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Abstract. Monitoring urban-industrial emissions is often challenging, because observations are scarce and 

regional atmospheric transport models are too coarse to represent the high spatiotemporal variability in the 

resulting concentrations. In this paper we apply a new combination of a Eulerian model (WRF with chemistry) 

and a Gaussian plume model (OPS). The modelled mixing ratios are compared to observed CO2 and CO mole 15 

fractions at four sites along a transect from an urban-industrial complex (Rotterdam, Netherlands) towards rural 

conditions for October–December 2014. Urban plumes are well-mixed at our semi-urban location, making this 

location suited for an integrated emission estimate over the whole study area. The signals at our urban measurement 

site (with average enhancements of 11 ppm CO2 and 40 ppb CO over the baseline) are highly variable due to the 

presence of distinct source areas dominated by road traffic/residential heating emissions or industrial activities. 20 

This causes different emission signatures that are translated into a large variability in observed ΔCO:ΔCO2 ratios, 

which can be used to identify dominant source types. We find that WRF-Chem is able to represent synoptic 

variability in CO2 and CO (e.g. the median CO2 mixing ratio is 9.7 ppm (observed) against 8.8 ppm (modelled)) , 

but it fails to reproduce the hourly variability of daytime urban plumes at the urban site (R2 up to 0.05). For the 

urban site, adding a plume model to the model framework is beneficial to adequately represent plume transport 25 

especially from stack emissions. The explained variance in hourly, daytime CO2 enhancements from point source 

emissions increases from 30 % with WRF-Chem to 52 % with WRF-Chem in combination with the most detailed 

OPS simulation. The simulated variability in ΔCO:ΔCO2 ratios decreases drastically from 1.5 to 0.6 ppb ppm-1 

which agrees better with the observed standard deviation of 0.4 ppb ppm-1. This is partly due to improved wind 

fields (increase in R2 of 0.10), but also due to improved point source representation (increase in R2 of 0.05) and 30 

dilution (increase in R2 of 0.07). Based on our analysis we conclude that a plume model with detailed and accurate 

dispersion parameters adds substantially to top-down monitoring of greenhouse gas emissions in urban 

environments with large point source contributions within a ~10 km radius from the observation sites. 
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1 Introduction 

Cities are major contributors to anthropogenic CO2 and air pollutant emissions (Brioude et al., 2013; Turnbull et 

al., 2015; Velasco et al., 2014). Both monitoring and modelling of urban/regional concentrations of CO2 and co-

emitted air pollutants, such as CO and NOx, has therefore received a lot of attention (Brioude et al., 2013; Font et 40 

al., 2014; Huszar et al., 2016; Lac et al., 2013; Mays et al., 2009; McKain et al., 2012; Rayner et al., 2014; Ribeiro 

et al., 2016; Silva et al., 2013; Tolk et al., 2009; Wunch et al., 2009; Zhang et al., 2015). Since current emission 

inventories at small scales contain substantial uncertainties (Pouliot et al., 2012; Vogel et al., 2013), data 

assimilation has been applied to urban environments in order to better quantify fossil fuel fluxes. However, 

modelling urban atmospheric composition remains challenging as the urban environment is complex in both the 45 

emission landscape and atmospheric transport. This means that to independently estimate urban emissions from 

atmospheric observations, urban inversions require a detailed and accurate transport model that allows the 

mismatch between model and observations to be attributed to errors in the emission inventory, rather than to 

transport errors (Boon et al., 2016). Previous inversion studies relied heavily on a strict data selection to favour 

well-mixed conditions with more reliable model output, which results in very small data sets and therefore 50 

increased uncertainty on the estimated emissions (Bréon et al., 2015; Brioude et al., 2013). This could be overcome 

by improving the model representation of urban transport, taking into account that the model requirements are 

strongly dependent on the type of observation site used in the inversion. In this paper we aim to construct a 

promising observation and modelling framework to quantify the CO2 budget of an urban area by addressing two 

important questions in the context of inverse modelling at the urban scale. 55 

The first question is what type of measurement location (urban vs. rural) can best be used to monitor urban 

fluxes. Generally, urban sites are most strongly exposed to nearby (<1 km) fluxes and therefore show a large 

variability (Bréon et al., 2015; Lac et al., 2013). In contrast, rural sites show a much smaller response to urban 

emissions due to the small range of wind directions at which the site is affected by the urban area. Moreover, the 

dilution of urban plumes increases with distance (Calabrese, 1990; Finn et al., 2007) and the observed signal at the 60 

rural site can be small. Another consideration is that near-ground measurements, as commonly found in cities, are 

highly influenced by local sources (<100 m) that mask the overall urban signal. Boon et al. (2016) suggested that, 

even if strict data selection is applied, the usefulness of such sites in inversions with high-resolution Eulerian 

models (1–10 km) might be limited. Together, these papers suggest that a useful measurement location should be 

just downwind of an urban area relative to the dominant wind direction at a distance that ensures enough exposure 65 

to the urban plume and limits model errors due to large heterogeneity and local emissions. We will examine a 

transect of measurement sites to see which site best matches this criterion. 

The second question we address is what type of modelling framework is best capable of explaining urban 

transport and the resulting mole fractions at the measurement sites. Since the measurement location determines 

the level of spatiotemporal variation that can be observed in the concentrations, it also determines the requirements 70 

imposed on the modelling framework. In atmospheric composition modelling both Eulerian and Lagrangian 

(plume, puff or Gaussian) models are used, or a combination of both (Kim et al., 2014; Korsakissok and Mallet, 

2010a). Eulerian models use a grid that can be adapted to cover either small or large areas at different resolutions 

and are therefore widely used. However, Eulerian models assume that trace gasses are instantly mixed within 

individual grid boxes, which may enhance dispersion in the horizontal and vertical. The resulting errors in transport 75 

and mixing are reflected in unrealistic concentrations (Karamchandani et al., 2011; Tolk et al., 2009). The 
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magnitude of the concentration error depends on the heterogeneity of the emissions and the grid resolution (Tolk 

et al., 2008). A plume model improves the description of horizontal and vertical mixing and can account for higher 

spatial heterogeneity of emissions and concentrations. The use of such models has proven useful for both inert and 

reactive species, and point and line sources at local/urban scales (Briant and Seigneur, 2013; Korsakissok and 80 

Mallet, 2010a, b; Rissman et al., 2013; Vinken et al., 2011). However, a plume model is usually only applied to 

local sources to reduce computational expenses. It therefore does not resolve the impact of remote emissions and 

synoptic transport. So, when assessing the carbon balance of a whole city or larger areas, a combination of both 

models might be needed. 

Oney et al. (2015) examined an extensive CO2, CH4 and CO measurement network in combination with the 85 

FLEXPART-COSMO model. However, their framework focused on regional (~100–500 km), terrestrial fluxes. 

Several other studies focussed on urban scales (Boon et al., 2016; Bréon et al., 2015; Turnbull et al., 2015), but 

only few incorporated a Lagrangian model. For example, McKain et al. (2012) and Lauvaux et al. (2016) used a 

Lagrangian model to optimize urban fluxes of CO2, while Brioude et al. (2013) compared simulated FLEXPART 

CO2, CO and NOx concentrations to small observational datasets from seven flights over Los Angeles. Here, we 90 

compare and combine simulations with two different models: the Eulerian WRF-Chem model and the segmented 

Gaussian plume model OPS. The Gaussian plume model is used here specifically to transport point source 

emissions. The model output is compared to continuous observations of CO2 and CO at several measurement sites 

along an urban-to-rural transect. We included CO, because this species can act as a useful tracer for source 

attribution. We use the Rijnmond area (The Netherlands) including the city of Rotterdam as our case study, which 95 

is surrounded by scattered urban, agricultural, and rural areas. We chose this area because of the availability of a 

1x1 km2 emission inventory and its complex combination of residential, transport (including shipping), greenhouse 

and industrial activities. This makes Rijnmond an interesting test case, albeit not a simple one. 

This paper starts with a description of the case study (Sect. 2.1), the modelling framework (Sect. 2.2–2.5), and a 

summary of data selection criteria and methods (Sect. 2.6). Subsequently, we examine the ability of our 100 

measurement sites to detect urban signals, and demonstrate the added value of both urban and semi-urban sites 

(Sect. 3.1). Section 3.2 examines the ability of WRF-Chem to represent the urban signals at the measurement sites. 

Finally, we discuss the advances made by implementing the Gaussian OPS plume model (Sect. 3.3) and we 

examine the relative importance of improved meteorological conditions and source representation in Sect. 3.4. Our 

results lead to recommendations for monitoring and modelling of urban atmospheric composition in Sect. 4. 105 

2 Methods 

2.1 Study area and measurements 

We take the Rijnmond area (Fig. 1) in the Netherlands for our case study in which Rotterdam is the major urban 

area (625.000 inhabitants). The area is situated in flat terrain near the west coast of The Netherlands and includes 

a large harbour and industrial area. The bottom-up estimated emissions in this area are about 35 Mt CO2 and 48 kt 110 

CO in 2012 (Netherlands PRTR, 2014). In the port area, over three times more CO2 is emitted than in the city of 

Rotterdam. In contrast, more than 60 % of all CO is emitted in the city of Rotterdam. The reason for this difference 

is that emissions within the city are dominated by road traffic, which emits relatively much CO (CO:CO2 emission 

ratio of almost 17 ppb ppm-1). The principal source of CO2, namely energy production and industrial processes, is 
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mainly found in the port area and barely emits any CO (CO:CO2 emission ratio of less than 1 ppb ppm-1). The CO2 115 

emissions are therefore dominated by point sources (~80 %). 

We have installed two measurement sites to monitor CO2 and CO mixing ratios 15 km south (Westmaas, 51.79° 

N, 4.45° E) and 7 km northwest (Zweth, 51.96° N, 4.39° E) of the city centre with an inlet at 10 m a.g.l. We 

consider Zweth to be an urban site which is highly affected by urban emissions. Westmaas functions as a 

background site close to – but not within - the city and it is usually located upwind of the major source areas. 120 

Therefore, Westmaas provides information on the air mass entering the Rijnmond area and we only use this site 

to validate the large-scale patterns in WRF-Chem. These measurements have been described in more detail by 

Super et al. (2017). At Rotterdam-The Hague airport (Fig. 1) meteorological observations are made, which we also 

use for transport model validation purposes. 

We include two additional, more remote, sites in our framework. The Cabauw site (51.97° N, 4.93° E) is situated 125 

32 km east of the centre of Rotterdam and is considered a semi-urban site (Van der Laan et al., 2016; Vermeulen 

et al., 2011). This means the sampled air masses are influenced by urban emissions, but less often than a truly 

urban location. CO2 is measured at several heights (20, 60, 120 and 200 m a.g.l.) along a 200 m tall tower by the 

Energy research Centre of the Netherlands (ECN). CO is measured at ground level (2.5–4 m a.g.l.) by the National 

Institute for Public Health and the Environment  (RIVM). Another observation site is located at Lutjewad (53.40° 130 

N, 6.35° E), close to the coast in the north of the Netherlands. At this rural site, CO and CO2 mixing ratios are 

observed at 60 m a.g.l. (Van der Laan et al., 2009a; Van der Laan et al., 2016). These four stations together describe 

a transect from the city towards rural areas.  

For the Cabauw CO2 measurements we selected the 60 m level. On average the CO2 mixing ratios are similar at 

all levels during well-mixed daytime conditions (Vermeulen et al., 2011), but a large gradient is observed for stable 135 

conditions when the 20 m level is highly affected by surface fluxes surrounding the tower. Similarly, Turnbull et 

al. (2015) suggested that measurements closer to the surface are more sensitive to local fluxes and therefore a 

higher level than 20 m is more suitable to obtain information on more remote fluxes. We choose the 60 m level 

observations to be able to compare easily to the Lutjewad site. However, a higher level could have been used 

without affecting our conclusions. 140 

2.2 Eulerian model 

The Eulerian model used in this study is WRF-Chem V3.2.1 (Skamarock et al., 2008). For its initial and boundary 

conditions we use meteorological fields from the National Centers for Environmental Prediction (NCEP) Final 

(FNL) Operational Global Analysis (National Centers for Environmental Prediction/National Weather 

Service/NOAA/U.S. Department of Commerce, 2000) at 1x1° horizontal resolution and a temporal resolution of 145 

6 hours. We define four 2-way nested domains (Fig. 2) which have a horizontal resolution of 48x48, 12x12, 4x4 

and 1x1 km respectively, and a vertical resolution of 29 eta levels with the lowest model layer 40 m deep and a 

total of 8 levels in the lowest 1 km. The outer domain is situated over Europe. Domains 2–4 zoom in on the 

Rijnmond area in the southwest of the Netherlands. Based on previous studies over the Netherlands (Bozhinova et 

al., 2014; Daniels et al., 2016; Steeneveld et al., 2014), we have used the Yonsei University (YSU) boundary layer 150 

scheme (Hong et al., 2006), the Dudhia scheme for shortwave radiation (Dudhia, 1989), the Rapid Radiation 

Transfer Model (RRTM) as longwave radiation scheme (Mlawer et al., 1997), and the Unified Noah Land-Surface 

Model as the surface physics scheme (Ek et al., 2003). We also used the single-layer urban canopy model (UCM) 
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to account for changes in roughness length and heat fluxes in the urban environment (Chen et al., 2011), although 

the impact of the UCM model on simulated mixing ratios is very small in our domain. 155 

The CO2 initial and boundary conditions are taken from the 3D mole fractions from CarbonTracker Europe 

(Peters et al., 2010). The CarbonTracker 3D fields have a horizontal resolution of 1x1° and 34 vertical levels. 

Therefore, they are both horizontally and vertically interpolated onto the WRF-Chem grid. The CO initial and 

boundary conditions are calculated with IFS-MOZART (Flemming et al., 2009) and obtained from the Monitoring 

Atmospheric Composition and Climate (MACC) project. The boundary conditions are updated every 6 hours (only 160 

for the outer domain). 

We have implemented a CO2 budget based on the methodology used by Bozhinova et al. (2014), described in 

Eq. (1). 

𝑋𝐶𝑂2,𝑜𝑏𝑠 = 𝑋𝐶𝑂2,ls𝑏𝑔 + 𝑋𝐶𝑂2,𝑓𝑓 + 𝑋𝐶𝑂2,𝑏𝑓 + 𝑋𝐶𝑂2,𝑝 + 𝑋𝐶𝑂2,𝑟      (1) 

where the indices express the origin of CO2: obs – total observed concentration at a particular location, lsbg – 165 

large-scale background mole fraction, ff – fossil fuels, bf – biofuels, p – photosynthetic uptake, r – ecosystem 

respiration. Similar to the original study of Bozhinova et al. (2014), we omitted the stratosphere-troposphere 

exchange and ocean fluxes and assume they are accounted for in the large-scale background. With Eq. (1) we thus 

only consider regional contributions to the carbon budget in addition to the large-scale background. In the model, 

any change in the large-scale background CO2 mole fraction (XCO2,lsbg) is only caused by advection and exchange 170 

at the domain boundaries. 

In addition, we added the CO budget to WRF-Chem following Eq. (2). The main sources of CO are fossil fuel 

combustion and oxidation of hydrocarbons (US EPA, 1991). Several scholars have argued that the hydrocarbon 

oxidation term is important for the large-scale background CO concentration (Gerbig et al., 2003; Griffin et al., 

2007; Hudman et al., 2008), contributing a significant percentage to the total CO burden. Yet, these studies were 175 

all based on summer time measurements and under conditions favourable for photochemistry. Photochemical 

oxidation is likely to be less important in the winter months considered here. Moreover, Griffin et al. (2007) found 

the CO fraction from local anthropogenic emissions to dominate at measurement sites. We assume this is also 

valid in the urban-industrial environment of our case study. We nevertheless consider that this introduces an 

uncertainty in the modelled CO mixing ratios. For summer time studies the oxidation term might be significant. 180 

The main sink of CO is the reaction with the hydroxyl radical (chemical loss term L), which we account for with 

a simple first order loss term. We assume steady-state, i.e. the OH concentration is taken as a constant (106 

molecules cm-3). This results in a lifetime for CO of about 2 months at mid-latitudes (Jacob, 1999) during the 

winter months used in our study: 

𝑋𝐶𝑂,𝑜𝑏𝑠 = 𝑋𝐶𝑂,ls𝑏𝑔 + 𝑋𝐶𝑂,𝑓𝑓 + XCO,bf + 𝑋𝐶𝑂,𝐿       (2) 185 

The different contributions in Eq. (1) and Eq. (2) are separated as different additive tracers (i.e. labelled) in the 

WRF-Chem simulations. 

2.3 Gaussian plume model 

The plume dispersion model OPS (Operational Priority Substances) is a segmented Gaussian plume model that 

calculates the transport, dispersion, chemical conversion and deposition of pollutants (Sauter et al., 2016; Van 190 

Jaarsveld, 2004). It is used to calculate large-scale, yearly averaged concentration and deposition maps for the 
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Netherlands at 1x1 km2 resolution. It was initially developed to model dispersion of pollutants like particulate 

matter and ammonia, but has also been used to study the dispersion of pathogens (Van Leuken et al., 2015).  

In this paper we use the so-called "short-term" version of this model (version 10.3.5), which contains mostly the 

same parameterisations as the "long-term" model described by Sauter et al. (2016). The short-term model provides 195 

hourly concentrations at receptors that can be individual sites, or across a gridded domain. The model keeps track 

of a trajectory forward in time, for which plumes consist of so-called segments, taking into account time-varying 

transport over longer distances (e.g. changes in wind direction and dispersion). If for a time step a specific plume 

affects the receptor, a Gaussian plume formulation is used to calculate the concentration caused by that source 

based on the true travel distance along the trajectory. 200 

The OPS model uses primary meteorological variables which are measured by the Royal Dutch Meteorological 

Institute, and calculates secondary variables such as boundary layer height and friction velocity, but also the 

turning of the wind with height and a vertical wind profile. Primary meteorological variables are spatially 

interpolated over the Netherlands to 10x10 km2 using 19 observation sites with a weighing factor depending on 

the distance to the grid point. The variables are subsequently averaged over a pre-defined area (for more 205 

information see Sauter et al. (2016)). The use of observed meteorology in OPS versus model-calculated 

meteorology in WRF-Chem could result in an unfair comparison of the models, and we therefore replaced the 

primary parameters (temperature, humidity, wind speed, and wind direction) and the boundary layer height with 

those calculated by WRF-Chem. The secondary (dispersion) parameters are automatically also updated, since they 

are calculated from the primary parameters. Note that the meteorological conditions in OPS remain constant during 210 

each simulated hour and over a large region. 

Although potentially the OPS model can be used for both area and point source emissions, we believe that point 

sources will benefit most from a more detailed description of dispersion as they are affected most by the instant 

dilution in a Eulerian model. When using OPS, we assume wet deposition plays no role due to the relative 

insolubility of CO2, while dry deposition of CO2, i.e. photosynthetic uptake, is accounted for by WRF-Chem (Eq. 215 

(1)). We do not simulate CO with the OPS model. The point source contribution to the total CO concentrations is 

very small and therefore the impact of OPS is limited. 

2.4 Emissions 

The fossil fuel and biofuel emissions for domains 1–3 in the WRF-Chem simulation are taken from the TNO-

MACC III inventory for 2011 (Kuenen et al., 2014) and have a horizontal resolution of 0.125x0.0625°. Fossil fuel 220 

and biofuel emissions for domain 4 in WRF-Chem are collected from the Dutch Emission Registration 

(Netherlands PRTR, 2014) and compiled by TNO (Netherlands Organization for Applied Scientific Research) to 

a 1x1 km2 emission map for the year 2012. In the OPS simulations we only include the point source emissions 

from domain 4 in WRF-Chem (hereafter referred to simply as the Rijnmond area). 

The emissions are divided over ten SNAP emission categories, summarised in Table 1, which may include both 225 

area and point sources. We apply a temporal profile to the emissions by assigning hourly, daily and monthly 

fractions to the emissions per emission category (Denier van der Gon et al., 2011). In WRF-Chem, area source 

emissions are added to the lowest surface model level every hour. Point source emissions (only SNAP 1, 3, 4, 8 

and 9) are given a simplified, fixed vertical distribution based on previous research with plume rise calculations 

(Bieser et al., 2011). These emissions are emitted at the heights shown in Table 1. OPS allows for more detailed 230 
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point source characteristics and accounts for stack height and plume rise (based on heat content) per individual 

point source. 

The biogenic (non-biofuel) CO2 fluxes in WRF-Chem are generated as described by Bozhinova et al. (2014). 

The SiBCASA model (Schaefer et al., 2008) calculates monthly averaged 1x1° photosynthetic uptake (An) and 

ecosystem respiration (R) for nine different land use types. Combining the high-resolution land-use map of WRF-235 

Chem with the SiBCASA fluxes gives us biogenic fluxes on the resolution of the WRF-Chem grid. The temporal 

resolution is enhanced by scaling the An and R at each WRF-Chem time step with modelled shortwave solar 

radiation (SWin in W m-2) and 2m temperature (T2m in K): 

𝐴𝑛 = 𝐴𝑛,𝑓 ∙ 𝑆𝑊𝑖𝑛          (3) 

𝑅 = 𝑅𝑓 ∙ 1.5
(𝑇2𝑚−273.15)/10         (4) 240 

where An,f is the monthly average photosynthetic flux divided by the monthly total incoming shortwave radiation 

(mole CO2 km-2 h-1 (W m-2)-1), and Rf the monthly average respiration flux (mole CO2 km-2 h-1) divided by the 

monthly total of the empirical function 1.5(𝑇2𝑚−273.15)/10 (unitless). This procedure was first described in Olsen 

and Randerson (2004). It neglects the impact of water stress, temperature and CO2 concentration on the 

photosynthetic uptake. Given that we consider only winter months in which photosynthesis is limited, we assume 245 

the error resulting from this simplification to be small. 

2.5 Overview of simulations 

We simulated a period of 3 months, October–December 2014. We choose this period because of the high data 

coverage at all measurement sites and to limit the impact of biogenic fluxes and hydrocarbon oxidation. We 

considered four simulations for CO2, using two different model systems as described in Table 2. All simulations 250 

include the WRF-Chem contributions of XCO2,lsbg, XCO2,p, XCO2,r, and XCO2,bf and XCO2,ff from area sources. Also, the 

first three simulations make use of meteorological conditions as simulated by WRF-Chem. Therefore, the 

simulations only differ in the representation of point source emissions in the Rijnmond area. To identify the 

importance of a correct representation of meteorological conditions we do an additional OPS simulation with 

interpolated meteorological observations (see Sect. 2.3). The simulations are designed to gradually increase the 255 

complexity of the point source representation towards more realistic point source contributions: 

 In simulation 1 (WRF-Chem) the point sources are represented as area sources in WRF-Chem; 

 In simulation 2 (WRF+OPS-area) the point sources are treated as area sources in OPS; 

 In simulation 3 (WRF+OPS-point) the point sources are represented as true point sources with detailed 

source characteristics in OPS; 260 

 In simulation 4 (WRF+OPS-point-obsmet) the point sources are represented as true point sources with 

detailed source characteristics in OPS and the meteorology in OPS is replaced by interpolated 

observations and OPS calculated boundary layer height. 

In the WRF-Chem run we labelled the point source emissions from the Rijnmond area separately, so we can replace 

them by the OPS counterparts. The OPS model simulates concentrations directly at the measurement sites, whereas 265 

from WRF-Chem we extract the grid box average mixing ratio of the boxes in which the measurement sites are 

located. 

2.6 Baseline determination and data selection criteria 
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In this study we are especially interested in the contribution of urban emissions and the ability of the models to 

represent the transport of those emissions to the observation sites. However, the observed CO2 and CO mixing 270 

ratios are also affected by background signals and other fluxes. Therefore, in order to purely compare the transport 

of urban emissions, we need to separate the fossil fuel contribution from all other contributions. In the models we 

can separate the fossil fuel contribution XCO2,ff coming from the Rijnmond area (hereafter referred to as “urban 

plume”) from all other contributions (i.e. XCO2,ff from outside the Rijnmond area, XCO2,lsbg, XCO2,p, XCO2,r, and XCO2,bf, 

hereafter referred to as “baseline”) by using labelled tracers. To quantify the urban plume contribution to the total 275 

observed mixing ratio, we also need to subtract a baseline. 

Previous studies have suggested various methods to calculate the baseline from observations, for example using 

a remote/upwind measurement site or statistical methods (e.g. (Djuricin et al., 2010; Lopez et al., 2013; Turnbull 

et al., 2015; Van der Laan et al., 2010). An in-model comparison with WRF-Chem shows that Westmaas is a 

suitable background site for Zweth (Super et al., 2017), but Westmaas gives a biased baseline estimate for the 280 

more remote sites (Cabauw and Lutjewad) because of the interference of other sources and sinks along the transect 

from Rijnmond to the measurement site. Another suggested method is to subtract a smoothed representation of the 

original time series (Press et al., 1992; Super et al., 2017; Thoning and Tans, 1989) which filters out variations 

below a certain cut-off time scale. For seasonal cycle smoothing for example, a typical cut-off value is 80 days. In 

our study however, the baseline needs to filter out synoptic variations across the domain and we therefore chose a 285 

cut-off time of 5 days. We tested this baseline definition by applying it to the WRF-Chem time series and 

comparing the resulting concentrations to the true WRF-Chem baseline based on the labelled tracers. We found 

satisfactory agreement (R2 is between 0.65 and 0.81 for both species at all 3 locations). Note that this method does 

not account for short pollution events bringing polluted air into the domain as only synoptic variations are captured. 

To prevent any differences between model and observations resulting from the baseline selection, we choose to 290 

apply this subtraction of a smooth cycle method with a 5-day cut-off to both observations and our model time 

series at all measurement sites (see Fig. 3 for an example). The concentrations above the baseline are considered 

to be the urban plume concentrations and are denoted ΔCO2 and ΔCO. Note that data points can also be below the 

baseline if clean air is advected and only a small fossil fuel contribution is calculated. We discard these data points, 

because we cannot accurately estimate the fossil fuel concentrations in those urban plumes. 295 

In all the analyses, we applied a wind sector selection to ensure that the observations are affected by emissions 

in the Rijnmond area rather than from other urban areas nearby. For Zweth we selected wind directions of 90–220 

degrees, for Cabauw 230–270 degrees, and for Lutjewad 210–230 degrees. For Zweth we can also separate 

between signals from the residential area (90–150 degrees, Zweth-city) and industrial area (160–220 degrees, 

Zweth- port). Wind direction observations at Rotterdam airport are used for this purpose. Additionally, a daytime 300 

selection criterion (8:00–17:00 LT) is applied to favour well-mixed conditions. 

3 Results 

3.1 Comparison of measurement sites 

The urban-to-rural transect of observation sites provides an opportunity to evaluate the ability of different types of 

sites to detect urban plumes. We find that a semi-urban site can provide a constraint on the total emissions in the 305 

Rijnmond area, whereas an urban site is able to separate between different source areas. This is illustrated in Fig. 
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4 (left panel), where we display the probability density functions of the urban plume CO:CO2 concentration ratio 

(i.e. ΔCO:ΔCO2) at the three sites. A probability density function illustrates the likelihood that an observed urban 

plume concentration ratio takes a certain value. The narrower the distribution, the less variable the ratios are and 

the more likely a ratio is to take the mean value (largest probability). Figure 4 also displays the mean bottom-up 310 

derived emission ratio of the Rijnmond area (vertical solid line, 2.5 ppb ppm-1) and its range, which is taken from 

the emission inventory taking into account the temporal profiles of the separate emission categories. 

We see that the ΔCO:ΔCO2 distribution at Cabauw is relatively narrow. Also, the mean ΔCO:ΔCO2 at Cabauw 

(2.2 ppb ppm-1) is very close to the bottom-up Rijnmond emission ratio. This indicates that Cabauw observes an 

integrated, well-mixed signal from the Rijnmond area and therefore contains information on the entire urban area. 315 

Interestingly, Lutjewad shows a much wider distribution with a mean of 3.9 ppb ppm-1. The urban plume from 

Rijnmond is mixed with signals from other industrial and urban areas (such as Amsterdam) before it reaches 

Lutjewad, causing more variability. This suggests that a site too far away from the urban sources is unable to 

uniquely identify the urban plume coming from a specific region. Also, the wind direction is heterogeneous 

between Rijnmond and Lutjewad. So, despite that the wind in Rijnmond is blowing towards Lutjewad according 320 

to our wind sector selection, the urban plume might never reach the site if the wind direction is changing during 

transport. This makes it difficult to filter out the Rijnmond urban plume and Lutjewad will be disregarded for the 

remainder of this study. The Zweth site has an even wider distribution than Lutjewad and a mean ratio of 4.5 ppb 

ppm-1. This site is affected by different source areas with distinct emission ratios depending on the wind direction, 

resulting in a large variability in observed concentration ratios. This variability contains a lot of information about 325 

the Rotterdam emissions and their spatiotemporal variations. Therefore, we examine the Zweth distribution in 

more detail by selecting wind sectors that sample different source areas with distinct emission characteristics (Fig. 

4, right panel). Zweth-city is illustrative for the signal from the urban residential area dominated by road traffic 

and the Zweth-port signal contains mostly industrial and power plant emissions. 

We find a large difference in bottom-up emission ratios for the residential (6.6 ppb ppm-1, vertical dash-dotted 330 

line) and port area (1.2 ppb ppm-1, vertical dashed line), which is not fully reproduced by the observed ΔCO:ΔCO2 

ratios. Whereas the observed ΔCO:ΔCO2 ratio for Zweth-city (5.0 ppb ppm-1) is in reasonable agreement with the 

emission ratio, Zweth-port has a mean observed ratio that is much higher than expected (4.1 ppb ppm-1). This 

discrepancy is related to the presence of high stack emissions in this area, which make up almost 75 % of the total 

Rijnmond CO2 emissions. The stack emissions from industrial processes and energy production have a small 335 

emission ratio of ~1 ppb ppm-1 and dominate the total emission ratio. However, stack emissions have small plume 

dimensions that can easily be missed at the Zweth site and not be visible in the observations, especially for stacks 

in the vicinity of Zweth. Therefore, the observed concentration ratio can turn out much higher than what is expected 

based on the emission inventory including stack emissions. Indeed, the emission ratio of the Zweth-port area 

without point sources would be 3.9 ppb ppm-1, which is very close to the observed 4.1 ppb ppm-1. This finding 340 

indicates that stack emissions only occasionally affect the Zweth observations and it is very important to represent 

those events well with a model in order to constrain this large fraction of CO2 emissions. Although there might be 

an uncertainty in the emission inventory, reported emissions from industrial stacks are relatively accurate. Thus, 

it is unlikely that this explains the full discrepancy found for Zweth-port. Another potential cause of the 

discrepancy could be that the emission ratio is variable in time – for example due to a change in fuels used for 345 

energy production, while this is not accounted for in the inventory. However, this would likely have a smaller 
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impact than the discrepancy found here. The impact of stack emissions on the Zweth observations is discussed in 

more detail in Sect. 3.3. 

3.2 WRF-Chem urban plume transport 

We have now seen that the observations at Zweth and Cabauw contain valuable information about the emissions 350 

in the Rijnmond area. In order to use that information to estimate the emissions, we explore the ability of WRF-

Chem to represent observed time series, and especially their urban plume components. 

First, we analyse the model performance on a day-to-day basis by looking at daytime averages and find that 

WRF-Chem is able to resolve day-to-day variations reasonably well. Table 3 shows that, respectively, 65 % and 

53 % of the variability in the CO2 and CO mixing ratios is captured at the Westmaas background site. Although 355 

the explained variances are slightly smaller at the urban (Zweth) and semi-urban (Cabauw) site, the performance 

at Cabauw for CO2 is comparable to previous modelling studies (Bozhinova et al., 2014; Tolk et al., 2009). Yet, 

the RMSE (Root Mean Square Error) is relatively large for CO and CO2 at all sites. Since Westmaas is nearly 

unaffected by urban emissions, the cause of the large RMSE is related to larger scale transport. Looking at 

meteorological variables, there is a good agreement for temperature, humidity and wind speed. However, the 360 

model has difficulties simulating the correct wind direction, which is especially expressed in the large RMSE. 

Similar errors have been observed before (Deng et al., 2017; Srinivas et al., 2016). The largest error is found in 

the second half of November, causing a large model-data discrepancy (also visible in Fig. 3). Table 3 also shows 

that the RMSE in the mixing ratios further increases for sites that are more influenced by the urban area. This 

finding indicates that WRF-Chem has difficulties representing the full variability caused by urban-industrial 365 

emissions. 

Second, looking closer at the urban plumes we find that WRF-Chem represents the typical characteristics of 

urban plumes reasonably well, but it simulates the peaks at the wrong time at the wrong location compared to the 

measurements (Table 4). We tried to isolate the impact of errors in urban transport by looking statistically at the 

urban plume concentrations (ΔCO2 and ΔCO) at Zweth and Cabauw. We select all data points that satisfy our 370 

criteria, separately for the observed and modelled time series such that both data sets can have a different size. We 

disregard data points associated with wind speeds of less than 3 m s-1 to favour well-mixed conditions that are 

easier to interpret. However, we find that the inclusion of low wind speed data has limited impact on the average 

statistics. Table 4 shows that, on average, there is a good agreement between WRF-Chem and the observations in 

the median and the 80th percentile. The median values of CO2 are somewhat lower in WRF-Chem, indicating there 375 

are more small values and less high peak values in the model. Because the frequency distribution of the wind 

direction is similar between the observations and WRF-Chem, we expect no bias is introduced by the wind 

direction error. However, if we now co-sample WRF-Chem and the observations in time (i.e. we select 

observations that match our criteria and then take the same time from the WRF-Chem time series, which creates 

two data sets of equal size) we find a very small explained variance (R2) for both species at both sites based on 380 

hourly data. An inversion using these hourly data would thus be subject to a large model-data mismatch that 

increases the uncertainty in the optimized fluxes. Therefore, we next look more specifically at the data points 

responsible for the highest mismatch in observed and simulated ΔCO2.  

We find that the largest differences between WRF-Chem and the observations at Zweth when co-sampling urban 

plumes results from errors in simulated wind direction, as well as from an inability of WRF-Chem to simulate the 385 
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impact of point source emissions. This is illustrated in Fig. 5, where we binned the absolute errors in hourly ΔCO2 

into four magnitude classes of 10 ppm each and correlate them with the error in simulated wind direction (as 

binned into three classes of 20 degrees, scatter plots) and with the observed ΔCO:ΔCO2 ratio (whisker plots). We 

find that the smallest ΔCO2 model error class (0–10 ppm) is dominated by the smallest wind direction error (0–20 

degrees, 68 %), while in the largest ΔCO2 model error class (30–40 ppm) 70 % of the data points have a wind 390 

direction error of more than 20 degrees. With such large wind direction errors, the trajectory of urban plumes is 

misrepresented and the modelled mixing ratios are affected by the wrong source area, or plumes may even entirely 

miss the sites in the model. In addition, we find that in the largest ΔCO2 model error class (30–40 ppm) the observed 

ΔCO:ΔCO2 is lower (2.5 ppb ppm-1) and less variable than in the other classes, suggesting a larger influence of 

industrial (stack) emissions. Although the number of data points in the largest ΔCO2 model error class is small 395 

(N=14), these tendencies give a good indication of what might cause these errors. At Cabauw, the impact of stack 

emissions is not visible, because the point source emissions are already well-mixed when the air mass arrives at 

Cabauw. Hence, we will next examine the added value of the OPS plume model only at Zweth to better represent 

the dispersion of CO2 emitted from stacks and the impact of wind direction in OPS. 

3.3 WRF-Chem and OPS point source representation 400 

When we focus exclusively on point source emissions, we find that all simulations that include the OPS plume 

model are in better agreement with the observations than the WRF-Chem simulation (based on the R2 and 

regression slope). This is illustrated in Table 5, where we compare co-sampled simulated and observed events with 

a high point source contribution (see also Appendix A for more details). These events are selected based on a low 

observed ΔCO:ΔCO2 ratio (the threshold is 1.5 ppb ppm-1, events illustrated as grey bars in Fig 4). In the models, 405 

these events are highly correlated with a high point source contribution (of at least 90 %) in the simulated ΔCO2 

mixing ratio (r is -0.76 (WRF+OPS-point-obsmet) and -0.61 (WRF-Chem)). Including low wind speed data 

deteriorates most of the statistics for all simulations (not shown), meaning that the models have difficulties 

representing stagnant conditions. 

For WRF-Chem the explained variance in the co-sampled observations is limited (R2=0.30) and the regression 410 

slope of ΔCO2 is significantly lower than one (i.e. the 1:1 line of modelled vs. observed ΔCO2). Both the mean 

ΔCO:ΔCO2 and the standard deviation are larger than the observed mean and standard deviation. This suggests 

that the lack of agreement is partly caused by an error in the WRF-Chem wind direction, causing the model to 

sample air from a wrong source area. 

In contrast to WRF-Chem, WRF+OPS-point-obsmet shows a larger explained variance (R2=0.52), a regression 415 

slope that is nearly one, and a ΔCO:ΔCO2 ratio that agrees with observations both in mean and in standard 

deviation. Since only about 10 % of the Zweth-port observations are affected by stack emissions due to the small 

dimension of the plumes (N=42), a better representation of atmospheric conditions has a large impact. An 

advantage of the OPS model is the ability to estimate the model uncertainty by providing a plume cross-section. 

Receptor points can be positioned anywhere and by adding several receptor points around the true measurement 420 

location we can account for transport errors (e.g. in the wind direction). If we allow for a maximum wind direction 

error of 5 degrees, this has no significant impact on the R2 or slope (results not shown), suggesting that the results 

from the WRF+OPS-point-obsmet simulation are robust against small random errors in wind direction. However, 
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systematic errors in the wind direction or the treatment of point source emissions such as present in WRF-Chem 

will have an impact on its performance, as we will explore next. 425 

3.3.1 Dispersion 

When comparing WRF-Chem and WRF+OPS-area we find that the OPS model reduces the dispersion of point 

source emissions, which causes emissions from high stacks to barely reach ground level. Vertical profiles of ΔCO2 

near an energy production stack for both model simulations are shown in Fig. 6. Energy production sources often 

have the highest stacks and the lowest ΔCO:ΔCO2 ratios. Near an energy production stack the vertical dimension 430 

of the plume in WRF+OPS-area is smaller than in WRF-Chem. The plume remains more concentrated in 

WRF+OPS-area, leading on average to lower mixing ratios at ground level (left panel) and to higher maximum 

values at around 200 m (right panel). This effect is also clearly visible at Zweth (not shown) and results in a higher 

mean ΔCO:ΔCO2 ratio in Table 5 for WRF+OPS-area (i.e. less influence of the low-ratio stack emissions) and a 

higher explained variance (37 %). 435 

3.3.2 Point source representation 

From a comparison of WRF-Chem, WRF+OPS-point and WRF+OPS-point-obsmet it follows that having a plume 

model with full point source characteristics can improve the agreement with the observed mixing ratios, even if 

the meteorological conditions are biased. Implementing detailed source characteristics (WRF+OPS-point) not only 

increases the explained variance to 42 %, it also increases the ΔCO:ΔCO2 standard deviation. This is the result of 440 

larger spatial (both horizontal and vertical) variability in the emission landscape. These effects are also visible in 

Fig. 7, which shows a time series of six days of observations and model output. When differences between the 

simulations are small, this indicates the absence of point source signals. On October 23 (event A) an improvement 

is made by using observed meteorological conditions due to the large wind direction error, while the difference 

between WRF-Chem and WRF+OPS-point is small. However, on other occasions the use of the OPS model, 445 

irrespective of the meteorology used, already improves the simulated urban plume mixing ratio. For example, on 

October 24 (event B) both OPS runs reduce the urban plume mixing ratios and are in better agreement with the 

observations. On October 26 (event C) the opposite is happening. Whereas WRF-Chem is only above the 

background for four hours, the observations show a longer and more severe pollution event, despite a relatively 

small wind direction error. Although an additional improvement can be made using the observed wind fields, using 450 

WRF+OPS-point already improves the length and strength of the pollution event. Note that, although WRF-Chem 

sometimes performs better than the simulations including OPS, the overall statistics suggest that it is recommended 

to use WRF+OPS-point-obsmet. 

4 Discussion 

In this study we focused on two major questions in urban greenhouse gas modelling studies: what type of 455 

measurement locations can provide the best information on urban fluxes of CO2 and CO, and what type of 

modelling framework can best represent urban plume mixing ratios at these measurement sites. In a previous study, 

Lauvaux et al. (2016) have used nine observation towers to estimate CO2 fluxes from Indianapolis. They have 

argued that the optimum number of towers is dependent on the spatial heterogeneity of the emissions within the 

city. They also state that it is impossible to attribute changes in the total CO2 concentration to specific source 460 
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sectors when only CO2 observations are available. Based on our current findings, we believe that with the use of 

other co-emitted species, like CO, information can be gained about source sector contributions, as was also shown 

by Turnbull et al. (2015). Additionally, Brioude et al. (2013) have shown that with only a few flights a reasonably 

robust flux estimate can be made for CO and NOy. These studies thus show that with additional species and 

strategically placed measurements the need for a large observation network can be reduced. However, an important 465 

pre-condition is that atmospheric transport is correctly represented. Lauvaux et al. (2016) discussed that the 

atmospheric transport in high-resolution Eulerian models might suffer from errors due to assumptions about 

turbulence and other fine-scale processes, which causes urban plumes to violate the well-mixed assumptions of 

the model. This is especially relevant for emission sources with dimensions that are significantly smaller than the 

model resolution, i.e. point sources. Indeed, in this study we find that a plume model is a useful addition to the 470 

Eulerian model to correctly represent the transport of emissions from large point sources. 

4.1 Comparison of observation sites 

We first examined the use of the measurement sites to detect urban plumes, since the measurement sites in an 

inversion determine the demand put on the model performance. At the rural site (Lutjewad), the urban plume has 

become mixed with other signals and the urban plume is difficult to distinguish. This site (at ~200 km from the 475 

Rijnmond area) is therefore too far removed to specifically constrain the Rijnmond emissions, although it was 

shown to constrain emissions from the larger urban conglomerate of the Randstad quite well (Van der Laan et al., 

2009b; Van der Laan et al., 2010). The semi-urban site (Cabauw) detects urban plumes from Rijnmond which 

have already become well-mixed during transport. Moreover, the mean concentration ratio matches well with the 

emission ratio for the Rijnmond area. We therefore argue that the Cabauw site could constrain the overall emissions 480 

of the Rijnmond area due to its integrating power without the need for a multi-model approach. In contrast, the 

urban location (Zweth) is highly exposed to the urban fluxes and is able to detect spatial variations in emissions 

inside the urban area. We find distinct concentration ratios for different source areas that can provide valuable 

information about dominant source types and areas. These findings are similar to a previous study concluding that 

a network of in-city sites provides good constraints due to their high exposure and ability to separate between 485 

different parts of the source area (Kort et al., 2013). However, the difference between the emission ratio and 

observed concentration ratio for the Zweth-port area indicates that stack emissions might frequently be missed at 

the Zweth measurement site due to the limited plume dimensions. Therefore, a correct representation of the 

transport becomes increasingly important. Thus, we conclude that the Cabauw and Zweth site have their own 

particular (dis)advantages and a combination of an urban and semi-urban site could be most beneficial to constrain 490 

urban fluxes in detail. Note that this conclusion is specifically valid for the Rijnmond area with the presence of 

major point sources and the requirements might be different for other urban topologies. 

4.2 Model skill 

Next, we evaluated the skill of the Eulerian WRF-Chem set-up. The ability of our WRF-Chem framework to 

represent daytime average mixing ratios is comparable with other model frameworks in the urban environment 495 

(Bozhinova et al., 2014; Bréon et al., 2015; Lac et al., 2013; Tolk et al., 2009). However, WRF-Chem has a large 

wind direction bias that makes it difficult to compare modelled and observed mole fractions. The monthly average 

WRF-Chem wind direction shows an absolute bias of 1 (October), 51 (November) and 10 (December) degrees 
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compared to the observed wind direction at Rotterdam airport. The error in November is large compared to 

previous findings (Jiménez et al., 2016) and this results in a large model-observation mismatch in tracer mixing 500 

ratios (Fig. 3). Also at the Cabauw site, which is less influenced by build-up areas, the model-data agreement for 

the 10 m wind direction in November is limited. Previous research has also shown an uncertainty of 30–40 % in 

the tracer mixing ratio due to the uncertainty in meteorological conditions (Angevine et al., 2014; Srinivas et al., 

2016). Additionally, Angevine et al. (2014) have shown that using an ensemble mean of model simulations with 

different meteorology does not necessarily lead to a better representation of plume transport and dispersion in a 505 

Lagrangian model for area sources. We therefore speculate that assimilating observed wind fields in WRF-Chem, 

as was done by Lauvaux et al. (2013), could be more beneficial to improve the modelled wind fields and as such 

improve the plume transport. Furthermore, the model performance under stratified and low wind speed conditions 

need to be addressed, since removing these data can lead to biased emission estimates. 

Some studies argued that the main limitations of a Eulerian model are the enhanced dispersion due to instant 510 

mixing of species throughout the grid box and, related to that, the absence of a good point source representation 

(Karamchandani et al., 2011; Tolk et al., 2009). Our results show evidence for both limitations in the WRF-Chem 

set-up. First, WRF-Chem underestimates the median urban plume mixing ratios of both CO2 and CO which should 

mainly be attributed to errors in transport and mixing. Whereas CO mixing ratios at the Zweth site are dominated 

by area sources, CO2 mixing ratios are also highly affected by point source emissions. Therefore, their consistent 515 

underestimation cannot be caused solely by errors in point source emissions. Second, looking more specifically at 

the point source contribution, WRF-Chem can only explain 30 % of the variance and the spread in the ΔCO:ΔCO2 

ratio is too large compared to the observations. Thus the resolution appears to be too low to fully represent the 

transport of the urban plumes from point sources, similar to previous findings related to power plant plumes 

(Lindenmaier et al., 2014) and megacities (Boon et al., 2016).  520 

In order to overcome the limitations of WRF-Chem related to point source representation and wind field errors, 

we evaluated the use of the OPS plume model with full point source characteristics and observed meteorological 

conditions. As discussed before, the OPS plume has limited impact on the CO mixing ratios as point sources only 

contribute a small fraction to the total CO emissions. Therefore, the focus in the remainder is on CO2. The OPS 

plume model requires limited effort to be run in addition to WRF-Chem (it requires 2 input files and takes only a 525 

few seconds to run) and is therefore a relatively easy solution to improve the point source representation.  

Several previous plume modelling studies with different species showed improvements compared to the gridded 

approach (Briant and Seigneur, 2013; Ganshin et al., 2012; Karamchandani et al., 2006; Karamchandani et al., 

2012; Korsakissok and Mallet, 2010a; Rissman et al., 2013). In this study we find a significant improvement with 

WRF+OPS-point-obsmet at Zweth, both in the explained variance and the ΔCO:ΔCO2 ratio. Also the observed-530 

vs-simulated regression slope of the point source ΔCO2 mixing ratio becomes nearly one. In this analysis the 

number of selected data points is relatively small, because stack emissions can easily be missed by an observation 

site due to the small plume dimensions. Therefore, only a few events can be used to constrain point source 

emissions and a good representation of the plume transport is essential. Although there are only ~100 individual 

point sources in the Rijnmond area, they make up about 75 % of the total CO2 emissions. Thus we argue that in an 535 

urban-industrial area with a significant point source contribution the use of a plume model is critical to get a 

reliable emission estimate. If detailed point source characteristics are unknown, these would have to be estimated 

and this adds an uncertainty to the modelled mixing ratios. Nevertheless, we have shown that even with the WRF-
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Chem point source representation (i.e. 1x1km2 in size and fixed vertical distribution) the plume model can already 

improve the agreement with the observations. Further improvements can possibly be made by representing traffic 540 

emissions as line source emissions in a plume model (Briant and Seigneur, 2013) rather than considering them as 

gridded area sources in the Eulerian model.  

Although part of the OPS-driven improvement can be attributed to the use of observed meteorological conditions, 

we have shown with the WRF+OPS-point simulation that there is also an improvement in point source 

representation. We found that a higher spatial variability in the emissions causes more variability in the 545 

concentration ratios. Representing point sources as area sources, as is done in WRF-Chem, results in lower 

correlations and less variability in concentration ratios, which is consistent with previous studies that demonstrated 

the importance of a good source representation (Kim et al., 2014; Korsakissok and Mallet, 2010b; Touma et al., 

2006). Besides the ability to include detailed source characteristics and to use observed meteorology, the OPS 

model has some additional advantages. We have shown that looking at individual stacks can provide valuable 550 

information about the underlying transport and dispersion processes and how they are affected by source 

characteristics. Additionally, receptor sites can be positioned anywhere, which allows us to study the spatial 

variations at much higher resolution than currently possible with WRF-Chem. 

At Cabauw, the difference between WRF-Chem and the WRF+OPS-point simulation is small, although the 

model-data mismatch at Cabauw is further reduced when observed meteorology is used. This leads to the question 555 

for which spatial extent a plume model is beneficial. In previous plume-in-grid models at high resolution (<25 km) 

plumes or puffs are often injected in the Eulerian parent model when the width of the plume is similar to the grid 

size (Karamchandani et al., 2006; Kim et al., 2014; Korsakissok and Mallet, 2010b). According to the definition 

of the lateral dispersion factor in OPS this would mean that a plume will have reached a horizontal width of 4 km 

(the resolution of the domain in which Cabauw is located) after about 8 km travel distance under well-mixed 560 

conditions. To test this, we compared a monthly average WRF-Chem CO2 mixing ratio field in and around 

Rijnmond with a monthly averaged gridded OPS mixing ratio field. The OPS model was only applied for emissions 

within the Rijnmond area and therefore the distance outside the WRF-Chem domain 4 at which the mixing ratio 

fields become similar gives an indication of the spatial extent for which the OPS model is still beneficial. We find 

that the difference between the mixing ratio fields disappears quickly outside the Rijnmond area and WRF-Chem 565 

and OPS become similar at about 10–14 km outside the boundary of domain 4. 

5 Conclusions 

Our ultimate ambition is to quantify the total urban CO2 budget using multiple observation sites and an inverse 

modelling system. Such information could be used to monitor the impact of implemented policies and progress 

towards objectives. Based on the work reported here, we state that the modelling framework should ideally consist 570 

of a Eulerian model in combination with a plume model for point source emissions within the city, preferably 

driven by locally observed meteorology. The use of a plume model is of great added value to correctly represent 

the transport of point source emissions in a diameter closer than ~10 km to the site. Although the additional 

computational demand with the OPS plume model is limited, detailed model input is required given that the results 

are very sensitive to source characteristics and wind fields. Given the importance of observed local meteorology 575 

for the model performance, we strongly recommend inclusion of a (simple) meteorological station in any similar 

monitoring set-up. Also, Lagrangian particle dispersion models driven by WRF meteorological fields have proven 
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useful in describing the transport of point source emissions and in inverse modelling (Brioude et al., 2013; Pan et 

al., 2014; Srinivas et al., 2016), but such set-up would suffer from wind field errors. The optimal set-up for an 

urban monitoring network requires a semi-urban measurement site (here ~30 km from the urban area with no other 580 

urban areas in between) and at least one additional urban measurement site (here at the edge of the urban area, at 

~7 km from the city centre). The semi-urban site provides a robust and integral constraint on the urban fluxes and 

can be used in combination with a high-resolution Eulerian model framework. The urban measurement site can 

provide useful information about local differences, such as the dominance of road traffic in a certain source area 

or local changes due to implemented measures. Observing additional species besides CO, like 14CO2, 13CO2, O2/N2, 585 

NO2, SO2 or black carbon, could be a useful extension of our framework for identifying source sector contributions. 

Such a set-up is a promising step towards independent verification of urban CO2 budgets.  

Data availability 

Observations from Zweth and Westmaas and the TNO-MACC III emission inventory are available via TNO 

(hugo.deniervandergon@tno.nl). Lutjewad and Cabauw observations can be downloaded from the 590 

GLOBALVIEWplus product (Cooperative Global Atmospheric Data Integration Project, 2015). The Dutch 

Emission Registration emission inventory can be accessed online (http://www.emissieregistratie.nl/). 
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Table 1: Overview of SNAP categories and the vertical distribution of point source emissions in WRF-Chem. 

SNAP Description % of point source emissions per model layer [m above 

surface] 

  0–55 m 55–130 m 130–235 m 235–360 m >360 m 

1 Combustion in energy and 

transformation industries 

  18.5 % 42 % 39.5 % 

2 Non-industrial combustion plants      

3 Combustion in manufacturing 

industry 

12.2 % 37.3 % 46.2 % 4.3 %  

4 Production processes 12. 2 % 37.3 % 46.2 % 4.3 %  

5 Extraction and distribution of 

fossil fuels 

     

6 Solvents and other product use      

7 Road transport      

8 Other mobile sources and 

machinery 

100 %     

9 Waste treatment and disposal  16.5 % 44.5 % 39 %  

10 Agriculture      

 

Table 2: Overview of the simulations, which model is used to calculate the urban plume mixing ratio from point sources 

in the Rijnmond area, how point sources are represented and the source of meteorological conditions. 845 

Simulation name Point source 

contribution  

Point source 

representation 

Meteorological 

input 

WRF-Chem WRF-Chem area WRF-Chem 

WRF+OPS-area OPS area WRF-Chem 

WRF+OPS-point OPS point WRF-Chem 

WRF+OPS-point-obsmet OPS point observations 

 

Table 3: Statistics for WRF-Chem daytime (8:00–17:00 LT) average meteorological variables and total CO2 and CO 

mixing ratios as compared to observed daytime averages (full simulation period). 𝑿𝒐𝒃𝒔̅̅ ̅̅ ̅ is the average observed mixing 

ratio and N gives the number of days included. This table shows that WRF-Chem is able to represent day-to-day 

variations in meteorological conditions and mixing ratios, except for the wind direction. 850 

Variable Site R2 RMSE bias 𝐗𝐨𝐛𝐬
̅̅ ̅̅ ̅̅  N 

Temperature Rotterdam airport 0.77 2.5 °C + 0.9 °C  90 

Specific humidity Rotterdam airport 0.81 1.0 g kg-1 + 0.5 g kg-1   90 

Wind speed Rotterdam airport 0.72 1.2 m s-1 <0.1 m s-1  90 

Wind direction Rotterdam airport 0.20 53 degrees - 13 degrees  90 

CO2 mixing ratio Westmaas 0.65 8.8 ppm + 1.1 ppm 418 ppm 83 

 Zweth 0.45 13.0 ppm + 2.5 ppm 423 ppm 85 

 Cabauw (60 m) 0.48 10.6 ppm + 3.6 ppm 417 ppm 86 

CO mixing ratio Westmaas 0.53 55 ppb - 23 ppb 187 ppb 83 

 Zweth 0.41 69 ppb - 1 ppb 198 ppb 85 

 Cabauw (60 m) 0.35 53 ppb + 18 ppb 156 ppb 89 
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Table 4: Statistics for the distribution of the observed and modelled (WRF-Chem) urban plume mixing ratios (ΔCO2 

and ΔCO) at the Zweth and Cabauw site. N is number of hours included for either the observed or simulated time series. 860 
The R2 in the final column is based on co-sampling of WRF-Chem with the observations. The agreement between WRF-

Chem and the observations is satisfactory when considering the distribution of the plume mixing ratios, but the low 

explained variance when co-sampling suggests a large impact of transport errors on individual plumes. 

Species 

Site Obs/model Median 80th percentile N R2 

CO2 Zweth Observed 9.7 ppm 17.3 ppm 284  

  WRF-Chem 8.8 ppm 16.9 ppm 249 0.05 

 Cabauw (60 m) Observed 6.0 ppm 9.1 ppm 32  

  WRF-Chem 5.6 ppm 6.4 ppm 37 <0.01 

CO Zweth Observed 29 ppb 57 ppb 274  

  WRF-Chem 33 ppb 50 ppb 207 0.01 

 Cabauw (60 m) Observed 13 ppb 28 ppb 58  

  WRF-Chem 18 ppb 31 ppb 51 <0.01 

 

Table 5: Statistics for CO2 point source peaks at Zweth in four different model simulations as compared to observations. 865 
N is number of hours included and the slope is based on a linear regression. ΔCO:ΔCO2 denotes the mean (± 1σ standard 

deviation) of the urban plume concentration ratio in ppb ppm-1. 

Model run 

R2 ΔCO:ΔCO2 ΔCO2 slope N 

WRF-Chem 0.30 0.9 (±1.5) 0.82 42 

WRF+OPS-area 0.37 1.2 (±1.1) 0.87 42 

WRF+OPS-point 0.42 1.2 (±1.6) 0.86 42 

WRF+OPS-point-obsmet 0.52 0.7 (±0.6) 0.99 40 

     

Observed  0.7 (±0.4)   
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Figure 1: CO2 emission map of the Rijnmond area (red outline), including the city of Rotterdam (blue outline) and the 890 
port area (brown outline); the observation sites are indicated with black stars (Lutjewad is shown in Fig. 2). The 

boundaries of domain 4 in WRF-Chem are indicated by the black square. Source: Netherlands PRTR (2014).  

 

Figure 2: Location of the domains is indicated with squares. The horizontal resolutions of the domains are (from outer 

to inner domain): 48x48 km, 12x12 km, 4x4 km and 1x1 km. Black circles represent the observation sites. 895 
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Figure 3: Time series of modelled (WRF-Chem) and observed CO2 and CO mixing ratios at Zweth (left) and Cabauw 

(right). The observation-based baseline used in this study is also shown. 

 

Figure 4: Left: Smooth Gaussian fit of probability density functions of observed ΔCO:ΔCO2 at the Zweth, Cabauw and 900 
Lutjewad measurement sites. The solid vertical line (shaded area) shows the mean emission ratio (Q1–Q3 range) for all 

emissions integrated over the Rijnmond area (see Fig. 1). Right: The Zweth observations separated into two distinct 

source areas based on the observed wind direction. The dash-dotted and dashed vertical lines represent the mean 

emission ratios from the residential area and the port, respectively. Generally, there is a reasonable match between the 

bottom-up emission ratio and the concentration-derived ratio, but observed ratios from the Zweth-port wind sector are 905 
much higher than expected because of the intermittency of plume transport from the many stacks in this area. The grey 

bars in the right panel show the point source events selected in Sect. 3.3. 
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Figure 5: This figure shows four classes of the absolute model error in ΔCO2 compared with the Zweth measurement 

site. For each class two quantities are displayed. 1) A whisker plot of observed ΔCO:ΔCO2, which shows that the largest 910 
absolute ΔCO2 model error (y-axis) is related to small observed concentration ratios (x-axis). This indicates an 

important role for low-ratio stack emissions (industrial and power plant sources) in the large model error class. 2) A 

coloured scatter plot for which data points are divided into three classes based on the absolute error in simulated wind 

direction (<20 degrees in small blue dots on bottom row, 20–40 degrees in larger green dots on middle row, and >40 

degrees in large red dots on top row). Each dot represents one hour. The percentage contribution of each wind direction 915 
error class to the total number of data points (N) is shown on the right. These numbers show that the model error in 

wind direction also plays an important role in the ΔCO2 model error. 

 

Figure 6: Vertical profiles of the median (Q1–Q3) (left panel) and maximum (right panel) ΔCO2 mixing ratio at 14 h 

UTC at about 500 m from an energy production point source in WRF-Chem and WRF+OPS-area. The horizontal lines 920 
represent the boundaries of the vertical levels in WRF-Chem. Emissions are taking place in levels 3, 4 and 5 in WRF-

Chem or at 130, 235 and 360 m in WRF+OPS-area. The figure shows on average lower mixing ratios at ground level in 

WRF+OPS-area than in WRF-Chem, despite an identical treatment of the vertical emission structure. WRF+OPS-area 

also shows higher maximum values, reflecting a reduction in vertical dispersion compared to the Eulerian box 

representation in WRF-Chem. 925 
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Figure 7: Time series of ΔCO2 at Zweth from observations and three model simulations (top panel) and of the wind 

direction at Rotterdam airport from WRF-Chem, WRF+OPS-point-obsmet, and observations (bottom panel). Shaded 

areas indicate specific events discussed in more detail in the text. 

Appendix A 930 

 

Figure A1: Left: A scatter plot of ΔCO and ΔCO2, where the slopes (represented by lines) represent the ΔCO:ΔCO2 

ratio for the observed and modelled values. The slope of WRF+OPS-point-obsmet coincides with the slope of the 

observations, suggesting a good agreement. Right: A scatter plot of simulated ΔCO2 to observed ΔCO2. The slope of 

WRF+OPS-point-obsmet coincides with the 1:1 line (dotted line), suggesting a good agreement with the observations. 935 

 


