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Abstract 20 

We present a Monte-Carlo Genetic Algorithm (MCGA) for efficient, automated and unbiased 21 

global optimization of model input parameters by simultaneous fitting to multiple experimental 22 

data sets. The algorithm was developed to address the inverse modelling problems associated with 23 

fitting large sets of model input parameters encountered in state-of-the-art kinetic models for 24 

heterogeneous and multiphase atmospheric chemistry. The MCGA approach utilizes a sequence 25 

of optimization methods to find and characterize the solution of an optimization problem. It 26 

addresses an issue inherent to complex models whose extensive input parameter sets may not be 27 

uniquely determined from limited input data. Such ambiguity in the derived parameter values can 28 

be reliably detected using this new set of tools, allowing users to design experiments that should 29 

be particularly useful to constrain model parameters. We show that the MCGA algorithm has been 30 

used successfully to constrain parameters such as chemical reaction rate coefficients, diffusion 31 

coefficients and Henry’s law solubility coefficients in kinetic models of gas uptake and chemical 32 

transformation of aerosol particles as well as multiphase chemistry at the atmosphere-biosphere 33 

interface. While this study focuses on the processes outlined above, the MCGA approach should 34 

be portable to any numerical process model with similar computational expense and extent of the 35 

fitting parameter space. 36 

 37 

  38 
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1. Introduction 39 

Atmospheric aerosols play a key role in climate, air quality and public health. Heterogeneous 40 

reactions and multiphase processes alter the physical and chemical properties of organic aerosol 41 

particles, but the effects of these reactions are not fully elucidated (e.g. Finlayson-Pitts, 42 

2009;George and Abbatt, 2010;Abbatt et al., 2012;Pöschl and Shiraiwa, 2015). While multiphase 43 

chemistry in aerosols and clouds can be described by a sequence of well-understood physical and 44 

chemical elementary processes in kinetic models (Hanson et al., 1994;Pöschl et al., 2007;George 45 

and Abbatt, 2010), the deduction of parameters or rate coefficients of the individual elementary 46 

processes is severely complicated by the inherent coupling of chemical reactions and mass 47 

transport processes (Kolb et al., 2010;Berkemeier et al., 2013;Shiraiwa et al., 2014). 48 

Heterogeneous chemical reactions on aerosol particles are traditionally described using so-called 49 

"resistor" models, which represent parallel and sequential physical or chemical processes in 50 

analogy to electrical circuits. These models have typically been used to derive analytical 51 

expressions for simplified limiting cases (e.g. Hanson et al., 1994;Worsnop et al., 2002;Hearn et 52 

al., 2005). Recently, numerical models have been developed that allow a more complete 53 

consideration of the time- and depth-resolved chemical and physical behaviour of aerosol particles, 54 

leading to a better understanding of these reaction systems, especially under conditions where the 55 

steady-state assumptions underlying the resistor models are not valid (Smith et al., 2003;Pöschl et 56 

al., 2007;Steimer et al., 2015;Berkemeier et al., 2016). Kinetic multi-layer models describe single 57 

particles or thin films by division into compartments such as near-surface gas phase, surface and 58 

particle bulk, and further subdivision of the particle bulk into thin layers to achieve depth-59 

resolution. Specific models provide a focus on chemistry such as KM-SUB (Shiraiwa et al., 2010), 60 

on gas-particle partitioning such as KM-GAP (Shiraiwa et al., 2012) and ADCHAM (Roldin et al., 61 
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2014), or on water diffusion such as the ETH Diffusion Model (Zobrist et al., 2011). For simplicity, 62 

throughout this manuscript we refer to a “kinetic model” as any computational model that is used 63 

to simulate a system’s behaviour. We will use the term “input parameters” to address the prescribed 64 

model parameters (thermodynamic, kinetic, or physical) that are optimized in this study so that 65 

kinetic model output matches experimental data, a process that we will refer to as “fitting the 66 

kinetic model”. Note that this definition excludes model parameters that are clearly defined by 67 

physical laws or the experiment (e.g. physical constants, experimental conditions) or are of purely 68 

technical nature (e.g. integration time steps). 69 

Ideally, fitting a kinetic model to experimental data would return all chemical and physical 70 

parameters necessary to understand the importance of the processes at work and to predict the 71 

outcome of future experiments, even if conducted under experimental conditions not part of the 72 

training data set, i.e. all experimental data used during the fitting process. However, kinetic models 73 

often require a multitude of input parameters, some of which are not constrained well 74 

experimentally or are merely effective parameters combining a sequence of inherently coupled 75 

processes. In general, two main difficulties arise when optimizing complex models to experimental 76 

data:  77 

(1) The optimization hyper surface is often non-convex, i.e., it will not have only a single minimum 78 

due to interactions between non-orthogonal (coupled) input parameters and/or scatter in the 79 

experimental data. Hence, steepest descent methods fail since they get trapped easily in local 80 

minima. Brute-force or exhaustive searches, where an n-dimensional grid is applied to the input 81 

parameter space and the fit quality evaluated for every grid point in all n dimensions, are often not 82 

computationally feasible.  83 
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 (2) If too little or too similar experimental data is used during the fitting process or input 84 

parameters are allowed to move in a large range, the optimization problem can be underdetermined 85 

(ill-defined) and multiple solutions may exist. In this case, even though a good agreement between 86 

model output and training data set is obtained, it is likely that only the model input parameters 87 

corresponding to the most limiting processes will be physically meaningful. Extrapolation of the 88 

model outside its training range can then lead to strong discrepancies between modelled and 89 

measured data. For example, if a model is trained using data that is exclusively limited by a single 90 

process, it will constrain the parameters that represent that specific process while the other 91 

parameters remain nearly unconstrained even if multiple data sets are used. This means that a 92 

parameter set were optimized using data from surface film experiments, the bulk diffusion 93 

coefficients would likely be poorly constrained regardless of how many different experimental 94 

datasets of that type were used. 95 

Hence, sophisticated optimization methods are needed, which quickly and reliably determine the 96 

model input parameters that lead to the best correlation between kinetic model and experiment. 97 

Furthermore, experiments covering a broad range of conditions must be conducted to ensure that 98 

the observables are controlled by (a) as many model input parameters as possible across all 99 

experimental conditions, but (b) by as few model input parameters as possible for a specific 100 

experimental condition (i.e. limiting cases). The MCGA algorithm presented here is able to 101 

overcome the difficulty of a complex optimization hypersurface with many local minima while 102 

providing the user with a realistic assessment of how well-constrained the model input parameters 103 

are by the experimental data. 104 

 105 
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2. Monte-Carlo Genetic Algorithm (MCGA) 106 

In many modelling applications, methods are needed that reliably find the optimum in non-convex 107 

optimization problems and detect underdetermined optimization problems. Global optimization 108 

methods have been subject of extensive research in the past (Arora et al., 1995) and provide means 109 

of approximating non-convex optimization problems without premature convergence to local 110 

optima. Examples for these methods are simulated annealing methods and evolutionary 111 

algorithms. In atmospheric chemistry, simple optimization techniques are commonly used to 112 

determine kinetic parameters by fitting of rate equations to experimental data sets, but to our 113 

knowledge no global optimization technique diligently designed for the determination of 114 

atmospheric reaction rate coefficients from multiple data sets was described thus far. A related 115 

technique (Monte-Carlo Markov Chain algorithm) has been used to determine parametric 116 

uncertainties in cloud-aerosol interaction models (Partridge et al., 2012;Lowe et al., 2016). Global 117 

optimization was also used to calculate thermodynamic equilibria for phase separation of aqueous 118 

multicomponent solutions (Zuend and Seinfeld, 2013). 119 

In this study, we present the Monte-Carlo Genetic Algorithm (MCGA), a method combining direct 120 

Monte-Carlo sampling with a genetic algorithm as a heuristic global optimization method that 121 

approximates the global optimum for input parameter sets of computational models. Repeated 122 

execution of the search algorithm can be used to test for uniqueness or to provide statistical bounds 123 

on the model input parameters. The MCGA algorithm utilizes a two-step approach to find minima 124 

on non-convex hyper surfaces. First, a Monte-Carlo (MC) sampling is performed in the large space 125 

of possible model input parameters to narrow down the possible solution to smaller areas of 126 

interest. The parameter sets are evaluated using a goodness-of-fit expression of the user’s choice, 127 

such as the root-mean-square (RMS) error between kinetic model output and experimental data. 128 
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In the examples presented here, the RMS error or logarithmic RMS error was used. When multiple 129 

datasets were fitted, a weighting factor was introduced to prevent bias due to the number of data 130 

points in different experimental datasets. An additional optional weighting factor allows the user 131 

to assign priority to experimental data with lower statistical error or scatter. The parameter sets for 132 

the MC sampling are generated randomly from a distribution of the model input parameters. Each 133 

parameter was sampled using a logarithmically spaced distribution of values to provide uniform 134 

sampling over the large ranges most input parameters can possibly adopt. Note that, depending on 135 

the problem, different distributions and sampling strategies (e.g. Latin hypercube sampling) could 136 

be applied. 137 

The genetic algorithm (GA) uses survival of the fittest to optimize an ensemble (the population) 138 

of parameter sets (the individuals) over several iterations (the generations). Processes known from 139 

natural evolution such as survival, recombination, mutation and migration are mimicked to 140 

optimize a population. The initial population is formed by the parameter sets with the best 141 

goodness-of-fit obtained in the MC sampling step. An equal number of random parameter sets are 142 

added to ensure diversity within the pool of parameter sets and counteract sampling bias from 143 

shallow local minima (Fig. 1). 144 

During execution of the GA, a number of model input parameter sets with the highest correlation 145 

between model output and experimental data (goodness-of-fit) are directly transferred into the next 146 

generation by the survival mechanism (the elites). The remaining population is generated using 147 

combinations of parameters from the individuals in the previous generation with moderate or better 148 

goodness-of-fit (the parents), forming the children for the next generation. In this study, 5% of the 149 

next generation are elite individuals, which are transferred with no changes, while 80 % of the 150 

children is created by randomly choosing individual parameters (genes) from two selected parents 151 
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with equal weighting. The higher the goodness-of-fit of a certain individual, the higher is its 152 

likeliness to be selected as parent. This way, parameters leading to high goodness-of-fit are 153 

positively reinforced, leading to improvement and slow homogenization of the population. Finally, 154 

20 % of children are created by applying a mutation scheme that alters parameters in a stochastic 155 

manner within the prescribed bounds to enhance genetic variability. Collectively, these 156 

mechanisms enable the MCGA to overcome local minima, a crucial feature of a global 157 

optimization method. Iteration of these steps eventually results in a homogeneous, optimized 158 

population and the common parameter set is taken as result. The MCGA can be run multiple times 159 

to generate a set of representative solutions, which has been the default approach in previous 160 

applications of MCGA (cf. Sect. 4). With only few (~5-10) repetitions, this procedure allows the 161 

user to assure full convergence to the global optimum. In addition, the random sampling of 162 

optimization space between different executions of MCGA will generate statistical bounds on the 163 

parameters if a sufficiently large number of repetitions is computationally feasible. 164 

In this study we used the genetic algorithm provided by MathWorks® (Matlab® Global 165 

Optimization Toolbox) and developed a routine for parallel computation on computer clusters. In 166 

a typical setting, the MC step and GA step of the optimization occupied an approximately equal 167 

amount of computation time. Figure 2 describes the implementation of the parallel MCGA 168 

optimization method. The N parallel threads share common populations of parameter sets that are 169 

iteratively optimized by extracting a subset of parameter sets and performing the genetic algorithm 170 

on this subset. Once a sub-evaluation of the genetic algorithm has finished, the parameter sets are 171 

mixed into the population, and after randomization, a different subset of parameter sets is extracted 172 

and their optimization is immediately continued. Since the parallel threads will run 173 
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asynchronously, a fraction of individuals must remain in the population to be mixed with, to enable 174 

continuous operation without waiting times.  175 

 176 

3. Implications for modelling and measuring chemical kinetics 177 

Although models may possess a multitude of kinetic and thermodynamic input parameters that 178 

represent the many possible sequential and/or concurrent processes occurring in the system, their 179 

behaviour is often driven by only a single or at most a few processes at a certain point in time. In 180 

chemical kinetics, the behaviour of the system can often be characterized by a kinetic regime, 181 

which may change during the course of the reaction and with experimental conditions (Berkemeier 182 

et al., 2013). If a set of model input parameters can be uniquely determined (by MCGA or another 183 

means) and results in a high-fidelity fit of model output to experimental data, the parameters then 184 

would be regarded as correct within the approximations of the underlying model and uncertainties 185 

of the experimental data. This is a convenient way to assimilate data from multiple previous 186 

studies; data sets can be weighted to reflect confidence in their results, and the final range of 187 

accepted parameters then represents a consensus from the fitted data. However, it may not always 188 

be possible to fully constrain the input parameters, even using multiple experimental datasets. In 189 

general, there are two reasons that a model input parameter can remain unconstrained after 190 

optimization:  191 

(i) the parameter is non-influential, or 192 

(ii) the parameter is inherently coupled to another one, forming a non-orthogonal parameter 193 

pair under all experimental conditions. 194 
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Fig. 3 illustrates both cases in an example taken from atmospheric multiphase chemistry, using the 195 

benchmark system of ozone + oleic acid and data adopted from Hearn et al. (2005). The original 196 

data was converted from ozone exposure to a time series using an ozone concentration of 2.76×1015 197 

cm-3. The MCGA algorithm was executed under a constrained parameter set, in which only 198 

desorption lifetime and surface reaction rate coefficient were allowed to vary. In this scenario, 199 

repeated execution of MCGA returned multiple solutions, for which the model output had nearly 200 

equivalent goodness-of-fit with only slight variance between them (Fig. 3A). In stark contrast to 201 

the uniform correlation between model output and experimental data, Fig. 3B shows the high 202 

variance within the model parameters yielding these solutions (red markers) which scatter across 203 

a narrow valley of the optimization hypersurface (contour lines). In the upper portion of the figure, 204 

i.e. above a desorption lifetime of 10-4 s, a vertical relationship between both parameters indicates 205 

that the desorption lifetime is a non-influential parameter and can take on any value in this interval, 206 

corresponding to case (i) above. In the lower portion of the figure, i.e. below a desorption lifetime 207 

of the diagonal relationship indicates that an increase in one parameter can be compensated with a 208 

decrease in the other parameter and both form a non-orthogonal pair, corresponding to case (ii) 209 

above. For comparison, Figs. 3C and 3D show examples of optimization hypersurfaces from 210 

Berkemeier et al. (2016), who studied multiphase ozonolysis of shikimic acid and investigated the 211 

existence of non-orthogonal parameter pairs by varying optimized parameters (λi) by a factor f(λi) 212 

to depict the total residual as a 2D contour map. Fig. 3C shows that the Henry’s law coefficient 213 

for ozone (Hcp,O3) and the product of the bulk reaction rate coefficient (kBR) with the bulk 214 

diffusivity of ozone (Db,O3) and the bulk-to-surface transport coefficient of ozone (kbs,O3) are fully 215 

non-orthogonal. Figure 3D shows a single, well-defined optimum parameter set for the effective 216 
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molecular cross section of ozone (σO3) and the desorption lifetime of ozone (τd,O3), indicating that 217 

these parameters are fully orthogonal for the experimental data fit in that study. 218 

The prerequisite of a successful optimization is to fit a sufficiently broad experimental data set so 219 

that a unique and accurate set of fitting parameters is obtained. Thus, both of the above conditions 220 

must be avoided. This may be achieved by including additional experimental data, especially from 221 

a different experimental technique or over a different timescale so that the system might sample 222 

another limiting behaviour. In the data given in Fig. 3 above, for example, measuring full time 223 

series at different oxidant concentrations may help to constrain the oxidant’s desorption lifetime. 224 

However, if a model has too many free parameters (or especially parameters that are not well-225 

constrained by experimental data), it may be necessary to reduce the model complexity or fix some 226 

of the parameters. We therefore recommend using data sets obtained from a range of different 227 

experimental techniques to ensure this variability if they are available, and using models with as 228 

few free parameters as possible. 229 

In the example above, it was possible to use brute-force sampling to determine the true 230 

optimization hypersurface (contour lines) for comparison to the MCGA results. Of course, in 231 

typical applications, the number and range of input parameters makes such a search prohibitive. 232 

The computational feasibility of an optimization depends crucially on the size of the input 233 

parameter space, i.e. number and possible range of all parameters. Using an unreasonably large 234 

range for input parameters increases the possibility of finding non-physical solutions that fit the 235 

experimental data. The input parameter space can be reduced based on a priori knowledge from 236 

laboratory experiments and theoretical calculations. Parameters can be narrowed down by 237 

laboratory experiments (e.g. bulk experiments for derivation of trace gas solubility), by physics 238 

(e.g. the upper limit of the accommodation coefficient at unity), or by simulations (e.g., molecular 239 
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dynamics simulations to estimate the surface accommodation coefficient and desorption lifetime 240 

as in Vieceli et al. (2005) and Julin et al. (2013)). Note that in the example given in Fig. 3b, the 241 

two parameters were not truly independent, so that constraining either model parameter from a 242 

priori information would constrain the other parameter. In multi-parameter optimizations, where 243 

many such dependencies might exist, this can lead to a significant reduction in solution space.  244 

 245 

4. Application of MCGA in atmospheric multiphase chemistry 246 

The MCGA algorithm has been applied previously to chemical reaction systems of atmospheric 247 

relevance (Table 1). The essential parameters we use to describe an atmospheric multiphase 248 

chemical kinetic system of reactive trace gases X and bulk material Y include chemical reaction 249 

rate coefficients at the surface (kSLR) and in the bulk (kBR) of aerosol particles; bulk diffusion 250 

coefficients of reactive trace gases (Db,X) and the bulk matrix (Db,Y); accommodation coefficients 251 

(αs,X) and desorption lifetimes (τd,X) of trace gases to the particle surface to determine transient and 252 

equilibrium adsorption behavior; and equilibrium constants for the solubility of reactive trace 253 

gases (Ksol,cc,X), typically expressed in terms of Henry’s law coefficients (Hcp,X) (Pöschl et al., 254 

2007;Ammann and Pöschl, 2007;Shiraiwa et al., 2010;Berkemeier et al., 2013). 255 

In its first application the MCGA algorithm was used to fit individual data sets of the decay of 256 

oleic acid upon ozonolysis (Berkemeier et al., 2013), highlighting the need of fitting to multiple 257 

experimental data sets to constrain kinetic parameters. This was done in further studies that 258 

investigated gas uptake to (semi-)solid organic material in coated-wall flow-tube reactors (Arangio 259 

et al., 2015;Berkemeier et al., 2016), ozone-induced protein oligomerization in bulk solutions 260 

(Kampf et al., 2015), viscosity change upon alkene ozonolysis as measured with fluorescence 261 
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microscopy (Hosny et al., 2016), the redox-cycling reactions in the human lung lining fluid (Lakey 262 

et al., 2016a) as well as ozonolysis of squalene contained in human skin lipids (Lakey et al., 263 

2016b). In each of these studies, a large set of model input parameters was optimized to several 264 

experimental data sets to constrain the input parameter space. In the following, we review results 265 

previously obtained by the MCGA algorithm to demonstrate its utility in determining kinetic 266 

parameters, assimilating large datasets, and detecting ill-defined problems.  267 

In Berkemeier et al. (2016), 11 parameters were varied simultaneously to fit the ozone uptake to 268 

shikimic acid films over many hours, under 12 distinct experimental conditions, and using a single 269 

set of kinetic parameters (Fig. 4). The model was found to accurately describe the humidity- and 270 

concentration-dependence of ozone uptake and a high correlation between model output and 271 

experimental data was achieved. During optimization, a subset of six parameters, including 272 

diffusivity coefficients and trace gas solubility, was allowed to increase or decrease monotonically 273 

over 6 steps in relative humidity, resulting in a total of 41 optimized parameter values. Despite this 274 

large number of optimization parameters, a well-constrained parameter set could be obtained due 275 

to the large depth in training data and by applying a priori information.  276 

In another study investigating the oxidation of biomass burning tracers with hydroxyl radicals 277 

(Arangio et al., 2015), repeated execution of MCGA revealed a remaining uncertainty in the kinetic 278 

parameters obtained from optimization to the two experimental data sets (Fig. 5). While some 279 

parameters could be narrowly constrained (diffusion coefficient of the organic matrix, Dorg), others 280 

were subject to larger uncertainties (surface layer reaction rate constant kSLR, desorption lifetime 281 

τd). Note that while these parameters seem almost unconstrained in Fig. 5, this uncertainty is due 282 

to the presence of non-orthogonal parameter pairs. As detailed in Fig. 3 and in Arangio et al. 283 

(2015), only specific combinations of the non-orthogonal parameters will lead to agreement 284 
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between model and experiment. This knowledge can be used to constrain these parameters in 285 

further experiments. 286 

5. Conclusions 287 

The MCGA algorithm addresses the problem of extracting physical and chemical parameters from 288 

experimental data. The algorithm allows the user to assimilate multiple datasets and its random 289 

sampling approach reduces the bias which may arise in more user-directed optimization methods. 290 

Unlike simple gradient-based optimization methods, MCGA can thus be used as a statistical tool 291 

that not only detects unconstrained parameters, but also finds dependencies between unconstrained 292 

parameters. The results can be applied in process models and may serve to direct future 293 

experimental studies, e.g. to drive a reaction system into regimes in which the remaining 294 

unconstrained parameters have high sensitivity. MCGA could also be used to constrain chemical 295 

reaction systems in the post-analysis of field and laboratory studies: starting with a large set of 296 

model input parameters (i.e. chemical reactions, physical processes), data from various 297 

measurement campaigns could be combined, reconciled and in a further step used to reduce the 298 

number of model input parameters to the key processes necessary to describe all measurement 299 

data. MCGA may be a powerful and useful tool to constrain kinetic parameters and reaction rate 300 

coefficients in models that study the formation of secondary organic aerosol in reaction chambers 301 

(Chan et al., 2007;Shiraiwa et al., 2013;Cappa et al., 2013;Riedel et al., 2016). It could be suitable 302 

for fine-tuning of reaction rates in large reaction mechanisms of atmospheric chemistry, such as 303 

the Master Chemical Mechanism (MCM; Jenkin et al., 1997;Saunders et al., 2003), the Gas-304 

Aerosol Model for Mechanism Analysis (GAMMA; McNeill et al., 2012) or the Chemical 305 

Aqueous Phase Radical Mechanism (CAPRAM; Herrmann et al., 1999). Multiple experimental 306 

data sets from a broad range of techniques could be used with the algorithm to narrow down 307 
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difficult-to-measure reaction rate coefficients, provide uncertainty estimates and reconcile 308 

experiments across different research groups and facilities. 309 
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Table 1. Previous studies applying the MCGA algorithm. 319 

Study Reaction system 

Berkemeier et al. (2013) oleic acid + O3 

Arangio et al. (2015) 
levoglucosan and abietic acid + 

OH 

Kampf et al. (2015) protein + O3 

Hosny et al. (2016) oleic acid + O3 

Berkemeier et al. (2016) shikimic acid + O3 

Tong et al. (2016) 
OH formation by SOA 

decomposition in water 

Lakey et al. (2016a) 
reactive oxygen species and 

PM2.5 in lung lining fluid 

Lakey et al. (2016b) skin lipid (squalene) + O3 

  320 
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 321 

Figure 1. Schematic representation of the MCGA optimization method consisting of a Monte-Carlo 322 

sampling, which feeds into a genetic algorithm. Populations of model input parameter sets (blue boxes) are 323 

iteratively improved over several generations through survival of elites (red boxes) and recombination and 324 

mutation of parents to create children (purple boxes), until a sufficient correlation to the experimental data 325 

(goodness of fit) is obtained.  326 
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 327 

Figure 2. Schematic visualization of the parallelized MCGA optimization method. The Monte Carlo step 328 

is performed independently on N processors and the best fitting parameter sets are fed along with random 329 

parameter sets into the starting population. During the genetic algorithm step, each processor extracts a 330 

number of parameter sets from the collective pool and performs a sub-evaluation of the genetic algorithm 331 

on these parameter sets. After completion, the optimized parameter sets are fed back into the pool, which 332 

always contains a non-zero number of parameter sets as reservoir. After randomization, a different 333 

combination of parameter sets is extracted and the process repeated.  334 
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 335 

Figure 3. (A) Results from repeatedly fitting a kinetic model to a single experimental decay curve (adopted 336 

from Hearn et al., 2005). MCGA was used to optimize two model parameters, a surface reaction rate 337 

coefficient and the desorption lifetime of the gas phase oxidant. All other model parameters remained fixed. 338 

(B) Visualization of MCGA algorithm’s findings on the 2-dimensional optimization hypersurface. The 339 

hypersurface (contour lines represent the root mean square deviances) exhibits no unique minimum due to 340 

insufficiently broad experimental data and optimization results (red diamonds) scatter along the extended 341 

minimum (black dashed line). (C) and (D) show exemplary optimization hypersurfaces with two parameters 342 
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showing an elongated (C) or a distinct minimum (D). Panels C and D are reproduced from Berkemeier et 343 

al. (2016) with permission from the PCCP Owner Societies. 344 

 345 

Figure 4. Observed (markers) and modelled (lines) uptake coefficients of ozone onto a thin film of shikimic 346 

acid as a function of exposure time. (A) Uptake coefficients at 178 ppb ozone gas phase concentration [O3]g 347 

at different relative humidities of 0, 24, 45, 68, 83, and 92%. The structural formula of shikimic acid is 348 

displayed in the left bottom corner. (B) Uptake coefficients at 24% RH (blue solid lines) and 92% RH (red 349 

solid lines) with different [O3]g of 79, 178, 495, and 1985 ppb. Reproduced from Berkemeier et al. (2016) 350 

with permission from the PCCP Owner Societies.  351 
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 352 

Figure 5. Kinetic parameters for multiphase chemical reactions of OH with levoglucosan (white) and 353 

abietic acid (gray) determined by the MCGA method of fitting the experimental data with the KM-GAP 354 

model. The ranges of parameters are depicted as a box−whisker plot (the percentiles of 10, 25, 75, and 90% 355 

are shown). Reprinted with permission from Arangio et al. (2015). Copyright 2015 American Chemical 356 

Society.  357 
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