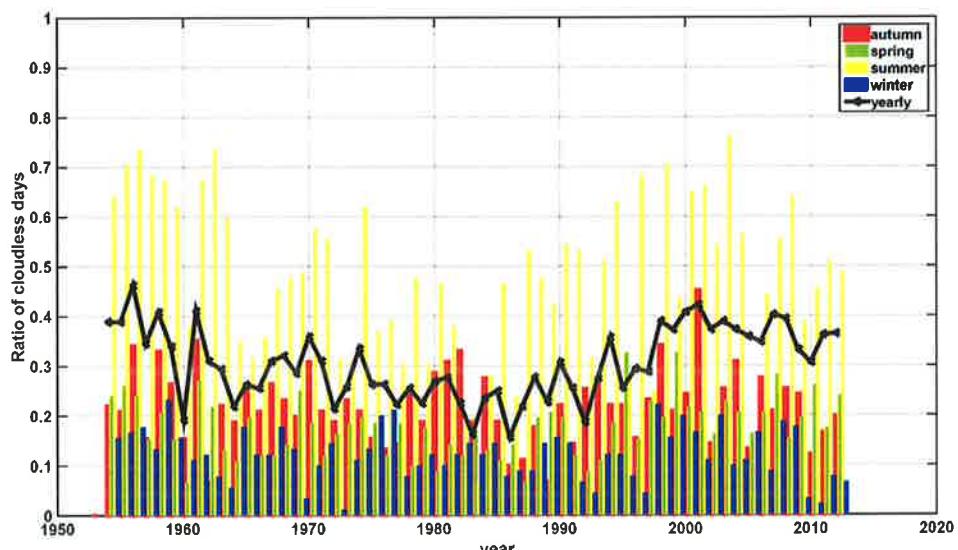
6 | Using the clear sky conditions seasonal and yearly averages of SSR have been calculated. The use
 7 | of seasonal instead of monthly SSR has been introduced in order to improve the averaging SSR-
 8 | related statistics, since the average number of cloudless days (per year) can be relatively low
 9 | especially during the winter months. For all cases the ratios of the mean daily cloudless SSR to the
 10 | SSR_{max} derived from the daily best-fit curve in Figure 10 has been calculated and deviations of this
 11 | ratio from its 59-yr mean have been calculated for each year.
 12 |
 13 | 9

Figure 104. Changes in yearly mean SSR to relative to the 1954-2012 average for cloudless sky (in %; **blue****black**), AVHRR AOD series (red) and ChArMEx AOD climatology (blue; Nabat et al., 2013) for Athens area is shown in the right axis.

Figure 104 shows that most of the SSR variation observed for the measuring period has to be explained by other factors than changes in cloudiness (see figure 78 for variations due to cloudiness). Different seasons with the exception of wintertime show similar patterns to the year-to-year variability. Individual seasonal calculated SSRs do not exceed by more than $\pm 5\%$, the SSR variability of all sky data, with the exception of the winter season. Comparing clear sky and all sky yearly mean SSR, we find a high correlation ($R^2 = 0.71$), which can be explained as a combination of: aerosol changes driving the SSR changes and by the number of clear sky days during the year. There is a decrease of more than 15% in the clear sky SSR from the start of the series to the end of 1960's. A decline after 1983 could possibly be related with El Chichon volcanic eruption.

All sky SSR measurements and AOD from AVHRR have been used in order to find the AOD effect in all sky data. For yearly AOD and SSR averages from 1981 to 2009 a correlation coefficient of -0.55 was calculated with a rate of SSR reduction per 0.1 units of AOD equal with -3.8%. For monthly based comparisons, all months revealed a correlation coefficient of -0.2 with a rate of -1.5% per 0.1 AOD with better results for summer and Autumn months (-0.30, -2.2%/0.1 AOD and -0.30, -1.5%/0.1 AOD)

The Pinatubo-related drop of ~~5%~~^{6%} from the early 1990's to the mid 1993, can also be seen in both cloudless and all-sky datasets and also to the increase in AOD in the AVHRR dataset (Figure 104). Since, the ~6% drop from 1990 to 1991-1993 is shown for all seasons, we can argue that it describes the effect of the eruption on SSR data for the Athens station. However, as shown in figure 7 cloudiness for 1991 is also high, while is much lower for 1992 and 1993. Combined with the stratospheric AOD figure, seems that 1991 related decrease is also related with cloud increase while 92 and 93 one with the Pinatubo related aerosol effect.


Concerning the stratospheric AOD in Athens ChArMEx AOD dataset revealed two main peaks of 0.12 for 1983 and 0.09 for 1992 due to El Chichon and Pinatubo eruptions, respectively, while stratospheric AOD after 1995 is lower than 0.01. These two peaks are possibly associated with decreases in SSR as measured ^{at} in ASNOA.

Finally, the ~13% change from 1995 to 2012 shown for all skies (Fig. 78) and clear skies (Fig. 104) is accompanied with a drop of ~25% in AOD measured by AVHRR. The year to year variations of clear sky SSR series and the AVHRR-related AOD show an anti-correlation with $R=-0.78$ ($N=29$),

1 verifying the hypothesis that SSR clear sky changes are associated with aerosol load changes, at
2 least within the common AVHRR/measurement period (1982-2009).

3 | Similar to the AVHRR data the ChArMEx 4-D aerosol climatology is shown in figure 104,
4 providing similar conclusions, namely the AOD negative trend of 0.03 or 14% per decade from
5 1979 to 2012.

6 | Differences between the AVHRR and ChArMEx data can be explained in part by the different
7 AOD wavelengths presented here (630 vs 550 nm) and also by a general negative bias of AVHRR
8 over the Mediterranean compared to AERONET (Nabat et al., 2014). The smooth decline in the
9 ChArMEx AOD data is due to the method used to build this product and uses the trend and not the
10 interannual variability which is not included in the global model that was used.

11
12 Figure 12. Ratio of cloudless vs all days, per season and yearly
13

14 | In addition to figure 104 we have included figure 112 showing the ratio of cloudless days to all
15 available days for each season and for each year. Figure 112 shows a minimum (less than 30%
16 during a year) of the number of cloudless days from mid-1970's to early 1990's. It is mostly linked
17 with the decrease of cloudless days during summer months. The figure provides a hint on the SSR
18 relative changes observed during this period, but it can not directly interpret year to year SSR
19 changes as they depend also on cloud fraction and properties for cloudy days. In addition, it can
20 only partly be linked with fig. 104 as aerosol effects on cloudless sky calculated SSRs depend
21 mostly on AOD levels and not on the number of days included in the calculations.

22 | Differences on the ratio of cloudless days shown in figure 11 and on the almost constant cloud octa
23 | variability shown in figure 8 is partly attributed to the different definition of a cloudless day that is

1 based on the cloud radiative effect for fig. 11 and on observation of cloud percentage in the sky for
2 fig. 8. However, this can also be an indication of changes in cloud properties (e.g. change in
3 optically thin clouds that could have small radiation effect but are marked as cloudy conditions
4 from the observer).

5
6
7 In Table 3 we have calculated the linear trends for the 1953-2012 period and for both clear sky and
8 all sky measurements and the 1953-1982 and 1983-2012 sub-periods for clear sky measurements.
9 Results show comparable changes per decade (2% for the clear sky and 1.5% for the all sky cases).
10 Seasonal analysis show that clear sky trends for summer, autumn and winter months are higher than
11 the ones derived for all skies. Such differences are linked with the seasonal variability and long-
12 term changes of cloudiness for the specific seasons.

13 in
14 Table 3: Clear sky and all sky data trends comparison for the whole 1953-2012 period and the two
15 30-yr sub-periods (% per decade). Percentages in parenthesis show the limits of the 95% confidence
16 bounds.

Season	Clear sky 1953-2012	All skies 1953-2012	Clear sky 1953-1982	Clear sky 1983-2012
Winter	0.91 (± 2.31)	-6.43 (± 3.83)	-7.01 (± 3.16)	0.55 (± 2.41)
Spring	1.22 (± 1.12)	-0.60 (± 3.10)	-0.92 (± 1.11)	2.62 (± 1.97)
Summer	2.03 (± 0.78)	-1.14 (± 2.90)	-0.36 (± 0.83)	1.31 (± 0.81)
Autumn	2.74 (± 1.37)	-1.28 (± 3.42)	-1.03 (± 1.84)	-1.48 (± 1.73)
Year	2.17 (± 1.21)	-2.33 (± 2.28)	-1.44 (± 2.35)	1.94 (± 2.08)

17
18 Clear sky results for the 1953-2012 period show significant positive changes in SSR for all seasons
19 except winter. Looking individually at the 1953-1982 and 1983-2012 periods we have calculated
20 significant negative trends only for the winter over the first and for summer and spring over the
21 second.

22
23 The effect of various parameters on SSR has been discussed by Kambezidis et al. (2016) in their
24 study about the global dimming/brightening effect over the Mediterranean in the period 1979-2012.
25 They show that the influence of parameters related to the atmospheric transparency, like water

1 vapor, aerosols and trace gases, as well as changes in the surface albedo on SSR have been larger in
2 the southern parts of the Mediterranean, over the Balkan countries and central Turkey. This
3 outcome is in agreement with the conclusion of the present study that other factors than cloudiness
4 play significant role in the SSR variations.

5

6 A comparison of the SSR results in Athens with visibility observations since 1931 (Founda et al.,
7 2016) did not show any correlation among SSR and horizontal visibility. For the first part of the
8 common dataset (1930-1959) the visibility decline is accompanied with a SSR increase. However
9 from 1950 till today visibility shows a monotonical decrease. The steep visibility decrease from
10 1931 till early 90's is not accompanied by a relative SSR decrease excluding individual sub-periods.

11 However, simulated SSR is driven purely by changes in sunshine duration, in this case the SD
12 variability in founda et al., 2014 is almost stable after 1950 so SD can not be also linked with the
13 visibility reported decrease. Studying the literature for similar cases, similar conclusions have been
14 drawn by Liepert and Kukla (1997) showing an SSR decrease over 30 years of measurements
15 accompanied by a visibility increase and no significant changes in the cloud cover conditions, in
16 Germany. This Athens SSR vs visibility relationship can be partly explained by the fact that SSR
17 and visibility have different response on cloud conditions, water vapor and rainfall and also by the
18 fact that visibility is affected by aerosols only in the first few hundred meters above the surface,
19 while SSR is affected by the columnar AOD, which in the case of Athens can be significantly
20 different due to aerosol long-range transport in altitude (e.g. Saharan dust; Léon et al., 1999).

21

22

23

24 **5 Conclusions**

25 Surface solar radiation (SSR) at National Observatory of Athens, in the center of the city, is
26 presented using a unique dataset covering a period of 59 years (1954-2012). Sunshine duration (SD)
27 records for another 54 years have been used as a proxy to reconstruct SSR time series for the period
28 from 1900 to 2012.

29 The data accuracy of such historic radiation dataset is more difficult to be assessed especially going
30 back to the 50' and 60's where instruments, operational procedures and quality control were not at x
31 the same level as in the recent 30 years. Quality assessment procedures in the presented time series
32 have been applied with criteria based on instrument characteristics and the availability of additional
33 collocated measurements. Year to year fluctuations of the measured SSR in addition to the reversal

1 of the downward tendencies at the ASNOA site adds credibility to the measured variations. That is
2 because a typical radiometer behavior is to lose sensitivity with time indicating spurious downward,
3 but not upward trends. The more recent (after 1986) SSR measurements can be characterized as
4 high-quality radiation data with known accuracy. Considering the measurements from 1954 to 1970
5 there has been sporadic reports mentioning the homogenization and calibration procedures, while
6 for 1970 to 1986 there is more information on the instrument quality control.

7 Reporting of the results from the 1954-1986 period should be accompanied with the fact that the
8 uncertainties of the measurements of this period are linked with higher uncertainties than after
9 1986. For the reconstruction of the 1900-1953 series, only the 1983-2012 SSR and SD
10 measurements used in order not to link possible instrument uncertainties to the extrapolated period.

11 ^{were of} However, reconstruction ^{of} the 1900-1983 time series using the 1984-2012 dataset leads to small
12 differences in the determination of the long term trends, especially for more than 20 year running
13 average windows.

14

15 A comparison of the SSR results in Athens with visibility observations since 1931 (Founda et al.,
16 2016b) did not show any correlation among SSR and horizontal visibility. The steep visibility
17 decrease from 1931 till early 90's is not accompanied by a relative SSR decrease excluding
18 individual sub periods. Studying the literature for similar cases, similar conclusions have been
19 drawn by Liepert and Kukla (1997) showing an SSR decrease over 30 years of measurements
20 accompanied by a visibility increase and no significant changes in the cloud cover conditions, in
21 Germany. This Athens SSR vs visibility relationship can be partly explained by the fact that SSR
22 and visibility have different response on cloud conditions, water vapor and rainfall and also by the
23 fact that visibility is affected by aerosols only in the first few hundred meters above the surface,
24 while SSR is affected by the columnar AOD, which in the case of Athens can be significantly
25 different due to aerosol long range transport in altitude (e.g. Saharan dust; Léon et al., 1999). The
26 data accuracy of such historic radiation measurements is generally not well established, at least
27 compared with the measurements after the 1990s. Quality assessment procedures in the presented
28 time series have been applied based on criteria based on instrument characteristics and the
29 availability of additional collocated measurements. Year to year fluctuations of the measured SSR
30 in addition to the reversal of the downward tendencies at the Athens site adds credibility to the
31 measured variations. That is because a typical radiometer behavior is to lose sensitivity with time
32 indicating spurious downward, but not upward trends. The more recent (after 1989) SSR
33 measurements can be characterized as high quality radiation data with known accuracy.

1 De-seasonalized SSR data analysis from 1900 to 2012 showed high month to month variability that
 2 could reach up to 25%, mainly related with monthly cloudiness variations. During the period 1910-
 3 mid-1930s where only few datasets have reported worldwide SSR results, we observe a $\sim 2.9\%$ per
 4 decade or a total of $\sim 8.7\%$ decrease in SSR, assuming linear changes in SSR during this period. This
 5 early dimming was followed by a $\sim 5\%$ per decade increase from 1930 to the 1950s. Similar results
 6 have been found at Washington DC and at Potsdam, Germany (Stanhill and Achiman, 2016). They
 7 have reported an early brightening at both locations in the 1930's. For the SSR measurement period
 8 of 1953 to 1980, European related studies presented in Wild (2009) showed a -1% down to -7%
 9 change per decade in SSR measurements over various European sites (dimming period). For the
 10 Mediterranean region, Manara et al. (2016) showed a decrease in the order of -2% to -4% per
 11 decade in Italy. We are reporting a change in SSR of -2% per decade in Athens. Finally, for the
 12 brightening (1990-2012) phase again Wild et al. (2009) reported a $\sim 1.6\%$ up to $\sim 4.7\%$ per decade
 13 positive change in SSR while we have calculated a $\sim 1.5\%$ per decade, which is lower than the $\sim 3-6\%$
 14 per decade reported in Manara et al. (2016) for Italy. A summary of the above findings can be seen
 15 in table 4.

16

17

18

19 Table 4: Summary of per cent SSR changes per decade for various locations

20

Period	Location	Trend % per decade	Reference
1893-2012	Potsdam, Germany	0.71	Stanhill and Achiman, 2014
1900-2012	Athens, Greece	$0.40 (\pm 0.26)$	This work
1959-1988	Europe	-2.0	Ohmura and Lang, 1989
1971-1986	Europe	-2.3	Norris and Wild, 2007
1959-1985	Italy	$-6.4 (\pm 1.1) / -4.4 (\pm 0.8)$	Manara et al, 2016
1953-1982	Athens, Greece	$-2.33 (\pm 2.28)$	This work
1985-2005	Europe	2.5	Wild, 2009
1990-2012	Italy	$6.0 (\pm 1.1) / 7.7 (\pm 1.1)$	Manara et al, 2016
1986-2013	Athens, Greece	$0.80 (\pm 1.96)$	This work

21

22 The decadal variations of SSR measured since 1954 at Athens, Greece, originate from the
 23 alterations in the atmosphere's transparency (namely by clouds and aerosols). Using an analysis of
 24 SSR calculations of all sky and clear sky (cloudless) days we end up that since cloud cover changes
 25 during the 59 period were very small, most of the observed decadal changes might be related with
 26 changes in the aerosol load of the area. An additional hint in support of this conclusion is the high
 27 correlation of clear sky and all sky yearly SSR. We also found an anti-correlation between either
 28 clear sky and all sky SSR measurements and AOD time series from AVHRR (1981-2009) or

can

1 ChArMex (1979-2012). Looking at linear trends over the 59 year period, clear sky changes per
2 decade were 2% while it was 1.5% for all sky conditions. The most pronounced changes have been
3 calculated for summer and autumn seasons (2% and 2.7% respectively). x x

4
5
6 **Acknowledgements**

7 This study contributes to the Chemistry-Aerosol Mediterranean Experiment (ChArMex) Work
8 package 6 on trends. The work was partly funded by the national project "Aristotelis", work package
9 1: "Study of long term variations of Solar Radiation in the region of Athens". The authors wish to
10 thank all the past and present NOA staff members who carefully collected and archived the long-
11 term data used in this study.

12

13 **References**

14 Alexandri, G., Georgoulas, A. K., Meleti , C., Balis, D., Kourtidis, K. A., Sanchez-Lorenzo, A.,
15 Trentmann, J. und Zanis, P.: A high resolution satellite view of surface solar radiation over the
16 climatically sensitive region of Eastern Mediterranean, Atmospheric Research, 188, 107–121,
17 doi:10.1016/j.atmosres.2016.12.015, 2017.

18 J. K.
19 Angell, JK.: Variation in United States cloudiness and sunshine duration between 1950 and the
20 drought year of 1988, Journal of Climate 3, 296–308, 1990. b
to do

21
22 Ångström, A.: Solar and terrestrial radiation. Report to the international commission for solar
23 research on actinometric investigations of solar and atmospheric radiation, Quarterly Journal of the
24 Royal Meteorological Society 50, 121-126, 1924. Q. J. R. Met. Soc.

25
26 Anton M., Vaquero J.M., Aparicio A.J.P.: The controversial early brightening in the first half of
27 20th century: A contribution from pyrheliometer measurements in Madrid (Spain),
28 10.1016/j.gloplacha.2014.01.013, 2014. Journal
and volume
and page
missing

Anton M., R. Roman, A. Sanchez-Lorenzo, J. Calbo, J.M. Vaquero, Variability analysis of the reconstructed daily global solar radiation under all-sky and cloud-free conditions in Madrid during the period 1887–1950, <https://doi.org/10.1016/j.atmosres.2017.03.013> Atmospheric Research, 2017

Bais, A. F., Drosoglou, T., Meleti, C., Tourpali, K., and Kouremeti, N.: Changes in surface shortwave solar irradiance from 1993 to 2011 at Thessaloniki (Greece), Int. J. Climatol., 33, 2871–2876, 2013.

Chan, P. K., Zhao, X. P., and Heidinger, A. K.: Long-Term Aerosol Climate Data Record Derived from Operational AVHRR Satellite Observations, Dataset Papers in Geosciences, 140791, doi:10.7167/2013/140791, 2013.

Coulson, K. L.: Solar and Terrestrial Radiation: Methods and Measurements, Academic Press, 1975.

Drummond, A.J. and Roche, J.J.: Corrections to be applied to measurements made with Eppley (and other) spectral radiometers when used with Schott colored glass filters, *Journal of Applied Meteorology*, 4(6), pp. 741-744, 1965. J. Appl.

Dudok de Wit, T., Ermolli, I., Haberreiter, M., Kambezidis, H., Lam, M., Lilensten, J., Matthes, K., Mironova, I., Schmidt, H., Seppälä, A., Tanskanen, E., Tourpali, K. & Yair, Y. (Eds.): Earth's climate response to a changing sun, Les Ulis Cedex: EDP Sciences, doi:10.1051/978-2-7598-1733-7, 2015.

Flocas A., Estimation and prediction of global solar radiation over Greece, Solar Energy, Vol. 24, pp 63-70, 1980.

Founda, D., Kalimeris A., Pierros F.: Multi annual variability and climatic signal analysis of sunshine duration at a large urban area of Mediterranean (Athens). *Urban Climate*, <http://dx.doi.org/10.1016/j.uclim.2014.09.008>, 2014.

Founda, D., Kazadzis, S., Mihalopoulos, N., Gerasopoulos, E., Lianou, M. and Raptis, P.I.: Long-term visibility variation in Athens (1931–2013): a proxy for local and regional atmospheric aerosol loads. *Atmospheric Chemistry and Physics*, 16(11), pp. 11219–11236, 2016.

1
2 Founda, D., Pierros, F. and Sarantopoulos, A.: Evidence of Dimming/Brightening over Greece from
3 long-term observations of Sunshine Duration and Cloud Cover, Perspectives in Atmospheric
4 Sciences, pp. 753-759, Springer, ISBN 978-3-319-35094-3, 2016.

5
6 García, R. D., Cuevas, E., García, O. E., Cachorro, V. E., Pallé, P., Bustos, J. J., Romero-Campos,
7 P. M., and de Frutos, A. M.: Reconstruction of global solar radiation time series from 1933 to 2013
8 at the Izaña Atmospheric Observatory, Atmos. Meas. Tech., 7, 3139-3150,
9 https://doi.org/10.5194/amt-7-3139-2014, 2014.

10 *do not*

11 Gilgen, H., Wild, M. and Ohmura, A. *1998*. Means and trends of shortwave irradiance at the
12 surface estimated from global energy balance archive data. *Journal of Climate*, 11(5), pp. 2042-
13 2061, *Notes 1998.*

14 *(Ed.)*
15 Hulstrom, R. L.: "Solar resources", is the volume 2 in the Series "Solar Heat Technologies:
16 Fundamentals and Applications", edited by Charles A. Bankston, The MIT Press, Cambridge, 1989.

17 *2,*
18 Imamovic A., Tanaka K., Folini D., Wild M (2016). Global dimming and urbanization:
19 did stronger negative SSR trends collocate with regions of population growth? Atmospheric
20 Chemistry and Physics 16(16), 2719-2725, doi:10.5194/acp-16-2719-2016, 2016

)

21
22 ISO 9847: Solar energy - Calibration of field pyranometers by comparison to a reference
23 pyranometer, International Organization for Standardization, 1992,

24
25 Jauregui, E., and E. Luyando.: Global radiation attenuation by air pollution and its effects on the
26 thermal climate in Mexico City, *International Journal of Climatology* 19, no. 6: 683-694, 1999.

27
28 Kambezidis, H., Demetriou D., Kaskaoutis, D., Nastos, P.: Solar dimming/brightening in the
29 Mediterranean EGU General Assembly 2010, held 2-7 May, 2010 in Vienna, Austria, p.10023,
30 2010.

31

1 Kambezidis, H., Kaskaoutis, D., Kallampakos, G., Rashki, A. and Wild, M.: The solar
 2 dimming/brightening effect over the Mediterranean Basin in the period 1979 - 2012, *Journal of Atmospheric and Solar-Terrestrial Physics*, <http://dx.doi.org/10.1016/j.jastp.2016.10.006>, 2016.

3 150-151, 31-46

4 *Please check citation style!*

5 Katsoulis B. and S. Leontaris, The distribution over Greece of global solar radiation on a horizontal
 6 surface, *Agricultural Methodology*, 23, 217-229, 1981. doi:10.1016/0002-1571(81)90106-0

7 Age: 0

8 Katsoulis, B. and E. Papachristopoulos, Analysis of solar radiation measurements at Athens
 9 Observatory and estimates of solar radiation in Greece, *Solar Energy*, Vol. 21, pp. 217-226, 1978.

10 Kouremenos D., K. Antonopoulos and E. Domazakis, Solar radiation correlations for Athens, *Solar
 11 Energy*, Vol. 35, No. 3, pp. 259-269, 1985.

12 doi: 10.1016/0038-092X(85)90105-7 doi:10.1016/0038-092X(78)90024-5

13 Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Lioussse, C.,
 14 Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J.,
 15 Cooper, O. R., Kainuma, M., Mahowald, N., Mc-Connell, J. R., Naik, V., Riahi, K., and van
 16 Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of
 17 reactive gases and aerosols: methodology and application, *Atmos. Chem. Phys.*, 10, 7017–7039,
 18 doi:10.5194/acp-10-7017-2010, 2010.

19

20 Lean, J.: The Sun's variable duration and its relevance for earth, *Annual Review of Astronomy and
 21 Astrophysics* 35.1 33-67, 1997.

22

23 Léon, J.F., Chazette, P., and Dulac, F.: Retrieval and monitoring of aerosol optical thickness over an
 24 urban area by spaceborne and ground-based remote sensing, *Appl. Opt.*, 38, 6918-6926, 1999.

25 g s 2 i h v | decapitalize

26 Liepert B. and Kukla G., Decline in Global Solar Radiation with Increased Horizontal Visibility in
 27 Germany between 1964 and 1990, *Journal of Climate*, 10, 2391-2401, September, 1997.

28 LMDC: Laboratory of Meteorological Device Calibration, <http://www.meteo.noa.gr/lmdc.html>, B.
 29 Psiloglou, Scientific Responsible, personal contact, November 2016.

30 doi:10.1175/1520-0442
 (1997)010<2391:DiGSRW
 >2.0.CO;2

1 Macris G., Solar Energy and Sunshine hours in Athens, Greece, Monthly Weather review, January
2 pp. 29-32, 1959.

4 McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S., Banta, J.
5 R., Pasteris, D. R., Carter, M. M., and Kahl, J. D. W.: 20th Century industrial black carbon
6 emissions altered Arctic climate forcing, *Science*, 317, 5843, doi:10.1126/science.1144856, 2007.

8 Manara, V., Brunetti, M., Celozzi, A., Maugeri, M., Sanchez-Lorenzo, A., and Wild, M.: Detection
9 of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation
10 records and underlying causes (1959–2013), *Atmos. Chem. Phys.*, 16, 11145-11161,
11 doi:10.5194/acp-16-11145-2016, 2016.

13 Matuszko, D.: Long-term variability in solar radiation in Krakow based on measurements of
14 sunshine duration, *Int. J. Climatol.* 34, 228 – 234, 2014.

16 McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S., Banta, J.
17 R., Pasteris, D. R., Carter, M. M., and Kahl, J. D. W.: 20th Century industrial black carbon
18 emissions altered Arctic climate forcing, *Science*, 317, 5843, doi:10.1126/science.1144856, 2007.

20 Mishchenko, M. I., Geogdzhayev, I. V., Rossow, W. B., Cairns, B., Carlson, B. E., Lacis, A. A.,
21 Liu, L., and Travis, L. D.: Long-term satellite record reveals likely recent aerosol trend, *Science*,
22 315, 1543, doi:10.1126/science.1136709, 2007.

24 Nabat, P., Somot, S., Mallet, M., Chiapello, I., Morcrette, J.J., Solmon, F., Szopa, S., Dulac, F.,
25 Collins, W., Ghan, S. and Horowitz, L.W.,: A 4-D climatology (1979-2009) of the monthly
26 tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative
27 evaluation and blending of remote sensing and model products, *Atmospheric Measurement
Techniques*, 6(5), p. 1287-1314, 2013.

30 Nabat, P., Somot, S., Mallet, M., Sanchez-Lorenzo, A. and Wild, M.: Contribution of anthropogenic
31 sulfate aerosols to the changing Euro-Mediterranean climate since 1980, *Geophysical Research
Letters*, 41(15), pp. 5605-5611, 2014.

33 doi:10.1002/2014GL060798

1 Norris, J.R. and Wild, M.: Trends in aerosol radiative effects over Europe inferred from observed
2 cloud cover, solar “dimming,” and solar “brightening”. *Journal of Geophysical Research-Atmospheres*, 112, 1080, 2007.
3 | *T.*
4 | */D08214, doi:10.1029/2006JD007734*

5 Norris, J. R., and M. Wild : Trends in aerosol radiative effects over China and Japan inferred from
6 observed cloud cover, solar “dimming,” and solar “brightening”, *J. Geophys. Res.*, 114, D00D15,
7 doi:10.1029/2008JD011378, 2009.

8

9 | Notaridou V. and D. Lalas, The distribution of global and net radiation over Greece, Solar Energy,
10 | Vol. 22, pp. 504-514, 1978.

11

12 Ohmura, A., Observed long-term variations of solar irradiances at the Earth’s surface, *Space Sci. Rev.*, 125, 111–128, doi:10.1007/s11214-006-9050-9, 2006.

13

14

15 Ohmura, A.: Observed decadal variations in surface solar radiation and their causes, *J. Geophys. Res.*, 114, D00D05, doi:10.1029/2008JD011290, 2009.

16

17

18 Ohmura, A. and H. Lang: Secular variation of global radiation over Europe, in *Current Problems in Atmospheric Radiation*, edited by J. Lenoble and J. F. Geleyn, pp. 98–301, Deepak, Hampton, Va. , 1989.

19

20

21

22 Ruckstuhl C, Philipona R, Behrens K, Collaud Coen M, Durr B, Heimo. A, Matzler C, Nyeki S, Ohmura A, Vuilleumier L, Weller M, Wehrli C, Zelenka A.: Aerosol and cloud effects on solar
23 brightening and the recent rapid warming, *Geophysical Research Letters*, 35, L12708, DOI:
24 10.1029/2008gl034228, 2008.
25 | *doi:10.1175/2008JCLI242.1*

26

27 Sanchez-Lorenzo, A., Calbó J, Martin-Vide J : Spatial and temporal trends in sunshine duration over
28 Western Europe (1938-2004), *Journal of Climate*, 21, 6089-6098, 2008.

29

30 Sanchez-Lorenzo, A., and Wild, M.: Decadal variations in estimated surface solar radiation over
31 Switzerland since the late 19th century, *Atmospheric Chemistry and Physics*, 12, 18, 8635-8644,
32 2012.
33 | *doi:10.5194/acp-12-8635-2012*

1 Sanchez-Lorenzo, A., Wild M., Brunetti M., Guijarro J. A., Hakuba, M. Z. , Calbó, J. , Mystakidis,
2 S. and Bartok, S.: Reassessment and update of long-term trends in downward surface shortwave
3 radiation over Europe (1939–2012), *J. Geophys. Res. Atmos.*, 120, 9555–9569,
4 doi:10.1002/2015JD023321, 2015.

5

6 Sanchez-Romero, A., A. Sanchez-Lorenzo, J. Calbó, J. A. González, and C. Azorin-Molina : The
7 signal of aerosol-induced changes in sunshine duration records: A review of the evidence, *J.*
8 *Geophys. Res. Atmos.*, 119, 4657–4673, doi:10.1002/2013JD021393, 2014

9 Stanhill, G. and Achiman, O.: Early global radiation measurements: a review. *Int. J. Climatol.*, 37, 1665–1671
10 doi:10.1002/joc.4826, 2016.

11

12 Stanhill, G.: Global irradiance, air pollution and temperature changes in the Arctic, *Philos. Trans. R.*
13 *Soc. A*, 352, 247 –258, doi:10.1098/rsta.1995.0068, 1995.

14 → (1997) 010 < 2078 : RCisisi > 2.0. coj 2

15 Stanhill, G., and Cohen S. : Recent changes in solar irradiance in Antarctica, *J. Clim.*, 10, 2078–
16 2086, doi:10.1175/1520-0442, 1997.

17 Stanhill, G. and Cohen, S.: Solar radiation changes in the United States during the twentieth
18 century: Evidence from sunshine duration measurements. *Journal of Climate*, 18(10), pp. 1503–
19 1512, 2005.
20 doi:10.1175/1520-0442-18-10-1503.1

21 Stanhill, G. and Möller, M.: Evaporative climate change in the British Isles. *International Journal of*
22 *Climatology*, 28(9), pp. 1127–1137, 2008.
23 doi:10.1002/joc.1619

24 Stanhill, G., and O. Ahiman: Radiative forcing and temperature change at Potsdam between 1893
25 and 2012, *J. Geophys. Res. Atmos.*, 119, 9376–9385, doi:10.1002/2014JD021877, 2014.

26

27 Streets, D. G., Ye W., and Mian C.: Two-decadal aerosol trends as a likely explanation of the global
28 dimming/brightening transition, *Geophysical Research Letters* 33, 15, 2006.
29 doi:10.1029/2006GL026471

30 Tanaka K., Ohmura A., Folini D., Wild M., Ohkawara N. (2016). Is global dimming and
31 brightening in Japan limited to urban areas? *Atmos. Chem. Phys. Discuss.* 2016/1–50.
32 doi:10.5194/acp-2016-559, 2016

33

39 16 13969–14001

doi:10.5194/acp-16-13969-2016

1 Vautard, R. and Yiou, P.: Control of recent European surface climate change by atmospheric flow. 2
2 Geophysical Research Letters, 36(22), 2009.
3 L 22702, doi:10.1029/2009GL040480,
4 J. and T. }
5 Vignola F., Joseph Michalsky, Thomas Stoffel, Solar and Infrared Radiation Measurements, ISBN }
6 9781439851906, CRC Press, 2012.

7 Wang, K. C., Dickinson, R. E., Wild, M., and Liang, S.: Atmospheric impacts on climatic
8 variability of surface incident solar radiation, Atmos. Chem. Phys., 12, 9581-9592,
9 doi:10.5194/acp-12-9581-2012, 2012. D00D16,

10 Wild M.: Global dimming and brightening: A review, Journal of Geophysical Research, 114, DOI:
11 10.1029/2008JD011470, 2009. T. } doi

12

13 Wild M, Folini D, Hakuba MZ, Schär C, Seneviratne SI, Kato S, Rutan D, Ammann C, Wood EF,
14 König-Langlo G.: The energy balance over land and oceans: an assessment based on direct
15 observations and CMIP5 climate models, ClimDyn 44:3393–3429. doi:10.1007/s00382-014-2430-
16 z, 2015. z, 2015.

17

18 Wild, M.: Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for
19 global warming. WIREs Clim Change, 7, 91–107, doi:10.1002/wcc.372, 2016 z, 2015.

20

21 WMO: “Measurement of radiation”, in Guide to Meteorological Instrument and Observing
22 Practices, Chapter 9, fifth ed., WMO-No. 8, 1983.

23

24 WMO: Scientific Assessment of Ozone Depletion: 2010, report 52, World Meteorological
25 Organization (WMO), Global Ozone Research and Monitoring Project, Geneva, Switzerland;
26 National Oceanic and Atmospheric Administration (NOAA), Washington, DC, USA; National
27 Aeronautics and Space Administration (NASA), Washington, DC, USA; United Nations
28 Environment Program (UNEP), Nairobi, Kenya; and the European Commission, Research
29 Directorate General, Brussels, Belgium, 2010.

30

31 Yilmaz, F. Ö,
32 Yildirim, U., Ismail, O. Y. and Akinoglu, B. G.: Trend analysis of 41 years of sunshine duration
33 data for Turkey, Turkish Journal of Engineering and Environmental Sciences 37, 286-305, 2014.

1
2 Zabara K., Estimation of the global solar radiation in Greece, Solar & Wind Technology, Vol. 3,
3 No. 4 pp 267-272, 1986.

4 Zerefos, C.S., K. Eleftheratos, C. Meleti, S. Kazadzis, A. Romanou, C. Ichoku, G. Tselioudis, and
5 A. Bais: Solar dimming and brightening over Thessaloniki, Greece, and Beijing,
6 China. Tellus, 61B, 657-665, doi:10.1111/j.1600-0889.2009.00425.x, 2009.

7
8 Zerefos, C.S., Tourpali, K., Eleftheratos, K., Kazadzis, S., Meleti, C., Feister, U., Koskela, T. and
9 Heikkilä, A.: Evidence of a possible turning point in solar UV-B over Canada, Europe and Japan,
10 Atmospheric Chemistry and Physics, 12(8), pp.2469-2477, 2012.

11 doi : 10.5194/acp-12-2469-2012,

}

L

12 Zhao X., Chan, P., and NOAA CDR Program: NOAA Cli-mate Data Record (CDR) of AVHRR
13 Daily and Monthly Aerosol Optical Thickness over Global Oceans, Version 2.0.AOT1, NOAA
14 National Centers for Environmental Information, doi:10.7289/V5SB43PD, 2014.

15 R

