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Anonymous Referee #1 

 
This illuminating study helps to resolve previous disparities between simulated and observed 
relationships between clouds and aerosols. I particularly appreciate the physical mechanisms 
put forth to explain the different relationships under different assumptions. The combination 
of results for different model configurations is very helpful, and tells a compelling story. 
 
Thank you for this encouraging assessment and your valuable comments and suggestions to 
improve the manuscript. The anthropogenic CCN increase used in the computation of the 
forcing estimates was changed in the revised manuscript, which has a large impact on the 
forcing values. The anthropogenic CCN increase is now estimated from AI instead of AOD 
changes (from simulations with present day and pre-industrial aerosol emissions). Although a 
disparity between the simulated and observed ERFaci is present in the revised manuscript the 
overall conclusions remain valid. 
 
Page 4, line 12. Eqs. (7) and (10) should be Eqs. (6) and (9). 
Done. 
 
Page 6 line 12. Replace “divided by to” with “divided by”. 
Done. 
 
Page 6 line 20. Move “multiple linear regression could be used in principle” to the front of the 
sentence. 
Done. 
 
Page 6, line 31. How is AODaerosol water calculated? A better way would be to calculate 
AOD of the dry aerosol given its size and dry composition. It would help the reader to know 
how AOD is determined from the aerosol components. 
AODaerosol water is calculated by weighting AOD with the volume fraction of aerosol water. 
We agree that it would be better to calculate AOD of the dry aerosol from its size distribution 
and dry composition. Unfortunately, the necessary diagnostic is not available. We do not 
expect a change in the qualitative results i.e. that cloud variables are less susceptible to 
changes in AIdry than AI by using this approximation (or less to AODdry than to AOD). 



 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎 =
𝐴𝐴𝐴𝐴𝐴𝐴 × (1 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎/𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) (1) 
𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎 is calculated by multiplying 𝐴𝐴𝐴𝐴𝐴𝐴 by the volume fraction of aerosol water 
(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎/𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎). All aerosol particles are assumed to be spherical 
in this calculation. 
 
Page 8, lines 22-25. Should note here the lower bound on droplet number. 
Done. 
 
A minimum cloud droplet number concentration of 40/cm3 is used in ECHAM6-HAM2 and 
20/cm3 in ECHAM5-HAM. 
 
Page 9, lines 1-7. Please explain how the aerosol processing scheme differs from 
configurations without it. Surely all configurations treat aqueous chemistry and nucleation 
scavenging in some manner, right? 
The description of the aerosol processing scheme has been expanded. The main difference to 
the standard configuration is that the aerosol masses of the different aerosol species in cloud 
droplets and ice crystals are prognostic variables and that these masses are traced throughout 
all processes (nucleation, collisions, evaporation, aqueous chemistry, …). These processes are 
also computed in the standard configuration but there the aerosol is simply removed or added 
to the interstitial aerosol at the end of each timestep. 
 
ECHAM-HAM in its standard configuration does not track aerosol particles in hydrometeors. 
In the standard configuration scavenged aerosol particles (by nucleation and/or impaction 
scavenging) are removed from the interstitial aerosol (evaporation of rain or sublimation of 
snow below cloud base release part of the scavenged aerosol particles back to the atmosphere 
though) and sulphate produced by heterogeneous chemistry is added to the interstitial 
aerosol. With the aerosol processing scheme on the other hand, aerosol mass transfers to and 
from in-cloud aerosol tracers by nucleation and impact scavenging, freezing and evaporation 
of cloud droplets, and melting and sublimation of ice crystals are tracked. These processes 
are computed explicitly. Sulphate produced by heterogeneous chemistry is added to the in-
cloud sulphate aerosol tracer. Aerosol particles from evaporating/sublimating clouds and 
precipitation are released to the modes that correspond to their size with the aerosol 
processing scheme. 
 
Page 10, line 8. Relative to what? Why not be quantitative? Say, “exceeds 0.8 in many areas”. 
Agreed. We changed this sentence to: 
 
The LWP susceptibility is positive almost everywhere (i.e. an increase in AI leads to an 
increase in LWP and a decrease in AI leads to a decrease in LWP) and the LWP susceptibility 
exceeds 0.5 in many areas. 
 
Page 11, line 15. Make it clear that figure 2g is without aerosol processing. 
Done. 
 
AODdry is less sensitive to aerosol size than AIdry so the negative LWP susceptibility shown 
in Fig. 2e should rather be due to changes in aerosol size than in aerosol number or mass (for 
comparison the LWP susceptibility to changes in AODdry of E6_Ref (i.e. without aerosol 
processing) is shown in Fig. 2g). 
 



Page 11, lines 15-16. How is this statement support by the results? CCN depends on particles 
that do not contribute much to AOD, so why should AOD be better than AI? I think what you 
mean to say is AI includes the effects of aerosol processing, while AOD isolates CCN effects 
on cloud before cloud processing (line 14). I don’t agree with that statement; you can’t isolate 
processes when interactions are strong; you have to look at relationships between the 
variables that control the processes, which is why CCN is best. 
This statement was not well formulated and AOD should indeed not be a better proxy for 
CCN than AI (Nakajima et al., 2001) because, as you point out, AOD does not correlate well 
with aerosol number. We therefore removed this statement from the text and abstract and only 
point out the need to investigate the effect of aerosol processing on this kind of statistical 
relationships. 
 
Further research for example using a bin representation of aerosol size could give further 
insight of the effect of aerosol processing on aerosol-cloud interactions. 
 
Page 11, line 27. Insert “averaged” before “over”. Figure 3 caption should make this clear. 
A sentence at the beginning of subsection 1.4.2 was added to make clear that only grid boxes 
over the global oceans are analysed. “over oceans” was replaced by “averaged over global 
oceans” in subsection 1.4.2 and captions of Figure 3 and 9. 
 
In the weighted averaging only grid boxes over the global oceans are taken into account. 
 
Page 11, lines 27-32. Why not discuss AATSR-CAPA and MODIS-CERES results here? 
We wanted to focus on the difference between AI and AIdry for the CDNC susceptibility and 
therefore only discussed ECHAM6-HAM2 results. But as we discuss AATSR-CAPA and 
MODIS-CERES results for the other susceptibilities it is more consistent to add them for the 
CDNC susceptibility as well. Therefore, the discussion of AATSR-CAPA and MODIS-
CERES results was added to the discussion of ECHAM6-HAM2 results. 
 
For ECHAM6-HAM2, AATSR-CAPA and MODIS-CERES the CDNC susceptibility to AI 
varies only little between moist or dry free tropospheric conditions and a stable or unstable 
lower troposphere. The CDNC susceptibility of ECHAM6-HAM2 to AIdry is generally 
smaller, up to 50% less depending on the regime. The CDNC susceptibility of AATSR-CAPA 
is smaller than for MODIS-CERES or ECHAM6-HAM2 (AI or AIdry). The minimum distance 
of the CAPA-algorithm should reduce the effects of aerosol swelling, cloud contamination 
and 3D radiative effects by selecting aerosols farther away from clouds where these satellite 
artefacts should be minimal. For AATSR-CAPA this seems to lead to a small CDNC 
susceptibility. For ECHAM6-HAM2 and MODIS-CERES the differences between non-raining 
and raining scenes are small and in general the CDNC susceptibility is smaller in the raining 
scenes than in the non-raining scenes which is an indication of wet scavenging affecting 
aerosol concentrations in the raining scenes. For AATSR-CAPA the CDNC susceptibility to 
AI is smaller in the moist stable regime in the raining than in the non-raining scenes and even 
negative in the other regimes in the raining scenes, also indicative of wet scavenging in the 
raining scenes. 
 
Page 12, line 1. Make it clear this is averaged over the oceans. 
Done. 
 
The response of LWP to changes in AI (dlnLWP/dlnAI), averaged over the global oceans, 
shown in Fig. 4, reveals larger susceptibilities and lower variability in susceptibilities 
between environmental regimes in ECHAM6-HAM2 than in satellite observations. 



 
Page 12 lines 34-35. “Also” used twice. Page 13, line 24. New paragraph. 
Both done. 
 
Page 16, lines 8-11. Again, I question this conclusion. Aerosol processing is an important 
part of cloud-aerosol interactions. 
See our response to your comment above. We removed the statement that AOD could be a 
better CCN proxy than AI and only point out the need to investigate the effect of aerosol 
processing on this kind of statistical relationships. 
 
This calls for further research on the effect of aerosol processing when analysing the effects 
of changes in CCN on cloud properties. 
 
  



Anonymous Referee #2 

This work looks at different factors that can affect the AI-LWP relationship, from 
measurement issues such as aerosol humidification to differences in how models represent 
aerosol and cloud processes. The authors find that model processes, such as wet scavenging, 
the use of prognostic drizzle and the representation of cloud processing of aerosol can have a 
significant effect on the AI-LWP susceptibility. They suggest that the susceptibility of LWP 
to dry aerosol properties is a better way to compare models to observations, as long as the 
satellite observations are sampled in a way that can reduce the impact of aerosol 
humidification. They go on to note that the differences between the MODIS and AATSR 
relationships mean that current satellite relationships are problematic for use constraining the 
strength of aerosol-cloud interactions in global models. 
The subject of this paper would be of interest to the readers of Atmospheric Chemistry and 
Physics, looking at observational constraints on aerosol indirect effects in global climate 
models. It provides an useful comparison between model and satellite relationships and I 
think that with a few minor changes/clarifications it would be suitable for publication. 
 
Thank you for your insightful comments and suggestions to improve the manuscript. The 
suggested change in the calculation of the anthropogenic aerosol increase has significantly 
changed ERFaci from ECHAM-HAM2, with unrealistically large values for the humid aerosol 
and therefore further strengthens the arguments for the use of dry aerosol. 
 
Minor points 
P1L23: This is a very long sentence and the meaning is not quite clear 
This sentence was split into three sentences and it was specified what the disagreements 
between the datasets are to make this statement clear. 
 
We further find that the statistical relationships inferred from different satellite sensors 
(AATSR-CAPA vs. MODIS-CERES) as well as from ECHAM6-HAM2 are not always of the 
same sign for the tested environmental conditions. In particular the susceptibility of the liquid 
water path is negative in non-raining scenes for MODIS-CERES but positive for AATSR-
CAPA and ECHAM6-HAM2. Feedback processes like cloud top entrainment that are missing 
or not well represented in the model are therefore not well constraint by the satellite 
observations. 
 
P3L22: While vertical information is nice to have, other studies suggest that it may not be 
required to achieve s good proxy for CCN, both Stier (2016) and Gryspeerdt et al., (2017) find 
that AI is a good proxy for CCN (or is able to diagnose PD-PI CDNC changes), despite being 
vertically integrated. 
We agree that the results of Gryspeerdt et al. (2017) show that AI is a better CCN proxy as 
AOD and that including vertical information is not that beneficial for most analysed models. 
However, Gryspeerdt et al. (2017) used CCN at 1 km altitude compared to column-integrated 
CCN to estimate the impact of vertical information whereas Stier (2016) analysed among 
others correlations between AI and CCN at cloud base. The correlations between AI and CCN 
at cloud base (Fig. 8 in Stier, 2016) are low e.g. in marine stratocumulus regions which are 
important regions for radiative effects of aerosol-cloud interactions. Therefore, we keep the 
original text as is but add results of Gryspeerdt et al. (2017). 
 
Gryspeerdt et al. (2017) showed that including vertical information is beneficial for several 
global aerosol-climate models but these benefits are smaller than using AI instead of AOD as 
a CCN proxy for most analysed models. The simulations by Stier (2016), Gryspeerdt et al. 



(2017) and surface measurements do not account for aerosol processing in clouds, which 
could affect the suitability of these aerosol quantities as CCN proxy. 
 
P3L29: linearly 
Done. 
 
P4L29: Presumably this is for the model, as the MODIS LWP/CDNC can only be calculated 
in daylight for observations 
Indeed. This is now stated explicitly. 
 
… (this is only relevant for ECHAM6-HAM2 as the satellite retrievals are done for daylight 
scenes). 
 
 
P5L26: The MODIS aerosol retrieval is not performed poleward of 60 degrees anyway 
For this reason, we excluded high latitudes from our analysis (high zenith angle, bright 
surfaces). 
 
P7L9: While it may be true that the sensitivities are of a similar magnitude, if the AI 
perturbation has a different magnitude to the AOD perturbation, these two relationships will 
diagnose different changes in albedo. Just because the relationships are a similar magnitude 
does not mean they are interchangeable. 
Thank you for this excellent point. We recomputed the ERFaci estimates using the 
anthropogenic aerosol increase calculated from AI and the ERFaci estimates increased 
significantly. We use therefore these new values in the manuscript and added a brief 
discussion of the impact of using AOD or AI for calculating the anthropogenic aerosol 
increase. We also added the comparison to ERFaci diagnosed from model simulations that you 
suggested. The overall conclusions remain valid and the unrealistically large ERFaci values for 
humid aerosol are a further argument for using dry aerosol for this kind of analysis. 
 
Subsection 2.3: 
…, ∆𝑎𝑎𝐴𝐴𝐴𝐴 = 𝑣𝑣𝑙𝑙 𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎ℎ
 represents the anthropogenic aerosol increase (𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑤𝑤ℎ is 

anthropogenic AI), which is taken from reference model simulations (Neubauer et al, 2014) 
for ECHAM6-HAM2. Note that ∆𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴 based upon AOD has been used in several studies (e.g. 
Quaas et al., 2008; Bellouin et al., 2013; Chen et al., 2014) therefore we compute Eq. (14) as 
a sensitivity test also with ∆𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴 instead of ∆𝑎𝑎𝐴𝐴𝐴𝐴. 
 
and: 
 
As a reference forcing for ECHAM6-HAM2, ERFaci was also diagnosed for low liquid clouds 
(cloud top pressures > 500 hPa and cloud top temperatures > 273.15 K) from simulations 
with present day and pre-industrial aerosol emissions. 
 
Subsection 4.2: 
For ECHAM6-HAM2, ERFaci was also diagnosed for low liquid clouds from simulations with 
present day and pre-industrial aerosol emissions. The thus diagnosed forcing of -0.7 W/m2 
serves as a reference for ECHAM6-HAM2. Not including aerosol water in the computation of 
AI leads to a much weaker intrinsic+extrinsic ERFaci in ECHAM6-HAM2 (-0.8 W/m2 for all 
scenes and -1.5 W/m2 for non-raining scenes) in better agreement with the diagnosed 
reference forcing. The estimates of intrinsic+extrinsic ERFaci in ECHAM6-HAM2 when 
aerosol water is included are unrealistically large (-3.5 W/m2 for all scenes and -4.5 W/m2 for 



non-raining scenes) which shows the need to remove aerosol water when computing forcing 
estimates from present day variability. The results in Ghan et al. (2016) show an 
underestimation of cloud optical depth and cloud cover susceptibilities computed from 
present day variability compared to those computed from anthropogenic emissions. Our 
results for ECHAM6-HAM2 show in contrast to this a stronger intrinsic+extrinsic ERFaci 
(based on present day variability) compared to the diagnosed ERFaci (based on 
anthropogenic emissions). A reason for this may be that AI is a vertically integrated quantity 
that does not take the location of aerosol particles in the vertical nor their chemical 
composition into account (Gryspeerdt et al, 2017). 
Not including aerosol water leads to a better agreement of intrinsic ERFaci of ECHAM6-
HAM2 with estimates of AATSR-CAPA and MODIS-CAPA than when aerosol water is 
included but the model still shows considerably larger values of intrinsic ERFaci than the 
satellite estimates. 
 
and: 
The considerably larger estimates of intrinsic+extrinsic ERFaci in ECHAM6-HAM2 when 
aerosol water is included compared to previous studies (e.g. Quaas et al., 2008; Bellouin et 
al., 2013; Chen et al., 2014) are likely due to the use of different variables for the 
anthropogenic aerosol increase (i.e. AOD vs. AI). We recomputed ERFaci using ∆𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴 (17% 
increase in global annual mean from pre-industrial) instead of ∆𝑎𝑎𝐴𝐴𝐴𝐴 (44% increase in global 
annual mean from pre-industrial aerosol). The estimates of intrinsic+extrinsic ERFaci in 
ECHAM6-HAM2 are then much smaller (-1.1 W/m2 for all scenes and -1.2 W/m2 for non-
raining scenes when aerosol water is included and -0.3 W/m2 for all scenes and -0.4 W/m2 for 
non-raining scenes when aerosol water is removed). This shows how important it is which 
variable is used to compute the anthropogenic aerosol increase (as anthropogenic aerosol 
particles are on average smaller than natural aerosol particles). This is in agreement with 
results of Gryspeerdt et al. (2017). A comparison of their Figs. 3a and 3b indicates also much 
weaker values for the anthropogenic aerosol increase computed from AOD than from AI or 
other proxies for the increase in CDNC. 
 
P8L15: ’is an aerosol-climate model ... only the aerosol-climate model part is used.’ - At the 
moment this sentences does not say much, is it missing something? 
The full sentence in the online available discussion paper reads: “ECHAM-HAMMOZ is a 
global aerosol-chemistry climate model of which in this study only the global aerosol-climate 
model part is used.” i.e. the sophisticated chemistry module MOZ is not used in this study. 
 
P9L25: Cloud top pressures less than 500hPa - how are these selected from the model, is a 
satellite simulator used? 
The selection of cloud top pressure > 500 hPa as well as cloud top temperature > 273.15 K is 
done offline from 3-hourly instantaneous output. It is now added. 
 
To focus only on warm, liquid clouds in the analysis, model cloud top pressure and 
temperature (from the 3-hourly instantaneous output) are used to identify low liquid clouds as 
those with cloud top pressures greater than 500 hPa and cloud top temperatures exceeding 
273.15 K. 
 
P10L30: Is this use of Re as a proxy for precipitation dependent on the cloud parametrisation? 
Is it known if the ECHAM parametrisation is theoretically capable of this kind of behaviour? 
These are interesting questions. The autoconversion and accretion parameterizations in 
ECHAM6-HAM2 follow Khairoutdinov and Kogan (2000). Khairoutdinov and Kogan (2000) 
developed their parameterizations for marine stratocumulus clouds using a drop spectrum 



resolving microphysical model. They mentioned though that the autoconversion rate varies 
more than two orders of magnitude when the mean volume radius changes from 7 to 19 µm. 
Although this indicates that the parameterizations in ECHAM6-HAM2 could make the model 
well capable for testing Re as a proxy for precipitation, we nevertheless mention that this 
result may depend on the used parameterizations. 
 
The differences shown in Fig. 2b and Fig. 2c may depend on the parameterizations used for 
precipitation formation (Suzuki et al., 2011) and also the tuning of these parameterizations 
(Suzuki et al., 2013). Further studies (e.g. with high resolution models) will be necessary to 
assess the usability of Re in a global model as a proxy for precipitation or the absence hereof. 
 
P11L10: Presumably this influence of cloud processing could be checked within the model? 
Or if the effect is known, it could be stated more strongly. 
This is also an interesting question but such a check would be not trivial. It would involve 
developing a tracking system of individual (non-raining) clouds, their LWP and CDNC and 
the aerosol inside the cloud droplets over the cloud lifetime. Afterwards the clouds would 
need to be categorized by LWP to be able to analyse the growth of the in-cloud aerosol 
particles. This is beyond the scope of this study. 
It is however known that the in-cloud aerosol size increases by processing in clouds. A 
reference for this was added. 
 
A possible mechanism to explain the negative LWP susceptibilities is the growth of aerosol 
particles in cloud droplets (by collisions of the cloud droplets with interstitial aerosol 
particles and heterogeneous chemistry; Hoose et al. 2008a) and release of the larger aerosol 
particles when the cloud droplets evaporate (as AIdry decreases for larger particles). 
 
P11L14: I am not sure I understand the reasoning here (and this is an important point) as to 
why AODdry is a better proxy than AIdry? AODdry is less sensitive to aerosol size than 
AIdry, but aerosol activation is quite sensitive to aerosol size. 
This statement was ill formulated and subsequently removed. See also our response to the 
comments of Referee #1 (P11L15-16 and P16L8-11). 
 
P11L27: Although the meteorological regimes are a good way to look at this, the split by 
humidity regimes may also confound different cloud or aerosol types. Maps of these 
sensitivities might be useful (at the authors’ discretion) 
The occurrence frequency of the environmental regimes is shown in Fig. 1b and 1c. One can 
see that there is a tendency for moist and dry as well as stable and unstable regimes to occur 
in different geographical regions although there is also some overlap of the regimes. This split 
of the regimes may confound different cloud types and it is also an intention of computing the 
susceptibilities for the different environmental regimes to assess susceptibilities for different 
cloud types (implicitly). Note however that non-raining and raining regimes occur in similar 
geographical regions and should therefore confound similar cloud and aerosol types. We 
focus in our study on the comparison between non-raining and raining regimes. Below are 
maps of the LWP susceptibility to AIdry from ECHAM6-HAM2 (E6_Ref) for the different 
environmental regimes. Note that the values shown in Fig. 4 are weighted averages of the 
susceptibilities on the maps below. The averaging is done over global oceans weighted by the 
occurrence frequency of aerosol-cloud data pairs. 
 
To assess the impact of environmental regimes, susceptibilities averaged over all grid boxes 
of each environmental regime (cf. Fig. 1b,c) are examined in this section. 



 
 

E6_Ref 

(𝒅𝒅 𝐥𝐥𝐥𝐥𝑳𝑳𝑳𝑳𝑳𝑳)/(𝒅𝒅 𝐥𝐥𝐥𝐥𝑨𝑨𝑨𝑨𝒅𝒅𝒅𝒅𝒅𝒅) 

ECHAM6-HAM2(dry) 

non-raining/moist/stable raining/moist/stable 

  

non-raining/moist/unstable raining/moist/unstable 

  

non-raining/dry/stable raining/dry/stable 

  

non-raining/dry/unstable raining/dry/unstable 

 



P11L31: The AI-CDNC relationship is mainly looking at aerosol activation - does wet 
scavenging really affect this, or is the change in the relationship in precipitating scenes 
indicative of differing aerosol types/cloud updraughts? 
The analysis is done for low warm clouds only (cloud top pressures > 500 hPa and cloud top 
temperatures > 273.15 K). Furthermore the non-raining and raining regimes occur in similar 
geographical regions (cf. Fig. 1b,c). Non-raining and raining regimes should therefore 
confound similar cloud and aerosol types although the cloud updraft velocities may be 
different. The updraft velocities may be higher in the raining than in the non-raining scenes. 
This was added to the text. 
 
Part of the differences between raining and non-raining scenes may be due to different 
updraft velocities though, which may be higher in the raining than in the non-raining scenes. 
 
P12L2: based on Fig. 4a, I would have said that the regime variability in ECHAM using 
AIdry is similar, or even larger than the satellite products. 
This was also not well formulated. The main point here was that in the satellite data the sign 
of the susceptibility changes between non-raining and raining regimes whereas in ECHAM6-
HAM2 it is always positive. This has been reformulated. See also our response to your first 
comment (P1L23). 
 
When AIdry is used instead the magnitude of the LWP susceptibility is close to that of AATSR-
CAPA and MODIS-CERES and the variability between environmental regimes in ECHAM6-
HAM2 is similar to AATSR-CAPA. In most regimes, the LWP susceptibility to changes in AI 
or AIdry is larger in the non-raining than in the raining scenes and even negative in some 
regimes in the raining scenes for AATSR-CAPA, similar to the CDNC susceptibility. 
 
and: 
A reason that the effect of entrainment seems not to appear in the non-raining scenes in 
ECHAM6-HAM2 could be that cloud-top entrainment is not well represented in the model. … 
At the coarse vertical resolution of a global climate model numerical artefacts like numerical 
entrainment (Lenderink and Holtslag, 2000) occur and the cloud top cooling that drives the 
turbulence in the boundary layer cannot be computed accurately (Stevens et al., 1999). 
 
P12L19: Is there a way of checking if sampling is the issue here? Are there some situations 
where MODIS/AATSR refuse to retrieve cloud/aerosol properties? 
Sampling is generally not an issue of retrieval failure. The differences are related to: 
1) AATSR samples along the full width of a 512 km swath whereas the MODIS-CERES data 
is along the CloudSat nadir view track 
2) AATSR regional regressions are computed using four individual seasons and then averaged 
together to form the annual mean, while for MODIS-CERES, with its limited samples, 
regressions are computed using all 3.5 years (2006 - 2010) of data. Using this approach gives 
similar values to Lebsock et al. (2008), JGR who split this data into seasons (with worse data 
coverage). 
 
A reason could be the different sampling between AATSR-CAPA and MODIS-CERES where 
AATSR has a longer time series and wider swath. The MODIS-CERES data is along the 
CloudSat nadir view track. 
 
P12L30: Does alpha not depend on the cloud properties to some extent (if not these retrieved 
ones), when computing the fluxes from CERES broad-band radiances? Perhaps this is not a 
significant issue? 



Alpha depends on the surface reflectance, cloud properties (cloud optical thickness and cloud 
effective radius), and solar zenith angle. It can be obtained by measuring the incoming and 
outgoing fluxes using CERES or derived from the cloud optical properties retrieved from 
MODIS. The advantage to CERES observations is that no assumptions are needed regarding 
the surface or cloud characteristics but the downside to this instrument is the coarser spatial 
resolution (20 km) compared to MODIS (1 km). The CERES observations are therefore well 
suited for intrinsic/extrinsic forcing calculations because the only key variables required are 
the fluxes and cloud fraction. Regarding, MODIS-CAPA, the cloud albedo is computed using 
BUGSrad and is accurate to within 5% of CERES (Christensen, M. W., Poulsen, C., 
McGarragh, G., and Grainger, R. G.: Algorithm Theoretical Basis Document (ATBD) of the 
Community Code for CLimate (CC4CL) Broadband Radiative Flux Retrieval (CC4CL-
TOAFLUX) module, ESA Cloud CCI, 1, http://www.esa-cloud-cci.org, 2016b.). 
 
P13L25: Fig. 7a shows drizzle water path, rather than LWP 
Fig. 7b should have been referenced, this was corrected. 
P13L29: This is not true for all relationships (e.g. Gryspeerdt et al., 2017). This might just 
mean that the AI-LWP relationship is not a good proxy for the strength of the aerosol 
influence on LWP. 
We agree that this is not true for all relationships but Ghan et al. (2016) showed that it is true 
for the LWP susceptibility. Therefore, we specified in the text that this is true for several 
susceptibilities such as the LWP susceptibility and also mention that co-varying variables 
might affect the LWP susceptibility as well. 
 
Carslaw et al. (2013) and Ghan et al. (2016) found that present day variability is a poor 
proxy for the change due to anthropogenic aerosol for several susceptibilities such as the 
LWP susceptibility. Our results are similar to their findings as the difference between the 
prognostic and the diagnostic precipitation scheme leads to a weaker LWP response to 
anthropogenic aerosols (Sant et al., 2015) but a stronger LWP response determined by 
present day variability (Fig. 6). Note that co-varying variables might affect the LWP 
susceptibility as well. 
 
P14L16: Could these regions be drawn on the maps (perhaps in fig 1) 
The regions were added to the revised Fig. 1a. 
 



 
 
P15L1: Could these ERFaci values be compared with values determined from the model (PD-
PI simulations)? 
The ERFaci values for low warm clouds only (cloud top pressures > 500 hPa and cloud top 
temperatures > 273.15 K) were diagnosed from simulations with present day and pre-
industrial aerosol emissions and added to the results. See our response to your comment 
P7L9. 
 
P16L20: See earlier comment about model vs. satellite variability (P12L3) 
This was also reformulated to point out that the change in sign of the LWP susceptibility only 
occurs for MODIS-CERES in the non-raining regimes and not for AATSR-CAPA or 
ECHAM6-HAM2. 
 
A differentiation of susceptibilities by different environmental regimes (precipitation, stability 
in the lower troposphere, RH in the lower free troposphere) revealed that AATSR-CAPA, 
MODIS-CERES and ECHAM6-HAM2 not always agree in their dependence on 
environmental regimes. The susceptibility of liquid water path is negative in non-raining 
scenes for MODIS-CERES but positive for AATSR-CAPA (and ECHAM6-HAM2). A negative 
LWP susceptibility in non-raining scenes has been interpreted as cloud top entrainment 
(Chen et al., 2014). Feedback processes such as cloud top entrainment that are missing or not 
well represented in ECHAM6-HAM2 are therefore not well constrained by the satellite 
observations. Further research with multiple satellite aerosol and cloud products could help 
to better understand such feedback processes and provide better constrains for climate 
models. 
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Abstract. Aerosol-cloud interactions (ACI) are uncertain and the estimates of the ACI effective 
radiative forcing (ERFaci) magnitude show a large variability. Within the Aerosol_cci project the 
susceptibility of cloud properties to changes in aerosol properties are derived from the high 
resolution AATSR dataset using the Cloud-Aerosol Pairing Algorithm (CAPA) (as described in our 
companion paper) and compared to susceptibilities from the global aerosol climate model ECHAM6-
HAM2 and MODIS-CERES data. For ECHAM6-HAM2 the dry aerosol is analysed to mimic the effect of 
CAPA. Furthermore the analysis is done for different environmental regimes. 

The aerosol-liquid water path relationship in ECHAM6-HAM2 is systematically stronger than in 
AATSR-CAPA data and cannot be explained by an overestimation of autoconversion when using 
diagnostic precipitation but rather by aerosol swelling in regions where humidity is high and clouds 
are present. When aerosol water is removed from the analysis in ECHAM6-HAM2 the strength of the 
susceptibilities of liquid water path, cloud droplet number concentration and cloud albedo as well as 
ERFaci agree much better with the ones of AATSR-CAPA or MODIS-CERES. For comparing satellite 
derived to model derived susceptibilities this study finds it more appropriate to use dry aerosol in the 
computation of model susceptibilities. 

We further find that while the observedstatistical relationships ofinferred from different satellite 
sensors (AATSR-CAPA vs. MODIS-CERES) as well as from ECHAM6-HAM2 are not always consistentof 
the same sign for the tested environmental conditions the relationships in ECHAM6-HAM2 are 
missing a strong dependence on environmental conditions which. In particular the susceptibility of 
the liquid water path is an indication that feedbacknegative in non-raining scenes for MODIS-CERES 
but positive for AATSR-CAPA and ECHAM6-HAM2. Feedback processes like cloud top entrainment 
that are missing or not well represented in the model are therefore not well constraint by satellite 
observations. 

Next to aerosol swelling, also wet scavenging and aerosol processing have an impact on liquid water 
path, cloud albedo and cloud droplet number susceptibilities. Aerosol processing leads to negative 
liquid water path susceptibilities to changes in aerosol index (AI) in ECHAM6-HAM2, likely due to 
aerosol size changes by aerosol processing. This is an indication that AI is not necessarily a better 
proxy for cloud condensation nuclei than the less size dependent aerosol optical depth. 

Our results indicate that for statistical analysis of aerosol-cloud interactions the unwanted effects of 
aerosol swelling, wet scavenging and aerosol processing need to be minimized when computing 
susceptibilities of cloud variables to changes in aerosol. 



1 Introduction 

Aerosol particles emitted from natural and anthropogenic sources are important for Earth’s climate 
because of their interactions with radiation and clouds. In particular, the uncertainty of aerosol-cloud 
interactions is large (Boucher et al., 2013) and impairs the investigation of historical climate records 
and the prediction of future changes in climate. Several studies revealed differences in the response 
of cloud properties to changes in aerosol optical depth (AOD) in model simulations and satellite 
observations (e. g. Lohmann and Lesins, 2002; Quaas et al., 2009; McComiskey and Feingold, 2012; 
Boucher et al., 2013; Schmidt et al., 2015). These differences can be explained by the growth of 
aerosol particles in the humid environment surrounding clouds (Twohy et al., 2009; Boucher and 
Quaas, 2012), misclassification of partly cloudy satellite pixels as cloud free (cloud contamination), 
brightening of aerosol particles by sunlight reflected at the edge of clouds (3D-effects; Varnái and 
Marshak, 2009), processing of aerosol particles in clouds by nucleation or impact scavenging, 
subsequent growth by heterogeneous chemistry and re-evaporation, wet scavenging of aerosol 
particles in particular in areas of strong precipitation (Grandey et al., 2014; Gryspeerdt et al., 2015), 
by stability/humidity changes due to absorbing aerosol above/near clouds, structural uncertainties 
due to differences in the analysis/observational scale and the process scale (McComiskey and 
Feingold, 2012), or co-variation of aerosol and cloud properties with meteorology (Chen et al., 2014; 
Andersen et al., 2017). Andersen et al. (2016) showed that cloud droplet size sensitivity to aerosol 
loading depends on the magnitude of the aerosol loading and that the magnitude of greatest 
sensitivity is larger for larger total columnar water vapour (with a possible explanation being aerosol 
swelling). Quaas et al. (2010) identified the swelling of aerosols (Zhao et al., 2017) as the most likely 
explanation of the larger cloud cover susceptibility (to AOD) in observations than in models. 
Gryspeerdt et al. (2014) showed that the cloud top height susceptibility is not a direct response to 
aerosol changes but mediated by changes in cloud cover (which as the study by Quaas et al., 2010 
showed is likely due to covariation of relative humidity). To circumvent the covariation of relative 
humidity in the cloud cover susceptibility, Gryspeerdt et al. (2016) use the cloud droplet number 
susceptibility to mediate the cloud cover susceptibility. Thus, cloud cover can only change through a 
change in cloud droplet number concentration. The mediated cloud cover susceptibilities are much 
smaller than the ‘direct’ cloud cover susceptibility, hinting at the large influence of other factors like 
humidity. Bender et al. (2016) used a different approach for analysing albedo-cloud cover 
histograms. Because of the correlation of cloud cover and AOD they subtract for each cloud cover bin 
the mean AOD to obtain the correlation of AOD anomalies to the albedo-cloud cover histograms. 
After the subtraction they find indications that absorbing aerosol influences the cloud albedo in 
Namibian and Canarian Stratocumulus regions. Boucher and Quaas (2012) and Grandey et al. (2014) 
used dry AOD to remove the effect of humidity on the susceptibility of the precipitation rate to 
changes in AOD. Koren et al. (2013) on the other hand showed with basic hygroscopic growth and 
radiative transfer calculations that aerosol swelling alone cannot explain the large difference in AOD 
in polluted and clean conditions. The algorithm applied for the MODIS AOD product that they used 
filters pixels within 1 km of detectable clouds and 25% of the brightest pixels are rejected within each 
10 × 10 km aerosol retrieval box. This should significantly reduce the effect of hygroscopic growth 
and is similar to the minimum distance applied in the Cloud-Aerosol Pairing Algorithm (CAPA) for the 
AATSR and MODIS products in our study. 

The liquid water path (LWP) response to AOD changes also shows a difference between model 
simulations and satellite observations, such that it is in general larger in model simulations than in 
satellite observations (Quaas et al, 2009). Although this difference can be explained by similar 



influences as for the cloud cover susceptibility, it also depends on the ratio (autoconversion rate / 
autoconversion rate + accretion rate) of the processes contributing to precipitation formation in 
global model simulations (Posselt and Lohmann, 2009; Quaas et al, 2009; Gettelman et al., 2015; 
Sant et al., 2015). We investigate the importance of how precipitation formation is simulated with a 
prognostic precipitation scheme using prognostic variables for snow, rain and drizzle (Sant et al., 
2015). Similar to the cloud cover susceptibility, the LWP susceptibility (to aerosol changes) is affected 
by humidity. In the companion paper Christensen et al. (2017) the effects of aerosol swelling, cloud 
contamination and 3D-effects are reduced by using a minimum distance between aerosol and cloud 
observations after screening for contaminated aerosol in the vicinity of clouds. In a global model with 
its coarse resolution a similar approach is not feasible, therefore we evaluate the susceptibilities with 
respect to dry aerosol, which is similar to CAPA in Christensen et al. (2017). By removing the 
overshadowing effect of aerosol swelling in the global aerosol-climate model ECHAM6-HAM2 we can 
also identify other processes influencing the studied susceptibilities. 

For studying aerosol-cloud interactions in observational data a proxy for cloud condensation nuclei 
(CCN) is necessary. Liu and Li (2014) show based on surface measurements show that aerosol index 
(AI) is a better proxy for CCN than AOD and that in situ scattering AI at the surface (i.e. not vertically 
integrated) has the highest correlation to CCN at the surface. Stier (2016) has shown using model 
simulations that vertically resolved measurements of aerosol radiative properties (i.e. as a function 
of altitude) would be necessary to obtain a good CCN proxy for most of the globe. In the absence of 
vertical information AI is considered better as a CCN proxy than AOD due to the higher weight of 
smaller aerosols at larger optical depths (Nakajima et al., 2001). Gryspeerdt et al. (2017) showed that 
including vertical information is beneficial for several global aerosol-climate models but these 
benefits are smaller than using AI instead of AOD as a CCN proxy for most analysed models. The 
simulations by Stier (2016), Gryspeerdt et al. (2017) and surface measurements do not account for 
aerosol processing in clouds, which cancould affect the suitability of these aerosol 
propertiesquantities as CCN proxy. Shinozuka et al. (2015) propose to use the in situ dry extinction 
coefficient and Ångström exponent to parameterize CCN, which accounts for ambient relative 
humidity, vertical information and aerosol size. Interestingly in the parameterization of Shinozuka et 
al. (2015) the CCNs do not increase linearlinearly with the dry extinction coefficient which is an 
indication of growth processes like condensation, coagulation or in-cloud aerosol processing. Aerosol 
particles can activate as CCN, collide and coalesce with cloud droplets and atmospheric gases can be 
taken up by cloud droplets und undergo chemical reactions in the aqueous phase. Aerosol particles 
release by evaporation of cloud droplets or rain drops are larger than before the processing in the 
clouds. We compare simulations with and without aerosol processing in clouds to obtain an 
indication of how aerosol processing affects the suitability of different aerosol properties as proxies 
for CCN.  

In section (2) the methodology is outlined and satellite products and model experiments are 
described in section (3). The results are presented in section (4) and summarized in section (5) where 
also conclusions are drawn. 

2 Methodology 

For a statistical analysis of aerosol-cloud interactions from satellite data, the data from aerosol and 
cloud retrievals need to be paired. The Cloud-Aerosol Pairing Algorithm (CAPA) used here for the 
satellite data is described in subsection 2.1. In a model on the other hand, the model 



parameterizations use the aerosol in a grid box to compute cloud microphysical processes, so the 
aerosol and cloud data in a grid box match each other all the time due to the model 
parameterizations and no further association is necessary. The computation of susceptibilities for the 
paired aerosol and cloud data from satellite products and the model data is described in subsection 
2.2. As a proxy for CCN, the AI is used. AI is computed by multiplying AOD by the Ångström exponent 
(AE). For ECHAM6-HAM2 and the Aerosol_cci products we compute the Ångström exponent from 
AOD at 550 nm and 865 nm (see subsection 2.3). For the Cloud_cci AATSR products the effective 
cloud droplet number concentration (CDNC) is derived. By combining Eqs. (76) and (109) from 
Bennartz (2007) and assuming a cloud fraction=1, 𝑁𝑁𝑑𝑑 can be written as: 

𝐶𝐶𝐴𝐴𝑁𝑁𝐶𝐶 = 1
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COD is cloud optical depth and Re is the cloud top droplet effective radius. Further variables are as 
defined in Bennartz (2007). Bennartz (2007) discusses the contribution of the variables in Eq. (1) to 
the uncertainty in CDNC and find that the three input parameters 𝑄𝑄𝑎𝑎𝑒𝑒𝑤𝑤, 𝑐𝑐𝑊𝑊 and 𝑘𝑘, summarized in γ, 
together only account for about 15% of the total variance in CDNC. Therefore, in the literature often 
a constant value for γ is used. The value for γ in Eq. (2) is from Quaas et al. (2006) derived from 
constants in Brenguier et al. (2000). Eq. (1,2) assume cloud adiabatic growth. Zeng et al. (2014) 
compare CDNC computed from the passive sensor MODIS to CDNC from CALISPO depolarization 
measurements which do not rely on the adiabatic assumption (using 𝐴𝐴𝑎𝑎 from MODIS/PARASOL). In 
regions where clouds grow adiabatic (like stratocumulus regions) the agreement between the two 
methods is reasonable. 

The cloud albedo (𝛼𝛼) of ECHAM6-HAM2 is computed from shortwave fluxes at the top of the 
atmosphere: 

𝛼𝛼 = 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐
𝑢𝑢

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐            (4) 

Where 𝐹𝐹𝑐𝑐𝑎𝑎𝑑𝑑𝑢𝑢  and 𝐹𝐹𝑐𝑐𝑎𝑎𝑑𝑑𝑑𝑑  denote top of the atmosphere up- and downwelling shortwave fluxes in the 
cloudy part of the model grid column. As 𝛼𝛼 is calculated from shortwave fluxes the 𝛼𝛼 susceptibility 
can only be calculated during the day and therefore is computed from fewer aerosol-cloud data pairs 
than the other susceptibilities. (this is only relevant for ECHAM6-HAM2 as the satellite retrievals are 
done for daylight scenes). 

2.1 Cloud-Aerosol Pairing Algorithm (CAPA) 

CAPA applied to pair aerosol and cloud pixels is described in detail in the companion paper 
Christensen et al. (2017). By pairing high resolution retrievals of aerosol and cloud properties CAPA 
aims at minimizing data aggregation effects at coarser resolution (McComiskey and Feingold, 2012) 
and provides sufficient data pairs for significant susceptibilities. To reduce cloud contamination, 3D- 
radiative effects and aerosol swelling, a minimum distance of 15 km is required between the aerosol 
and cloud pixels. 



2.2 Susceptibility computation 

Susceptibilities (𝐴𝐴𝐶𝐶𝐴𝐴𝑦𝑦) are computed at the highest spatial resolution available by linear regression 
over all aerosol-cloud data pairs of a season following Feingold et al. (2003): 

𝐴𝐴𝐶𝐶𝐴𝐴𝑦𝑦 = 𝑑𝑑 ln𝑦𝑦
𝑑𝑑 ln𝑒𝑒

= ∑ (ln 𝑒𝑒𝑖𝑖−ln𝑒𝑒)(ln𝑦𝑦𝑖𝑖−ln𝑦𝑦)𝑎𝑎
𝑖𝑖=1

∑ (ln 𝑒𝑒𝑖𝑖−ln𝑒𝑒)2𝑎𝑎
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       (5) 
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where 𝐴𝐴 is a cloud property like LWP and 𝑥𝑥 is the aerosol property like AI. The natural logarithm of 𝑥𝑥 
and 𝐴𝐴 is used to make the susceptibilities 𝐴𝐴𝐶𝐶𝐴𝐴𝑦𝑦 independent of the units used for 𝑥𝑥 and 𝐴𝐴. We 
require a minimum number of aerosol-cloud data pairs 𝑙𝑙 ≥ 100 for the computation of the linear 
regression (for the 12/18 years of analysed model data; note that the high resolution satellite data 
using CAPA provides many more data pairs). Averages over larger areas and/or longer time spans use 
the weighted mean method by Grandey and Stier (2010). As weights for each grid point the inverse 

of the standard deviation of the linear regression given in Eq. (5) : �𝜎𝜎𝐴𝐴𝐶𝐶𝐴𝐴𝑦𝑦�
−2

 is used in Grandey and 

Stier (2010), which makes the weights approximately proportional to the number of aerosol-cloud 
data pairs 𝑙𝑙 used in the linear regression. As this sigma error weighting could lead to a bias towards 
regions and seasons with low one-sigma error, we use the number of aerosol-cloud data pairs 𝑙𝑙 as 
weights instead: 
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        (8) 

Where 𝑘𝑘 = 1,⋯ ,𝑣𝑣 is the index over all susceptibilities 𝐴𝐴𝐶𝐶𝐴𝐴𝑦𝑦,𝑘𝑘 computed at high resolution (e.g. 1° 
spatial resolution) in a larger region consisting of 𝑣𝑣 high resolution grid areas (see Fig. 1 in Grandey 
and Stier, 2010). Because of the known issues of satellite observations at high zenith angles and over 
bright surfaces (see e.g. Zygmuntowska et al., 2012) high latitudes (> 60°N and > 60°S) have been 
excluded in this analysis. The analysis is done for eight different environmental regimes defined by 
the amount of precipitation, humidity in the free troposphere and stability of the lower troposphere 
and calculated separately for land and ocean. Moist conditions stand for free tropospheric relative 
humidity > 40% and dry for < 40%, stable conditions stand for lower tropospheric stability > 17 K and 
unstable for <17 K. The lower tropospheric stability (LTS) is computed as the difference in potential 
temperature at 700 hPa and the surface: 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜃𝜃700ℎ𝑃𝑃𝑎𝑎 − 𝜃𝜃𝑆𝑆𝑢𝑢𝑎𝑎𝑆𝑆𝑎𝑎𝑐𝑐𝑎𝑎         (9) 

The free tropospheric humidity (RHFT) is defined as the average relative humidity between 850 hPa 
and and 700 hPa: 

𝑅𝑅𝑅𝑅𝐹𝐹𝐹𝐹 = ∑ 𝑅𝑅𝑅𝑅700ℎ𝑃𝑃𝑎𝑎
850ℎ𝑃𝑃𝑎𝑎 /𝑙𝑙𝑎𝑎          (10) 

where nl is the number of levels between 850hPa and 700 hPa. Raining and non-raining scenes are 
either differentiated by model precipitation (smaller or larger 0.5 mm / day), by the CloudSat 



precipitation flag or by using Re of 14 µm as a proxy for precipitation (Rosenfeld et al., 2014), where 
Re > 14 µm is a proxy for raining scenes and Re ≤ 14 µm for non-raining scenes. Fig. 1 shows the 
frequency of occurrence of all environmental regimes. 

Our analysis uses the pixel-scale (1-km spatial resolution) Level 2 Aerosol and Cloud_cci AATSR 
products. Only data points are analysed where (fully overcast) cloud and aerosol pixels can be paired 
using CAPA. The AATSR cloud properties therefore represent in-cloud properties. The ECHAM6-
HAM2 cloud properties are divided by to the low liquid cloud cover (cloud top pressures > 500 hPa 
and cloud top temperatures > 273.15 K) to obtain in-cloud values also for the global model data. The 
computation of mean susceptibilities in Eq. (6) uses the number of aerosol-cloud data pairs 𝑙𝑙 which 
is a subsample of the number of cloudy pixels. The susceptibilities computed by Eq. (6) represent 
therefore grid-mean values (in-cloud 𝐴𝐴𝐶𝐶𝐴𝐴 multiplied by 𝑙𝑙). 

Susceptibilities are computed for each grid area for each season using all available years (e.g. all 
summer seasons during 1995-2012 for the model data, 2002-2012 for AATSR data and 2006-2010 for 
MODIS data). Annual mean susceptibilities are computed as a weighted mean from the seasonal 
susceptibilities. 

ToMultiple linear regression could be used in principle to assess the importance of relative humidity 
on aerosol-cloud susceptibilities multiple linear regression could be used in principle. Due to the non-
linear dependence of AOD and cloud properties on relative humidity, the ambient relative humidity 
would need to be observed with high precision at high-resolution (horizontal and vertical). As such 
high-resolution satellite observations of humidity are not available we use therefore CAPA for AATSR 
products and remove aerosol water from AOD and AI in ECHAM6-HAM2 data. 

2.3 Aerosol index and dry aerosol 

The AI is computed as the product of AOD and the Ångström exponent (𝐴𝐴𝑁𝑁𝐴𝐴; Angstrom, 1964): 

𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴550 × 𝐴𝐴𝑁𝑁𝐴𝐴         (11) 

The Ångström exponent is computed from AOD at 550nm and 865nm: 

𝐴𝐴𝑁𝑁𝐴𝐴 = −(log𝐴𝐴𝐴𝐴𝐴𝐴550/𝐴𝐴𝐴𝐴𝐴𝐴865)/(log 550𝑙𝑙𝑣𝑣/865𝑙𝑙𝑣𝑣)     (12) 

For the dry aerosol properties the water taken up by the aerosol particles is removed: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎      = 𝐴𝐴𝐴𝐴𝐴𝐴 ×
(1 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎/𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) (13) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴550 × (log𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴865/𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴550)/(log 550𝑙𝑙𝑣𝑣/865𝑙𝑙𝑣𝑣)   (14) 

This𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎 is calculated by multiplying 𝐴𝐴𝐴𝐴𝐴𝐴 by the volume fraction of aerosol water 
(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎/𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎). All aerosol particles are assumed to be spherical in this 
calculation. The calculation of dry aerosol properties is done only diagnostically, in the simulations 
the normal AOD including aerosol water is used. 

2.34 Effective radiative forcing 

The effective radiative forcing due to aerosol-cloud interactions (ERFaci) is estimated from the top of 
the atmosphere clear-sky (𝛼𝛼𝑐𝑐𝑎𝑎𝑎𝑎) and 𝛼𝛼 following Chen et al. (2014) and Christensen et al. (2017): 



𝐸𝐸𝑅𝑅𝐹𝐹𝑎𝑎𝑐𝑐𝑎𝑎 = �𝐿𝐿𝐶𝐶𝐶𝐶𝑚𝑚������� � 𝑑𝑑𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑 ln𝐴𝐴𝐴𝐴
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𝑑𝑑 ln𝐴𝐴𝐴𝐴

� − 𝛼𝛼𝑐𝑐𝑎𝑎𝑎𝑎 − 𝛼𝛼����������� 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶
𝑑𝑑 ln𝐴𝐴𝐴𝐴

� ∆𝑎𝑎𝐹𝐹𝑑𝑑∆𝑎𝑎𝐴𝐴𝐴𝐴𝐹𝐹𝑑𝑑    

 (15) 

Where 𝐿𝐿𝐶𝐶𝐶𝐶𝑚𝑚������� is the annual mean low liquid cloud cover,  𝛼𝛼𝑐𝑐𝑎𝑎𝑎𝑎 − 𝛼𝛼����������� is the annual mean shortwave 

clear-sky minus cloud albedo, ∆𝑎𝑎 = ln 𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎ℎ

𝑎𝑎𝐴𝐴𝐴𝐴 = ln 𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎ℎ

 represents the anthropogenic 

aerosol increase (𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑤𝑤ℎ𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑤𝑤ℎ is anthropogenic AODAI), which is taken from Bellouin et al. (2013) 
for AATSR and from reference model simulations (Neubauer et al, 2014) for ECHAM6-HAM2. Note 

that Δa∆aAOD based upon AOD can behas been used because in general 𝑑𝑑𝛼𝛼
𝑑𝑑 ln𝐴𝐴𝐴𝐴𝐴𝐴

~ 𝑑𝑑𝛼𝛼
𝑑𝑑 ln𝐴𝐴𝐴𝐴

.several 

studies (e.g. Quaas et al., 2008; Bellouin et al., 2013; Chen et al., 2014) therefore we compute Eq. 
(14) as a sensitivity test also with ∆aAOD instead of ∆𝑎𝑎𝐴𝐴𝐴𝐴. Fd is the mean incoming solar radiation. The 
methodology of Quaas et al. (2008), separates the total anthropogenic aerosol forcing into the 
increase in CDNC and hence 𝛼𝛼 at constant LWP (first indirect aerosol effect; Twomey, 1974) and a 
remainder that encompasses the changes in cloud cover and LWP (second indirect effect; Albrecht, 
1989) and possible other processes and artefacts. In contrast, this methodology separates the total 
anthropogenic aerosol forcing into the change in cloud cover (called extrinsic forcing) and the 
changes in 𝛼𝛼 where LWP is allowed to change (called intrinsic forcing). 

As a reference forcing for ECHAM6-HAM2, ERFaci was also diagnosed for low liquid clouds (cloud top 
pressures > 500 hPa and cloud top temperatures > 273.15 K) from simulations with present day and 
pre-industrial aerosol emissions. 

3 Satellite products and model experiment description 

3.1 Satellite products 

Data for the environmental conditions is taken for both satellite datasets (AATSR and MODIS) from 
the European Center for Medium range Weather Forecast-AUXiliary analysis (ECMWF-AUX) product. 

3.1.1 AATSR Aerosol_cci/Cloud_cci products 

The susceptibilities for the Advanced Along-Track Scanning Radiometer (AATSR) data have been 
computed with CAPA described in Christensen et al. (2017) from the ESA Aerosol_cci L2 aerosol 
products, ORAC V4.01 which are available at 10x10 km horizontal resolution (Popp et al., 2016) and 
the ESA Cloud_cci L2 cloud products, ORAC V4.01 which are available at 1x1 km horizontal resolution 
(Hollmann et al., 2013). The aerosol and cloud products use a similar optimal estimation algorithm 
(Thomas et al., 2009; Poulsen et al., 2012) and efforts are made within the Aerosol_cci and Cloud_cci 
projects to ensure that consistent cloud masking is used in the products. AOD at 550 and 865 nm, Re, 
cloud LWP, cloud ice water path, cloud optical thickness, cloud top pressure, and cloud top 
temperature are taken directly from Aerosol_cci and Cloud_cci products and from this additional 
variables were derived as described in section 2. Ten years of data from 2002 to 2012 are used for 
computing susceptibilities and forcing estimates. 

3.1.2 MODIS/CERES/CloudSat products 

The A-train satellite products are the same as described in Christensen et al. (2016). The data include 
CloudSat radar data, CERES (Clouds and the Earth’s Radiant Energy System) radiative fluxes and 
Moderate Resolution Imaging Spectroradiometer (MODIS) level 2 (MYD06) cloud and MODIS 



(MYD08) aerosol products. The methodology is following Chen et al. (2014). All sensors were 
matched to the nearest CloudSat footprint. The CloudSat precipitation flag is used to identify raining 
scenes. 

Aerosol data are taken from the gridded MODIS (MYD08) atmospheric product (1° x 1°) which is 
based on the MYD04 aerosol product at 10 x 10 km. For the MYD04 aerosol product only those 
retrieved pixels at 1 x 1 km are used that are considered cloud-free (elimination of spatially 
inhomogeneous 3x3 pixel groups and of the darkest and brightest 25% of pixels within 10 km x 10 km 
boxes; Remer et al., 2005) in averaging to 10 x 10 km resolution to limit cloud contamination. Data 
for 2006-2010 was used for comparability with Chen et al. (2014). For the sake of brevity these 
products are referred to as MODIS-CERES (note that the MODIS-CERES forcing data are taken from 
Chen et al., 2014). 

3.2 ECHAM6-HAM2 experiments 

3.2.1 Model description 

ECHAM-HAMMOZ is a global aerosol-chemistry climate model of which in this study only the global 
aerosol-climate model part is used. Two versions of ECHAM-HAM are used because they have 
different options to treat aerosol-cloud interactions. ECHAM6.1-HAM2.2 (Neubauer et al., 2014), for 
the sake of brevity referred to as ECHAM6-HAM2, consists of the general circulation model ECHAM6 
(Stevens et al., 2013) coupled to the aerosol module HAM2 (Zhang et al., 2012), which includes a 
size-dependent in-cloud scavenging parameterization (Croft et al., 2010). ECHAM5.5-HAM, for the 
sake of brevity referred to as ECHAM5-HAM, consists of the general circulation model ECHAM5 
(Roeckner et al., 2003) coupled to the aerosol module HAM (Stier et al., 2005). Some of the model 
components of ECHAM6-HAM2 and ECHAM5-HAM are similar although in ECHAM6-HAM2 several 
software errors have been fixed. Both model versions use a two-moment cloud microphysics scheme 
which solves prognostic equations for both mass mixing ratios and number concentrations of cloud 
liquid water and cloud ice (Lohmann et al., 2007; Lohmann and Hoose, 2009). The Lin and Leaitch 
(1997) aerosol activation scheme and the Khairoutdinov and Kogan (2000) autoconversion scheme 
are used in both model versions as well. A minimum cloud droplet number concentration of 40/cm3 
is used in ECHAM6-HAM2 and 20/cm3 in ECHAM5-HAM. Also the Tiedtke (1989) convection scheme 
with modifications by Nordeng (1994) for deep convection is used in both model versions. 
FuthermoreFurthermore in both, ECHAM6-HAM2 and ECHAM5-HAM, aerosol effects on convective 
clouds are not included, but there is a dependence of cloud droplets detrained from convective 
clouds on aerosol. In order to facilitate the comparability of the numerical experiments of both 
model versions all simulations were performed with the same resolution, T63 (1.9° × 1.9°) horizontal 
spectral resolution using 31 vertical levels (L31). 

ECHAM6-HAM2 and ECHAM5-HAM use a 1.5 order turbulence closure scheme with a simplified 
prognostic equation for turbulent kinetic energy (TKE) (Brinkop and Roeckner, 1995) to compute 
vertical diffusion (mixing) in the boundary layer. 

In the ECHAM6-HAM2 simulation with aerosol processing in stratiform clouds, the scheme from 
Hoose et al. (2008a, b) is applied in order to extend the seven aerosol modes of HAM2 through an 
explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds. The 
in-cloud aerosol is represented by five tracers for sulphate, black carbon, organic carbon, sea salt and 
mineral dust for each, cloud droplets and ice crystals (see details in Neubauer et al., 2014). Aerosol 



mass transfers to and from theseECHAM-HAM in its standard configuration does not track aerosol 
particles in hydrometeors. In the standard configuration scavenged aerosol particles (by nucleation 
and/or impaction scavenging) are removed from the interstitial aerosol (evaporation of rain or 
sublimation of snow below cloud base release part of the scavenged aerosol particles back to the 
atmosphere though) and sulphate produced by heterogeneous chemistry is added to the interstitial 
aerosol. With the aerosol processing scheme on the other hand, aerosol mass transfers to and from 
in-cloud aerosol tracers by nucleation and impact scavenging, freezing and evaporation of cloud 
droplets, and melting and sublimation of ice crystals are computed explicitly.tracked. These 
processes are computed explicitly. Sulphate produced by heterogeneous chemistry is added to the 
in-cloud sulphate aerosol tracer. Aerosol particles from evaporating/sublimating clouds and 
precipitation are released to the modes that correspond to their size with the aerosol processing 
scheme. 

In the ECHAM5-HAM simulation with prognostic precipitation, the prognostic precipitation scheme 
by Sant et al. (2015), which builds on work by Posselt and Lohmann (2008) and Sant et al. (2013), is 
applied which uses in addition to the standard cloud liquid water and cloud ice classes also rain, 
drizzle and snow. For all five water classes (three liquid, two solid) prognostic equations for both 
mass mixing ratios and number concentrations are solved. 

3.2.2 Experiment description 

The experiment setup follows the guidelines of the AeroCom aerosol-climate model intercomparison 
initiative (http://aerocom.met.no/) Phase III intercomparison on assessing the aerosol indirect effect 
(https://wiki.met.no/aerocom/indirect). The length of the simulations was 18 years (1995–2012) 
after 3 months of spin-up to get enough aerosol-cloud data pairs for significant susceptibilities. 
Present-day (year 2000) greenhouse gas concentrations were used in all simulations. Each 
experiment uses present-day (year 2000) aerosol emissions from the AeroCom Phase II data set 
(ACCMIP by Angelika Heil, Martin Schultz and colleagues; see 
http://aerocom.met.no/emissions.html; Lamarque et al., 2010). The simulations were conducted 
with sea surface temperatures and sea ice cover fixed to observed values (AMIP simulations). In all 
simulations winds and temperatures were nudged towards ERA-Interim (Dee et al., 2011) reanalysis. 
3-hourly instantaneous output is used. The effect of using 3-hourly output and not only output at the 
time of the satellite overpass is discussed in Appendix A. For cloud top values (e.g. CDNC) the 
maximum-random overlap assumption is used to compute 2D-fields. 

To focus only on warm, liquid clouds in the analysis, model cloud top pressure and temperature 
(from the 3-hourly instantaneous output) are used to identify low liquid clouds as those with cloud 
top pressures greater than 500 hPa and cloud top temperatures exceeding 273.15 K. The model 
variables are used for the sampling and environmental regime discrimination for the model data. 
Minimum and maximum values for aerosol and cloud properties are applied to mimic the sensitivity 
of the satellite retrievals and remove unrealistically large values that could influence the linear 
regression (Table 1). The same conditions (cloud type and environmental conditions) on the selection 
criteria are used for the satellite analysis (environmental data was taken from the ECMWF-AUX 
product). 

Four experiments were conducted: a reference simulation with ECHAM5-HAM (E5_Ref), a reference 
simulation with ECHAM6-HAM2 (E6_Ref), a simulation with ECHAM5-HAM and the prognostic 
precipitation scheme (E5_Prog) and a simulation with ECHAM6-HAM2 and the aerosol processing 



scheme (E6_AProc). The E5_Ref and E5_Prog simulations were run for 12 years (2000-2011) as some 
input files for this older ECHAM-HAM version were not available for the years 1995-1999 and 2012. 

4 Results 

4.1 Satellite and model susceptibilities 

4.1.1 Impact of humidity, wet scavenging and aerosol processing 

In Fig. 2a the annual mean susceptibility of the LWP to changes in AI during 1995-2012 between 60°N 
and 60°S is shown. The LWP susceptibility is positive almost everywhere (i.e. an increase in AI leads 
to an increase in LWP and a decrease in AI leads to a decrease in LWP) and the LWP susceptibility is 
relatively largeexceeds 0.5 in many areas. In Fig. 2b the same is shown as in Fig. 2a, only AIdry 
(without aerosol water) was used in the computation of the susceptibility. The effect of removing the 
water uptake by aerosol is immense. Large parts of the globe now show a negative LWP susceptibility 
(an increase in AI leads to a decrease in LWP and a decrease in AI leads to an increase in LWP) when 
AIdry is used. In areas where the LWP susceptibility is positive its magnitude is smaller than in Fig. 2a. 
AI and AIdry are used as a proxy for CCN in the study of aerosol-cloud relationships. AIdry is better 
suited due to the water uptake of aerosol particles in the humid environment close to clouds that 
affects AI and masks the true effects of the aerosol particles. This co-variation with relative humidity 
is accounted forremoved when using AIdry. The comparison between Fig. 2a and Fig. 2b shows that 
the applicability of AI as a CCN proxy is limited by aerosol swelling. Aerosol water uptake in ECHAM6-
HAM2 is large, 66% of the total aerosol mass burden is composed of aerosol water. This is well within 
the range for water uptake of an AeroCom intercomparison study (Textor et al., 2006) where the 
multi model mean and diversity aerosol water mass burden fraction was 48% ± 42% (excluding one 
outlier). 

To further remove the effects of covarying variables, in Fig. 2c the LWP susceptibility to changes in 
AIdry is shown only for non-raining scenes. This minimizes the effect of wet scavenging of aerosol 
particles by precipitation but cannot fully remove it (Gryspeerdt et al., 2015). Clouds with higher LWP 
are more likely to remove aerosol particles by wet scavenging leading to a negative LWP 
susceptibility in particular in regions where heavy precipitation occurs frequently. In Fig. 2c the LWP 
susceptibility is positive almost everywhere except in regions where deep convection and moderate 
and heavy precipitation are frequent, so the negative LWP susceptibilities in Fig. 2b seem to be due 
to wet scavenging. Moderate and heavy precipitation originates predominantly from convective 
clouds in ECHAM6-HAM2 whereas light precipitation comes mainly from stratiform clouds. In Fig. 2c 
the LWP susceptibility of precipitating convective clouds is therefore still largely masked by wet 
scavenging. In Fig. 2a the effect of wet scavenging is not as easily identifiable as in Fig. 2b as the 
effect of aerosol swelling is overshadowing other factors that influence the statistical relationship of 
LWP and aerosol like wet scavenging. In Fig. 2d the same is shown as in Fig. 2c but using a Re ≤ 14 µm 
to identify non-raining scenes. This leads to are more areas where the LWP susceptibility is negative 
than in Fig. 2c though less than in Fig. 2b. The differences between Fig. 2b and Fig. 2c may depend on 
the parameterizations used for precipitation formation (Suzuki et al., 2011) and also the tuning of 
these parameterizations (Suzuki et al., 2013). Further studies (e.g. with high resolution models) will 
be necessary to assess the usability of Re asin a global model as a proxy for precipitation stateor the 
absence hereof. In ECHAM6-HAM2 a Re of 14 µm shows deficiencies as a proxy for precipitation state 
when analysing aerosol-cloud relationships (Stephens et al., (2008) indicate a combination of Re (> 14 



µm for rain) and LWP (> 100 g/m2 for rain) as a proxy for precipitation state as indicated in Stephens 
et al., (2008) but in ECHAM6-HAM2 this gives similar results toas the Re criterion alone in ECHAM6-
HAM2). 

Fig. 2e shows the same as Fig. 2c but for the simulation with processing of aerosol in stratiform 
clouds. The LWP susceptibility is negative almost everywhere in Fig. 2e although only non-raining 
scenes are shown, i.e. the effect of wet scavenging should be minimal. TheA possible mechanism to 
explain the negative LWP susceptibilities can be explained byis the growth of aerosol particles in 
cloud droplets (by collisions of the cloud droplets with interstitial aerosol particles and 
heterogeneous chemistry; Hoose et al. 2008a) and release of the larger aerosol particles when the 
cloud droplets evaporate (as AIdry decreases for larger particles). The larger the LWP (or cloud 
lifetime), the more aerosol may be processed and grow in size in the cloud and therefore lead to 
negative LWP susceptibilities to changes in AIdry. A further indication that the negative LWP 
susceptibility in Fig. 2e is due to the growth of aerosol particles by aerosol processing is that the LWP 
susceptibility to changes in AODdry is positive in most regions (see Fig. 2f) even with aerosol 
processing. AODdry is less sensitive to aerosol size than AIdry so the negative LWP susceptibility 
shown in Fig. 2f2e should represent the direct relationship of rather be due to changes in aerosol and 
LWP and not the effect ofsize than in aerosol processingnumber or mass (for comparison the LWP 
susceptibility to changes in AODdry of E6_Ref (i.e. without aerosol processing) is shown in Fig. 2g). 
This would be an indication that AODdry is a better proxy for CCN than AIdry. It should be noted here 
that ECHAM6-HAM2 overestimates the lifetime of sea salt particles when aerosol processing is used 
(Hoose et al., 2008a) and it uses a modal approach to simulate aerosol size and this may be too 
coarse to well capture the size changes by aerosol processing. Because of these limitations of 
ECHAM6-HAM2 we use both AI/AIdry as a proxies for CCN in this study. Further research for example 
using a bin representation of aerosol size could give further insight of the effect of aerosol processing 
on aerosol-cloud relationships and the usability of AODdry and AIdry as proxies for CCN.interactions.  

In Fig. 2a-e the regions over the oceans, where typically shallow convective clouds are present, show 
a particularly strong LWP susceptibility (positive or negative). In Fig. 2 in-cloud susceptibilities are 
shown andClouds in these regions of high LWP susceptibility clouds are not frequent (see Fig. 11a) so 
these regions do not contribute much to global or regional mean susceptibilities. 

4.1.2 Impact of environmental regimes 

To assess the impact of environmental regimes, susceptibilities averaged over all grid boxes of each 
environmental regime (cf. Fig. 1b,c) are examined in this section. In the weighted averaging only grid 
boxes over the global oceans are taken into account. 

The response of CDNC to changes in AI (dlnCDNC/dlnAI) averaged over the global oceans is shown in 
Fig. 3. For ECHAM6-HAM2 this , AATSR-CAPA and MODIS-CERES the CDNC susceptibility to AI varies 
only little between moist or dry free tropospheric conditions and a stable or unstable lower 
troposphere with regime average values around ~0.3 for AI. For AIdry the. The CDNC susceptibility of 
ECHAM6-HAM2 to AIdry is generally smaller, up to 50% less depending on the regime. TheThe CDNC 
susceptibility of AATSR-CAPA is smaller than for MODIS-CERES or ECHAM6-HAM2 (AI or AIdry). The 
minimum distance of the CAPA-algorithm should reduce the effects of aerosol swelling, cloud 
contamination and 3D radiative effects by selecting aerosols farther away from clouds where these 
satellite artefacts should be minimal. For AATSR-CAPA this seems to lead to a small CDNC 
susceptibility. For ECHAM6-HAM2 and MODIS-CERES the differences between non-raining and 



raining scenes are small and in general the CDNC susceptibility is smaller in the raining scenes than in 
the non-raining scenes which is an indication of wet scavenging affecting aerosol concentrations in 
the raining scenes. For AATSR-CAPA the CDNC susceptibility to AI is smaller in the moist stable 
regime in the raining than in the non-raining and even negative in the other regimes in the raining 
scenes, also indicative of wet scavenging in the raining scenes. Part of the differences between 
raining and non-raining scenes may be due to different updraft velocities though, which may be 
higher in the raining than in the non-raining scenes. 

The response of LWP to changes in AI (dlnLWP/dlnAI)), averaged over the global oceans, shown in 
Fig. 4, reveals again larger susceptibilities and lower variability in susceptibilities between 
environmental regimes in ECHAM6-HAM2 than in satellite observations when AI is used.. When AIdry 
is used instead the magnitude of the LWP susceptibility is close to that of AATSR-CAPA and MODIS-
CERES butand the variability between environmental regimes is still low in ECHAM6-HAM2. A reason 
for the insensitivity to environmental regimes in ECHAM6-HAM2 could be that cloud-top 
entrainment is not well represented in the model. With the TKE scheme used in ECHAM for boundary 
layer mixing it should in principle be possible to compute cloud-top entrainment when a fine vertical 
resolution is used. At the coarse vertical resolution of a GCM numerical artefacts like numerical 
entrainment (Lenderink and Holtslag, 2000) occur and the cloud top cooling that drives the 
turbulence in the boundary layer cannot be computed accurately (Stevens et al., 1999). A better 
representation of cloud-top entrainment could act as a buffering mechanism (Stevens and Feingold, 
2009) and reduce the LWP susceptibility in ECHAM6-HAM2 in unstable and/or dry regimes. Also 
using a prognostic precipitation scheme does not increase the sensitivity to environmental regimes in 
ECHAM5-HAM (not shown). 

In the AATSR-CAPA dataset the variability is similar to ECHAM6-HAM2AATSR-CAPA. In most regimes, 
the LWP susceptibility to changes in AI or AIdry is larger in the non-raining scenes than in the raining 
scenes. and even negative in some regimes in the raining scenes for AATSR-CAPA, similar to the 
CDNC susceptibility. In the non-raining scenes of the MODIS-CERES data the LWP susceptibility to 
changes in AI is negative which could be an indication of cloud-top entrainment. Chen et al. (2014) 
found negative LWP susceptibilities to changes in AI in all environmental regimes for non-raining 
scenes from MODIS-CERES as shown in Fig. 4. They attribute this to entrainment of dry and warm air 
from the free troposphere into the boundary layer due to decreased cloud droplet sedimentation of 
smaller cloud droplets at higher AI. The entrainment is stronger if the free troposphere is drier 
and/or the lower troposphere is more unstable. Although AATSR-CAPA and MODIS-CERES observed 
similar scenes, this effect of entrainment seems not to appear in the non-raining scenes in the 
AATSR-CAPA data. A reason could be the different sampling between AATSR-CAPA and MODIS-CERES 
where AATSR has a longer time series but MODIS has aand wider swath. The MODIS-CERES data is 
along the CloudSat nadir view track. Other differences could be in the retrieval scheme used to 
obtain cloud and the aerosol properties - ORAC which uses an optimal estimation method to acquire 
radiative consistency in the retrieval using all of the channels simultaneously compared to MODIS 
which uses discrete channel selection to retrieve aerosol and cloud properties (King et al., 1998) 
separately. The aerosol retrieval has been validated and evaluated within ESA’s Aerosol_cci project 
and a comparable quality of the AATSR and MODIS aerosol retrievals over ocean has been found 
(Popp et al., 2016). Another reason could be that a Re of 14 µm is not a good proxy for precipitation 
state of AATSR data (see subsection 4.1.1). A reason that the effect of entrainment seems not to 
appear in the non-raining scenes in ECHAM6-HAM2 could be that cloud-top entrainment is not well 
represented in the model. With the TKE scheme used in ECHAM for boundary layer mixing it should 



in principle be possible to compute cloud-top entrainment when a fine vertical resolution is used. At 
the coarse vertical resolution of a global climate model numerical artefacts like numerical 
entrainment (Lenderink and Holtslag, 2000) occur and the cloud top cooling that drives the 
turbulence in the boundary layer cannot be computed accurately (Stevens et al., 1999). A better 
representation of cloud-top entrainment could act as a buffering mechanism (Stevens and Feingold, 
2009) and reduce the LWP susceptibility in ECHAM6-HAM2 in unstable and/or dry regimes. Also 
using a prognostic precipitation scheme does not increase the sensitivity to environmental regimes in 
ECHAM5-HAM (not shown). 

Next to changes in cloud microphysical parameters (CDNC, LWP) it is also interesting to investigate 
the impact of changes in aerosol on a cloud macrophysical parameter like 𝛼𝛼 which is closely related 
to the effective radiative forcing. The uncertainties in 𝛼𝛼 are better known than for other cloud 
parameters as less assumptions are made in its computation from retrieved cloud properties 
(Feingold et al., 2016). The susceptibility of 𝛼𝛼 is weaker than the CDNC or LWP susceptibility to 
changes in AI (AIdry) in both the model and the satellite data (Fig. 5). As for the two other 
susceptibilities, also for the 𝛼𝛼 susceptibility the magnitude of the susceptibility is weaker when 
aerosol water is eliminated from the analysis (AIdry). Also the dependence on environmental regime 
is weak in ECHAM6-HAM2 also for the 𝛼𝛼 susceptibility, except for the susceptibility of 𝛼𝛼 to changes in 
AIdry which is stronger for the unstable than the stable regimes (see Fig. 5). In the raining scenes the 
𝛼𝛼 susceptibility is weaker than in the non-raining scenes or even negative for the moist/stable and 
dry/unstable regimes (Re increases in these regimes in the raining scenes – not shown). This is 
another indication that wet scavenging in the raining scenes affects AI and AIdry and that the 𝛼𝛼 
susceptibility in the raining scenes not only represents the effect of aerosol on clouds but also the 
effect (mediated by precipitation) of clouds on aerosol. 

4.1.3 Impact of prognostic precipitation scheme 

For the evaluation of the impact of a prognostic precipitation scheme on aerosol susceptibilities we 
use the prognostic precipitation scheme developed by Sant et al. (2013), which has recently been 
implemented in ECHAM5-HAM (Sant et al., 2015) and solves prognostic equations for rain, drizzle 
and snow. Compared to conventional prognostic precipitation schemes, the additional drizzle class 
allows to better represent the drop size distribution and the drizzling conditions that often occur in 
marine stratocumulus clouds. Previous studies found a shift of precipitation formation from 
autoconversion to accretion when using a prognostic instead of a diagnostic precipitation scheme, in 
better agreement with observations (Posselt and Lohmann, 2008; Gettelman and Morrison, 2015). 
The change to a prognostic precipitation scheme or an autoconversion scheme that depends less on 
the CDNC results in a smaller effective radiative forcing due to aerosol-radiation and aerosol-cloud 
interactions (ERFari+aci) (Menon et al., 2002; Rotstayn and Liu, 2005, Penner et al., 2006; Posselt and 
Lohmann, 2009; Gettelman et al, 2015) as accretion is independent of the CDNC. Sant et al. (2015) 
also find a strong shift of precipitation formation from autoconversion to accretion and a smaller 
increase of the cloud LWP due to anthropogenic aerosol with their prognostic precipitation scheme. 
ERFari+aci however was stronger in their simulation with the prognostic precipitation scheme than with 
the diagnostic precipitation scheme. In agreement with this increase in ERFari+aci we also find stronger 
susceptibilities in the E5_Prog simulations compared to E5_Ref as shown in Fig. 6 for the LWP 
susceptibility (dlnLWP/dlnAI) for E5_Prog, E5_Ref and E6_Ref. The LWP susceptibility in E5_Prog is 
almost twice as large as in E5_Ref for many environmental regimes for both non-raining and raining 



scenes. E5_Prog and E5_Ref only differ by the precipitation scheme, in particular the autoconversion 
parameterization, but the model’s tuning parameters are the same.  

A similar increase occurs for other susceptibilities (not shown). There are two reasons for this. First 
the LWP in stratocumulus regions is higher in E5_Prog than in E5_Ref (Fig. 7a7b) because of the 
change of rain (E5_Ref) to drizzle (E5_Prog) in these regions. The increased LWP in E5_Prog (and the 
increased variability in LWP), seem to increase the (present day) LWP susceptibility in these regions. 
This is in contrast to the smaller increase of LWP due to anthropogenic aerosol reported in Sant et al. 
(2015), who computed this increase from simulations with present day versus pre-industrial aerosol. 
Carslaw et al. (2013) and in a recent study Ghan et al. (2016) found that present day variability is a 
poor proxy for the change due to anthropogenic aerosol. Our results corroborate these for several 
susceptibilities such as the LWP susceptibility. Our results are similar to their findings as the 
difference between the prognostic and the diagnostic precipitation scheme leads to a weaker LWP 
response to anthropogenic aerosolaerosols (Sant et al., 2015) but a stronger LWP response 
determined by present day variability (Fig. 6).6). Note that co-varying variables might affect the LWP 
susceptibility as well. The other reason for the stronger response of LWP to AI is that AI is larger in 
E5_Prog than in E5_Ref over the oceans. This leads to a general increase of the susceptibilities. 
Because AOD is more closely related to the aerosol mass whereas AI also takes into account the 
aerosol size, it is instructive to compare AOD and AI in E5_Prog and E5_Ref as it gives an indication 
whether smaller or larger particles are removed more efficiently by the different precipitation 
schemes. The AOD is smaller in E5_Prog than in E5_Ref whereas AI is larger over the oceans in 
E5_Prog than in E5_Ref (in the global mean AI is similar in E5_Prog and E5_Ref). The prognostic 
precipitation scheme therefore seems to remove more efficiently larger aerosol particles than the 
diagnostic precipitation scheme. 

These differences in LWP and AI between the simulations have a strong impact on the computed 
susceptibilities. Global observations with a low uncertainty would be necessary to constrain the 
simulated LWP and AI. Current satellite observations of LWP and AI (e.g. MODIS, AATSR) show 
considerable differences. Without more observations to better constrain LWP (or other cloud 
properties) and AI it is not clear which present day simulation (E5_Prog, E5_Ref, E6_Ref) is most 
realistic and which susceptibilities computed from these simulations (E5_Prog, E5_Ref, E6_Ref) are 
moremost realistic.  

4.1.4 Impact of analysed region 

Because buffering effects of aerosol-cloud interactions can depend on cloud type (Stevens and 
Feingold, 2009; Christensen et al., 2016) and some areas are affected by wet scavenging also in the 
non-raining scenes (see Fig. 2c), we compute next to global mean values (between 60°N and 60°S; 
ocean only) also mean values for two stratocumulus regions. The Californian stratocumulus region in 
the Northeast Pacific (15-55°N, 100-155°W) and the Peruvian stratocumulus region in the Southeast 
Pacific (10-45°S, 70-130°W), ocean only, are investigated. (see Fig. 1a). These are two regions where 
low liquid clouds and stable environmental regimes are frequent (see Fig. 1) and they are in general 
less affected by wet scavenging than regions in the tropics (see Fig. 1c). In Fig. 8 the 𝛼𝛼 susceptibility is 
shown for both stratocumulus regions and all eight environmental regimes. The 𝛼𝛼 susceptibilities of 
the Californian stratocumulus region are similar to the global 𝛼𝛼 susceptibilities in Fig. 5, whereas in 
the Peruvian stratocumulus region they are somewhat stronger for ECHAM6-HAM2. For AATSR-CAPA 
the 𝛼𝛼 susceptibilities are stronger in both stratocumulus regions than globally, whereas for MODIS-



CERES the 𝛼𝛼 susceptibilities are similar in both stratocumulus regions and globally. Overall the 𝛼𝛼 
susceptibilities in the different analysed regions are qualitatively similar. The previous findings that 
the susceptibilities are weaker in the raining scenes than in the non-raining scenes and that ECHAM6-
HAM2 shows otherwise no strong dependence on environmental regime are qualitatively the same 
in the two stratocumulus regions. Similar results were found for the susceptibilities of other cloud 
properties (not shown). Restricting the analysis to low liquid clouds and the differentiation by 
environmental regimes seems therefore to be sufficient to separate different cloud types and the 
differentiation between raining and non-raining scenes seems to minimize the effect of wet 
scavenging for the non-raining scenes. 

4.2 Effective radiative forcing 

From the susceptibility of 𝛼𝛼 to changes in AI the ERFaci can be estimated. Fig. 9 shows estimates of 
ERFaci for the low liquid clouds over global oceans analysed in this study. Not including aerosol water 
in the computation of AI leads to a much weaker intrinsic ERFaci in ECHAM6-HAM2 in better 
agreement with estimates of AATSR-CAPA and MODIS-CAPA.For ECHAM6-HAM2, ERFaci was also 
diagnosed for low liquid clouds from simulations with present day and pre-industrial aerosol 
emissions. The thus diagnosed forcing of -0.7 W/m2 serves as a reference for ECHAM6-HAM2. Not 
including aerosol water in the computation of AI leads to a much weaker intrinsic+extrinsic ERFaci in 
ECHAM6-HAM2 (-0.8 W/m2 for all scenes and -1.5 W/m2 for non-raining scenes) in better agreement 
with the diagnosed reference forcing. The estimates of intrinsic+extrinsic ERFaci in ECHAM6-HAM2 
when aerosol water is included are unrealistically large (-3.5 W/m2 for all scenes and -4.5 W/m2 for 
non-raining scenes) which shows the need to remove aerosol water when computing forcing 
estimates from present day variability. The results in Ghan et al. (2016) show an underestimation of 
cloud optical depth and cloud cover susceptibilities computed from present day variability compared 
to those computed from anthropogenic emissions. Our results for ECHAM6-HAM2 show in contrast 
to this a stronger intrinsic+extrinsic ERFaci (based on present day variability) compared to the 
diagnosed ERFaci (based on anthropogenic emissions). A reason for this may be that AI is a vertically 
integrated quantity that does not take the location of aerosol particles in the vertical nor 
composition into account (Gryspeerdt et al, 2017). 

Not including aerosol water leads to a better agreement of intrinsic ERFaci of ECHAM6-HAM2 with 
estimates of AATSR-CAPA and MODIS-CAPA than when aerosol water is included but the model still 
shows considerably larger values of intrinsic ERFaci than the satellite estimates. This is an indication of 
missing or not well represented processes in ECHAM6-HAM2 like cloud top entrainment. Intrinsic 
ERFaci is stronger for non-raining scenes compared to the estimate for all scenes because wet 
scavenging of aerosol particles by precipitation is affecting the 𝛼𝛼 susceptibility by removing more 
aerosols from clouds with a higher 𝛼𝛼 (which are more likely to produce more precipitation) and 
thereby wet scavenging can lead to a weaker intrinsic ERFaci estimate. This indicates that the 
(strengthening) effect of aerosol swelling on 𝛼𝛼 susceptibility to changes in aerosol is larger than the 
(weakening) effect of wet scavenging. This makes our best estimate for model intrinsic ERFaci of -01.4 
W/m2 for low liquid clouds over global oceans larger than the satellite data estimates or the 
diagnosed forcing. For most of the satellite data we have only estimates for all scenes but they are 
also likely affected by precipitation (which could even increase the difference in model vs. satellite 
based estimates). Chen et al. (2014) found slightly less negative values of intrinsic ERFaci of MODIS-
CERES data for non-raining scenes than for all scenes. This mismatch in model and satellite ERFaci 



estimates could be ananother indication of missing or not well represented processes in ECHAM6-
HAM2 like cloud top entrainment. 

The estimates for extrinsic ERFaci on the contrary are smaller in ECHAM6-HAM2 than in AATSR-CAPA 
and MODIS-CAPA and are close to zero for the non-raining scene dry aerosol extrinsic ERFaci estimate 
in ECHAM6-HAM2. The changes in cloud cover are affected by aerosol swelling and other artefacts 
though (Quaas et al, 2010). Indeed the extrinsic ERFaci estimates are smaller and even positive for the 
dry aerosol in ECHAM6-HAM2 and also smaller when excluding near cloud aerosol in AATSR-CAPA 
and MODIS-CAPA. Chen et al. (2014) report alsoreported that using a smaller horizontal resolution 
for the analysis than was used in our study for MODIS-CERES leads to a smaller extrinsic ERFaci 
estimate which may be due to a scale problem (McComiskey and Feingold, 2012). 

The considerably larger estimates of intrinsic+extrinsic ERFaci in ECHAM6-HAM2 when aerosol water 
is included compared to previous studies (e.g. Quaas et al., 2008; Bellouin et al., 2013; Chen et al., 
2014) are likely due to the use of different variables for the anthropogenic aerosol increase (i.e. AOD 
vs. AI). We recomputed ERFaci using ∆aAOD (17% increase in global annual mean from pre-industrial 
aerosol) instead of ∆𝑎𝑎𝐴𝐴𝐴𝐴 (44% increase in global annual mean from pre-industrial aerosol). The 
estimates of intrinsic+extrinsic ERFaci in ECHAM6-HAM2 are then much smaller (-1.1 W/m2 for all 
scenes and -1.2 W/m2 for non-raining scenes when aerosol water is included and -0.3 W/m2 for all 
scenes and -0.4 W/m2 for non-raining scenes when aerosol water is removed). This shows how 
important it is which variable is used to compute the anthropogenic aerosol increase (as 
anthropogenic aerosol particles are on average smaller than natural aerosol particles). This is in 
agreement with results of Gryspeerdt et al. (2017). A comparison of their Figs. 3a and 3b indicates 
also much weaker values for the anthropogenic aerosol increase computed from AOD than from AI 
or other proxies for the increase in CDNC. 

5 Summary and conclusions 

It has been recognized in the scientific community that the statistical analysis of aerosol-cloud 
interactions can be affected by artefacts like cloud contamination or 3D-effects, by co-variations with 
relative humidity, by effects of clouds on aerosols like wet scavenging or aerosol processing, by 
absorbing aerosols or by differences in the analysis/observational scale and the process scale. 
Aerosol swelling has further been identified as the most likely reason for the large cloud cover 
susceptibility to changes in aerosol in satellite observations. Whereas the effect of aerosol swelling 
on the cloud cover and precipitation rate susceptibilities and how to minimize it has received 
attention in the literature, the effect on susceptibilities of other cloud variables is less explored. Our 
results with the global aerosol-climate model ECHAM6-HAM2 show that also the LWP and 𝛼𝛼 and to a 
smaller extent also the CDNC susceptibilities to changes in aerosol are affected by aerosol swelling. 
By removing aerosol water (and therefore aerosol water uptake) from the computation of 
susceptibilities, the susceptibilities are considerably reduced and the ‘dry’ susceptibilities agree 
better with those offrom AATSR-CAPA and MODIS-CERES. For AATSR satellite data the effect of 
aerosol swelling is minimized by CAPA with a minimum distance between aerosol and cloud pixel. 
The MODIS AOD algorithm uses also a minimum distance between aerosol and cloud pixels and 
removes 25% of the brightest pixels. Although the hygroscopic growth of aerosolaerosols cannot be 
completely suppressed in the satellite data, due to the because it is non-linearity of hygroscopic 
growthlinear we argue that when comparing to satellite data that minimize aerosol swelling it is 
better to use the dry aerosol offrom model simulations than the wet aerosol including aerosol water. 



Our results show further that next to aerosol swelling, also wet scavenging and aerosol processing 
have an impact on LWP, 𝛼𝛼 and CDNC susceptibilities. A separation in raining and non-raining scenes 
minimized the effect of wet scavenging for the non-raining scenes. For ECHAM6-HAM2 this 
separation was based on model precipitation as Re alone is not a good proxy for precipitation state 
when analysing aerosol-cloud interactions in ECHAM6-HAM2. Aerosol processing leads to negative 
LWP susceptibilities due to changes in AI in ECHAM6-HAM2, likely due to aerosol size changes by 
aerosol processing. The AOD is less dependent on aerosol size. Thus the LWP susceptibility to 
changes in AOD has fewer regions with negative LWP susceptibility even when aerosol processing is 
switched on in ECHAM6-HAM2. This is an indication that AOD, even though it does depend on 
aerosol mass rather than aerosol number, could be a better proxy for CCN than AI. This calls for 
further research on the effect of aerosol processing onwhen analysing the suitabilityeffects of AOD 
and AI as proxies for CCNchanges in CCN on cloud properties. 

A simulation with a prognostic precipitation (rain, drizzle and snow) scheme in ECHAM5-HAM 
showed that the large LWP susceptibility cannot be explained by an overestimation of the CDNC 
dependentoveremphasizing autoconversion. instead of accretion (Sant et al., 2015). While using a 
prognostic precipitation scheme considerably reduces the ratio of autoconverisonautoconversion to 
autoconversion + accretion compared to a diagnostic precipitation scheme, it still leads to a large 
LWP susceptibility because the prognostic drizzle causes higher LWP and AI (variability) in 
stratocumulus regions compared to the diagnostic precipitation scheme. 

A differentiation of susceptibilities by different environmental regimes (precipitation, stability in the 
lower troposphere, RH in the lower free troposphere) revealed that ECHAM6-HAM2 is less sensitive 
to different environmental regimes than AATSR-CAPA or, MODIS-CERES satellite data (although also 
the two satellite datasets do notand ECHAM6-HAM2 not always agree in their dependence on 
environmental regimes).. The lacksusceptibility of sensitivityliquid water path is negative in non-
raining scenes for MODIS-CERES but positive for AATSR-CAPA (and ECHAM6-HAM2 is an indication 
that feedback processes like). A negative LWP susceptibility in non-raining scenes has been 
interpreted as cloud top entrainment (Chen et al., 2014). Feedback processes such as cloud top 
entrainment that are missing or not well represented in the modelECHAM6-HAM2 are therefore not 
well constrained by the satellite observations. Further research with multiple satellite aerosol and 
cloud products could help to better understand such feedback processes and provide better 
constrains for climate models. 
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Appendix 

Sampling effects 

AATSR observations are done at a mean local solar time of 10:30am while for ECHAM6-HAM2 3-
hourly instantaneous data is used. For ECHAM6-HAM2 data therefore the diurnal cycle of clouds and 
aerosol are resolved while AATSR data is always available at the same time. Resolving the diurnal 
cycle or not can potentially lead to a difference in the computed susceptibilities. To estimate the 
effect of the different sampling frequency and lacking temporal collocation (Schutgens et al., 2016) 
we compute the LWP susceptibility to changes in AI of a 17 year ECHAM6-HAM2 simulation one time 
from 3-hourly output and one time from data at 10:30 am, temporally collocated with AATSR. The 
results are shown in Fig. A. The maxima and minima of the LWP susceptibility are more pronounced 
with the 10:30am local time sampling than with the 3-hourly sampling. The general geographical 
pattern and magnitude of the LWP susceptibility is quite similar between the two sampling methods. 
As the global ECHAM6-HAM2 simulations have to use a relatively coarse resolution (T63, 1.9° × 1.9°), 
high temporal sampling is necessary to obtain enough aerosol-cloud data pairs to compute significant 
linear regressions, in particular as we differentiate environmental regimes compute susceptibilities at 
the native model grid to reduce effects of aggregation (Grandey and Stier, 2010; McComiskey and 
Feingold, 2012). As the benefits of the analysis of different environmental regimes with reduced 
aggregation effects outweighs the difference due to resolving the diurnal cycle or not and lack of 
temporal collocation, we have chosen the 3-hourly instantaneous data for our analysis. 
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Table 1. Minimum and maximum values for aerosol and cloud properties used in this study. AOD is 
aerosol optical depth, AI is aerosol index, CDNC is cloud droplet number concentration, LWP is liquid 
water path, COD is cloud optical depth, Re is cloud droplet effective radius. CDNC and Re are cloud 
top values. 

 

Variable Minimum value Maximum value 
AOD 0.01 1 
AI 0.02 0.6 
CDNC (#/cm3) 1 1000 
LWP (g/ m2) 1 1000 
COD 0.1 300 
Re (µm) 1 50 
 

  



  

Figure 1: Average frequency of the occurrence of low liquid clouds (cloud top pressure > 500 hPa, 
cloud top temperature > 273.15 K) in E6_Ref between 1995 and 2012 in a) for all environmental 
regimes together, b) for non-raining regimes, c) for raining regimes. In a) are also the two 
stratocumulus regions shown where the impact of the analysed regions is assessed. 

a) b) 

c) 



 

 

Figure 2: Susceptibility of LWP to changes in AI or AOD for ECHAM6-HAM2 (E6_Ref and E6_AProc) when 
low liquid clouds and aerosol are present during the simulation period 1995-2012 between 60°N and 60°S. a) 
response in E6_Ref to AI for all scenes, b) the same as in a) but for dry AI, c) same as in b) but only for non-
raining scenes (precipitation < 0.5 mm/day), d) same as in c) but with a different definition for non-raining 
scenes (Re < 14 µm), e) same as in c) but for E6_AProc, f) same as in e) but for dry AOD instead of dry AI, g) 
same as in f) but for E6_Ref. 

 



 

 

 

 

 

 

Figure 3: Susceptibility of CDNC to changes in AI for ECHAM6-HAM2 (E6_Ref), E6_Ref without aerosol 
water uptake (dry) during 1995-2012, for AATSR-CAPA using the full satellite record span 2002-2012 and for 
MODIS-CERES during 2006-2010. The definition of the different environmental regimes is given in the text. a) 
For all non-raining scenes, b) for all raining scenes. Only values averaged over global oceans are shown. The 
MODIS-CERES data is from Christensen et al. (2016). 
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Figure 4: Same as Fig. 3 but for the LWP susceptibility to changes in AI for ECHAM6-HAM2 (E6_Ref), 
E6_Ref without aerosol water uptake (dry), AATSR-CAPA and MODIS-CERES. The MODIS-CERES data is 
from Christensen et al. (2016). 
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Figure 5: Same as Fig. 3 but for the shortwave cloud albedo susceptibility to changes in AI for ECHAM6-
HAM2 (E6_Ref), E6_Ref without aerosol water uptake (dry), AATSR-CAPA and MODIS-CERES. The 
MODIS-CERES data is from Christensen et al. (2016). 
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Figure 6: Same as Fig. 3 but for the LWP susceptibility to changes in AI for E5_Prog, E5_Ref and E6_Ref. 
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Figure 7: a) Annual mean ratio of drizzle water path to the sum of drizzle and rain water path for the E5_Prog 
simulation. The difference between E5_Prog and E5_Ref for 12 years of simulations (2000-2011) b) LWP, c) 
AI, d) AOD. a) and b) include precipitation and LWP from all clouds not only low liquid clouds, c) and d) 
include cloudy and cloud-free scenes. 
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Figure 8: Same as Fig. 5 but for the shortwave cloud albedo susceptibility to changes in AI for ECHAM6-
HAM2 (E6_Ref), E6_Ref without aerosol water uptake (dry), AATSR-CAPA and MODIS-CERES in the (a,b) 
Californian and (c,d) Peruvian stratocumulus regions. Not enough aerosol-cloud data pairs are available in the 
stratocumulus regions that the linear regression is significant for the dry/unstable regimes in ECHAM6-HAM2 
except for the non-raining scenes in the Peruvian region. The MODIS-CERES data is from Christensen et al. 
(2016). 
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Figure 9: Estimate of a) intrinsic and b) extrinsic effective radiative forcing due to aerosol-cloud interactions 
(ERFaci) of low liquid clouds between 60°N and 60°S. For ECHAM6-HAM2 separate estimates for all scenes 
and non-raining scenes (< 0.5 mm / day) as well as with/without aerosol water uptake (dry aerosol) are shown. 
For AATSR-CAPA and MODIS-CAPA estimates with all aerosol particles (L2/L3) and excluding near cloud 
aerosol particles (L2_15km/L3_Corr.) are shown. Only values averaged over global oceans are shown. The 
AATSR-CAPA and MODIS-CAPA forcing data are from Christensen et al. (2017). Note that the values for 
MODIS-CAPA/MODIS-L3/MODIS-L3_Corr. are computed from three months of data for June, July and 
August 2008 only. The MODIS-CERES forcing data are from Chen et al. (2014). The uncertainty is based on the 
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standard error of the linear regression. Light blue bars are used for all scenes with aerosol water uptake or 
including near cloud aerosol particles. Green bars indicate removal of aerosol water or near cloud aerosol 
particles. Dark bar colours are used for non-raining scenes. 

  



 

 

 

Figure A: LWP response to changes in AI for ECHAM6-HAM2 (1995-2011). a) For 3-hourly sampling, b) for 
daily (10:30am local time) sampling. 
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