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We would like to thank the reviewers for their enthusiasm about our study and for the comments on our work. 

The review comments have been helpful in reflecting on our work and pointing out parts that required further 

improvements. Below we address specific issues mentioned by the reviewers point by point. The manuscript has 

been updated accordingly (changes are highlighted). 

 5 

Reviewer #1 (J. Turnbull) 

This paper describes a combined Eulerian/plume model approach to evaluate CO2 (and CO) emissions, using 

Rotterdam, The Netherlands as an example. The authors show clearly that embedding a plume model within the 

Eulerian model improves the overall model fidelity in areas close to point sources. The results demonstrate that 

this is due to the Eulerian model resolution being insufficient to capture the details of nearby plumes. 10 

Presumably with infinite computing power, the Eulerian model could overcome this limitation, but embedding 

the plume model is a more computationally efficient solution. Further away from the point sources, the plume 

model doesn’t add much, since the Eulerian resolution becomes sufficient at these spatial scales. They also 

evaluate the effect of wind direction biases in the Eulerian model (WRF-Chem is used in this case), and show 

that using observed meteorology makes a big improvement in the model fidelity close to point sources – this is 15 

not a surprise, but nonetheless is a nice result. This is a well-written, clear and easy to read paper. It is entirely 

appropriate for publication in ACP and I recommend it be accepted with minor modifications, detailed below. 

 

General comments:  

1. Is there a reason why there are no runs where WRF-Chem is nudged with the local meteorology? Given the 20 

results that show using local meteorology in the plume model really helps, this would be an obvious test to do.  

 

We sincerely thank the reviewer for this comment and acknowledge that nudging local meteorological data 

would be a good step forward. However, we tested the WRF-FDDA system for a short period and found no 

consistent improvement, as periods of better wind field representation are alternated with periods with decreased 25 

performance. Moreover, previous studies have shown that the results from nudging are highly dependent on the 

type of data that is nudged and the grid resolution (1,2). Therefore, we believe that more time needs to be 

dedicated to understanding the effects of wind field nudging to improve the WRF wind field representation. We 

plan to do so in a next study and thus decided to mention data assimilation as a point for future research. 

 30 
1 Deng, A., and N. Seaman, G. Hunter, and D. Stauffer, 2004: Evaluation of interregional transport using the 

MM5-SCIPUFF system. J. Appl. Meteor., 43, 1864–1886. 
2 Deng, A., and D. Stauffer, 2006: On improving 4-km mesoscale model simulations. J. Appl. Meteor., 45, 361–

381. 

 35 

2. I would like to see a bit of discussion about the relative difficulty of running the combined Eulerian/plume 

model simulations. How much more computation time is needed vs running WRF-Chem alone? How much 

additional effort (not computation time, but people time) is required – is it set up to run easily, or does someone 

have to sit there and do each plume run individually?  

 40 

The OPS plume model is a very easy and fast model to run. For the ~100 point source emissions in our domain it 

needs about 20-25 seconds to calculate hourly mixing ratios at 4 sites for the full three months. In contrast, with 

the current set-up WRF-Chem needs several weeks to simulate the three months using 8 cores. Since OPS can 

handle multiple sources and receptor sites at once, it only needs to be run once for each species. The OPS model 

only needs an emission file and a file with general information about the run (e.g. the period). However, this 45 

doesn’t allow us to separate between source types; i.e. we do not know which part of the signal is from industrial 

sources and which part from energy production sites. Nevertheless, this could be done by doing separate 

simulations per source type with limited additional effort. Thus the combined modelling system doesn’t require 

much extra effort compared to running WRF-Chem alone. This is now shortly mentioned in lines 532-534. 

 50 

3. The method presented here requires that the point sources are known from a bottom-up inventory and that the 

bottom-up information has the correct locations. That’s going to be difficult in many cities where the 

information simply isn’t available. Some comment on this (in the conclusions or discussion) is needed. 
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We agree with the reviewer that such detailed source characteristics benefit the model results. Except for the 55 

location (which could be inferred form Google Maps for example), such details are probably not available 

everywhere. We added some discussion on this in lines 545-548. 

 

Specific comments:  

Line 33 (abstract). “Inevitable” seems a strong word to use – clearly the plume model helps a lot, but one could 60 

imagine other ways to address the same problem. Tone down the words used. Same for line 558 in conclusions. 

 

We thank the reviewer for the suggestion and have revised the text to “adds substantially to” in line 32 and to “is 

of great added value” in line 581. 

 65 

Line 65. Consider revising wording from “... that mask the urban signal” to “that mask the overall urban 

signal”. 

 

We have revised the text to “that mask the overall urban signal” in line 63. 

 70 

Lines 175-189 – CO fluxes. I agree that ignoring oxidation of hydrocarbons is probably reasonable for the 

winter months considered here, but I suspect that biofuel combustion might be important. Biofuel combustion 

(such as wood fires for home heating) tends to be quite inefficient with high CO:CO2 ratios, so that even a small 

contribution to the CO2 source might mean a significant CO source. The CObiofuel source could be estimated 

by combining the CO2biofuel flux estimate with an estimate of the emission ratio. Andreae and Merlet 2001 is a 75 

good (even if old) resource to make some guesses about the emission ratio. Andreae, M.O., Merlet, P., 2001. 

Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966. 

 

We thank the reviewer for pointing out the importance of biofuel CO emissions. Indeed, biofuel combustion is 

an important source of CO, also in our study domain. In fact, the biofuel emissions - such as from wood stoves 80 

or biomass plants - are already part of the emission data used in our study, although they are part of the total 

emissions and cannot be quantified separately. The CO and CO2 biofuel emissions thus do not have to be added 

in the model, but we do need to mention the term in Eq. 2 and the subsequent descriptions. We apologize for this 

omission in our manuscript. We have now included the biofuel terms in Eq. 2 and have added biofuel emissions 

in lines 223-225. 85 

 

Lines 196-200. I take it the plume model is run forward (not backward as is common when plume models are run 

as a stand-alone)? Consider stating this explicitly to clarify. 

 

We have rewritten line 201 to “The model keeps track of a trajectory forward in time [...]” 90 

 

Lines 280-291. The choice of background definition from the baseline values is clearly more workable in this 

particular environment than using an upwind background. Nonetheless, it could be a problem on occasions 

when the incoming air is unusually polluted – the baseline background will not account for that. Please add a 

comment on this. 95 

 

Generally our baseline slightly overestimates the background, meaning that the ΔCO2 and ΔCO mixing ratios are 

really local additions. However, the reviewer is correct that for short periods of high pollution our background 

method underestimates the background mixing ratio. This is now mentioned in lines 293-294. 

 100 

Lines 333-347. I agree with the interpretation as described here, but I think you also need to discuss other 

possible explanations for the difference between observed and modeled CO:CO2 ratios, and why these 

possibilities are less likely. Is it possible that the point source CO:CO2 ratio is in fact higher than reported? 

Perhaps the inventories are wrong, and/or the industries are not scrubbing CO as effectively as they claim to? 

CO from biofuel is not included in the model (see also earlier comments) – how would including this alter the 105 

modelled ratios? 
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We thank the reviewer for the suggested alternative explanations. There is indeed an uncertainty in the reported 

stack emissions. Nevertheless, these figures are thoroughly quality-checked by the Netherlands Environmental 

Assessment Agency according to the IPCC guidelines, as it is part of the National Inventory Report. Therefore, 110 

these figures are relatively accurate and it is unlikely that this is the (main) cause for the model-data mismatch. 

We added this discussion in lines 349-351. As mentioned before, biofuels are included after all. Another 

potential explanation is that the CO:CO2 emission ratios are not constant in time, while they are kept constant in 

the model by applying similar temporal profiles for CO and CO2. We added this suggestion in lines 351-353. 

 115 

Line 357. I don’t think you ever spell out what RMSE is. Please do so the first time you use it. 

 

RMSE has been spelled out now in line 364. 

 

Lines 365-367. This effect has been seen before. Please add appropriate references. 120 

 

We have added a sentence saying this, including references, in line 368. 

 

Line 368. I am not sure what you mean by “there is no co-sampling for this comparison”. Please revise for 

clarity. 125 

 

Here, we compare two data sets. For the first one, we take all data that is above the baseline and satisfies our 

criteria, separately for the observed and modelled time series. For the second one, we make a similar selection 

for the observations, but then co-sample the modelled time series. So, whereas the two data sets for the first 

comparison can have a different size and include different times, for the second comparison they have equal size 130 

and contain the same times. We have tried to clarify this in lines 376-378. 

 

Lines 369-370. You remove low wind speed data. Some additional discussion about the overall performance of 

the model when all data is included is needed. Do you conclude that it is generally difficult to model low wind 

speed time periods and they should always be discarded? In many environments, low wind speeds are when it is 135 

particularly cold and more CO2 is generated for heating, so removing this data might bias the overall analysis 

to lower emissions. 

 

Data analysis shows that for the results in Table 4 the addition of low wind speed data slightly increases the 

median and percentile values in a similar way for the observations and the WRF output. Thus the removal of low 140 

wind speed data has limited impact on the results, which is now mentioned in lines 379. However, for the subset 

in Table 5 the inclusion of low wind speed data (in total 3 data points) significantly deteriorates the results. This 

indicates that the models have difficulty correctly representing such stagnant conditions, which is now 

mentioned in lines 414-416. 

 145 

Indeed, removal of low wind speed data can cause a bias in the estimated emissions, which has now been 

mentioned in lines 516-517. Similarly, the removal of night time data also causes a bias by not taking into 

account hours with usually lower emissions. However, including stable stratified and stagnant conditions with a 

large model bias will result in a large posterior uncertainty and most studies exclude these data (3-5). 

 150 
3 Boon, A., Broquet, G., Clifford, D. J., Chevallier, F., Butterfield, D. M., Pison, I., Ramonet, M., Paris, J. D., 

and Ciais, P.: Analysis of the potential of near-ground measurements of CO2 and CH4 in London, UK, for the 

monitoring of city-scale emissions using an atmospheric transport model, Atmos. Chem. Phys., 16, 6735-6756, 

10.5194/acp-16-6735-2016, 2016. 
4 Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., Dieudonné, E., 155 

Lopez, M., Schmidt, M., Perrussel, O., and Ciais, P.: An attempt at estimating Paris area CO2 emissions from 

atmospheric concentration measurements, Atmos. Chem. Phys., 15, 1707-1724, 10.5194/acp-15-1707-2015, 

2015. 
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5 Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., Gaudet, B., Gurney, K. 

R., Huang, J., O'Keefe, D., Song, Y., Karion, A., Oda, T., Patarasuk, R., Razlivanov, I., Sarmiento, D., Shepson, 160 

P., Sweeney, C., Turnbull, J., and Wu, K.: High-resolution atmospheric inversion of urban CO2 emissions 

during the dormant season of the Indianapolis Flux Experiment (INFLUX), J. Geophys. Res.-Atmos., 121, 5213-

5236, 10.1002/2015jd024473, 2016. 

 

Lines 374-376. Sentence beginning “However, if we co-sample...”. I don’t understand how this is different than 165 

the previous analysis you discuss. Please clarify. 

 

See our previous comment on the difference between the two analyses. This has been clarified in lines 384-386. 

 

Lines 393 – 395. “At Cabauw ...” This sentence seems out of place. 170 

 

Previously, the analyses have been done for both Zweth and Cabauw. However, we find that the impact of stack 

emissions at the Cabauw site is so limited that we don't apply the plume model to this location. That is what is 

stated in lines 403-404. 

 175 

Section 3.3. I would like to see some plots of the comparison in addition to the summary in the table. Perhaps as 

supplementary material? 

 

We have added the following figure to an appendix. It shows the results related to the ratios (left panel) and to 

the ΔCO2 slope (right panel). 180 

 
Figure A1: Left: A scatter plot of ΔCO and ΔCO2, where the slopes (represented by lines) represent the 

ΔCO:ΔCO2 ratio for the observed and modelled values. The slope of WRF+OPS-point-obsmet coincides 

with the slope of the observations, suggesting a good agreement. Right: A scatter plot of simulated ΔCO2 

to observed ΔCO2. The slope of WRF+OPS-point-obsmet coincides with the 1:1 line (dotted line), 185 

suggesting a good agreement with the observations. 

 

Lines 415-417. Clarify that you don’t show the data for this particular test. 

 

We have clarified this in line 429. 190 

 

Line 470. “specifically constrain”, not “constrain specifically”. 

 

We have revised this in line 484. 

 195 

Reviewer #2 

Summary/General comments: 
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Super et al. combine observations of CO2 and CO from urban and ex-urban sites in the Netherlands with an 

Eulerian modeling scheme (WRF-Chem) that explicitly accounts for plumes for large point sources to evaluate 

the utility of different urban/exurban observations and determine the utility of an Eulerian model in quantifying 200 

urban fluxes of CO2. This is a thorough, well written paper that contributes significantly to the field of urban 

GHG research and is well placed in ACP. I enthusiastically recommend publication once these minor comments 

have been addressed. 

 

Major comments: 205 

The largest critique is the breadth of the conclusions implied in the abstract. Most pointedly, line 25, should 

instead state a plume model can be added to the model framework to account for point sources – the authors 

have shown that in an Eulerian model of typical regional resolution plumes an incorrectly represented and a 

plume model can fix this. However, a Lagrangian model, LES model, or very high resolution Eulerian model 

may not require this and the authors have not demonstrated as such. Similarly, line 33-34 are overstated. 210 

Integration of a plume model is not inevitable, as the authors have not shown alternatives are inadequate. The 

authors have shown that integration of a plume model is a possible solution for using a regional lagrangian 

model and surface point observations for CO2. 

 

We sincerely thank the reviewer for this comment and we agree that other solutions might be possible, such as 215 

LES or full Lagrangian models. Our intention was to stress that a Eulerian model alone at the current resolution 

is not sufficient to represent point source emissions, and that a plume model can overcome some of the 

limitations. The use of a multi-model framework or a different type of model will depend on the application, and 

the resolution and scale. As we have shown, the plume model only has an impact up to about 10-15 km from a 

source. For other models, this might be different. Also, the models differ in how much effort is needed to set it 220 

up and do simulations, which might also be an important consideration. In our work we have demonstrated the 

use of an easy-to-use plume model, but we do not want to rule out other options. Therefore, we have revised the 

text to “[...], adding a plume model to the model framework is beneficial [...]” in line 25 and “adds substantially 

to” in line 32. 

 225 

The authors have shown in compelling fashion the need for accounting for stack CO2 emissions w/ a plume 

framework. It is interesting that this is not the case for CO, and it would be nice for that to be highlighted. 

Further, I wonder then if a plume model representation would be important for methane? Also, the authors are 

considering surface, point observations. If total column observations are considered, is a plume model essential 

or is the vertical dilution now irrelevant? This is perhaps a question beyond the current analysis, but it would be 230 

an interesting point to comment on. 

 

We thank the reviewer for this interesting comment. Indeed, the plume model has limited added value for CO as 

most of the CO emissions are coming from area sources (stressed in lines 531-532). For methane the dominant 

source type in our domain is waste treatment and disposal, especially landfills. Depending on the size of the site 235 

relative to the size of the model grid, such sources could usually be considered area sources. Another important 

source of methane emissions is gas leakages. These are likely point sources, but the location of these leakages is 

unknown and it can be difficult to add these to a plume model. 

 

Column integrals are of interest in the light of upcoming high-resolution missions. With column observations the 240 

vertical distribution would indeed become less relevant. However, the plume model also reduces the horizontal 

distribution of a point source compared to the grid box averaging done by a Eulerian model. In that sense, a 

plume model could still be useful. We plan to do more work on column observations in the near future. Whether 

a plume model is useful in that context would be an excellent question to pose for that work. 

 245 

Detailed comments: 

Line 57: This is dependent on urban typology and emission characteristics. The authors should acknowledge this 

limitation here. 
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A note has been added to lines 499-500 to clarify that our conclusions are valid for the Rijnmond area and 250 

cannot be generalized to other areas without careful consideration of the urban typology. 

 

Lines 86-90: Other cities have also been studies – most notably Boston and Indianapolis, there are a sequence of 

INFLUX papers that it would be appropriate to cite here. 

 255 

We apologize to the reviewer for having missed these references. We have added a reference related to urban 

scale monitoring of fossil fuel CO2 emissions (6) and another reference related to a high-resolution inversion of 

urban CO2 emissions using a Lagrangian Particle Dispersion Model driven by WRF meteorological fields (7) (see 

lines 88-89). We believe that these studies are strongly related to our research and are relevant for our 

introduction into the topic of urban CO2 monitoring. 260 

 
6 Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P. P., Davis, K. J., Lauvaux, T., 

Miles, N. L., Richardson, S. J., Cambaliza, M. O., Shepson, P. B., Gurney, K., Patarasuk, R., and Razlivanov, I.: 

Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: Results 

from the INFLUX experiment, J. Geophys. Res.-Atmos., 120, 292-312, 10.1002/2014jd022555, 2015. 265 
7 Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., Gaudet, B., Gurney, K. 

R., Huang, J., O'Keefe, D., Song, Y., Karion, A., Oda, T., Patarasuk, R., Razlivanov, I., Sarmiento, D., Shepson, 

P., Sweeney, C., Turnbull, J., and Wu, K.: High-resolution atmospheric inversion of urban CO2 emissions 

during the dormant season of the Indianapolis Flux Experiment (INFLUX), J. Geophys. Res.-Atmos., 121, 5213-

5236, 10.1002/2015jd024473, 2016. 270 

 

Line 175-183: I worry about this sweeping the VOC CO production under the rug. How much does this really 

matter? I suspect the authors’ analysis is robust to this as the VOC CO production is embedded within the 

determination of the boundary condition, and thus ignoring it is ok as the amount produced in the near field 

(within 24 hours) is modest. I’d like a little more discussion of this, and estimates of how much this may matter if 275 

the same approach is taken in the summer? 

 

In a study by Griffin et al. (2007), referenced in the manuscript, the contribution of hydrocarbon oxidation to the 

total CO production rate was investigated for two areas during high-pollution episodes. They found contributions 

of 5% for an area with significant biogenic hydrocarbon production and of 1% for an area dominated by 280 

anthropogenic CO emissions. In contrast, Hudman et al. (2008) (also referenced in the manuscript) come up with 

an estimate of more than 60% for the eastern United States. The main difference is that the Griffin study uses 

smaller domains, allowing hydrocarbons to be transported out of the domain before it can be converted into CO. 

Moreover, the domain of Hudman et al. covers an area with substantial biogenic fluxes and the dominant source 

of CO is the oxidation of isoprene. 285 

 

Given the small size of our domain and the dominance of primary CO emissions, we assume the impact of 

hydrocarbon oxidation will be closer to the estimate of Griffin et al. Additionally, both studies were performed 

during summer, whereas the conditions during our study are less favourable for photochemistry. We thus believe 

that neglecting hydrocarbon oxidation in our study will introduce a bias, albeit a small one. This has been 290 

discussed in lines 183-184. 

 

The two studies discussed here show that several factors will affect the estimated impact of hydrocarbons. 

Therefore, it is very difficult to make an estimate of how large this impact will be in our domain for summer 

months. We therefore believe that giving an estimate, as suggested by the reviewer, might be misleading at this 295 

point. 

 

Title: I’d suggest a change as the manuscript is really not monitoring CO emissions, but leveraging CO to better 

interpret CO2 emissions, and the current title is a little misleading. 

 300 
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We thank the reviewer for this suggestion. However, we believe that CO emission are fully coupled to the CO2 

emissions in our study through the use of fixed emission factors. So any updated CO2 emissions automatically 

also lock the CO emissions. Yet, we do acknowledge that CO emissions were not the main target in this study. 
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A multi-model approach to monitor emissions of CO2 and CO 340 

from an urban-industrial complex 

Ingrid Super1,2, Hugo A.C. Denier van der Gon2, Michiel K. van der Molen1, Hendrika A.M. 

Sterk3, Arjan Hensen4, Wouter Peters1,5 

1 Meteorology and Air Quality Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, Netherlands 
2 Department of Climate, Air and Sustainability, TNO, P.O. Box 80015, 3508 TA Utrecht, Netherlands 345 
3 National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, Netherlands 
4 Energy Research Centre of the Netherlands, P.O. Box 1, 1755 ZG Petten, Netherlands 
5 Centre for Isotope Research, Energy and Sustainability Research Institute Groningen, University of Groningen, 

Nijenborgh 4, 9747 AG Groningen, Netherlands 

Correspondence to: Ingrid Super (ingrid.super@wur.nl) 350 

Abstract. Monitoring urban-industrial emissions is often challenging, because observations are scarce and 

regional atmospheric transport models are too coarse to represent the high spatiotemporal variability in the 

resulting concentrations. In this paper we apply a new combination of a Eulerian model (WRF with chemistry) 

and a Gaussian plume model (OPS). The modelled mixing ratios are compared to observed CO2 and CO mole 

fractions at four sites along a transect from an urban-industrial complex (Rotterdam, Netherlands) towards rural 355 

conditions for October–December 2014. Urban plumes are well-mixed at our semi-urban location, making this 

location suited for an integrated emission estimate over the whole study area. The signals at our urban 

measurement site (with average enhancements of 11 ppm CO2 and 40 ppb CO over the baseline) are highly 

variable due to the presence of distinct source areas dominated by road traffic/residential heating emissions or 

industrial activities. This causes different emission signatures that are translated into a large variability in 360 

observed ΔCO:ΔCO2 ratios, which can be used to identify dominant source types. We find that WRF-Chem is 

able to represent synoptic variability in CO2 and CO (e.g. the median CO2 mixing ratio is 9.7 ppm (observed) 

against 8.8 ppm (modelled)) , but it fails to reproduce the hourly variability of daytime urban plumes at the urban 

site (R2 up to 0.05). For the urban site, adding a plume model to the model framework is beneficial to adequately 

represent plume transport especially from stack emissions. The explained variance in hourly, daytime CO2 365 

enhancements from point source emissions increases from 30 % with WRF-Chem to 52 % with WRF-Chem in 

combination with the most detailed OPS simulation. The simulated variability in ΔCO:ΔCO2 ratios decreases 

drastically from 1.5 to 0.6 ppb ppm-1 which agrees better with the observed standard deviation of 0.4 ppb ppm-1. 

This is partly due to improved wind fields (increase in R2 of 0.10), but also due to improved point source 

representation (increase in R2 of 0.05) and dilution (increase in R2 of 0.07). Based on our analysis we conclude 370 

that a plume model with detailed and accurate dispersion parameters adds substantially to top-down monitoring 

of greenhouse gas emissions in urban environments with large point source contributions within a ~10 km radius 

from the observation sites. 

 

 375 
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1 Introduction 

Cities are major contributors to anthropogenic CO2 and air pollutant emissions (Brioude et al., 2013; Turnbull et 

al., 2015; Velasco et al., 2014). Both monitoring and modelling of urban/regional concentrations of CO2 and co-

emitted air pollutants, such as CO and NOx, has therefore received a lot of attention (Brioude et al., 2013; Font et 380 

al., 2014; Huszar et al., 2016; Lac et al., 2013; Mays et al., 2009; McKain et al., 2012; Rayner et al., 2014; 

Ribeiro et al., 2016; Silva et al., 2013; Tolk et al., 2009; Wunch et al., 2009; Zhang et al., 2015). Since current 

emission inventories at small scales contain substantial uncertainties (Pouliot et al., 2012; Vogel et al., 2013), 

data assimilation has been applied to urban environments in order to better quantify fossil fuel fluxes. However, 

modelling urban atmospheric composition remains challenging as the urban environment is complex in both the 385 

emission landscape and atmospheric transport. This means that to independently estimate urban emissions from 

atmospheric observations, urban inversions require a detailed and accurate transport model that allows the 

mismatch between model and observations to be attributed to errors in the emission inventory, rather than to 

transport errors (Boon et al., 2016). Previous inversion studies relied heavily on a strict data selection to favour 

well-mixed conditions with more reliable model output, which results in very small data sets and therefore 390 

increased uncertainty on the estimated emissions (Bréon et al., 2015; Brioude et al., 2013). This could be 

overcome by improving the model representation of urban transport, taking into account that the model 

requirements are strongly dependent on the type of observation site used in the inversion. In this paper we aim to 

construct a promising observation and modelling framework to quantify the CO2 budget of an urban area by 

addressing two important questions in the context of inverse modelling at the urban scale. 395 

The first question is what type of measurement location (urban vs. rural) can best be used to monitor urban 

fluxes. Generally, urban sites are most strongly exposed to nearby (<1 km) fluxes and therefore show a large 

variability (Bréon et al., 2015; Lac et al., 2013). In contrast, rural sites show a much smaller response to urban 

emissions due to the small range of wind directions at which the site is affected by the urban area. Moreover, the 

dilution of urban plumes increases with distance (Calabrese, 1990; Finn et al., 2007) and the observed signal at 400 

the rural site can be small. Another consideration is that near-ground measurements, as commonly found in 

cities, are highly influenced by local sources (<100 m) that mask the overall urban signal. Boon et al. (2016) 

suggested that, even if strict data selection is applied, the usefulness of such sites in inversions with high-

resolution Eulerian models (1–10 km) might be limited. Together, these papers suggest that a useful 

measurement location should be just downwind of an urban area relative to the dominant wind direction at a 405 

distance that ensures enough exposure to the urban plume and limits model errors due to large heterogeneity and 

local emissions. We will examine a transect of measurement sites to see which site best matches this criterion. 

The second question we address is what type of modelling framework is best capable of explaining urban 

transport and the resulting mole fractions at the measurement sites. Since the measurement location determines 

the level of spatiotemporal variation that can be observed in the concentrations, it also determines the 410 

requirements imposed on the modelling framework. In atmospheric composition modelling both Eulerian and 

Lagrangian (plume, puff or Gaussian) models are used, or a combination of both (Kim et al., 2014; Korsakissok 

and Mallet, 2010a). Eulerian models use a grid that can be adapted to cover either small or large areas at 

different resolutions and are therefore widely used. However, Eulerian models assume that trace gasses are 

instantly mixed within individual grid boxes, which may enhance dispersion in the horizontal and vertical. The 415 

resulting errors in transport and mixing are reflected in unrealistic concentrations (Karamchandani et al., 2011; 
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Tolk et al., 2009). The magnitude of the concentration error depends on the heterogeneity of the emissions and 

the grid resolution (Tolk et al., 2008). A plume model improves the description of horizontal and vertical mixing 

and can account for higher spatial heterogeneity of emissions and concentrations. The use of such models has 

proven useful for both inert and reactive species, and point and line sources at local/urban scales (Briant and 420 

Seigneur, 2013; Korsakissok and Mallet, 2010a, b; Rissman et al., 2013; Vinken et al., 2011). However, a plume 

model is usually only applied to local sources to reduce computational expenses. It therefore does not resolve the 

impact of remote emissions and synoptic transport. So, when assessing the carbon balance of a whole city or 

larger areas, a combination of both models might be needed. 

Oney et al. (2015) examined an extensive CO2, CH4 and CO measurement network in combination with the 425 

FLEXPART-COSMO model. However, their framework focused on regional (~100–500 km), terrestrial fluxes. 

Several other studies focussed on urban scales (Boon et al., 2016; Bréon et al., 2015; Turnbull et al., 2015), but 

only few incorporated a Lagrangian model. For example, McKain et al. (2012) and Lauvaux et al. (2016) used a 

Lagrangian model to optimize urban fluxes of CO2, while Brioude et al. (2013) compared simulated FLEXPART 

CO2, CO and NOx concentrations to small observational datasets from seven flights over Los Angeles. Here, we 430 

compare and combine simulations with two different models: the Eulerian WRF-Chem model and the segmented 

Gaussian plume model OPS. The Gaussian plume model is used here specifically to transport point source 

emissions. The model output is compared to continuous observations of CO2 and CO at several measurement 

sites along an urban-to-rural transect. We included CO, because this species can act as a useful tracer for source 

attribution. We use the Rijnmond area (The Netherlands) including the city of Rotterdam as our case study, 435 

which is surrounded by scattered urban, agricultural, and rural areas. We chose this area because of the 

availability of a 1x1 km2 emission inventory and its complex combination of residential, transport (including 

shipping), greenhouse and industrial activities. This makes Rijnmond an interesting test case, albeit not a simple 

one. 

This paper starts with a description of the case study (Sect. 2.1), the modelling framework (Sect. 2.2–2.5), and 440 

a summary of data selection criteria and methods (Sect. 2.6). Subsequently, we examine the ability of our 

measurement sites to detect urban signals, and demonstrate the added value of both urban and semi-urban sites 

(Sect. 3.1). Section 3.2 examines the ability of WRF-Chem to represent the urban signals at the measurement 

sites. Finally, we discuss the advances made by implementing the Gaussian OPS plume model (Sect. 3.3) and we 

examine the relative importance of improved meteorological conditions and source representation in Sect. 3.4. 445 

Our results lead to recommendations for future monitoring and modelling of urban atmospheric composition in 

Sect. 4. 

2 Methods 

2.1 Study area and measurements 

We take the Rijnmond area (Fig. 1) in the Netherlands for our case study in which Rotterdam is the major urban 450 

area (625.000 inhabitants). The area is situated in flat terrain near the west coast of The Netherlands and includes 

a large harbour and industrial area. The bottom-up estimated emissions in this area are about 35 Mt CO2 and 48 

kt CO in 2012 (Netherlands PRTR, 2014). In the port area, over three times more CO2 is emitted than in the city 

of Rotterdam. In contrast, more than 60 % of all CO is emitted in the city of Rotterdam. The reason for this 
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difference is that emissions within the city are dominated by road traffic, which emits relatively much CO 455 

(CO:CO2 emission ratio of almost 17 ppb ppm-1). The principal source of CO2, namely energy production and 

industrial processes, is mainly found in the port area and barely emits any CO (CO:CO2 emission ratio of less 

than 1 ppb ppm-1). The CO2 emissions are therefore dominated by point sources (~80 %). 

We have installed two measurement sites to monitor CO2 and CO mixing ratios 15 km south (Westmaas, 

51.79° N, 4.45° E) and 7 km northwest (Zweth, 51.96° N, 4.39° E) of the city centre with an inlet at 10 m a.g.l. 460 

We consider Zweth to be an urban site which is highly affected by urban emissions. Westmaas functions as a 

background site close to – but not within - the city and it is usually located upwind of the major source areas. 

Therefore, Westmaas provides information on the air mass entering the Rijnmond area and we only use this site 

to validate the large-scale patterns in WRF-Chem. These measurements have been described in more detail by 

Super et al. (2017). At Rotterdam-The Hague airport (Fig. 1) meteorological observations are made, which we 465 

also use for transport model validation purposes. 

We include two additional, more remote, sites in our framework. The Cabauw site (51.97° N, 4.93° E) is 

situated 32 km east of the centre of Rotterdam and is considered a semi-urban site (Van der Laan et al., 2016; 

Vermeulen et al., 2011). This means the sampled air masses are influenced by urban emissions, but less often 

than a truly urban location. CO2 is measured at several heights (20, 60, 120 and 200 m a.g.l.) along a 200 m tall 470 

tower by the Energy research Centre of the Netherlands (ECN). CO is measured at ground level (2.5–4 m a.g.l.) 

by the National Institute for Public Health and the Environment  (RIVM). Another observation site is located at 

Lutjewad (53.40° N, 6.35° E), close to the coast in the north of the Netherlands. At this rural site, CO and CO2 

mixing ratios are observed at 60 m a.g.l. (Van der Laan et al., 2009a; Van der Laan et al., 2016). These four 

stations together describe a transect from the city towards rural areas.  475 

For the Cabauw CO2 measurements we selected the 60 m level. On average the CO2 mixing ratios are similar 

at all levels during well-mixed daytime conditions (Vermeulen et al., 2011), but a large gradient is observed for 

stable conditions when the 20 m level is highly affected by surface fluxes surrounding the tower. Similarly, 

Turnbull et al. (2015) suggested that measurements closer to the surface are more sensitive to local fluxes and 

therefore a higher level than 20 m is more suitable to obtain information on more remote fluxes. We choose the 480 

60 m level observations to be able to compare easily to the Lutjewad site. However, a higher level could have 

been used without affecting our conclusions. 

2.2 Eulerian model 

The Eulerian model used in this study is WRF-Chem V3.2.1 (Skamarock et al., 2008). For its initial and 

boundary conditions we use meteorological fields from the National Centers for Environmental Prediction 485 

(NCEP) Final (FNL) Operational Global Analysis (National Centers for Environmental Prediction/National 

Weather Service/NOAA/U.S. Department of Commerce, 2000) at 1x1° horizontal resolution and a temporal 

resolution of 6 hours. We define four 2-way nested domains (Fig. 2) which have a horizontal resolution of 

48x48, 12x12, 4x4 and 1x1 km respectively, and a vertical resolution of 29 eta levels with the lowest model 

layer 40 m deep and a total of 8 levels in the lowest 1 km. The outer domain is situated over Europe. Domains 2–490 

4 zoom in on the Rijnmond area in the southwest of the Netherlands. Based on previous studies over the 

Netherlands (Bozhinova et al., 2014; Daniels et al., 2016; Steeneveld et al., 2014), we have used the Yonsei 

University (YSU) boundary layer scheme (Hong et al., 2006), the Dudhia scheme for shortwave radiation 
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(Dudhia, 1989), the Rapid Radiation Transfer Model (RRTM) as longwave radiation scheme (Mlawer et al., 

1997), and the Unified Noah Land-Surface Model as the surface physics scheme (Ek et al., 2003). We also used 495 

the single-layer urban canopy model (UCM) to account for changes in roughness length and heat fluxes in the 

urban environment (Chen et al., 2011), although the impact of the UCM model on simulated mixing ratios is 

very small in our domain. 

The CO2 initial and boundary conditions are taken from the 3D mole fractions from CarbonTracker Europe 

(Peters et al., 2010). The CarbonTracker 3D fields have a horizontal resolution of 1x1° and 34 vertical levels. 500 

Therefore, they are both horizontally and vertically interpolated onto the WRF-Chem grid. The CO initial and 

boundary conditions are calculated with IFS-MOZART (Flemming et al., 2009) and obtained from the 

Monitoring Atmospheric Composition and Climate (MACC) project. The boundary conditions are updated every 

6 hours (only for the outer domain). 

We have implemented a CO2 budget based on the methodology used by Bozhinova et al. (2014), described in 505 

Eq. (1). 

𝑋𝐶𝑂2,𝑜𝑏𝑠 = 𝑋𝐶𝑂2,ls𝑏𝑔 + 𝑋𝐶𝑂2,𝑓𝑓 + 𝑋𝐶𝑂2,𝑏𝑓 + 𝑋𝐶𝑂2,𝑝 + 𝑋𝐶𝑂2,𝑟      (1) 

where the indices express the origin of CO2: obs – total observed concentration at a particular location, lsbg – 

large-scale background mole fraction, ff – fossil fuels, bf – biofuels, p – photosynthetic uptake, r – ecosystem 

respiration. Similar to the original study of Bozhinova et al. (2014), we omitted the stratosphere-troposphere 510 

exchange and ocean fluxes and assume they are accounted for in the large-scale background. With Eq. (1) we 

thus only consider regional contributions to the carbon budget in addition to the large-scale background. In the 

model, any change in the large-scale background CO2 mole fraction (XCO2,lsbg) is only caused by advection and 

exchange at the domain boundaries. 

In addition, we added the CO budget to WRF-Chem following Eq. (2). The main sources of CO are fossil fuel 515 

combustion and oxidation of hydrocarbons (US EPA, 1991). Several scholars have argued that the hydrocarbon 

oxidation term is important for the large-scale background CO concentration (Gerbig et al., 2003; Griffin et al., 

2007; Hudman et al., 2008), contributing a significant percentage to the total CO burden. Yet, these studies were 

all based on summer time measurements and under conditions favourable for photochemistry. Photochemical 

oxidation is likely to be less important in the winter months considered here. Moreover, Griffin et al. (2007) 520 

found the CO fraction from local anthropogenic emissions to dominate at measurement sites. We assume this is 

also valid in the urban-industrial environment of our case study. We nevertheless consider that this introduces an 

uncertainty in the modelled CO mixing ratios. For summer time studies the oxidation term might be significant. 

The main sink of CO is the reaction with the hydroxyl radical (chemical loss term L), which we account for 

with a simple first order loss term. We assume steady-state, i.e. the OH concentration is taken as a constant (106 525 

molecules cm-3). This results in a lifetime for CO of about 2 months at mid-latitudes (Jacob, 1999) during the 

winter months used in our study: 

𝑋𝐶𝑂,𝑜𝑏𝑠 = 𝑋𝐶𝑂,ls𝑏𝑔 + 𝑋𝐶𝑂,𝑓𝑓 + XCO,bf + 𝑋𝐶𝑂,𝐿       (2) 

The different contributions in Eq. (1) and Eq. (2) are separated as different additive tracers (i.e. labelled) in the 

WRF-Chem simulations. 530 

2.3 Gaussian plume model 
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The plume dispersion model OPS (Operational Priority Substances) is a segmented Gaussian plume model that 

calculates the transport, dispersion, chemical conversion and deposition of pollutants (Sauter et al., 2016; Van 

Jaarsveld, 2004). It is used to calculate large-scale, yearly averaged concentration and deposition maps for the 

Netherlands at 1x1 km2 resolution. It was initially developed to model dispersion of pollutants like particulate 535 

matter and ammonia, but has also been used to study the dispersion of pathogens (Van Leuken et al., 2015).  

In this paper we use the so-called "short-term" version of this model (version 10.3.5), which contains mostly 

the same parameterisations as the "long-term" model described by Sauter et al. (2016). The short-term model 

provides hourly concentrations at receptors that can be individual sites, or across a gridded domain. The model 

keeps track of a trajectory forward in time, for which plumes consist of so-called segments, taking into account 540 

time-varying transport over longer distances (e.g. changes in wind direction and dispersion). If for a time step a 

specific plume affects the receptor, a Gaussian plume formulation is used to calculate the concentration caused 

by that source based on the true travel distance along the trajectory. 

The OPS model uses primary meteorological variables which are measured by the Royal Dutch Meteorological 

Institute, and calculates secondary variables such as boundary layer height and friction velocity, but also the 545 

turning of the wind with height and a vertical wind profile. Primary meteorological variables are spatially 

interpolated over the Netherlands to 10x10 km2 using 19 observation sites with a weighing factor depending on 

the distance to the grid point. The variables are subsequently averaged over a pre-defined area (for more 

information see Sauter et al. (2016)). The use of observed meteorology in OPS versus model-calculated 

meteorology in WRF-Chem could result in an unfair comparison of the models, and we therefore replaced the 550 

primary parameters (temperature, humidity, wind speed, and wind direction) and the boundary layer height with 

those calculated by WRF-Chem. The secondary (dispersion) parameters are automatically also updated, since 

they are calculated from the primary parameters. Note that the meteorological conditions in OPS remain constant 

during each simulated hour and over a large region. 

Although potentially the OPS model can be used for both area and point source emissions, we believe that 555 

point sources will benefit most from a more detailed description of dispersion as they are affected most by the 

instant dilution in a Eulerian model. When using OPS, we assume wet deposition plays no role due to the 

relative insolubility of CO2, while dry deposition of CO2, i.e. photosynthetic uptake, is accounted for by WRF-

Chem (Eq. (1)). We do not simulate CO with the OPS model. The point source contribution to the total CO 

concentrations is very small and therefore the impact of OPS is limited. 560 

2.4 Emissions 

The fossil fuel and biofuel emissions for domains 1–3 in the WRF-Chem simulation are taken from the TNO-

MACC III inventory for 2011 (Kuenen et al., 2014) and have a horizontal resolution of 0.125x0.0625°. Fossil 

fuel and biofuel emissions for domain 4 in WRF-Chem are collected from the Dutch Emission Registration 

(Netherlands PRTR, 2014) and compiled by TNO (Netherlands Organization for Applied Scientific Research) to 565 

a 1x1 km2 emission map for the year 2012. In the OPS simulations we only include the point source emissions 

from domain 4 in WRF-Chem (hereafter referred to simply as the Rijnmond area). 

The emissions are divided over ten SNAP emission categories, summarised in Table 1, which may include 

both area and point sources. We apply a temporal profile to the emissions by assigning hourly, daily and monthly 

fractions to the emissions per emission category (Denier van der Gon et al., 2011). In WRF-Chem, area source 570 
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emissions are added to the lowest surface model level every hour. Point source emissions (only SNAP 1, 3, 4, 8 

and 9) are given a simplified, fixed vertical distribution based on previous research with plume rise calculations 

(Bieser et al., 2011). These emissions are emitted at the heights shown in Table 1. OPS allows for more detailed 

point source characteristics and accounts for stack height and plume rise (based on heat content) per individual 

point source. 575 

The biogenic (non-biofuel) CO2 fluxes in WRF-Chem are generated as described by Bozhinova et al. (2014). 

The SiBCASA model (Schaefer et al., 2008) calculates monthly averaged 1x1° photosynthetic uptake (An) and 

ecosystem respiration (R) for nine different land use types. Combining the high-resolution land-use map of 

WRF-Chem with the SiBCASA fluxes gives us biogenic fluxes on the resolution of the WRF-Chem grid. The 

temporal resolution is enhanced by scaling the An and R at each WRF-Chem time step with modelled shortwave 580 

solar radiation (SWin in W m-2) and 2m temperature (T2m in K): 

𝐴𝑛 = 𝐴𝑛,𝑓 ∙ 𝑆𝑊𝑖𝑛          (3) 

𝑅 = 𝑅𝑓 ∙ 1.5
(𝑇2𝑚−273.15)/10         (4) 

where An,f is the monthly average photosynthetic flux divided by the monthly total incoming shortwave radiation 

(mole CO2 km-2 h-1 (W m-2)-1), and Rf the monthly average respiration flux (mole CO2 km-2 h-1) divided by the 585 

monthly total of the empirical function 1.5(𝑇2𝑚−273.15)/10 (unitless). This procedure was first described in Olsen 

and Randerson (2004). It neglects the impact of water stress, temperature and CO2 concentration on the 

photosynthetic uptake. Given that we consider only winter months in which photosynthesis is limited, we 

assume the error resulting from this simplification to be small. 

2.5 Overview of simulations 590 

We simulated a period of 3 months, October–December 2014. We choose this period because of the high data 

coverage at all measurement sites and to limit the impact of biogenic fluxes and hydrocarbon oxidation. We 

considered four simulations for CO2, using two different model systems as described in Table 2. All simulations 

include the WRF-Chem contributions of XCO2,lsbg, XCO2,p, XCO2,r, and XCO2,bf and XCO2,ff from area sources. Also, 

the first three simulations make use of meteorological conditions as simulated by WRF-Chem. Therefore, the 595 

simulations only differ in the representation of point source emissions in the Rijnmond area. To identify the 

importance of a correct representation of meteorological conditions we do an additional OPS simulation with 

interpolated meteorological observations (see Sect. 2.3). The simulations are designed to gradually increase the 

complexity of the point source representation towards more realistic point source contributions: 

 In simulation 1 (WRF-Chem) the point sources are represented as area sources in WRF-Chem; 600 

 In simulation 2 (WRF+OPS-area) the point sources are treated as area sources in OPS; 

 In simulation 3 (WRF+OPS-point) the point sources are represented as true point sources with detailed 

source characteristics in OPS; 

 In simulation 4 (WRF+OPS-point-obsmet) the point sources are represented as true point sources with 

detailed source characteristics in OPS and the meteorology in OPS is replaced by interpolated 605 

observations and OPS calculated boundary layer height. 

In the WRF-Chem run we labelled the point source emissions from the Rijnmond area separately, so we can 

replace them by the OPS counterparts. The OPS model simulates concentrations directly at the measurement 
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sites, whereas from WRF-Chem we extract the grid box average mixing ratio of the boxes in which the 

measurement sites are located. 610 

2.6 Baseline determination and data selection criteria 

In this study we are especially interested in the contribution of urban emissions and the ability of the models to 

represent the transport of those emissions to the observation sites. However, the observed CO2 and CO mixing 

ratios are also affected by background signals and other fluxes. Therefore, in order to purely compare the 

transport of urban emissions, we need to separate the fossil fuel contribution from all other contributions. In the 615 

models we can separate the fossil fuel contribution XCO2,ff coming from the Rijnmond area (hereafter referred to 

as “urban plume”) from all other contributions (i.e. XCO2,ff from outside the Rijnmond area, XCO2,lsbg, XCO2,p, 

XCO2,r, and XCO2,bf, hereafter referred to as “baseline”) by using labelled tracers. To quantify the urban plume 

contribution to the total observed mixing ratio, we also need to subtract a baseline. 

Previous studies have suggested various methods to calculate the baseline from observations, for example 620 

using a remote/upwind measurement site or statistical methods (e.g. (Djuricin et al., 2010; Lopez et al., 2013; 

Turnbull et al., 2015; Van der Laan et al., 2010). An in-model comparison with WRF-Chem shows that 

Westmaas is a suitable background site for Zweth (Super et al., 2017), but Westmaas gives a biased baseline 

estimate for the more remote sites (Cabauw and Lutjewad) because of the interference of other sources and sinks 

along the transect from Rijnmond to the measurement site. Another suggested method is to subtract a smoothed 625 

representation of the original time series (Press et al., 1992; Super et al., 2017; Thoning and Tans, 1989) which 

filters out variations below a certain cut-off time scale. For seasonal cycle smoothing for example, a typical cut-

off value is 80 days. In our study however, the baseline needs to filter out synoptic variations across the domain 

and we therefore chose a cut-off time of 5 days. We tested this baseline definition by applying it to the WRF-

Chem time series and comparing the resulting concentrations to the true WRF-Chem baseline based on the 630 

labelled tracers. We found satisfactory agreement (R2 is between 0.65 and 0.81 for both species at all 3 

locations). Note that this method does not account for short pollution events bringing polluted air into the 

domain as only synoptic variations are captured. 

To prevent any differences between model and observations resulting from the baseline selection, we choose to 

apply this subtraction of a smooth cycle method with a 5-day cut-off to both observations and our model time 635 

series at all measurement sites (see Fig. 3 for an example). The concentrations above the baseline are considered 

to be the urban plume concentrations and are denoted ΔCO2 and ΔCO. Note that data points can also be below 

the baseline if clean air is advected and only a small fossil fuel contribution is calculated. We discard these data 

points, because we cannot accurately estimate the fossil fuel concentrations in those urban plumes. 

In all the analyses, we applied a wind sector selection to ensure that the observations are affected by emissions 640 

in the Rijnmond area rather than from other urban areas nearby. For Zweth we selected wind directions of 90–

220 degrees, for Cabauw 230–270 degrees, and for Lutjewad 210–230 degrees. For Zweth we can also separate 

between signals from the residential area (90–150 degrees, Zweth-city) and industrial area (160–220 degrees, 

Zweth- port). Wind direction observations at Rotterdam airport are used for this purpose. Additionally, a daytime 

selection criterion (8:00–17:00 LT) is applied to favour well-mixed conditions. 645 

3 Results 
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3.1 Comparison of measurement sites 

The urban-to-rural transect of observation sites provides an opportunity to evaluate the ability of different types 

of sites to detect urban plumes. We find that a semi-urban site can provide a constraint on the total emissions in 

the Rijnmond area, whereas an urban site is able to separate between different source areas. This is illustrated in 650 

Fig. 4 (left panel), where we display the probability density functions of the urban plume CO:CO2 concentration 

ratio (i.e. ΔCO:ΔCO2) at the three sites. A probability density function illustrates the likelihood that an observed 

urban plume concentration ratio takes a certain value. The narrower the distribution, the less variable the ratios 

are and the more likely a ratio is to take the mean value (largest probability). Figure 4 also displays the mean 

bottom-up derived emission ratio of the Rijnmond area (vertical solid line, 2.5 ppb ppm-1) and its range, which is 655 

taken from the emission inventory taking into account the temporal profiles of the separate emission categories. 

We see that the ΔCO:ΔCO2 distribution at Cabauw is relatively narrow. Also, the mean ΔCO:ΔCO2 at Cabauw 

(2.2 ppb ppm-1) is very close to the bottom-up Rijnmond emission ratio. This indicates that Cabauw observes an 

integrated, well-mixed signal from the Rijnmond area and therefore contains information on the entire urban 

area. Interestingly, Lutjewad shows a much wider distribution with a mean of 3.9 ppb ppm-1. The urban plume 660 

from Rijnmond is mixed with signals from other industrial and urban areas (such as Amsterdam) before it 

reaches Lutjewad, causing more variability. This suggests that a site too far away from the urban sources is 

unable to uniquely identify the urban plume coming from a specific region. Also, the wind direction is 

heterogeneous between Rijnmond and Lutjewad. So, despite that the wind in Rijnmond is blowing towards 

Lutjewad according to our wind sector selection, the urban plume might never reach the site if the wind direction 665 

is changing during transport. This makes it difficult to filter out the Rijnmond urban plume and Lutjewad will be 

disregarded for the remainder of this study. The Zweth site has an even wider distribution than Lutjewad and a 

mean ratio of 4.5 ppb ppm-1. This site is affected by different source areas with distinct emission ratios 

depending on the wind direction, resulting in a large variability in observed concentration ratios. This variability 

contains a lot of information about the Rotterdam emissions and their spatiotemporal variations. Therefore, we 670 

examine the Zweth distribution in more detail by selecting wind sectors that sample different source areas with 

distinct emission characteristics (Fig. 4, right panel). Zweth-city is illustrative for the signal from the urban 

residential area dominated by road traffic and the Zweth-port signal contains mostly industrial and power plant 

emissions. 

We find a large difference in bottom-up emission ratios for the residential (6.6 ppb ppm-1, vertical dash-dotted 675 

line) and port area (1.2 ppb ppm-1, vertical dashed line), which is not fully reproduced by the observed 

ΔCO:ΔCO2 ratios. Whereas the observed ΔCO:ΔCO2 ratio for Zweth-city (5.0 ppb ppm-1) is in reasonable 

agreement with the emission ratio, Zweth-port has a mean observed ratio that is much higher than expected (4.1 

ppb ppm-1). This discrepancy is related to the presence of high stack emissions in this area, which make up 

almost 75 % of the total Rijnmond CO2 emissions. The stack emissions from industrial processes and energy 680 

production have a small emission ratio of ~1 ppb ppm-1 and dominate the total emission ratio. However, stack 

emissions have small plume dimensions that can easily be missed at the Zweth site and not be visible in the 

observations, especially for stacks in the vicinity of Zweth. Therefore, the observed concentration ratio can turn 

out much higher than what is expected based on the emission inventory including stack emissions. Indeed, the 

emission ratio of the Zweth-port area without point sources would be 3.9 ppb ppm-1, which is very close to the 685 

observed 4.1 ppb ppm-1. This finding indicates that stack emissions only occasionally affect the Zweth 
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observations and it is very important to represent those events well with a model in order to constrain this large 

fraction of CO2 emissions. Although there might be an uncertainty in the emission inventory, reported emissions 

from industrial stacks are relatively accurate. Thus, it is unlikely that this explains the full discrepancy found for 

Zweth-port. Another potential cause of the discrepancy could be that the emission ratio is variable in time – for 690 

example due to a change in fuels used for energy production, while this is not accounted for in the inventory. 

However, this would likely have a smaller impact than the discrepancy found here. The impact of stack 

emissions on the Zweth observations is discussed in more detail in Sect. 3.3. 

3.2 WRF-Chem urban plume transport 

We have now seen that the observations at Zweth and Cabauw contain valuable information about the emissions 695 

in the Rijnmond area. In order to use that information to estimate the emissions, we explore the ability of WRF-

Chem to represent observed time series, and especially their urban plume components. 

First, we analyse the model performance on a day-to-day basis by looking at daytime averages and find that 

WRF-Chem is able to resolve day-to-day variations reasonably well. Table 3 shows that, respectively, 65 % and 

53 % of the variability in the CO2 and CO mixing ratios is captured at the Westmaas background site. Although 700 

the explained variances are slightly smaller at the urban (Zweth) and semi-urban (Cabauw) site, the performance 

at Cabauw for CO2 is comparable to previous modelling studies (Bozhinova et al., 2014; Tolk et al., 2009). Yet, 

the RMSE (Root Mean Square Error) is relatively large for CO and CO2 at all sites. Since Westmaas is nearly 

unaffected by urban emissions, the cause of the large RMSE is related to larger scale transport. Looking at 

meteorological variables, there is a good agreement for temperature, humidity and wind speed. However, the 705 

model has difficulties simulating the correct wind direction, which is especially expressed in the large RMSE. 

Similar errors have been observed before (Deng et al., 2017; Srinivas et al., 2016). The largest error is found in 

the second half of November, causing a large model-data discrepancy (also visible in Fig. 3). Table 3 also shows 

that the RMSE in the mixing ratios further increases for sites that are more influenced by the urban area. This 

finding indicates that WRF-Chem has difficulties representing the full variability caused by urban-industrial 710 

emissions. 

Second, looking closer at the urban plumes we find that WRF-Chem represents the typical characteristics of 

urban plumes reasonably well, but it simulates the peaks at the wrong time at the wrong location compared to the 

measurements (Table 4). We tried to isolate the impact of errors in urban transport by looking statistically at the 

urban plume concentrations (ΔCO2 and ΔCO) at Zweth and Cabauw. We select all data points that satisfy our 715 

criteria, separately for the observed and modelled time series such that both data sets can have a different size. 

We disregard data points associated with wind speeds of less than 3 m s-1 to favour well-mixed conditions that 

are easier to interpret. However, we find that the inclusion of low wind speed data has limited impact on the 

average statistics. Table 4 shows that, on average, there is a good agreement between WRF-Chem and the 

observations in the median and the 80th percentile. The median values of CO2 are somewhat lower in WRF-720 

Chem, indicating there are more small values and less high peak values in the model. Because the frequency 

distribution of the wind direction is similar between the observations and WRF-Chem, we expect no bias is 

introduced by the wind direction error. However, if we now co-sample WRF-Chem and the observations in time 

(i.e. we select observations that match our criteria and then take the same time from the WRF-Chem time series, 

which creates two data sets of equal size) we find a very small explained variance (R2) for both species at both 725 
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sites based on hourly data. An inversion using these hourly data would thus be subject to a large model-data 

mismatch that increases the uncertainty in the optimized fluxes. Therefore, we next look more specifically at the 

data points responsible for the highest mismatch in observed and simulated ΔCO2.  

We find that the largest differences between WRF-Chem and the observations at Zweth when co-sampling 

urban plumes results from errors in simulated wind direction, as well as from an inability of WRF-Chem to 730 

simulate the impact of point source emissions. This is illustrated in Fig. 5, where we binned the absolute errors in 

hourly ΔCO2 into four magnitude classes of 10 ppm each and correlate them with the error in simulated wind 

direction (as binned into three classes of 20 degrees, scatter plots) and with the observed ΔCO:ΔCO2 ratio 

(whisker plots). We find that the smallest ΔCO2 model error class (0–10 ppm) is dominated by the smallest wind 

direction error (0–20 degrees, 68 %), while in the largest ΔCO2 model error class (30–40 ppm) 70 % of the data 735 

points have a wind direction error of more than 20 degrees. With such large wind direction errors, the trajectory 

of urban plumes is misrepresented and the modelled mixing ratios are affected by the wrong source area, or 

plumes may even entirely miss the sites in the model. In addition, we find that in the largest ΔCO2 model error 

class (30–40 ppm) the observed ΔCO:ΔCO2 is lower (2.5 ppb ppm-1) and less variable than in the other classes, 

suggesting a larger influence of industrial (stack) emissions. Although the number of data points in the largest 740 

ΔCO2 model error class is small (N=14), these tendencies give a good indication of what might cause these 

errors. At Cabauw, the impact of stack emissions is not visible, because the point source emissions are already 

well-mixed when the air mass arrives at Cabauw. Hence, we will next examine the added value of the OPS 

plume model only at Zweth to better represent the dispersion of CO2 emitted from stacks and the impact of wind 

direction in OPS. 745 

3.3 WRF-Chem and OPS point source representation 

When we focus exclusively on point source emissions, we find that all simulations that include the OPS plume 

model are in better agreement with the observations than the WRF-Chem simulation (based on the R2 and 

regression slope). This is illustrated in Table 5, where we compare co-sampled simulated and observed events 

with a high point source contribution (see also Appendix A for more details). These events are selected based on 750 

a low observed ΔCO:ΔCO2 ratio (the threshold is 1.5 ppb ppm-1, events illustrated as grey bars in Fig 4). In the 

models, these events are highly correlated with a high point source contribution (of at least 90 %) in the 

simulated ΔCO2 mixing ratio (r is -0.76 (WRF+OPS-point-obsmet) and -0.61 (WRF-Chem)). Including low 

wind speed data deteriorates most of the statistics for all simulations (not shown), meaning that the models have 

difficulties representing stagnant conditions. 755 

For WRF-Chem the explained variance in the co-sampled observations is limited (R2=0.30) and the regression 

slope of ΔCO2 is significantly lower than one (i.e. the 1:1 line of modelled vs. observed ΔCO2). Both the mean 

ΔCO:ΔCO2 and the standard deviation are larger than the observed mean and standard deviation. This suggests 

that the lack of agreement is partly caused by an error in the WRF-Chem wind direction, causing the model to 

sample air from a wrong source area. 760 

In contrast to WRF-Chem, WRF+OPS-point-obsmet shows a larger explained variance (R2=0.52), a regression 

slope that is nearly one, and a ΔCO:ΔCO2 ratio that agrees with observations both in mean and in standard 

deviation. Since only about 10 % of the Zweth-port observations are affected by stack emissions due to the small 

dimension of the plumes (N=42), a better representation of atmospheric conditions has a large impact. An 
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advantage of the OPS model is the ability to estimate the model uncertainty by providing a plume cross-section. 765 

Receptor points can be positioned anywhere and by adding several receptor points around the true measurement 

location we can account for transport errors (e.g. in the wind direction). If we allow for a maximum wind 

direction error of 5 degrees, this has no significant impact on the R2 or slope (results not shown), suggesting that 

the results from the WRF+OPS-point-obsmet simulation are robust against small random errors in wind 

direction. However, systematic errors in the wind direction or the treatment of point source emissions such as 770 

present in WRF-Chem will have an impact on its performance, as we will explore next. 

3.3.1 Dispersion 

When comparing WRF-Chem and WRF+OPS-area we find that the OPS model reduces the dispersion of point 

source emissions, which causes emissions from high stacks to barely reach ground level. Vertical profiles of 

ΔCO2 near an energy production stack for both model simulations are shown in Fig. 6. Energy production 775 

sources often have the highest stacks and the lowest ΔCO:ΔCO2 ratios. Near an energy production stack the 

vertical dimension of the plume in WRF+OPS-area is smaller than in WRF-Chem. The plume remains more 

concentrated in WRF+OPS-area, leading on average to lower mixing ratios at ground level (left panel) and to 

higher maximum values at around 200 m (right panel). This effect is also clearly visible at Zweth (not shown) 

and results in a higher mean ΔCO:ΔCO2 ratio in Table 5 for WRF+OPS-area (i.e. less influence of the low-ratio 780 

stack emissions) and a higher explained variance (37 %). 

3.3.2 Point source representation 

From a comparison of WRF-Chem, WRF+OPS-point and WRF+OPS-point-obsmet it follows that having a 

plume model with full point source characteristics can improve the agreement with the observed mixing ratios, 

even if the meteorological conditions are biased. Implementing detailed source characteristics (WRF+OPS-785 

point) not only increases the explained variance to 42 %, it also increases the ΔCO:ΔCO2 standard deviation. 

This is the result of larger spatial (both horizontal and vertical) variability in the emission landscape. These 

effects are also visible in Fig. 7, which shows a time series of six days of observations and model output. When 

differences between the simulations are small, this indicates the absence of point source signals. On October 23 

(event A) an improvement is made by using observed meteorological conditions due to the large wind direction 790 

error, while the difference between WRF-Chem and WRF+OPS-point is small. However, on other occasions the 

use of the OPS model, irrespective of the meteorology used, already improves the simulated urban plume mixing 

ratio. For example, on October 24 (event B) both OPS runs reduce the urban plume mixing ratios and are in 

better agreement with the observations. On October 26 (event C) the opposite is happening. Whereas WRF-

Chem is only above the background for four hours, the observations show a longer and more severe pollution 795 

event, despite a relatively small wind direction error. Although an additional improvement can be made using the 

observed wind fields, using WRF+OPS-point already improves the length and strength of the pollution event. 

Note that, although WRF-Chem sometimes performs better than the simulations including OPS, the overall 

statistics suggest that it is recommended to use WRF+OPS-point-obsmet. 

4 Discussion 800 
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In this study we focused on two major questions in urban greenhouse gas modelling studies: what type of 

measurement locations can provide the best information on urban fluxes of CO2 and CO, and what type of 

modelling framework can best represent urban plume mixing ratios at these measurement sites. In a previous 

study, Lauvaux et al. (2016) have used nine observation towers to estimate CO2 fluxes from Indianapolis. They 

have argued that the optimum number of towers is dependent on the spatial heterogeneity of the emissions 805 

within the city. They also state that it is impossible to attribute changes in the total CO2 concentration to specific 

source sectors when only CO2 observations are available. Based on our current findings, we believe that with the 

use of other co-emitted species, like CO, information can be gained about source sector contributions, as was 

also shown by Turnbull et al. (2015). Additionally, Brioude et al. (2013) have shown that with only a few flights 

a reasonably robust flux estimate can be made for CO and NOy. These studies thus show that with additional 810 

species and strategically placed measurements the need for a large observation network can be reduced. 

However, an important pre-condition is that atmospheric transport is correctly represented. Lauvaux et al. (2016) 

discussed that the atmospheric transport in high-resolution Eulerian models might suffer from errors due to 

assumptions about turbulence and other fine-scale processes, which causes urban plumes to violate the well-

mixed assumptions of the model. This is especially relevant for emission sources with dimensions that are 815 

significantly smaller than the model resolution, i.e. point sources. Indeed, in this study we find that a plume 

model is a useful addition to the Eulerian model to correctly represent the transport of emissions from large point 

sources. 

4.1 Comparison of observation sites 

We first examined the use of the measurement sites to detect urban plumes, since the measurement sites in an 820 

inversion determine the demand put on the model performance. At the rural site (Lutjewad), the urban plume has 

become mixed with other signals and the urban plume is difficult to distinguish. This site (at ~200 km from the 

Rijnmond area) is therefore too far removed to specifically constrain the Rijnmond emissions, although it was 

shown to constrain emissions from the larger urban conglomerate of the Randstad quite well (Van der Laan et 

al., 2009b; Van der Laan et al., 2010). The semi-urban site (Cabauw) detects urban plumes from Rijnmond 825 

which have already become well-mixed during transport. Moreover, the mean concentration ratio matches well 

with the emission ratio for the Rijnmond area. We therefore argue that the Cabauw site could constrain the 

overall emissions of the Rijnmond area due to its integrating power without the need for a multi-model approach. 

In contrast, the urban location (Zweth) is highly exposed to the urban fluxes and is able to detect spatial 

variations in emissions inside the urban area. We find distinct concentration ratios for different source areas that 830 

can provide valuable information about dominant source types and areas. These findings are similar to a previous 

study concluding that a network of in-city sites provides good constraints due to their high exposure and ability 

to separate between different parts of the source area (Kort et al., 2013). However, the difference between the 

emission ratio and observed concentration ratio for the Zweth-port area indicates that stack emissions might 

frequently be missed at the Zweth measurement site due to the limited plume dimensions. Therefore, a correct 835 

representation of the transport becomes increasingly important. Thus, we conclude that the Cabauw and Zweth 

site have their own particular (dis)advantages and a combination of an urban and semi-urban site could be most 

beneficial to constrain urban fluxes in detail. Note that this conclusion is specifically valid for the Rijnmond area 

with the presence of major point sources and the requirements might be different for other urban topologies. 
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4.2 Model skill 840 

Next, we evaluated the skill of the Eulerian WRF-Chem set-up. The ability of our WRF-Chem framework to 

represent daytime average mixing ratios is comparable with other model frameworks in the urban environment 

(Bozhinova et al., 2014; Bréon et al., 2015; Lac et al., 2013; Tolk et al., 2009). However, WRF-Chem has a large 

wind direction bias that makes it difficult to compare modelled and observed mole fractions. The monthly 

average WRF-Chem wind direction shows an absolute bias of 1 (October), 51 (November) and 10 (December) 845 

degrees compared to the observed wind direction at Rotterdam airport. The error in November is large compared 

to previous findings (Jiménez et al., 2016) and this results in a large model-observation mismatch in tracer 

mixing ratios (Fig. 3). Also at the Cabauw site, which is less influenced by build-up areas, the model-data 

agreement for the 10 m wind direction in November is limited. Previous research has also shown an uncertainty 

of 30–40 % in the tracer mixing ratio due to the uncertainty in meteorological conditions (Angevine et al., 2014; 850 

Srinivas et al., 2016). Additionally, Angevine et al. (2014) have shown that using an ensemble mean of model 

simulations with different meteorology does not necessarily lead to a better representation of plume transport and 

dispersion in a Lagrangian model for area sources. We therefore speculate that assimilating observed wind fields 

in WRF-Chem, as was done by Lauvaux et al. (2013), could be more beneficial to improve the modelled wind 

fields and as such improve the plume transport. Furthermore, the model performance under stratified and low 855 

wind speed conditions need to be addressed, since removing these data can lead to biased emission estimates. 

Some studies argued that the main limitations of a Eulerian model are the enhanced dispersion due to instant 

mixing of species throughout the grid box and, related to that, the absence of a good point source representation 

(Karamchandani et al., 2011; Tolk et al., 2009). Our results show evidence for both limitations in the WRF-

Chem set-up. First, WRF-Chem underestimates the median urban plume mixing ratios of both CO2 and CO 860 

which should mainly be attributed to errors in transport and mixing. Whereas CO mixing ratios at the Zweth site 

are dominated by area sources, CO2 mixing ratios are also highly affected by point source emissions. Therefore, 

their consistent underestimation cannot be caused solely by errors in point source emissions. Second, looking 

more specifically at the point source contribution, WRF-Chem can only explain 30 % of the variance and the 

spread in the ΔCO:ΔCO2 ratio is too large compared to the observations. Thus the resolution appears to be too 865 

low to fully represent the transport of the urban plumes from point sources, similar to previous findings related 

to power plant plumes (Lindenmaier et al., 2014) and megacities (Boon et al., 2016).  

In order to overcome the limitations of WRF-Chem related to point source representation and wind field errors, 

we evaluated the use of the OPS plume model with full point source characteristics and observed meteorological 

conditions. As discussed before, the OPS plume has limited impact on the CO mixing ratios as point sources 870 

only contribute a small fraction to the total CO emissions. Therefore, the focus in the remainder is on CO2. The 

OPS plume model requires limited effort to be run in addition to WRF-Chem (it requires 2 input files and takes 

only a few seconds to run) and is therefore a relatively easy solution to improve the point source representation.  

Several previous plume modelling studies with different species showed improvements compared to the 

gridded approach (Briant and Seigneur, 2013; Ganshin et al., 2012; Karamchandani et al., 2006; Karamchandani 875 

et al., 2012; Korsakissok and Mallet, 2010a; Rissman et al., 2013). In this study we find a significant 

improvement with WRF+OPS-point-obsmet at Zweth, both in the explained variance and the ΔCO:ΔCO2 ratio. 

Also the observed-vs-simulated regression slope of the point source ΔCO2 mixing ratio becomes nearly one. In 

this analysis the number of selected data points is relatively small, because stack emissions can easily be missed 
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by an observation site due to the small plume dimensions. Therefore, only a few events can be used to constrain 880 

point source emissions and a good representation of the plume transport is essential. Although there are only 

~100 individual point sources in the Rijnmond area, they make up about 75 % of the total CO2 emissions. Thus 

we argue that in an urban-industrial area with a significant point source contribution the use of a plume model is 

critical to get a reliable emission estimate. If detailed point source characteristics are unknown, these would have 

to be estimated and this adds an uncertainty to the modelled mixing ratios. Nevertheless, we have shown that 885 

even with the WRF-Chem point source representation (i.e. 1x1km2 in size and fixed vertical distribution) the 

plume model can already improve the agreement with the observations. Further improvements can possibly be 

made by representing traffic emissions as line source emissions in a plume model (Briant and Seigneur, 2013) 

rather than considering them as gridded area sources in the Eulerian model.  

Although part of the OPS-driven improvement can be attributed to the use of observed meteorological 890 

conditions, we have shown with the WRF+OPS-point simulation that there is also an improvement in point 

source representation. We found that a higher spatial variability in the emissions causes more variability in the 

concentration ratios. Representing point sources as area sources, as is done in WRF-Chem, results in lower 

correlations and less variability in concentration ratios, which is consistent with previous studies that 

demonstrated the importance of a good source representation (Kim et al., 2014; Korsakissok and Mallet, 2010b; 895 

Touma et al., 2006). Besides the ability to include detailed source characteristics and to use observed 

meteorology, the OPS model has some additional advantages. We have shown that looking at individual stacks 

can provide valuable information about the underlying transport and dispersion processes and how they are 

affected by source characteristics. Additionally, receptor sites can be positioned anywhere, which allows us to 

study the spatial variations at much higher resolution than currently possible with WRF-Chem. 900 

At Cabauw, the difference between WRF-Chem and the WRF+OPS-point simulation is small, although the 

model-data mismatch at Cabauw is further reduced when observed meteorology is used. This leads to the 

question for which spatial extent a plume model is beneficial. In previous plume-in-grid models at high 

resolution (<25 km) plumes or puffs are often injected in the Eulerian parent model when the width of the plume 

is similar to the grid size (Karamchandani et al., 2006; Kim et al., 2014; Korsakissok and Mallet, 2010b). 905 

According to the definition of the lateral dispersion factor in OPS this would mean that a plume will have 

reached a horizontal width of 4 km (the resolution of the domain in which Cabauw is located) after about 8 km 

travel distance under well-mixed conditions. To test this, we compared a monthly average WRF-Chem CO2 

mixing ratio field in and around Rijnmond with a monthly averaged gridded OPS mixing ratio field. The OPS 

model was only applied for emissions within the Rijnmond area and therefore the distance outside the WRF-910 

Chem domain 4 at which the mixing ratio fields become similar gives an indication of the spatial extent for 

which the OPS model is still beneficial. We find that the difference between the mixing ratio fields disappears 

quickly outside the Rijnmond area and WRF-Chem and OPS become similar at about 10–14 km outside the 

boundary of domain 4. 

5 Conclusions 915 

Our ultimate ambition is to quantify the total urban CO2 budget using multiple observation sites and an inverse 

modelling system. Such information could be used to monitor the impact of implemented policies and progress 

towards objectives. Based on the work reported here, we state that the modelling framework should ideally 
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consist of a Eulerian model in combination with a plume model for point source emissions within the city, 

preferably driven by locally observed meteorology. The use of a plume model is of great added value to correctly 920 

represent the transport of point source emissions in a diameter closer than ~10 km to the site. Although the 

additional computational demand with the OPS plume model is limited, detailed model input is required given 

that the results are very sensitive to source characteristics and wind fields. Given the importance of observed 

local meteorology for the model performance, we strongly recommend inclusion of a (simple) meteorological 

station in any similar monitoring set-up. Also, Lagrangian particle dispersion models driven by WRF 925 

meteorological fields have proven useful in describing the transport of point source emissions and in inverse 

modelling (Brioude et al., 2013; Pan et al., 2014; Srinivas et al., 2016), but such set-up would suffer from wind 

field errors. The optimal set-up for an urban monitoring network requires a semi-urban measurement site (here 

~30 km from the urban area with no other urban areas in between) and at least one additional urban measurement 

site (here at the edge of the urban area, at ~7 km from the city centre). The semi-urban site provides a robust and 930 

integral constraint on the urban fluxes and can be used in combination with a high-resolution Eulerian model 

framework. The urban measurement site can provide useful information about local differences, such as the 

dominance of road traffic in a certain source area or local changes due to implemented measures. Observing 

additional species besides CO, like 14CO2, 13CO2, O2/N2, NO2, SO2 or black carbon, could be a useful extension 

of our framework for identifying source sector contributions. Such a set-up is a promising step towards 935 

independent verification of urban CO2 budgets.  

Data availability 

Observations from Zweth and Westmaas and the TNO-MACC III emission inventory are available via TNO 

(hugo.deniervandergon@tno.nl). Lutjewad and Cabauw observations can be downloaded from the 

GLOBALVIEWplus product (Cooperative Global Atmospheric Data Integration Project, 2015). The Dutch 940 

Emission Registration emission inventory can be accessed online (http://www.emissieregistratie.nl/). 
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Table 1: Overview of SNAP categories and the vertical distribution of point source emissions in WRF-Chem. 1190 

SNAP Description % of point source emissions per model layer [m above 

surface] 

  0–55 m 55–130 m 130–235 m 235–360 m >360 m 

1 Combustion in energy and 

transformation industries 

  18.5 % 42 % 39.5 % 

2 Non-industrial combustion plants      

3 Combustion in manufacturing 

industry 

12.2 % 37.3 % 46.2 % 4.3 %  

4 Production processes 12. 2 % 37.3 % 46.2 % 4.3 %  

5 Extraction and distribution of 

fossil fuels 

     

6 Solvents and other product use      

7 Road transport      

8 Other mobile sources and 

machinery 

100 %     

9 Waste treatment and disposal  16.5 % 44.5 % 39 %  

10 Agriculture      

 

Table 2: Overview of the simulations, which model is used to calculate the urban plume mixing ratio from point 

sources in the Rijnmond area, how point sources are represented and the source of meteorological conditions. 

Simulation name Point source 

contribution  

Point source 

representation 

Meteorological 

input 

WRF-Chem WRF-Chem area WRF-Chem 

WRF+OPS-area OPS area WRF-Chem 

WRF+OPS-point OPS point WRF-Chem 

WRF+OPS-point-obsmet OPS point observations 

 

Table 3: Statistics for WRF-Chem daytime (8:00–17:00 LT) average meteorological variables and total CO2 and CO 1195 

mixing ratios as compared to observed daytime averages (full simulation period). 𝑿𝒐𝒃𝒔̅̅ ̅̅ ̅ is the average observed mixing 

ratio and N gives the number of days included. This table shows that WRF-Chem is able to represent day-to-day 

variations in meteorological conditions and mixing ratios, except for the wind direction. 

Variable Site R2 RMSE bias 𝐗𝐨𝐛𝐬
̅̅ ̅̅ ̅̅  N 

Temperature Rotterdam airport 0.77 2.5 °C + 0.9 °C  90 

Specific humidity Rotterdam airport 0.81 1.0 g kg-1 + 0.5 g kg-1   90 

Wind speed Rotterdam airport 0.72 1.2 m s-1 <0.1 m s-1  90 

Wind direction Rotterdam airport 0.20 53 degrees - 13 degrees  90 

CO2 mixing ratio Westmaas 0.65 8.8 ppm + 1.1 ppm 418 ppm 83 

 Zweth 0.45 13.0 ppm + 2.5 ppm 423 ppm 85 

 Cabauw (60 m) 0.48 10.6 ppm + 3.6 ppm 417 ppm 86 

CO mixing ratio Westmaas 0.53 55 ppb - 23 ppb 187 ppb 83 

 Zweth 0.41 69 ppb - 1 ppb 198 ppb 85 

 Cabauw (60 m) 0.35 53 ppb + 18 ppb 156 ppb 89 

 

 1200 
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Table 4: Statistics for the distribution of the observed and modelled (WRF-Chem) urban plume mixing ratios (ΔCO2 

and ΔCO) at the Zweth and Cabauw site. N is number of hours included for either the observed or simulated time 

series. The R2 in the final column is based on co-sampling of WRF-Chem with the observations. The agreement 

between WRF-Chem and the observations is satisfactory when considering the distribution of the plume mixing 1210 
ratios, but the low explained variance when co-sampling suggests a large impact of transport errors on individual 

plumes. 

Species 

Site Obs/model Median 80th percentile N R2 

CO2 Zweth Observed 9.7 ppm 17.3 ppm 284  

  WRF-Chem 8.8 ppm 16.9 ppm 249 0.05 

 Cabauw (60 m) Observed 6.0 ppm 9.1 ppm 32  

  WRF-Chem 5.6 ppm 6.4 ppm 37 <0.01 

CO Zweth Observed 29 ppb 57 ppb 274  

  WRF-Chem 33 ppb 50 ppb 207 0.01 

 Cabauw (60 m) Observed 13 ppb 28 ppb 58  

  WRF-Chem 18 ppb 31 ppb 51 <0.01 

 

Table 5: Statistics for CO2 point source peaks at Zweth in four different model simulations as compared to 

observations. N is number of hours included and the slope is based on a linear regression. ΔCO:ΔCO2 denotes the 1215 
mean (± 1σ standard deviation) of the urban plume concentration ratio in ppb ppm-1. 

Model run 

R2 ΔCO:ΔCO2 ΔCO2 slope N 

WRF-Chem 0.30 0.9 (±1.5) 0.82 42 

WRF+OPS-area 0.37 1.2 (±1.1) 0.87 42 

WRF+OPS-point 0.42 1.2 (±1.6) 0.86 42 

WRF+OPS-point-obsmet 0.52 0.7 (±0.6) 0.99 40 

     

Observed  0.7 (±0.4)   

 

 

 

 1220 

 

 

 

 

 1225 

 

 

 

 

 1230 

 

 

 

 

 1235 

 

 



32 

 

 

Figure 1: CO2 emission map of the Rijnmond area (red outline), including the city of Rotterdam (blue outline) and the 

port area (brown outline); the observation sites are indicated with black stars (Lutjewad is shown in Fig. 2). The 1240 
boundaries of domain 4 in WRF-Chem are indicated by the black square. Source: Netherlands PRTR (2014).  

 

Figure 2: Location of the domains is indicated with squares. The horizontal resolutions of the domains are (from outer 

to inner domain): 48x48 km, 12x12 km, 4x4 km and 1x1 km. Black circles represent the observation sites. 
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 1245 

Figure 3: Time series of modelled (WRF-Chem) and observed CO2 and CO mixing ratios at Zweth (left) and Cabauw 

(right). The observation-based baseline used in this study is also shown. 

 

Figure 4: Left: Smooth Gaussian fit of probability density functions of observed ΔCO:ΔCO2 at the Zweth, Cabauw 

and Lutjewad measurement sites. The solid vertical line (shaded area) shows the mean emission ratio (Q1–Q3 range) 1250 
for all emissions integrated over the Rijnmond area (see Fig. 1). Right: The Zweth observations separated into two 

distinct source areas based on the observed wind direction. The dash-dotted and dashed vertical lines represent the 

mean emission ratios from the residential area and the port, respectively. Generally, there is a reasonable match 

between the bottom-up emission ratio and the concentration-derived ratio, but observed ratios from the Zweth-port 

wind sector are much higher than expected because of the intermittency of plume transport from the many stacks in 1255 
this area. The grey bars in the right panel show the point source events selected in Sect. 3.3. 
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Figure 5: This figure shows four classes of the absolute model error in ΔCO2 compared with the Zweth measurement 

site. For each class two quantities are displayed. 1) A whisker plot of observed ΔCO:ΔCO2, which shows that the 

largest absolute ΔCO2 model error (y-axis) is related to small observed concentration ratios (x-axis). This indicates an 1260 
important role for low-ratio stack emissions (industrial and power plant sources) in the large model error class. 2) A 

coloured scatter plot for which data points are divided into three classes based on the absolute error in simulated 

wind direction (<20 degrees in small blue dots on bottom row, 20–40 degrees in larger green dots on middle row, and 

>40 degrees in large red dots on top row). Each dot represents one hour. The percentage contribution of each wind 

direction error class to the total number of data points (N) is shown on the right. These numbers show that the model 1265 
error in wind direction also plays an important role in the ΔCO2 model error. 

 

Figure 6: Vertical profiles of the median (Q1–Q3) (left panel) and maximum (right panel) ΔCO2 mixing ratio at 14 h 

UTC at about 500 m from an energy production point source in WRF-Chem and WRF+OPS-area. The horizontal 

lines represent the boundaries of the vertical levels in WRF-Chem. Emissions are taking place in levels 3, 4 and 5 in 1270 
WRF-Chem or at 130, 235 and 360 m in WRF+OPS-area. The figure shows on average lower mixing ratios at ground 

level in WRF+OPS-area than in WRF-Chem, despite an identical treatment of the vertical emission structure. 

WRF+OPS-area also shows higher maximum values, reflecting a reduction in vertical dispersion compared to the 

Eulerian box representation in WRF-Chem. 
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 1275 

Figure 7: Time series of ΔCO2 at Zweth from observations and three model simulations (top panel) and of the wind 

direction at Rotterdam airport from WRF-Chem, WRF+OPS-point-obsmet, and observations (bottom panel). Shaded 

areas indicate specific events discussed in more detail in the text. 

Appendix A 

 1280 

Figure A1: Left: A scatter plot of ΔCO and ΔCO2, where the slopes (represented by lines) represent the ΔCO:ΔCO2 

ratio for the observed and modelled values. The slope of WRF+OPS-point-obsmet coincides with the slope of the 

observations, suggesting a good agreement. Right: A scatter plot of simulated ΔCO2 to observed ΔCO2. The slope of 

WRF+OPS-point-obsmet coincides with the 1:1 line (dotted line), suggesting a good agreement with the observations. 
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