1	The Role of Meteorological Conditions and Pollution Control
2	Strategies in Reducing Air Pollution in Beijing during APEC 2014 and
3	Parade 2015
4	Pengfei Liang ¹ , Tong Zhu ^{1*} , Yanhua Fang ¹ , Yingruo Li ^{1, 2} , Yiqun Han ¹ , Yusheng Wu ¹ ,
5	Min Hu ¹ , and Junxia Wang ¹
6	¹ SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering,
7	Peking University, Beijing, 100871, China
8	² Environmental Meteorology Forecast Center of Beijing-Tianjin-Hebei, China
9	Meteorological Administration, Beijing, 100089, China
10	*Correspondence to: Tong Zhu (tzhu@pku.edu.cn)
11	
12	Supplement Materials

S1. Temperature steps and duration of NOISH thermal-optical method protocol.

Carrier gas	Duration (sec)	Temperature (°C)
He-1	10	Ambient
He-2	95	600
He-3	90	840
He-4	30	No heat
O ₂ -1	35	550
O ₂ -2	45	650
O ₂ -3	115	870
CalGas	125	No heat

15 Table S1. Temperature steps and duration of NOISH thermal-optical method protocol.

18 S2. The relationship between PM_{2.5} concentrations and meteorological parameters.

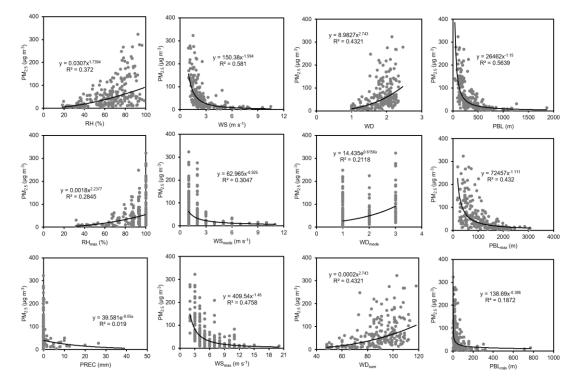
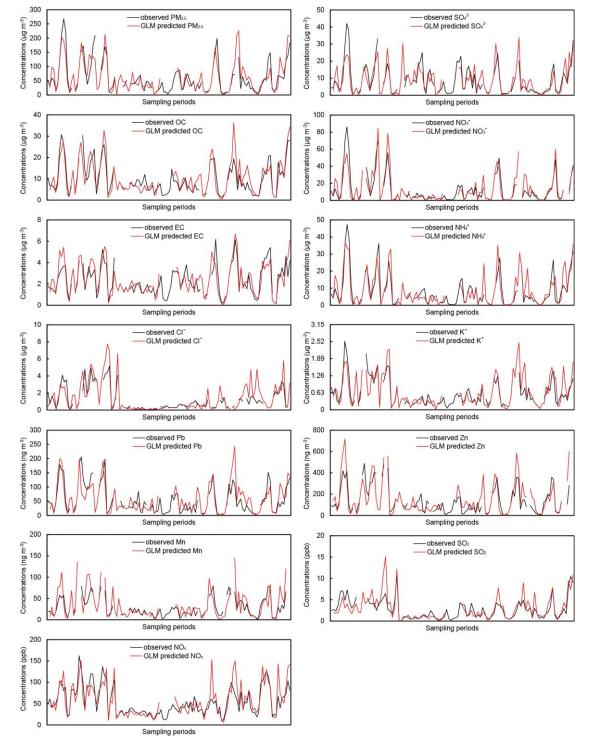


Fig S2. Scatter plot and correlation between PM_{2.5} concentrations (*y* axis) and meteorological parameters (*x* axis) during the APEC and Parade sampling periods.


23 S3. Error transfer formula

24
$$N = f(x_1, x_2, x_3)$$
 (1)

25
$$\overline{N} = f(\overline{x_1}, \overline{x_2}, \overline{x_3})$$
 (2)

26
$$S_N = \sqrt{\left(\frac{\partial f}{\partial x_1}\right)^2 S_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 S_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 S_{x_3}^2}$$
(3)

In this study, *N* represents the percentage reduction calculated by comparing the decreased average pollutant concentration during APEC to that before APEC, and *x* represents the pollutant concentrations during and before APEC.

S4. Comparison of the observed and GLM-predicted pollutant concentrations.

Fig S4. Time series of the observed (in black line) and GLM-predicted pollutant concentrations (in red line).

36 S5. Hypothesis K-S test summary of the unstandardized/standardized residual.

Null Hypothesis	Test	Sig.*	Decision
The distribution of Unstandardized1 Residual is normal with mean - 0.00 and standard deviation 0.40.	One-Sample Kolmogorov- Smirnov Test	0.96	Retain the null hypothesis.
The distribution of Standardized2 Residual is normal with mean - 0.01 and standard deviation 0.96.		0.96	Retain the null hypothesis.

37 Table S5. Hypothesis K-S test summary of the unstandardized/standardized residual.

*The significance level is 0.05.

38

Hypothesis K-S test is often applied to test the normal distribution of a series of
values. In this case, the test retains the null hypothesis that the distribution of
unstandardized and standardized residual is normal, indicating that the residual follows
the normal distribution.