Supporting Information

Compositional Evolution of Particle Phase Reaction Products and Water in the Heterogeneous OH Oxidation of Aqueous Organic Droplets

Man Mei Chim¹, Chiu Tung Cheng^{1, †}, James F. Davies², Thomas Berkemeier³, Manabu Shiraiwa⁴, Andreas Zuend⁵, Man Nin Chan^{1,6}

¹Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, CHINA

²Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA

³School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

⁴Department of Chemistry, School of Physical Sciences, University of California, Irvine, USA

⁵Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Québec, CANADA

⁶The Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, CHINA

[†]Present address: Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, JAPAN

Correspondence to: Man Nin Chan (mnchan@cuhk.edu.hk)

Relative Humidity (%)	Refractive Index (650nm)	Refractive Index (589nm)	Mass fraction of solute, mfs
87.0	1.411	1.417	0.595
83.4	1.418	1.424	0.642
72.8	1.433	1.439	0.743
68.0	1.440	1.446	0.791
65.6	1.444	1.450	0.818
63.0	1.446	1.452	0.831
85.8	1.415	1.421	0.622
83.2	1.421	1.427	0.662
80.8	1.425	1.431	0.689
78.3	1.428	1.434	0.710
75.8	1.432	1.438	0.737
73.4	1.435	1.441	0.757
71.0	1.438	1.444	0.777
68.5	1.439	1.445	0.784
66.1	1.442	1.447	0.801
63.7	1.444	1.449	0.814
61.3	1.446	1.452	0.831
58.9	1.447	1.453	0.838
56.5	1.450	1.456	0.858
54.2	1.451	1.457	0.865
51.8	1.453	1.459	0.879
49.4	1.455	1.461	0.892
47.1	1.456	1.462	0.899
44.5	1.458	1.463	0.909
41.8	1.459	1.464	0.916
39.0	1.460	1.466	0.926
36.2	1.463	1.469	0.946
33.4	1.464	1.470	0.953
30.7	1.465	1.471	0.960
28.0	1.467	1.473	0.973
25.3	1.468	1.474	0.980

Table S1. Experimental data obtained from the hygroscopicity measurement.

Table S2. Minor reaction products observed under the heterogeneous OH oxidation of aqueous methylsuccinic acid droplet. The relative abundance is reported at the maximum OH exposure $(1.47 \times 10^{12} \text{ molecule cm}^3 \text{ s})$.

Chemical Formula	Molecular Weight	Relative Abundance (%)	Proposed Chemical Structure	
C ₃ H ₄ O ₃	87	1.1	CH ₃ OH O 1 st generation fragmentation product (Scheme 1, Path A)	D O HO 1 st generation fragmentation product (Scheme 1, Path C)
C ₃ H ₄ O ₄	103	1.3	Possible 2 nd generation product	
C ₄ H ₄ O ₄	115	1.1	Possible 2 nd generation product	
C ₄ H ₆ O ₄	117	1.1	Possible 2 nd generation product	
C ₄ H ₆ O ₅	133	1.8	O OH HO OH O O O O O O O O O O	
C5H6O5	145	1.1	HO CH_3 OH OH OH OH OH OH OH OH	HO HO 1 st generation ketone functionalization product (Scheme 1, Path C)
C ₅ H ₈ O ₆	163	1.0	Possible 2 nd generation product	

Figure S1. Simulated change of activity coefficients (γ_i) of parent $(C_5H_8O_4)$, major functionalization $(C_5H_8O_5)$ and major fragmentation $(C_4H_6O_3)$ products (listed in Scheme 2) estimated by the AIOMFAC model. It is noted that no reaction products are formed prior to oxidation (i.e. OH exposure of 0 molecule cm⁻³ s). The results show the simulated activity coefficients of the two reaction products once the oxidation is initiated.