1	Electronic Supplementary Materials for
2	
3	Atmospheric organochlorine pesticides and polychlorinated biphenyls in urban areas of
4	Nepal: spatial variation, sources, temporal trends and long range transport potential
5	
6	
7	Balram Pokhrel ^{1,5,4} , Ping Gong ^{1,2} , Xiaoping Wang ^{*1,2,5} , Sanjay Nath Khanal [*] ,
8	Jiao Ren ^{1,3} , Chuanfei Wang ^{1,2} , Shaopeng Gao ¹ , Tandong Yao ^{1,2}
9 10	
11	1 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of
12	Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
13	2 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
14	3 University of Chinese Academy of Sciences, Beijing 100049, China School of Science
15	4 Kathmandu University, Dhulikhel, Nepal
16	
17	
18	* Corresponding author.
19	(X. Wang)
20	E-mail: wangxp@itpcas.ac.cn
21	Tel: +86-10-84097120
22	Fax: +86-10-84097079
23	

Text SI-1	Description about the Study area	Page 4
Figure SI-1	Wind field of over Nepal; a. Indian monsoon (June to September) b.	Page 5
	Winter (October to January)	
Figure SI-2	Monthly average precipitation (a) and temperature variation (b) in different cities	Page 6
Table SI-1	Details of PUF-PAS sampling sites in the three major cities of Nepal	Page 7
Table SI-2	PUF-PAS sampling time	Page 8
Text SI-2	Chemical cleanup procedure	Page 8
Text SI-3	Details about the gas chromatography temperature program	Page 8
Table SI-3	Data of Field blanks and Method detection limits (MDL) ng/PAS	Page 9
Text SI-4	Details about PUF-disk and Sampling rate	Page 10
Table SI-4	Site specific sampling rate	Page 11
Table SI-5a	Site specific concentrations (pg/m3) of OCPs in different urban sites of Kathmandu	Page 12
Table SI-5b	Site specific concentrations (pg/m3) of OCPs in different urban sites of Pokhara	Page 14
Table SI-5c	Site specific concentrations (pg/m3) of OCPs in different urban sites of Hetauda	Page 17
Table SI-6a	Site specific concentrations (pg/m3) of PCBs in different urban sites of Kathmandu	Page 18
Table SI-6b	Site specific concentrations (pg/m3) of PCBs in different urban sites of Pokhara	Page 20
Table SI-6c	Site specific concentrations (pg/m3) of OCPs in different urban sites of Hetauda	Page 22
Table SI-7	Comparison of current levels (pg/m ³) of various POPs with different tropical/subtropical urban sites	Page 23
Table SI-8	Range and average (pg/m3) with Highest to lowest concentration ratio (H/L) of different isomers/congeners	Page 24
Figure SI-3	Box and whisker plot to show distribution of different isomers of DDT and its metabolites in Kathmandu, Pokhara and Hetauda	Page 25
Figure SI-4	Isomers/ metabolites ratios of selected OCPs to predict source type	Page 25
Figure SI-5	Box and whisker plot to show distribution of different isomers of HCH and endosulfan in Kathmandu, Pokhara and Hetauda	Page 26
Figure SI-6	Box and whisker plot to show distribution of different congeners of PCBs in Kathmandu, Pokhara and Hetauda	Page 26
Table SI-9	P-values (one-way ANOVA) for significant variation in levels of different POPs in different sites	Page 27
Table SI-10	Significant differences (P<0.05, Tukey's Test) in OCPs concentrations among the sites in Kathmandu	Page 28
Table SI-11	Significant differences (P<0.05, Tukey's post hocTest) in OCPs concentrations among the sites in Hetauda	Page 28
Figure SI-7	Atmospheric level of OCPs in different land cover types in Pokhara; (P1-Cropland; P2-Vegetable production and Market area; P3- Industrial area; and P4- Tourist place)	Page 29
Figure SI-8	Atmospheric level of OCPs in different land cover types in Hetauda; (H1- Crop Land; H2-Vegetable production/residential area; H3-	Page 30

	Industrial area)	
Figure SI-9	Seasonality of DDTs and HCHs in Kathmandu city (K1: Cropland,	Page 31
	K3: Industrial area, K4: Tourist area, K5: Residential area, K6: mix	
	of farm land and industrial area)	
Figure SI-10	Seasonality of DDTs and HCHs in Pokhara city (P1: Cropland, P3:	Page 32
_	Industrial area, P4: Tourist area)	_
Figure SI-11	Seasonality of DDTs and HCHs in Hetauda (H1: Cropland, H3:	Page 33
_	Industrial area)	_
Figure SI-12	Seasonal variation of HCB in 3 cities of Nepal	Page 34
Text SI-5	Estimation of Long range transport potential	Page 35
Table SI-12	Temperature dependent Henry's law constant and vapor pressure	Page 36
	with Rate constant of hydroxyl radical reaction at 25° C	
Table SI-13	Calculated values of degradation and deposition rates (s ⁻¹) based on	Page 37
	field temperature and precipitation	_
Table SI-14	Comparison of characteristic travel distance (CTD) km, in current	Page 39
	study areas with global and other specified regions	_
Text SI-6	Uncertainties of CTD	Page 40
Text SI-7	Generation of forward trajectories	Page 40
Figure SI-13	Clusters of forward trajectories	Page 40
References		Page 41

26 Text SI-1. Description about the Study area

27

Kathmandu (1350m asl) located in mountain valley is the capital city of Nepal, with very dense 28 population (an area of 642 sq. km, population =2.5 million,). Agriculture, industry (instant food, 29 30 clothes, bricks), and tourism are the major economy of Kathmandu. Pokhara (750-1050m asl) is second largest city after Kathmandu, covering an area of 225 sq. km with a population of 0.3 31 32 million. Hetauda (100m) is relatively small with 135,475 populations. Different from Kathmandu, Pokhara and Hetauda are agricultural cities, with large area of crop and vegetable production 33 34 place and market. Climate of these 3 cities are commonly influenced by the Indian monsoon in summer and westerlies (south branch) in winter. Summer is warm and wet particularly in July-35 August but winter is dry and cold. Among the cities, Hetauda is warmest followed by Pokhara 36 and Kathmandu, whereas annual rainfall follows the order Pokhara (~3900mm) >Hetauda 37 (~2250mm) > Kathmandu (1450mm). 38

Figure SI-1. Wind field of over Nepal; a. Indian monsoon (June to September) b. Winter
 (October to January)

59 Figure SI-2. Monthly average of (a) precipitation and (b) temperature variation in 3 cities of

60 Nepal

61 Table SI-1. Details of PUF-PAS sampling sites in the three major cities of Nepal

r	2
b	z

PAS	Land type	Latitude N	Longitude E	Altitude	Site description
			Kathma	undu (27° 4	42'N; 85° 18'E)
K1	Cropland	27°36' 38.92''	85°21' 30.79''	1433	Sub-urban site, south of the Kathmandu valley, produce maize, rice
K2	Market area	27°42' 12.42''	85°18' 38.34''	1311	Major vegetable market of the capital city
K3	Industrial area	27°43' 53.69''	85°17' 54.28''	1315	Industrial area in the north of Kathmandu city
K4	Tourist	27°42' 35.68''	85°20'43.87''	1318	A famous religious place for Hindu people, one of UNESCO-world heritage site
K5	Residential	27°41' 13.45''	85°18' 8.71"	1293	Residential area in Kathmandu
K6	Farm/Industrial	27°40' 12.11''	85°25' 31.73''	1348	Eastern part of Kathmandu valley, mix of farm land and industrial plants
			Pokh	ara (28°15	'N; 83°58'E)
P1	Cropland	28°16'52.51"	83°55'44.17''	1065	Suburban region, famous for maize, paddy production
P2	Vegetable production area (market)	28°13'39.01"	83°58'56.18''	871	Major market area on one side, vegetable production area on the other side
P3	Industrial area	28°12'51.39"	84°00'37.58''	813	Industrial area for making chocolate and noodles
P4	Tourist place	28°12'47.35"	83°57'41.88''	781	East bank of Phewa lake, a famous tourist destination
			Heta	uda (27°25	'N; 85°02'E)
H1	Cropland	27 °23'26.88''	85 02'38.64''	512	A rural village with seasonal farming mostly rice, wheat and mustard
H2	Vegetable production area	27 °25'8.40''	85 02'28.20"	459	Vegetable production area and market, mainly for commercial purpose
H3	Industrial area	27 °24'6.78''	85 °01'32.34''	436	Industrial area for instant food

66 Table SI-2. PUF-PAS sampling time

Ka	thmandu and Pokhara (2014-08		He taunda (2015-11 to 201	6-11) 68	
SN	Period	total days	SN	Period	total days
1	2014-08-19 to 2014-10-12	55	1	2015-11-06 to 2016-01-06	62
2	2014-10-12 to 2014-12-11	61	2	2016-01-06 to 2016-03-05	59
3	2014-12-11 to 2015-02-03	65	3	2016-03-05 to 2016-05-07	64
4	2015-02-03 to 2015- 04-18	65	4	2016-05-07 to 2016-07-09	63
5	2015-04-18 to 2015-06-16	57	5	2016-07-09 to 2016-09-10	63
6	2015-06-13 to 2015-08-15	64	6	2016-09-10 to 2016-11-10	62

69 Text SI-2. Chemical cleanup procedure

70

Each extract was concentrated using rotary evaporator and solvent exchanged to hexane. The concentrated extract was loaded on the top of a chromatography column (from the top to bottom: 1 cm of anhydrous Na₂SO₄, 2g activated alumina, and 3g activated silica gel), and eluted with 30 mL mixture of DCM and hexane (1:1). The volume of eluate was reduced under gentle stream of high purity nitrogen to about 1ml and added 20 μ l internal standard containing a known quantity of pentachloronitrobenzene (PCNB) and decachlorobiphenyl (PCB-209). Finally, the volume was reduced to 100 μ l under gentle stream of nitrogen before analysis.

78 Text SI-3. Details about the gas chromatography temperature program

79

Helium was used as the carrier gas at 1 mL min⁻¹ under constant-flow mode. The oven temperature began at 100 °C for 2 min, ramped up at a rate of 20 °C min⁻¹ to 140 °C, at 4 °C min⁻¹ to 200 °C (10 min hold time), then at 4 °C min⁻¹ to 310 °C and held for 5 min.

		Kath	mandu				Pokhara			Hetauda		MDL*			
	Kfb-1	Kfb-2	Kfb-3	Kfb-4	Kfb-5	Pfb-1	Pfb-2	Pfb-3	Hfb-1	Hfb-2	Hfb-3	Ktm	Pkr	Het	
o,p'-DDT	0.14	ND	ND	ND	ND	ND	ND	0.01	ND	ND	ND	0.11	0.01	0.01	
p,p'-DDT	0.02	ND	ND	ND	ND	ND	ND	0.06	0.02	0.01	0.01	0.02	0.06	0.02	
o,p'-DDE	0.17	ND	ND	ND	ND	ND	ND	ND	0.02	0.01	0.02	0.14	0.18	0.03	
p,p'-DDE	1.53	ND	ND	0.01	0.03	0.02	0.04	0.06	0.02	0.01	0.01	1.27	0.06	0.03	
o,p'-DDD	ND	ND	ND	ND	ND	0.22	0.22	0.01							
p,p'-DDD	ND	ND	ND	ND	ND	0.03	0.03	0.01							
α -HCH	0.05	ND	ND	0.01	0.02	0.02	0.01	ND	0.02	0.07	ND	0.04	0.02	0.13	
β -HCH	0.31	0.11	ND	0.06	0.02	0.06	0.04	0.04	ND	ND	ND	0.27	0.07	0.22	
γ -HCH	0.19	ND	ND	0.01	0.06	0.03	0.01	0.01	ND	0.01	0.02	0.16	0.03	0.01	
δ -HCH	0.02	ND	0	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.01	0.03	
HCB	0.3	0.08	0.04	0.1	0.18	0.3	0.06	0.08	0.06	0.13	0.04	0.48	0.51	0.51	
a-endo	0.09	0.02	ND	ND	0.03	ND	ND	ND	ND	ND	0.02	0.08	0.06	0.06	
β-endo	1.61	ND	ND	ND	ND	0.08	ND	ND	0.05	ND	0.19	1.34	0.07	0.07	
Hept	ND	ND	ND	ND	ND	0.12	0.12	0.12							
Hepx	ND	ND	ND	ND	ND	0.11	0.11	0.11							
PCB-28	0.05	ND	ND	0.01	0.01	0.01	ND	0.01	ND	ND	ND	0.04	0.02	0.02	
PCB-52	ND	ND	ND	ND	ND	0.08	0.08	0.08							
PCB-101	0.07	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.35	0.11	0.11	0.11	
PCB-153	ND	ND	ND	ND	0.06	0.11	0.11	0.11							
PCB-138	ND	ND	ND	ND	ND	0.08	0.08	0.08							
PCB-180	ND	ND	ND	ND	0.01	0.13	0.13	0.13							

Table SI-3. Data of Field blanks and Method detection limits (MDL) ng/PAS
 85

86 *MDL Method detection limit

87 Text SI-4. Details about PUF-disk and Sampling rate

88 a. Sample holder and sampler

89 **Dimensions of PUF-Disks:**

90 Polyurethane foam disk used for air sampling had the following dimensions: Diameter (d) = 135.5

91 cm, thickness (h) = 1.3 cm; mass (m) = 3.78 g; area (A) = 341.4 cm² (ND34 m²); Volume (V) =

92 186.1 cm³ (ND00186 m³); Density (δ) = 20305.6 g/m³.

- 93 A chamber to house the PUF-disk was prepared connecting two stainless steel bowls by means of
- hinges and a lock. It was so designed that it would protect the PUF-disk from direct precipitation,
- sunlight and course particle deposition and allow ambient air to pass the through chamber from
- the gap between bowls and small holes at the base of bottom bowl. This design of chamber has
 been successfully calibrated and used in numerous previous studies (Shoeib & Harner, 2002a;
- 98 Harner et al., 2004; Pozo et al., 2006; Harner et al., 2006). PUF disks samplers were pre-cleaned
- by Soxhlet extraction using dichloromethane (DCM) for 24 h and dried for 24h in a clean
- 100 desiccator under reduced pressure. Before sending for field deployment, the PUF-disks were
- spiked with four performance reference compounds (PRCs, PCB-30, -54, -104, -188), that were
- used to determine the site-specific sampling rates (Pozo et al., 2009). After applying DCs, each
- 103 PUF-disks was wrapped with clean aluminum foil packed into a plastic bag and stored in a tin 104 container. Five field blanks for Kathmandu, 3 for Pokhara and 3 for Hetauda were prepared to
- 105 inspect the possible contamination during handling, storage, and transport.

106 b. Calculation of Sampling Rate "R"

107 To assess the site specific sampling rates, PRCs were added to each PUF disks prior to their 108 deployment. Loss of DCs during sampling period was quantified based on individual recoveries. 109 Ideally, recoveries between 20 and 80% of their initial amount would indicate the linear sampling

of individual PAS. This requires DCs with a wide range of octanol-air partition coefficients (K_{OA}).

- By measuring the loss of DCs during sampling period site-specific air sampling rate 'R' can be
- estimated using the following relationship given by Moeckel et al., (2009)

113
$$R = \frac{-ln\left(\frac{C_{DC}^{corr}}{C_{DC,0}}\right).K_{PAS - A}.\rho_{PAS}.V}{t}$$
(1)

114
$$C_{DC}$$

115 With
$$C_{DC}^{corr} = \frac{C_{DC}}{\frac{C_{DC}-stable}{C_{DC}-stable},0}$$

116

117
$$K_{PASA} = 10^{0.6366 \log K_{OA} - 3.1774}$$
(2)

118

119 Where C_{DC} and $C_{DC-stable}$ are the concentrations of DC and DC-stable at the end of the deployment 120 period, respectively (ng sample⁻¹). K_{PAS-A} is the chemical's PAS-air partition coefficient with units 121 of m³ g⁻¹ and it can be calculated according to the regression (eq 2) given by Shoeib and Harner, 122 (2002), ρ_{PAS} is the PAS bulk density (g m⁻³), V is the volume of the PAS (m³), and t is the 123 deployment period in days. PCB-188 is used as DC-stable for correcting the losses of DCs. Only 124 DCs that have recoveries within the desired range of between 20% and 80% should be used to 125 estimate uptake rates.

126 Table SI-4. Site specific sampling rate

	Aug-Oct		Oct-Dec		Dec	-Feb	Feb	-Apr	Apr	-Jun	Jun-A	Aug
Sampling period	55 d	lays	61 da	ays	65	days	65	days	57 c	lays	64 d	ays
KATHMANDU	Ι	II	Ι	II	Ι	II	Ι	II	Ι	II	Ι	Ι
K1	4.4	3.9	4.6	5.2	5.2	5.3	4.5	4.7	4.3	4.4	3.3	3.4
K2	4.3	4.4	4.9	4.6	5.2	4.6	4.7	4.3	5.5	NA	3.4	4.1
K3	3	4.2	5.2	3.2	4	3.5	3.4	3.8	4	4.1	3.1	2.3
K4	3.9	3.7	3.4	4.2	4.2	NA	2.9	4.4	3	NA	2.8	2.8
K5	4.4	4.6	5	3.9	5.7	6.1	3.9	4.7	4.7	4.8	3.1	3.4
K6	4.8	4	4.3	4.3	5.9	5.4	5.4	5	4.7	4.6	3.8	4.3
Average	4.1	4.1	4.6	4.2	5	4.9	4.1	4.5	4.4	4.5	3.3	3.4
Std. Dev	0.6	0.3	0.7	0.7	0.8	1	0.9	0.4	0.8	0.3	0.3	0.8
POKHARA												
P1	4.7	3.7	3.6	4.1	3.9	4	3.2	3.6	4.7	2.6	2.3	4.8
P3	5.7	5.9	6.3	NA	3.2	3.3	4.6	3.8	4.7	4.3	4	4.5
P2	6.8	5.9	3.3	3.1	2.3	2.2	2.8	2.1	5.6	5	6.1	4.9
P4	4.8	6.4	4.9	4.8	4.4	3.7	4.2	3.5	4.9	3.7	3.9	5.7
Average	5.5	5.5	4.5	4	3.4	3.3	3.7	3.2	5	3.9	4.1	5
Std. Dev	1	1.2	1.4	0.8	0.9	0.8	0.8	0.8	0.4	1	1.6	0.5
HETAUDA	62		62		59		64		64		63	
	days		days		days		days		days		days	
H1	NA	NA	2.1	3.9	2.7	3.2	4.7	3.7	4.8	4.9	3.2	2.8
H2	NA	NA	3	2.7	2.8	3.1	2.2	3	3.8	3.7	3.6	4.1
H3	NA	NA	2.5	2.4	3.6	4.8	2.8	2.7	3.4	2.5	2.4	4.9
Average	NA	NA	2.5	3	3	3.7	3.2	3.1	4	3.7	3.1	3.9
Std. Dev	NA	NA	0.5	0.8	0.5	0.9	1.3	0.5	0.7	1.2	0.6	1

o,p'βδβo,p'*p*,*p*′*o*,*p'p*,*p*′*p*,*p*′αγα-Land type Sampling Seasons DDT DDE HCH HCH HCH**HCH** DDTDDE DDD DDD HCB endo endo Hept Hepx BDL 7.7 1.8 8.0 0.5 0.7 4.3 2.2 5.5 1.0 10.8 BDL Ι 4.7 3.0 3.1 1 7.4 BDL BDL Π 5.0 1.5 5.4 0.4 0.7 3.6 2.2 4.6 2.4 12.8 1.5 9.3 Winter BDL BDL Ι 5.2 0.8 BDL 0.3 2.0 13.0 **BDL** 3.0 4.4 0.9 3.4 4.9 2.3 2 4.2 BDL Π 2.7 2.7 0.5 3.7 BDL 0.3 2.0 0.7 0.9 12.4 **BDL** 2.4 0.1 3.0 0.9 BDL BDL Ι 24.5 24.6 13.0 BDL 1.1 4.5 1.8 12.4 BDL 7.8 6.5 3 22.0 2.7 8.4 0.7 2.7 8.8 BDL 7.8 BDL BDL Pre-Π 16.1 BDL 1.1 **BDL** 1.2 Crop Land BDL BDL monsoon 58.3 2.7 2.3 10.3 8.0 Ι 69.0 24.4 1.0 6.3 2.4 11.6 2.5 2.7 4 52.2 2.2 BDL BDL Π 62.8 3.9 19.9 1.0 5.2 1.3 9.3 1.2 10.8 BDL BDL 37.3 38.3 1.2 8.2 BDL BDL Ι 2.0 12.5 0.7 7.1 1.4 0.9 7.9 1.3 6.6 5 BDL BDL Π 44.1 45.9 2.6 22.4 1.1 1.8 1.5 9.8 10.3 0.8 13.5 BDL BDL Monsoon 22.8 18.6 0.5 1.2 7.0 1.8 8.5 2.7 14.9 4.7 BDL BDL Ι 2.6 14.3 2.0 6 Π 26.4 2.0 BDL 0.7 6.0 2.4 4.8 1.4 **BDL** 9.7 BDL BDL 22.7 14.5 11.7 11.2 2.2 7.2 0.2 BDL Ι 19.0 1.6 25.4 3.0 8.7 2.2 18.6 10.4 **BDL** 0.6 1 Π 12.7 28.2 2.2 19.6 17.0 BDL 7.8 0.4 BDL 21.2 1.3 0.6 3.4 6.7 0.5 Winter 1.8 BDL Ι 6.1 14.1 1.3 24.11.9 4.0 3.9 2.7 13.6 0.4 24.4 12.3 0.0 2 BDL BDL Π 6.1 11.1 1.6 24.9 1.5 3.9 5.1 1.5 14.6 BDL 22.4 4.0 0.4 Ι 97.6 10.0 BDL BDL 45.4 8.7 106.1 3.3 9.3 3.6 43.6 1.3 13.8 11.7 0.9 3 Vegetable Pre-BDL Π 49.3 123.9 7.3 118.2 12.8 43.8 2.3 13.5 20.2 0.8 4.1 11.2 6.9 6.4 Market monsoon 46.3 5.7 5.8 27.0 BDL 2.3 4 Ι 91.2 61.6 2.3 4.7 2.9 6.7 5.9 3.4 0.5 83.7 137.4 10.0 176.4 4.3 9.4 5.9 152.9 4.5 13.8 32.7 0.9 BDL Ι 16.3 13.5 5 70.5 105.6 10.9 137.8 3.5 7.0 114.0 5.6 6.8 4.5 0.9 BDL Π 11.3 6.7 12.3 Monsoon 45.5 0.7 BDL Ι 98.8 3.5 87.1 2.4 5.9 3.8 20.4 15.0 3.7 11.0 6.6 16.7 6 Π 46.4 99.0 5.0 91.7 2.8 6.4 13.0 4.3 25.0 8.5 12.1 BDL 16.4 1.0 BDL Ι 5.0 1.5 11.0 1.8 3.7 1.2 BDL 66.6 BDL BDL 5.6 0.3 6.7 **BDL** 2.3 1 3.4 0.2 0.8 BDL BDL BDL Π 3.7 0.6 6.2 3.0 1.1 4.7 46.1 BDL 1.0 Winter

Table SI-5a. Site specific concentrations (pg/m³) of OCPs in different urban sites of Kathmandu
 130

Industrial

Ι

Π

Ι

2

3

Pre-

5.9

5.9

17.0

21.9

22.1

19.0

1.4

1.8

1.8

13.9

15.9

17.8

3.5

4.0

2.6

5.0

5.6

5.7

2.9

1.3

2.1

11.7

16.7

12.6

2.7

BDL

1.3

148.6

223.8

65.8

1.5

3.5

2.2

3.1

2.8

4.1

0.7

0.4

0.2

0.5

0.5

0.7

BDL

BDL

BDL

	monsoon		II	14.1	14.3	2.4	15.9	0.5	2.2	5.2	1.5	15.1	1.4	58.2	2.2	5.9	0.3	BDL									
		1	Ι	45.1	54.6	6.6	37.9	1.3	3.1	7.3	2.6	15.2	3.5	18.6	4.4	2.8	0.3	BDL									
		4	II	36.7	47.8	4.2	27.5	1.0	2.8	5.5	2.4	10.7	3.7	12.8	BDL	4.9	BDL	BDL									
		5	Ι	36.0	43.4	4.4	43.6	1.5	2.9	9.0	3.6	18.5	3.4	37.5	2.0	8.5	0.6	BDL									
	Monsoon	5	II	55.5	67.0	6.9	69.7	2.3	7.5	16.9	6.9	34.0	3.6	98.3	2.6	10.1	BDL	BDL									
	WONSOON	6	Ι	14.8	18.1	4.7	27.3	1.0	2.5	17.8	5.5	21.2	4.1	102.3	3.4	9.0	BDL	BDL									
		0	II	11.5	11.5	8.0	41.9	2.0	3.4	27.6	11.0	24.3	3.0	47.1	3.6	7.5	1.3	BDL									
		1	Ι	6.3	8.4	1.5	33.1	0.9	5.9	9.7	4.5	18.7	2.6	41.9	BDL	2.0	BDL	BDL									
	Winter	1	II	3.0	11.9	0.5	12.0	0.2	2.5	3.1	2.1	8.4	0.0	14.4	BDL	1.1	BDL	BDL									
		2	Ι	4.5	4.0	1.1	12.8	0.6	1.7	7.4	1.7	15.9	0.0	18.2	BDL	2.3	BDL	BDL									
	Drea	3	Ι	4.5	4.5	0.9	10.3	0.5	1.7	6.4	2.2	15.8	0.0	23.8	BDL	BDL	BDL	BDL									
Tourist	monsoon	5	II	29.2	40.8	3.6	32.0	2.0	4.5	16.6	7.3	20.0	3.5	11.3	2.0	5.4	0.4	BDL									
Tourist	monsoon	4	Ι	23.7	24.6	2.4	32.5	1.3	4.0	12.1	5.8	45.7	0.0	23.2	4.5	14.8	0.7	BDL									
		5	Ι	40.1	46.3	4.0	59.2	4.1	7.5	43.7	13.5	43.3	3.8	14.5	BDL	13.3	0.6	BDL									
	Monacon	3	Π	41.8	49.5	3.7	60.8	3.8	6.3	45.5	12.2	47.0	4.5	17.5	2.8	13.9	0.5	BDL									
	Monsoon	6	Ι	15.3	21.0	2.8	35.1	2.2	4.7	17.1	7.6	28.4	6.3	18.1	5.6	23.4	1.0	BDL									
		0	II	16.6	16.6	2.4	35.6	2.3	4.7	19.1	8.2	32.3	BDL	18.1	4.1	4.4	1.2	BDL									
		1	Ι	6.7	12.6	1.7	24.3	0.4	2.4	3.6	0.7	7.7	BDL	12.2	BDL	4.5	BDL	BDL									
	Winter	1	II	10.2	16.3	1.6	12.9	0.8	5.5	5.8	1.8	14.9	0.7	18.6	BDL	4.9	BDL	BDL									
	winter	ter 2	Ι	5.4	16.9	1.4	13.0	0.9	6.4	3.5	1.2	13.6	1.0	19.0	BDL	4.7	0.5	BDL									
		Z	II	3.5	6.4	0.8	6.5	0.3	3.4	1.6	BDL	5.5	BDL	9.0	BDL	BDL	0.2	BDL									
		3	Ι	17.8	22.5	5.9	31.7	1.4	6.2	6.0	3.2	14.6	0.8	16.8	2.0	7.4	0.6	BDL									
P osidential	Pre-	5	II	14.6	19.4	4.6	25.3	1.6	6.7	7.4	1.4	19.6	0.9	16.9	1.5	4.4	0.4	BDL									
Residential	monsoon	1	Ι	34.4	43.3	3.2	31.1	1.9	5.5	5.1	1.5	13.0	1.1	8.6	2.5	5.2	0.1	BDL									
		4	Π	34.0	46.3	3.3	32.2	2.3	6.8	5.8	2.5	14.1	2.9	7.7	3.9	4.5	0.1	BDL									
		5	Ι	43.2	55.2	4.9	55.3	2.6	7.2	11.0	4.6	31.8	3.0	28.8	BDL	16.4	BDL	BDL									
	Monsoon	5	II	31.3	42.1	3.6	38.9	2.1	5.3	7.3	3.2	21.3	1.4	12.2	BDL	15.9	BDL	BDL									
	WONSOON	6	Ι	19.9	38.0	3.0	21.5	1.6	5.4	8.6	3.9	1.6	3.1	14.1	6.2	7.8	BDL	BDL									
		0	II	23.1	32.7	4.1	26.1	1.7	5.1	10.1	3.1	18.2	1.4	12.7	3.0	15.4	0.5	BDL									
		1	Ι	8.2	7.3	1.0	11.4	0.4	3.0	7.7	2.6	8.8	BDL	16.9	1.1	1.9	0.2	BDL									
Industrial +Farmland	Winter	1	II	9.0	7.9	1.2	11.6	0.4	3.3	10.0	2.5	11.9	BDL	21.5	BDL	2.3	0.3	BDL									
	vv niter	2	Ι	4.7	5.7	1.0	10.4	1.2	4.3	6.1	1.5	9.0	0.4	9.2	BDL	2.3	0.2	BDL									
					.,	vv miter	vv inter	Winter	Winter	Winter	4	II	4.1	5.4	0.9	9.6	0.9	4.0	6.0	2.2	8.4	BDL	20.2	BDL	2.8	0.2	BDL

	3	Ι	22.7	24.1	2.8	22.7	1.0	5.4	11.3	3.7	13.8	2.2	11.2	BDL	4.0	BDL	BDL
Pre-	5	II	24.1	24.1	3.2	24.8	1.1	6.0	7.7	3.8	13.4	BDL	11.0	2.0	5.7	0.4	BDL
monsoon	4	Ι	30.1	40.9	1.9	25.5	1.3	3.8	14.6	7.2	14.0	4.2	13.4	6.3	17.2	BDL	BDL
	4	Π	42.5	57.8	2.9	30.7	1.8	5.2	14.3	6.3	11.3	3.1	17.0	1.5	13.2	BDL	BDL
	5	Ι	42.8	55.0	4.4	45.7	3.2	9.8	34.0	12.3	24.4	3.8	39.3	BDL	22.9	BDL	BDL
Monsoon	5	Π	48.5	66.7	4.9	51.1	3.2	10.2	37.3	13.9	26.6	3.9	24.1	5.8	6.8	BDL	BDL
IVIOIISOOII	6	Ι	14.9	14.9	2.0	20.1	1.1	4.1	11.2	5.8	10.6	3.8	15.6	2.8	15.5	0.5	BDL
	0	Π	20.7	19.3	2.4	26.4	1.8	5.8	21.3	9.0	13.1	5.0	24.0	BDL	11.4	0.8	BDL

132 Table SI-5b. Site specific concentrations (pg/m³) of OCPs in different urban sites of Pokhara

Site type		Sam	nlin	o,p'-		o,p'-		o,p'-	p,p'-	α-	β-	γ-	δ-		α-	β-		
Site type	Seasons	San	прин о	DD	p,p'-	DD	p,p'-	DD	DD	HC	HC	HC	HC	HC	end	end	Нер	
		ž	g	Т	DDT	E	DDE	D	D	H	H	H	H	В	0	0	t	Hepx
															BD		BD	
	Winton	1	Ι	8.9	24.3	2.6	36.0	BDL	1.5	3.5	BDL	5.9	BDL	8.5	L	4.4	L	BDL
	winter		II	6.1	16.2	1.5	23.3	BDL	1.0	2.1	0.4	5.1	0.2	7.5	1.1	1.3	0.2	BDL
		2	Ι	3.2	9.1	0.9	13.8	BDL	0.9	2.5	2.3	11.7	0.5	11.3	1.4	1.6	0.5	BDL
					108.		195.								BD		BD	
		3	Ι	17.4	3	4.7	8	0.7	5.3	2.3	0.8	10.9	1.4	11.9	L	4.6	L	BDL
Cropland	Dro	5					173.											
	monsoo n		II	12.7	91.0	3.9	0	0.6	4.8	2.5	0.6	13.0	BDL	12.4	0.6	1.9	0.4	BDL
					125.		128.											
		4	Ι	46.7	3	4.2	7	0.8	4.3	3.6	0.7	16.0	0.7	10.0	5.9	4.3	0.7	BDL
		•			134.		113.											
			II	53.8	0	2.9	6	0.7	3.4	3.4	0.4	11.5	1.5	5.5	2.2	1.2	0.2	BDL
					139.		132.										BD	
		5	Ι	57.7	9	4.9	2	1.1	4.3	4.6	3.4	10.9	7.8	24.7	4.8	9.9	L	BDL
	N	5					100.											
]	Monsoo		II	40.4	95.7	4.0	7	BDL	3.4	5.8	3.1	11.1	3.0	19.4	1.0	2.9	0.3	BDL
	n		Ι	17.0	33.2	1.7	35.7	BDL	1.5	3.5	1.1	4.0	0.9	6.6	0.6	1.1	0.2	BDL
		6													BD			
			II	13.6	24.8	1.2	18.6	BDL	0.7	3.3	0.5	3.4	BDL	6.8	L	1.1	0.2	BDL
	Winter	1	Ι	13.0	28.7	1.9	42.8	0.5	4.2	3.6	1.3	24.2	1.2	7.1	BD	3.5	BD	BDL

															L		L	
															BD		BD	
			II	12.2	24.5	1.5	32.1	0.7	4.8	2.9	BDL	19.4	BDL	10.8	L	5.8	L	BDL
															BD		BD	
		2	Ι	9.9	31.7	1.9	32.6	0.4	4.6	2.9	BDL	15.9	BDL	7.0	L	10.3	L	BDL
		2													BD			
			II	13.0	35.3	2.3	38.6	0.6	6.1	4.0	BDL	20.7	BDL	9.6	L	4.4	0.2	BDL
			-			• •	10.1								BD		BD	
Vegetable	Pre-	3	Ι	25.9	45.3	2.8	48.4	0.8	4.4	2.5	1.2	17.9	BDL	10.1	L	6.2	L	BDL
vegetable production area/Marke t	monsoo		т	12.0	20.0	0.1	20.2	0.6	2.0	2.2	0.5	10.5	1.0	11 4	1.0	2.0	BD	וחח
	n		11	12.9	20.9	2.1	29.3	0.6	2.9	3.2	0.5	10.5	1.0	11.4	1.8 DD	3.9		BDL
		4	т	62 5	121.	17	71.0	1 2	5 /	27	10	10.7	2.2	171	вD	75	вD	וחס
		4	1	05.5	∠ 582	4./	71.9	1.2	5.4	5.7	1.0	19.7	2.2	17.1		1.5		BDL
			т	20.0	562. 7	10.0	557. 6	19	0.0	31	2.0	18.9	23	95	L	40	L	RDI
		5	•	20.0	, 497.	10.0	271.	1.9	0.0	5.1	2.0	10.7	2.0	2.5	BD	1.0	BD	DDL
	Monsoo n		Π	18.7	4	7.9	9	1.6	18.7	2.9	1.2	12.7	3.1	7.4	L	2.8	L	BDL
																	BD	
		6	Ι	39.9	74.1	3.4	64.5	1.0	3.3	5.5	1.5	15.7	BDL	6.1	2.4	2.0	L	BDL
			II	24.8	45.2	2.0	39.9	0.7	2.7	2.8	1.2	8.5	0.6	2.5	2.8	5.3	0.1	BDL
																	BD	
		1	Ι	14.6	22.9	2.8	32.6	0.8	2.6	3.8	1.4	8.0	1.1	15.1	0.4	3.7	L	BDL
		1															BD	
	Winter		II	14.4	17.0	1.8	22.9	0.5	2.5	4.5	BDL	8.4	BDL	12.2	2.9	2.2	L	BDL
	vv inter																BD	
		2	Ι	12.3	24.8	3.6	43.4	1.1	5.3	4.2	1.8	14.5	1.4	30.4	6.2	3.7	L	BDL
			т	10.1	20.0	2.0	25.5	2.2	0.2	0.0	F 1	22.4	17	25.1	BD	$\boldsymbol{\mathcal{C}}$	0.4	וחח
			11	18.1	20.0	2.8	25.5	2.3	9.3	9.0	5.1	32.4	1./	25.1	L	6.2	0.4 DD	BDL
T 1 4 1			т	86	117	1.0	20.0	וחס	16	4.4	1.0	15.0	12	11.2	7 2	27	вD	וחס
Industrial		3	1	0.0	44./	1.9	20.0	BDL	1.0	4.4	1.0	13.9	1.5	11.5	1.2	5.7		BDL
	Pre-		п	13.8	59	31	30.2	0.1	26	58	13	19.9	18	14 9	11 5	59	и Т	BDI
	monsoo		11	15.0	5.7	5.1	50.2	0.1	2.0	5.0	1.5	17.7	1.0	17.7	RD	5.7	BD	DDL
	n		I	47.5	72.4	2.9	37.7	1.2	3.6	3.5	0.6	7.4	1.5	8.7	L	3.9	L	BDL
		4															BD	
			II	41.2	61.6	2.6	31.6	0.9	2.5	2.7	0.3	5.4	1.8	7.5	1.5	10.4	L	BDL
	M														BD		BD	
	NIONSOO	5	Ι	24.3	34.3	2.2	26.2	0.8	2.4	1.4	0.6	3.3	0.4	5.1	L	3.6	L	BDL
	11		Π	30.6	40.6	1.8	27.1	0.8	2.5	1.5	0.3	2.7	0.3	4.1	BD	4.2	BD	BDL

															L		L	
		6	Ι	19.8	25.3	1.7	22.7	1.1	3.0	4.8	1.0	7.5	2.4	7.7	2.2	3.0	BD L BD	BDL
			II	22.1	33.0	2.7	32.6	0.7	1.9	4.4	2.2	7.1	2.4	9.0	5.6	3.8	L	BDL
		1	Ι	4.3	5.9	0.6	8.3	0.3	1.6	1.6	BDL	4.2	1.4	5.2	2.0	5.9	BD L	BDL
	Wintor	-			•••										BD	• • •	BD	
	vv miter	2	Ι	6.8	21.6	1.4	27.8	BDL	2.1	2.0	BDL	14.9	BDL	7.3	L RD	5.6	L RD	BDL
			II	7.3	22.1	1.3	20.3	0.3	1.8	2.3	0.4	13.8	BDL	9.6	L	10.3	L	BDL
		3	Ι	18.3	25.9	2.6	26.8	0.7	2.0	1.9	0.8	8.5	1.1	14.6	BD L	6.9	BD L	BDL
	Pre-	5	II	14.8	17.0	1.6	17.7	1.1	2.8	2.3	1.8	7.8	0.7	6.9	BD L	2.3	BD L	BDL
Tourist	n		Ŧ	45.0		2.0	27.0	1.6	2.0	2.2	0.0	0.0	1.0	0.0	BD	5 4	BD	DDI
		4	1	45.3	67.0	3.8	37.0	1.6	3.9	2.3	0.9	8.9	1.3	9.0	L	5.4	L BD	BDL
			II	27.3	37.5	3.6	24.0	1.5	2.9	1.4	0.5	4.7	1.3	3.1	1.8	2.8	L	BDL
		5	Ι	7.0	21.5	1.1	16.6	0.5	1.1	1.7	1.5	19.4	2.8	7.6	1.9	3.6	вD L	BDL
	Monsoo n	5	II	4.8	17.0	0.9	12.5	0.3	0.8	1.5	1.6	19.7	3.4	5.5	1.6 BD	1.7	BD L BD	BDL
		6	Ι	15.2	22.5	1.8	24.6	0.7	1.9	3.4	1.2	6.1	0.7	7.1	L	2.4	L	BDL
			II	18.2	29.7	4.3	48.2	1.5	3.4	6.4	2.3	12.9	4.3	5.7	2.5	6.6	0.3	BDL

~.	Seasons	~		<i>o,p'-</i>	<i>p,p'</i> -	<i>o,p'-</i>	<i>p</i> , <i>p</i> ′-	<i>o,p'-</i>	<i>p</i> , <i>p</i> ′-	α-	β-		δ-		α-	β-		
Site type		Sar	npling	DDT		DDE	DDE	DDD		HCH	HCH	<u>γ-ΗCΗ</u>	HCH	HCB	endo	endo	Hept	Hepx
		1	l u	1.2	8.5	0.3	3.2	BDL	0.5	4.7	1.1	8.5	0.8	15.7	1.3	7.3	BDL	BDL
	Winter		ll	0.9	4.8	0.3	2.1	BDL	0.1	3.7	0.8	4.2	0.7	14.3	1.0	4.4	BDL	BDL
		2	l	1.6	7.7	0.3	3.2	0.1	0.2	4.9	1.4	10.2	2.8	11.6	1.3	9.6	BDL	BDL
			II	2.2	9.5	0.3	3.0	0.1	0.2	6.4	1.3	10.7	4.0	10.7	1.1	6.5	BDL	BDL
Cropland	_	3	I	2.4	11.4	0.3	2.2	0.1	0.2	3.1	0.8	5.7	1.7	6.0	0.8	5.6	BDL	BDL
I	Pre-		II	4.3	21.2	0.4	3.1	0.1	0.3	2.8	1.1	5.7	1.0	6.4	1.0	9.0	BDL	BDL
	monsoon	4	Ι	2.7	11.1	0.6	9.4	0.1	0.2	1.4	2.0	2.4	1.5	2.8	2.7	24.4	BDL	BDL
			II	3.6	11.0	0.3	2.7	0.1	0.2	1.2	0.7	2.2	0.6	3.1	0.5	3.0	BDL	BDL
Monsoon	Monsoon	5	Ι	4.2	12.0	0.3	3.3	0.1	0.2	1.9	1.0	3.7	0.5	5.4	1.1	8.0	BDL	BDL
	_	II	4.2	11.4	0.4	3.7	0.1	0.2	1.6	1.3	3.6	0.9	5.5	0.8	6.8	BDL	BDL	
		1	Ι	2.9	26.1	0.5	7.0	0.2	0.4	6.9	BDL	2215.7	4.3	9.4	1.5	13.2	1.0	BDL
	Winter	-	II	1.2	5.5	0.3	4.2	BDL	0.2	3.7	BDL	31.1	2.2	17.3	0.9	4.7	0.8	BDL
	vv niter	2	Ι	1.0	7.5	0.6	9.8	0.3	0.2	5.1	1.8	2588.1	BDL	15.1	1.7	5.3	BDL	BDL
X 7 (11		2	II	1.2	7.4	0.4	6.4	0.1	0.3	4.8	BDL	2646.2	1.5	13.3	0.8	3.7	BDL	BDL
vegetable		3	Ι	2.9	27.8	0.6	10.3	0.2	0.6	6.7	BDL	2420.1	BDL	13.3	3.2	14.8	BDL	BDL
area	Pre-	5	II	2.1	11.5	0.3	7.5	0.3	0.9	4.3	BDL	1205.1	BDL	9.2	2.3	10.6	BDL	BDL
	monsoon	1	Ι	1.7	2.2	0.1	6.1	0.4	1.1	3.1	BDL	519.9	BDL	7.0	1.8	8.4	BDL	BDL
		4	II	0.9	6.7	0.2	3.6	BDL	0.3	0.6	BDL	137.9	0.5	3.3	0.8	2.7	BDL	BDL
	Managan	_	Ι	2.6	15.3	0.5	6.6	0.1	0.4	2.2	BDL	334.1	3.9	5.4	2.0	11.1	0.8	BDL
	Monsoon	5	II	1.6	12.4	0.4	6.2	0.1	0.3	1.9	1.2	248.7	1.2	5.5	1.1	6.6	BDL	BDL
		1	Ι	2.9	26.8	1.0	20.8	0.3	0.1	7.7	6.3	16.5	7.7	29.7	5.0	33.5	BDL	BDL
	Winton	1	II	3.9	20.5	1.0	15.0	0.2	0.5	3.5	2.2	11.0	3.3	17.6	4.2	26.9	BDL	BDL
	w miei	2	Ι	1.3	6.0	0.3	4.5	BDL	0.1	1.1	BDL	2.4	0.6	7.7	0.8	5.3	BDL	BDL
		Z	II	1.0	5.2	0.2	3.8	BDL	0.1	0.9	0.6	2.0	0.5	6.0	0.7	3.5	BDL	BDL
Tu du atuial		2	Ι	4.4	24.8	0.9	13.9	0.2	0.4	4.3	4.0	8.1	2.5	14.4	3.0	23.5	BDL	BDL
Industrial	Pre-	3	II	4.5	16.2	0.7	9.8	0.1	0.3	2.1	1.8	4.1	1.6	7.7	1.6	10.2	BDL	BDL
	monsoon	4	Ι	3.1	11.8	0.6	9.7	0.1	0.2	1.4	1.3	3.0	2.1	3.1	2.3	24.3	BDL	BDL
		4	II	3.1	17.1	0.7	9.1	0.2	0.1	3.6	1.6	3.0	2.0	14.3	2.2	9.7	BDL	BDL
	Manaa	_	Ι	6.6	46.3	0.8	11.0	0.3	0.1	4.5	1.2	3.1	1.4	3.4	2.1	12.5	BDL	BDL
Ν	IVIONSOON	Ionsoon 5	II	4.0	27.6	0.5	6.6	0.2	BDL	2.7	0.7	3.8	0.8	2.0	1.2	7.5	BDL	BDL

136 Table SI-5c. Site specific concentrations (pg/m³) of OCPs in different urban sites of Hetauda

Seasons Sampling PCB-28 PCB-52 PCB-101 PCB-153 PCB-138 PCB-180 Land type 1.2 0.1 0.2 Ι 2.4 0.6 0.1 1 Π 2.1 0.9 0.5 0.2 BDL 0.6 Winter Ι 1.4 0.5 0.4 0.1 0.1 0.2 2 Π 0.9 0.3 0.2 0.0 0.1 BDL I 0.8 0.2 0.2 0.1 1.8 0.6 3 Π Pre-1.8 0.3 0.3 BDL BDL BDL Crop Land monsoon Ι 2.3 1.0 0.8 1.6 0.3 0.1 4 Π 0.5 0.6 0.2 BDL 1.1 0.6 I 1.4 0.8 0.3 1.4 0.1 BDL 5 Π 1.5 0.9 0.5 1.2 0.2 BDL Monsoon 0.2 I 1.8 0.8 0.6 0.3 BDL 6 II 0.2 BDL 2.5 0.5 0.4 **BDL** I 0.4 2.6 1.5 0.9 0.7 BDL 1 Π 3.2 1.2 0.9 0.2 0.7 BDL Winter 0.5 0.5 0.1 I 5.0 1.8 1.0 2 II 0.4 5.3 1.5 0.9 0.6 0.1 I 2.8 0.7 0.9 0.2 3.6 1.4 Vegetable 3 Preproduction Π 4.3 2.9 0.3 1.4 0.6 1.0 monsoon area/Market I 4 2.9 1.5 1.1 1.7 0.7 0.2 I 3.3 2.9 0.3 6.1 5.1 1.4 5 Π 4.4 4.4 3.0 1.9 1.2 0.3 Monsoon I 4.3 2.3 1.6 0.7 0.6 0.2 6 II 3.4 2.0 1.2 0.3 0.2 5.1 I 1.6 0.7 0.3 1.8 3.2 0.1 1 Π 2.6 0.7 0.4 0.1 0.2 **BDL** Winter I 3.1 2.0 0.7 0.4 0.4 0.1 2 Π 1.9 0.7 0.3 0.3 0.1 3.8 I 4.2 3.8 3.7 1.6 2.0 0.3 3 Π 3.2 3.2 Pre-4.4 1.4 1.7 0.1 Industrial monsoon I 3.9 2.0 0.2 2.1 1.1 0.6 4 Π 3.4 1.3 0.8 1.8 0.4 0.1 I 3.3 2.3 1.8 1.4 0.9 0.2 5 Π 3.8 2.1 0.2 7.6 3.2 1.5 Monsoon Ι 15.3 3.2 0.7 0.5 0.1 1.1 6 Π 14.2 17.5 2.2 1.8 1.5 0.3 Ι 7.9 1.5 0.8 0.7 0.4 0.1 1 Winter Tourist Π 4.3 0.8 0.4 1.4 0.2 BDL

Table SI-6a. Site specific concentrations (pg/m³) of PCBs in different urban sites of Kathmandu
 138

0.4

0.4

0.1

BDL

0.5

Ι

3.1

	Dura	3	Ι	3.7	0.6	0.4	0.6	0.0	BDL
	monsoon	5	II	3.2	1.6	0.9	0.7	0.4	0.1
	monsoon	4	Ι	4.1	1.6	1.1	1.8	0.4	0.2
		5	Ι	5.1	1.5	1.1	1.7	0.5	BDL
	Monsoon	5	II	3.5	1.6	1.1	1.6	0.4	0.1
	WONSOON	6	Ι	4.5	2.1	1.2	0.6	0.5	0.2
		0	II	3.9	1.7	1.0	0.3	0.4	BDL
		1	Ι	1.4	0.6	0.4	0.2	0.4	BDL
	Winter		II	5.9	2.6	1.6	0.7	0.7	0.1
	vv niter	2	Ι	4.7	2.5	1.3	0.6	0.8	0.2
		2	II	3.8	1.2	0.6	0.3	0.5	0.1
		3	Ι	10.4	5.4	2.3	1.7	1.3	0.4
Residential	esidential Pre-	5	II	9.6	5.4	2.3	1.6	1.2	0.4
Residential	monsoon	4	Ι	8.8	3.1	1.4	1.7	0.8	0.2
		т	II	7.9	3.7	1.6	1.9	0.7	0.2
		5	Ι	10.5	6.0	2.4	2.2	1.0	0.2
	Monsoon	5	II	7.5	4.1	1.8	2.0	1.0	0.2
	Wonsoon	6	Ι	8.8	5.2	4.3	2.9	2.2	0.3
			II	9.8	5.9	5.2	3.6	3.1	0.3
		1	Ι	7.4	2.1	1.0	0.7	0.6	0.3
	Winter	1	II	9.9	2.1	0.8	0.6	0.4	0.2
	vv miter	2	Ι	5.7	2.1	0.7	0.5	0.4	0.2
		2	II	5.9	1.7	0.6	0.6	0.6	0.2
		3	Ι	7.7	3.2	1.1	1.1	0.6	0.3
Industrial	Pre-	5	II	8.0	3.0	1.2	1.3	0.7	0.3
+Farmland	monsoon	4	Ι	16.1	4.5	1.2	1.5	0.6	0.3
		4	II	6.1	2.3	1.4	1.7	1.1	0.7
		5	Ι	10.6	3.0	1.3	3.2	0.8	0.4
	Monsoon	5	II	8.8	3.3	1.4	1.5	1.0	0.4
	101150011	6	Ι	9.3	3.5	1.5	1.0	0.8	0.2
		U	II	14.7	5.0	1.8	1.5	0.8	0.3

Seasons PCB-28 **PCB-52** *PCB-153* PCB-138 Site type Sampling PCB-101 *PCB-180* I 0.3 0.3 0.5 BDL BDL 1.0 1 Winter Π 0.8 0.2 0.1 1.2 BDL BDL 2 Ι 0.3 0.2 0.3 BDL BDL 1.0 Ι 0.9 0.4 0.4 0.1 BDL 1.5 3 Pre-Π 1.1 0.4 0.2 0.4 BDL BDL Cropland monsoon I 0.8 0.4 0.4 0.5 BDL BDL 4 Π 0.3 0.6 0.1 BDL 1.3 0.4 I 0.8 0.4 0.7 BDL BDL 4.1 5 Π 1.6 0.7 0.5 0.7 BDL BDL Monsoon I 0.9 0.5 0.4 0.1 0.2 0.1 6 Π 0.2 BDL 0.6 0.3 BDL BDL I 1.4 0.7 0.7 0.8 0.5 0.1 1 Π 1.1 0.4 0.3 0.6 0.4 BDL Winter I 0.8 0.4 0.5 0.5 BDL 0.1 2 Π 1.3 0.5 0.6 0.5 0.3 0.2 0.7 0.4 0.2 I 1.1 0.6 0.8 3 Pre-Vegetable II 2.5 1.0 1.5 0.3 0.1 0.6 production monsoon I 1.3 0.7 0.8 1.0 0.7 0.2 4 area/Market I 2.1 1.6 0.2 0.3 0.3 0.1 5 Π 1.6 1.1 0.1 0.3 0.2 0.1 Monsoon I 1.2 0.6 0.6 0.5 0.3 0.1 6 Π 0.9 0.4 0.2 0.2 0.5 0.1 I 2.0 0.9 0.6 0.2 0.2 BDL 1 Π BDL 1.0 0.4 0.3 BDL BDL Winter 4.9 0.7 0.4 BDL I 1.6 0.3 2 Π 5.2 2.7 1.0 0.9 0.2 15.1 I 4.3 1.1 0.1 0.2 0.2 BDL 3 Π 5.2 1.4 0.1 0.3 0.3 0.1 Pre-Industrial monsoon BDL Ι 0.8 0.4 0.3 0.4 0.2 4 Π 0.3 0.3 0.5 0.1 BDL 1.3 I 0.4 0.2 0.1 0.8 0.1 BDL 5 Π 0.5 0.2 0.2 1.0 0.1 BDL Monsoon Ι 0.9 0.6 0.3 0.1 0.1 BDL 6 Π 1.2 0.8 0.5 0.2 0.2 BDL 1 I 0.6 0.2 0.1 0.8 0.3 BDL Winter 0.2 0.1 BDL Ι 1.5 0.3 0.2 2 Tourist Π 0.3 0.2 BDL BDL 1.2 BDL 5.3 Ι 1.6 0.4 0.3 0.2 0.1 Pre-3 monsoon

Table SI-6b. Site specific concentrations (pg/m³) of PCBs in different urban sites of Pokhara 141 142

0.3

1.5

0.2

BDL

0.5

Π

1.0

	4	Ι	0.9	0.4	0.5	0.6	0.3	0.1
	4	II	0.5	0.3	0.3	0.5	0.2	BDL
	5	Ι	1.9	0.8	0.1	0.1	0.7	0.1
Monsoon	5	II	1.5	0.6	0.1	0.2	0.1	0.1
Wonsoon	6	Ι	1.4	1.5	1.0	0.2	0.3	0.1
	0	Π	4.6	4.6	2.4	1.1	0.8	0.2

Site type	Seasons	Sam	pling	<i>PCB-28</i>	<i>PCB-52</i>	PCB-101	PCB-153	<i>PCB-13</i> 8	PCB-180
		1	Ι	2.7	1.1	BDL	0.2	0.2	0.2
	Winter	1	II	2.7	0.5	0.0	0.1	0.2	BDL
	vv inter	2	Ι	1.3	0.8	0.6	0.2	0.2	0.1
		2	II	1.7	0.8	0.3	0.2	0.2	BDL
Cropland		3	Ι	1.3	0.5	0.4	0.2	0.2	BDL
Cropiand	Pre-	5	II	1.8	0.8	0.8	0.3	0.4	0.1
	monsoon	4	Ι	0.6	0.3	0.4	0.4	0.2	BDL
		4	II	0.6	0.2	0.1	0.1	0.1	BDL
	Monsoon	5	Ι	0.6	0.4	0.6	0.1	0.1	BDL
	MOIISOOII	5	II	3.4	2.9	1.1	1.6	1.9	0.7
		1	Ι	4.7	2.9	0.8	0.6	0.8	0.3
	Winter	1	II	8.6	1.2	0.0	0.1	0.0	0.2
Vegetable		2	Ι	9.2	2.6	0.9	0.2	0.4	0.2
		2	II	3.4	1.3	0.0	0.1	0.7	0.6
	Pre- monsoon	3	Ι	4.9	3.8	0.9	0.9	2.1	0.5
area		5	II	2.4	2.1	1.3	0.5	1.3	0.4
		4	Ι	1.0	1.2	1.6	0.2	0.8	0.2
		4	II	0.5	0.7	0.6	0.1	1.4	0.8
	Monsoon	5	Ι	1.9	1.3	0.7	0.3	0.4	0.3
	WONSOON	5	II	1.6	1.1	0.6	0.4	0.3	0.1
		1	Ι	3.4	1.7	1.0	1.2	1.8	0.4
	Winter	1	II	3.1	0.7	1.2	1.0	0.7	0.3
	W inter	2	Ι	1.1	0.4	0.3	0.2	0.4	0.1
		2	II	2.5	1.2	0.3	0.7	0.6	0.2
Industrial		3	Ι	4.1	1.1	1.3	0.6	0.7	0.2
	Pre-	5	II	1.1	0.7	0.9	0.5	0.5	0.1
	monsoon	4	Ι	3.9	0.8	0.3	0.1	0.4	0.1
		•	II	5.1	1.5	0.8	0.5	0.7	0.3
	Monsoon	5	Ι	2.2	2.0	1.0	1.0	0.9	0.3
	WOUSOON	5	II	1.3	1.2	0.6	0.6	0.6	0.2

Table SI-6c. Site specific concentrations (pg/m³) of PCBs in different urban sites of Hetauda
 146

Places	o,p'-DDT	p, p'-DDT	p, p'-DDE	α-HCH	γ-HCH	α-endo	β-endo	∑PCBs	Sampling time
				This stu	dy				
Kathmandu*	4 - 77	3 - 121	4 - 157	3 - 45	4 - 133	BDL- 10	2 - 19	2.1-29.2	Aug - Aug, 2015
Pokhara*	3 - 64	6 - 540	8 - 306	1 - 7	3 - 23	BDL - 9	1 - 8	1.6-16.6	Aug - Aug, 2015
Hetauda*	1 - 5	4 - 37	3 - 18	1 - 6	2 - 2617	1 - 5	4 - 30	1.4-10.5	Aug - Aug, 2015
				GAPs stu	dy ^a				
Chengdu, China**		BDL	BDL-56	145-176	68-142	8-47	BDL-59	187-249	Jan-Jun2005
Kuwait city, Kuwait**		131	22-58	1-13	1-17	76-168	BDL-16	86-497	Jan-Sept 2005
Manila, Philippines**		190	14-45	BDL-1	BDL-15	13-66	BDL-4	629-2826	Jan-Sept 2005
Izmir, Turkey**		BDL	60-46	18-30	13-18	494-1352	46-464	174-287	Jan-Jun2005
Seoul, Korea**			34	84	43	4411	957	397	Jun-Sept 2005
Malawi, Africa			BDL	BDL	9	162	10	BDL	Mar-June 2005
				Mexico	b				
Mexico city	17	ND	21	8.9	49	320	68		2005-2006

5.9

9.4

11

16

351

260

95

40

2005-2006

2005-2006

148 Table SI-7. Comparison of current levels (pg/m³) of various POPs with different tropical/subtropical urban sites

149

150

151 All the studies used PUF-PAS

1.7

1.4

ND

ND

25

13

152 *a Pozo et al.*, 2009

Chihuahua

San Luis Potosi

153 ^bWong et al., 2009

154 ***∑6*PCBs*

155 ****∑48*PCBs*

Table SI-8. Range and average (pg/m³) with Highest to lowest concentration ratio (H/L) of
 different isomers/congeners

Compounds	Minimum	Maximum	Mean	SD	H/L
o, p'-DDT	1.1	77.1	19.2	17.7	72
p, p'-DDT	2.9	540	40.4	66.4	189
o, p'-DDE	0.1	10.4	2.5	2	70
p, p'-DDE	2.7	305.8	35.3	46.5	114
o, p'-DDD	BDL	4	0.9	0.9	
p, p'-DDD	BDL	11.4	3.2	2.6	
Total DDT	11	885.2	101.5	122.9	80
α -HCH	1	44.6	6.7	7	46
β -HCH	BDL	13.1	2.4	2.6	
γ -HCH	2.2	2617.1	109.8	396.4	1200
δ -HCH	BDL	7.5	1.7	1.5	
Total HCHs	4	2623.8	120.6	395.7	655
НСВ	2.7	186.2	17.6	23.9	68
a-endo	BDL	10.2	1.8	1.9	
β-endo	1.1	30.2	7.2	5.3	28
Total endo	1.4	34.8	9	6.4	25
<i>PCB-28</i>	0.4	14.8	3.7	3.1	35
<i>PCB-52</i>	0.2	10.4	1.7	1.7	49
PCB-101	BDL	4.7	0.9	0.8	
PCB-153	BDL	3.4	0.8	0.7	
PCB-138	BDL	2.6	0.5	0.5	
PCB-180	BDL	0.5	0.1	0.1	
Total PCBs	1.4	29.2	7.8	6	20

161 Figure SI-3. Box and whisker plot to show distribution of different isomers of DDT and

162 its metabolites in Kathmandu Pokhara and Hetauda (Lower and upper limits of whisker

indicate minimum and maximum, Lower and upper limits of the box indicate 25th and 75th
 percentiles, horizontal line in the box indicates median, small square in the box represents

165 mean, red circle denotes outlier)

Figure SI-4. Isomers/ metabolites ratios of selected OCPs to predict source type (Lower and upper limits of whisker indicate minimum and maximum, Lower and upper limits of the box indicate 25th and 75th percentiles, horizontal line in the box indicates median, small square in the box represents mean, red circle denotes outlier)

Figure SI-5. Box and whisker plot to show distribution of different isomers of HCH and endosulfan in Kathmandu Pokhara and Hetauda(Lower and upper limits of whisker indicate minimum and maximum, Lower and upper limits of the box indicate 25th and 75th percentiles, horizontal line inside the box indicates median, small square in the box represents mean, red circle denotes outlier)

178

Figure SI-6. Box and whisker plot to show distribution of different congeners of PCBs in Kathmandu Pokhara and Hetauda (Lower and upper limits of whisker indicate minimum and maximum, Lower and upper limits of the box indicate 25th and 75th percentiles, horizontal line in the box indicates median, small square in the box represents mean, red circle denotes outlier)

Table SI-9. P-values (one-way ANOVA) for significant variation in levels of different POPs in different sites
 186

	o,p'-DDT	p,p'-DDT	o,p'-DDE	p,p'-DDE	α-НСН	ү-НСН	HCB	α-endo	β-endo	PCBs
Kathmandu	0.40	0.01	0.11	0.00	0.11	0.05	0.00	0.36	0.21	0.00
Pokhara	0.65	0.27	0.34	0.18	0.13	0.12	0.39	0.16	0.15	0.54
Hetauda	0.14	0.17	0.02	0.02	0.73	0.02	0.80	0.16	0.13	0.04

		p, p'-DDT	p, p'-DDE	γ-HCH	HCB	PCB
K1	K2	0.03	0.00	0.05	1.00	0.27
	K3	1.00	0.90	0.98	0.00	0.03
	K4	1.00	0.80	0.50	0.99	0.75
	K5	1.00	0.92	0.99	1.00	0.00
	K6	1.00	0.96	0.99	0.99	0.01
K2	K3	0.04	0.01	0.20	0.00	0.91
	K4	0.02	0.02	0.77	1.00	0.96
	K5	0.05	0.01	0.16	1.00	0.35
	K6	0.04	0.01	0.14	1.00	0.48
K3	K4	1.00	1.00	0.90	0.00	0.45
	K5	1.00	1.00	1.00	0.00	0.91
	K6	1.00	1.00	1.00	0.00	0.97
K4	K5	1.00	1.00	0.85	1.00	0.08
	K6	1.00	1.00	0.82	1.00	0.12
K5	K6	1.00	1.00	1.00	1.00	1.00

Table SI-10. Significant differences (P<0.05, Tukey's Test) in OCPs concentrations among the sites
 in Kathmandu (only the chemicals with variations have been shown)

Table SI-11. Significant differences (P<0.05, Tukey's post hocTest) in OCPs concentrations among
 the sites in Hetauda (only the chemicals with variations have been shown)

		p, p'-DDE	β-ΗCΗ	γ-HCH	PCBs
H1	H2	0.29	0.36	0.02	0.03
	H3	0.01	0.42	0.88	0.2
H2	H3	0.21	0.04	0.05	0.54

Figure SI-7. Atmospheric level of OCPs in different land cover types in Pokhara; (P1-Cropland; P2 Vegetable production and Market area; P3- Industrial area; and P4- Tourist place)

Figure SI-8. Atmospheric level of OCPs in different land cover types in Hetauda; (H1-Crop Land;
 H2-Vegetable production area; H3- Industrial area)

Figure SI-9. Seasonality of DDTs and HCHs in Kathmandu city (K1: Cropland, K3: Industrial area,

Figure SI-10. Seasonality of DDTs and HCHs in Pokhara city (P1: Cropland, P3: Industrial area, P4:
 Tourist area)

Figure SI-11. Seasonality of DDTs and HCHs in Hetauda (H1: Cropland, H3: Industrial area)

Figure SI-12. Seasonal variation of HCB in 3 cities of Nepal

229 230	Text SI-5. Estimation of loss rate of atmospheric OCPs
231	In the equation,
232	$\tau_a = \frac{\ln 2}{K_{degr} + K_{wet} + K_{dry}} \tag{1}$
233	Where τ_a is atmospheric residence time,
234	K_{degr} is photochemical degradation rate in air (s ⁻¹)
235	K_{wet} wet deposition rate (s ⁻¹)
236	K_{dry} dry deposition rate(s ⁻¹)
237 238 239	In general, degradation due to OH is considered the dominant process and Bayer et al., 2003 derived a simple temperature dependent relation to estimate OH concentration i.e. [OH] in atmosphere.
240	$[OH] = 0.5 + 0.4 (T - 273.15) \times 10^5 $ (2)
241 242 243	where T is absolute temperature (K)
244	Then, using the rate constant K_{OH} (Table SI-12) the degradation rate K_{degr} is estimated as,
245 246	$K_{degr} = K_{OH} [OH] \tag{3}$
247 248 249	Assuming the gas phase as dominant form of the pollutants in the atmosphere wet deposition has been estimated using the relation
250	$K_{wet} = \frac{R_i W_G}{h} \tag{4}$
251	Where R_i = annual rain intensity (mm a ⁻¹)
252	W_G = gas phase scavenging ratio
253	h = atmospheric boundary layer height (m) and
254	effective gas phase scavenging ratio is estimated as reciprocal of Henry law coefficient
255	$W_G = \frac{RT}{H} \tag{5}$
256	where $R = \text{Gas law constant} (8.314 \text{ Pa m}^3 \text{mol}^{-1} \text{K}^{-1})$
257	T = absolute temperature (K)
258	H = Henry's law constant
259	For dry deposition rate the K_{dry} , has been estimated as
260	$K_{dry} = \frac{V_D}{h} \tag{6}$
261	Where V_D is dry deposition velocity (cm s ⁻¹)

Temperature dependent dry deposition velocity for the gas phase pollutants can be estimated using relation
 proposed by González-Gaya et al., 2014

$$logV_D = -0.261 logPL - 2.670 \, cm \, s^{-1}$$

264

Table SI-12. Temperature dependent Henry's law constant and vapor pressure with Rate constant of hydroxyl radical reaction at 25 °C

267

Compounds	logH (Pa m ³ mol ⁻¹)	logPL(Pa)	K_{OH} (25 °C) $cm^{3}molec^{-1}s^{-1}$
p, p'-DDT	13.02-3369/T	13.02-4865/T	1.5×10^{-12}
α-HCH	8.98-1714/T	11.12 – 3497/T	1.4×10 ⁻¹³
γ-ΗCΗ	11.58-3049/T	11.98-3905/T	1.9×10 ⁻¹³
HCB	11.6-3013/T	11.11-3582/T	2.7×10 ⁻¹⁴

268

Parameters about Henry's law constants, OH initiated atmospheric reaction rate and chemical's property data are
found from literatures (Passivirta et al., 1999; Hinckley et al., 1990; Bai et al., 2013; Xiao et al., 2004; Brubaker et

al., 1998; Jautunen et al., 2006)

273 Table SI-13. Calculated values of degradation and deposition rates (S⁻¹) based on field temperature and precipitation during

274 monsoon season

K _{degr}					K_{wet}			K _{dry}					
	Temp	p,p'-DDT	ү-НСН	α-HCH	HCB	p,p'-DDT	ү-НСН	α-HCH	HCB	p,p'-DDT	γ-HCH	α-HCH	HCB
Kathmandu													
Jan	284.15	9.66E-08	1.22E-08	9.02E-09	1.74E-09	2.48E-08	5.12E-08	4.08E-10	3.65E-08	8.38E-07	2.06E-07	1.45E-07	1.75E-07
Feb	286.15	2.23E-07	2.82E-08	2.08E-08	4.01E-09	2.07E-08	4.34E-08	3.73E-10	3.10E-08	7.80E-07	1.94E-07	1.38E-07	1.66E-07
Mar	290.15	8.52E-07	1.08E-07	7.95E-08	1.53E-08	1.44E-08	3.13E-08	3.13E-10	2.25E-08	6.77E-07	1.73E-07	1.25E-07	1.50E-07
Apr	293.15	1.92E-06	2.43E-07	1.79E-07	3.46E-08	1.11E-08	2.47E-08	2.75E-10	1.78E-08	6.11E-07	1.60E-07	1.16E-07	1.39E-07
May	295.15	3.09E-06	3.92E-07	2.89E-07	5.57E-08	9.33E-09	2.12E-08	2.53E-10	1.53E-08	5.71E-07	1.51E-07	1.10E-07	1.32E-07
Jun	297.15	4.78E-06	6.05E-07	4.46E-07	8.60E-08	7.87E-09	1.82E-08	2.32E-10	1.31E-08	5.34E-07	1.43E-07	1.05E-07	1.26E-07
Jul	297.15	4.78E-06	6.05E-07	4.46E-07	8.60E-08	7.87E-09	1.82E-08	2.32E-10	1.31E-08	5.34E-07	1.43E-07	1.05E-07	1.26E-07
Aug	297.15	4.78E-06	6.05E-07	4.46E-07	8.60E-08	7.87E-09	1.82E-08	2.32E-10	1.31E-08	5.34E-07	1.43E-07	1.05E-07	1.26E-07
Sep	296.15	3.86E-06	4.89E-07	3.60E-07	6.95E-08	8.57E-09	1.96E-08	2.42E-10	1.41E-08	5.52E-07	1.47E-07	1.08E-07	1.29E-07
Oct	293.15	1.92E-06	2.43E-07	1.79E-07	3.46E-08	1.11E-08	2.47E-08	2.75E-10	1.78E-08	6.11E-07	1.60E-07	1.16E-07	1.39E-07
Nov	289.15	6.29E-07	7.97E-08	5.87E-08	1.13E-08	1.58E-08	3.40E-08	3.27E-10	2.44E-08	7.02E-07	1.78E-07	1.28E-07	1.54E-07
Dec	285.15	1.49E-07	1.89E-08	1.39E-08	2.69E-09	2.27E-08	4.71E-08	3.90E-10	3.36E-08	8.08E-07	2.00E-07	1.42E-07	1.71E-07
Pokhara													
Jan	286.15	2.23E-07	2.82E-08	2.08E-08	4.01E-09	5.56E-08	1.17E-07	1.00E-09	8.34E-08	7.80E-07	1.94E-07	1.38E-07	1.66E-07
Feb	289.15	6.29E-07	7.97E-08	5.87E-08	1.13E-08	4.24E-08	9.14E-08	8.79E-10	6.55E-08	7.02E-07	1.78E-07	1.28E-07	1.54E-07
Mar	293.15	1.92E-06	2.43E-07	1.79E-07	3.46E-08	2.98E-08	6.65E-08	7.40E-10	4.79E-08	6.11E-07	1.60E-07	1.16E-07	1.39E-07
Apr	296.15	3.86E-06	4.89E-07	3.60E-07	6.95E-08	2.31E-08	5.27E-08	6.52E-10	3.81E-08	5.52E-07	1.47E-07	1.08E-07	1.29E-07
May	297.15	4.78E-06	6.05E-07	4.46E-07	8.60E-08	2.12E-08	4.89E-08	6.26E-10	3.53E-08	5.34E-07	1.43E-07	1.05E-07	1.26E-07
										_			

Jun	299.15	7.13E-06	9.03E-07	6.65E-07	1.28E-07	1.79E-08	4.20E-08	5.76E-10	3.04E-08	5.00E-07	1.36E-07	1.00E-07	1.20E-07
Jul	299.15	7.13E-06	9.03E-07	6.65E-07	1.28E-07	1.79E-08	4.20E-08	5.76E-10	3.04E-08	5.00E-07	1.36E-07	1.00E-07	1.20E-07
Aug	299.15	7.13E-06	9.03E-07	6.65E-07	1.28E-07	1.79E-08	4.20E-08	5.76E-10	3.04E-08	5.00E-07	1.36E-07	1.00E-07	1.20E-07
Sep	298.15	5.86E-06	7.42E-07	5.47E-07	1.05E-07	1.95E-08	4.53E-08	6.00E-10	3.28E-08	5.17E-07	1.39E-07	1.03E-07	1.23E-07
Oct	295.15	3.09E-06	3.92E-07	2.89E-07	5.57E-08	2.51E-08	5.70E-08	6.80E-10	4.11E-08	5.71E-07	1.51E-07	1.10E-07	1.32E-07
Nov	291.15	1.13E-06	1.44E-07	1.06E-07	2.04E-08	3.55E-08	7.79E-08	8.06E-10	5.60E-08	6.54E-07	1.69E-07	1.22E-07	1.46E-07
Dec	287.15	3.23E-07	4.09E-08	3.01E-08	5.81E-09	5.08E-08	1.08E-07	9.60E-10	7.69E-08	7.53E-07	1.89E-07	1.35E-07	1.62E-07
He tauda													
Jan	288.15	4.56E-07	5.77E-08	4.25E-08	8.20E-09	2.68E-08	5.71E-08	5.30E-10	4.09E-08	7.27E-07	1.83E-07	1.31E-07	1.58E-07
Feb	290.15	8.52E-07	1.08E-07	7.95E-08	1.53E-08	2.24E-08	4.86E-08	4.85E-10	3.49E-08	6.77E-07	1.73E-07	1.25E-07	1.50E-07
Mar	294.15	2.45E-06	3.10E-07	2.29E-07	4.41E-08	1.58E-08	3.55E-08	4.09E-10	2.56E-08	5.91E-07	1.55E-07	1.13E-07	1.35E-07
Apr	299.15	7.13E-06	9.03E-07	6.65E-07	1.28E-07	1.03E-08	2.42E-08	3.32E-10	1.75E-08	5.00E-07	1.36E-07	1.00E-07	1.20E-07
May	301.15	1.03E-05	1.31E-06	9.64E-07	1.86E-07	8.75E-09	2.09E-08	3.06E-10	1.51E-08	4.69E-07	1.29E-07	9.58E-08	1.14E-07
Jun	301.15	1.03E-05	1.31E-06	9.64E-07	1.86E-07	8.75E-09	2.09E-08	3.06E-10	1.51E-08	4.69E-07	1.29E-07	9.58E-08	1.14E-07
Jul	300.15	8.61E-06	1.09E-06	8.04E-07	1.55E-07	9.50E-09	2.25E-08	3.19E-10	1.63E-08	4.84E-07	1.32E-07	9.80E-08	1.17E-07
Aug	300.15	8.61E-06	1.09E-06	8.04E-07	1.55E-07	9.50E-09	2.25E-08	3.19E-10	1.63E-08	4.84E-07	1.32E-07	9.80E-08	1.17E-07
Sep	299.15	7.13E-06	9.03E-07	6.65E-07	1.28E-07	1.03E-08	2.42E-08	3.32E-10	1.75E-08	5.00E-07	1.36E-07	1.00E-07	1.20E-07
Oct	298.15	5.86E-06	7.42E-07	5.47E-07	1.05E-07	1.12E-08	2.61E-08	3.46E-10	1.89E-08	5.17E-07	1.39E-07	1.03E-07	1.23E-07
Nov	293.15	1.92E-06	2.43E-07	1.79E-07	3.46E-08	1.72E-08	3.84E-08	4.27E-10	2.76E-08	6.11E-07	1.60E-07	1.16E-07	1.39E-07
Dec	288.15	4.56E-07	5.77E-08	4.25E-08	8.20E-09	2.68E-08	5.71E-08	5.30E-10	4.09E-08	7.27E-07	1.83E-07	1.31E-07	1.58E-07

Table SI-14. Comparison of characteristic travel distance (CTD, km) in current study areas with global and other specified regions

279

	,	This stud	y (km)		Previous studies						
	Kathmandu	Pokhara	Hetauda	average	*Global (a)	*Global (b)	East & south china seas**	Indian Ocean*	South Atlantic*		
HCB	11836	9834	9984	10551	10600	144304	13306	345	907		
α- HCH	9346	7536	6250	7710	17946	22307	3629	605	484		
γ- НСН	6016	4387	4035	4812	9732	22572	3024	544	363		
p, p' - DDT	1269	956	776	1000	1045	1462	1331	774			

*Shen et al., 2005 (a : estimation by TaPL3 model; b: estimation by ELPOS)

** Gioia et al., 2012

280

282 Text SI-6 Uncertainties of CTD

Given soil can absorb atmospheric POPs, it may retard the transport of POPs. Previous study had 283 investigated the air-soil exchange of POPs along south slope of Nepal Himalaya mountain, and the 284 results found volatile compounds such as HCB, PCBs and HCHs reached air-soil exchange 285 286 equilibrium in low elevation cities (Gong et al., 2014). This means for the volatile compounds, only the atmospheric processes (i.e. OH degradation and dry/wet deposition) are major loss process. Due 287 to the possible overestimation of OH concentration reported by Anderson et al. (1996), τ_a will be 288 underestimated and then CTD will be underestimated. With respect to less volatile compounds such 289 290 as DDTs, their air-soil exchange showed deposition trend (Gong et al., 2014), suggesting soil absorption should not be ignored. As this will reduced τ_a of DDTs, and lead to the overestimation of 291 CTD. 292 293

294 Text SI-7 Generation of forward trajectories

295 NOAA's HYSPLIT model and the NCEP/NCAR Global Reanalysis data set for Kathmandu were

used to calculate forward trajectories. Forward trajectories were traced for 3 days at 6 h intervals at

100 m above sea level. All 416 trajectories were grouped into 5 clusters. Sixty present of trajectories

298 (sum of cluster 1, 2 and 3) move northward, crossing the Himalaya and reaching southeastern

299 Tibetan Plateau.

Figure SI-13. Clusters of forward trajectories for Kathmandu

302 **References:**

- Anderson, P. N.; Hites., R. A. OH radical reactions: The major removal pathway for polychlorinated biphenyls from
 the atmosphere. *Environ. Sci. Technol.* 1996, 30, 1757–1763
- Bai, J.; Yang, W.; Zhang, C.; Zhao, Y.; Gong, C.; Sun, X.; Zhang, Q.; Wang, W. Theoretical study on the OHinitiated atmospheric reaction of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT). *Atmos. Environ.*2013, 67, 177–183.
- Beyer, A.; Wania, F.; Gouin, T.; Mackay, D.; Matthies, M. Temperature dependence of the characteristic travel distance. *Environ. Sci. Technol.* 2003, *37* (4), 766–771.
- Brubaker, W. W.; Hites, R. A. OH Reaction Kinetics of Gas-Phase a- and γ-Hexachlorocyclohexane and
 Hexachlorobenzene. *Environ. Sci. Technol.*1998, 32 (6), 766–769.
- Gioia, R.; Li, J.; Schuster, J.; Zhang, Y.; Zhang, G.; Li, X.; h Spiro, B.; Bhatia, R. S., Dachs, J.; Jones, K.C. Factors
 Affecting the Occurrence and Transport of Atmospheric Organochlorines in the China Sea and the Northern
 Indian and South East Atlantic Oceans. *Environ. Sci. Technol.* 2012, 46, 10012–10021
- Gong, P.; Wang, X.; Li, S.; Yu, W.; Li, J.; Kattel, D. B.; Wang, W.; Deykota, L. P.; Yao, T.D.; Joswiak, D. R.
 Atmospheric transport and accumulation of organochlorine compounds on the southern slopes of the
 Himalayas, Nepal *Environ. Pollut.* 2014, 192, 44-51.
- González-Gaya, B.; Zúñiga-Rival, J.; Ojeda, M. J.; Jiménez, B.; Dachs, J. Field measurements of the atmospheric dry
 deposition fluxes and velocities of polycyclic aromatic hydrocarbons to the global oceans. *Environ. Sci. Technol.*2014, 48 (10), 5583–5592.
- Harner, T.; Shoeib, M.; Diamond, M. L.; Stern, G.; Rosenberg, B. Using passive air samplers to assess urban-rural
 trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. *Environ. Sci. Technol.* 2004, *38* (17), 4474–4483.
- Harner, T.; Bartkow, M.; Holoubek, I.; Klanova, J.; Wania, F.; Gioia, R.; Moeckel, C.; Sweetman, A. J.; Jones, K. C.
 Passive air sampling for persistent organic pollutants : Introductory remarks to the special issue. *Environ. Pollut.* 2006, 144, 361–364
- Hinckley, D.; TF, B.; ForemanWT; JR., T. Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data. *J Chem Eng Data* 1990, *35*, 232–237.
- Jantunen, L. M.; Bidleman, T. F. Henry's law constants for hexachlorobenzene, p,p'-DDE and components of technical chlordane and estimates of gas exchange for Lake Ontario. *Chemosphere* **2006**, *62* (10), 1689–1696.
- Moeckel, C.; Harner, T.; Nizzetto, L.; Strandberg, B.; Lindroth, A.; Jones, K. C. Use of depuration compounds in
 passive air samplers: Results from active sampling-supported field deployment, potential uses, and
 recommendations. *Environ. Sci. Technol.* 2009, 43 (9), 3227–3232.
- Paasivirta, J.; Sinkkonen, S.; Mikkelson, P.; Rantio, T.; Wania, F. Estimation of vapor pressures, solubilities and
 Henry's law constants of selected persistent organic pollutants as functions of temperature. *Chemosphere* 1999, *39* (5), 811–832.
- Pozo, K.; Harner, T.; Wania, F.; Muir, D. C. G.; Jones, K. C.; Barrie, L. a. Toward a global network for persistent
 organic pollutants in air: Results from the GAPS study. *Environ. Sci. Technol.*2006, 40 (16), 4867–4873.
- Pozo, K.; Harner, T.; Lee, S. C.; Wania, F.; Muir, D. C. G.; Jones, K. C. Seasonally Resolved Concentrations of
 Persistent Organic Pollutants in the Global Atmosphere from the First Year of the GAPS Study. *Environ. Sci. Technol.*2009, 43 (3), 796–803.

- Sheng, L.; Wania, F.; Lei, Y.; Muir D.C.G.; Teixeira, C.; Bidleman, T.F. Atmospheric Distribution and Long-Range
 Transport Behavior of Organochlorine Pesticides in North America. Environ. Sci. Technol. 2005, 39, 409-420
- Shoeib, M; Haner, T. Characterization and comparision of three passive air samplers for persitent organic pollutants.
 Environ Dci. Technol. 2002, 36, 4142-4151
- 346 Xiao, H.; Li, N.; Wania, F. Compilation, Evaluation, and Selection of Physical-Chemical Property Data for $\alpha \beta$, 347 γ -Hexachlorocyclohexane. *J. Chem. Eng. Data* **2004**, 49, 173-185
- Wong, F.; Alegria, H. a; Bidleman, T. F.; Alvarado, V.; Angeles, F.; Galarza, A. a; Bandala, E. R.; De, I.; Hinojosa,
 C.; Estrada, G.; et al. Passive Air Sampling of Organochlorine Pesticides in Mexico. *Environ. Sci. Technol.*2009, 43 (3), 704–710.