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Abstract. 24 

The Beijing-Tianjin-Hebei (BTH) region has been suffering from the most severe fine particle 25 

(PM2.5) pollution in China, which causes serious health damage and economic loss. 26 

Quantifying the source contributions to PM2.5 concentrations has been a challenging task 27 

because of the complicated non-linear relationships between PM2.5 concentrations and 28 

emissions of multiple pollutants from multiple spatial regions and economic sectors. In this 29 

study, we use the Extended Response Surface Modeling (ERSM) technique to investigate the 30 
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nonlinear response of PM2.5 and its major chemical components to emissions of multiple 1 

pollutants from different regions and sectors over the BTH region, based on over 1000 2 

simulations by a chemical transport model (CTM). The ERSM-predicted PM2.5 concentrations 3 

agree well with independent CTM simulations, with correlation coefficients larger than 0.99 4 

and mean normalized errors less than 1%. Using the ERSM technique, we find that primary 5 

inorganic PM2.5 is the single pollutant which makes the largest contribution (24-36%) to PM2.5 6 

concentrations. The contribution of primary inorganic PM2.5 emissions is especially high in 7 

heavily polluted winter, and is dominated by the industry as well as residential and 8 

commercial sectors, which should be prioritized in PM2.5 control strategies. The total 9 

contributions of all precursors (nitrogen oxides, NOX; sulfur dioxides, SO2; ammonia, NH3; 10 

non-methane volatile organic compounds, NMVOC; intermediate-volatility organic 11 

compounds, IVOC; primary organic aerosol, POA) to PM2.5 concentrations range between 31% 12 

and 48%. Among these precursors, PM2.5 concentrations are primarily sensitive to the 13 

emissions of NH3, NMVOC+IVOC, and POA. The sensitivities increase substantially for NH3 14 

and NOX, and decrease slightly for POA and NMVOC+IVOC with the increase in the 15 

emission reduction ratio, which illustrates the nonlinear relationships between precursor 16 

emissions and PM2.5 concentrations. The contributions of primary inorganic PM2.5 emissions 17 

to PM2.5 concentrations are dominated by local emission sources, which account for over 75% 18 

of the total primary inorganic PM2.5 contributions. For precursors, however, emissions from 19 

other regions could play similar roles as local emission sources in the summer and over the 20 

northern part of BTH. The source contribution features for various types of heavy-pollution 21 

episodes are distinctly different from each other, and from the monthly mean results, 22 

illustrating the need of discrepant temporary control strategies for different pollution types. 23 

 24 

1 Introduction 25 

China is one of the regions with highest concentration of PM2.5 (particulate matter with 26 

aerodynamic diameter equal to or less than 2.5 μm) in the world (van Donkelaar et al., 2015). 27 

The problem is especially serious over the Beijing-Tianjin-Hebei (BTH) region, one of the 28 

most populous and developed regions in China. Annual average PM2.5 concentrations in this 29 

region reached 85-110 g/m3 during 2013-2015, which approximately triple the standard 30 

threshold (35 g/m3) and far exceed those in other metropolitan regions (Wang et al., 2017). It 31 

has been estimated that the severe PM2.5 pollution leads to about 1.05-1.23 million premature 32 
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deaths per year in China (Lim et al., 2012; Burnett et al., 2014; Wang et al., 2016b), and the 1 

monetized loss over the BTH region is as high as 134 billion Chinese Yuan, representing 2.2% 2 

of regional gross domestic product (GDP) (Lv and Li, 2016). Additionally, PM2.5 substantially 3 

affects global and regional climate by absorbing and scattering solar radiation and by altering 4 

cloud properties (Stocker et al., 2013). 5 

To tackle the heavy PM2.5 pollution problem, Chinese government issued the "Action Plan 6 

on Prevention and Control of Air Pollution" in September 2013, which aimed at a 25% 7 

reduction in PM2.5 concentrations over the BTH region by 2017 from the 2012 levels (The 8 

State Council of the People's Republic of China, 2013). The attainment of ambient PM2.5 9 

standard would further require substantial reductions in air pollutant emissions (Wang et al., 10 

2017). To establish emission control strategies, many studies have apportioned the sources of 11 

PM2.5 over the BTH region, either by mining monitoring data using the Positive Matrix 12 

Factorization and Chemical Mass Balance methods (e.g., Zhang et al., 2007; Yu et al., 2013) 13 

or by embedding chemical tracers in chemical transport models (CTMs) (e.g., Wang et al., 14 

2016c; Li et al., 2015b; Ying et al., 2014). While these studies can capture the current 15 

contributions of various sources to PM2.5 concentrations, these contributions could differ 16 

significantly from the PM2.5 reductions induced by reducing emissions from the corresponding 17 

sources, due to highly nonlinear chemical mechanisms (Han et al., 2016; Wang et al., 2011). 18 

Therefore, it is imperative to assess the nonlinear response of PM2.5 to pollutant emissions 19 

from multiple sources, which could provide direct support for the development of effective 20 

control policies. 21 

CTMs are the only feasible tools for evaluating the response of PM2.5 concentrations to 22 

emission changes (Hakami et al., 2003). The most widely used technique to evaluate these 23 

responses is the “Brute force” method, which involves perturbing emissions from a certain 24 

source and repeated solution of the model (Russell et al., 1995). A number of studies have 25 

utilized the “Brute force” method to quantify the contributions of emissions from different 26 

spatial regions (Streets et al., 2007; Wang et al., 2008; Li and Han, 2016; Wang et al., 2014a), 27 

or different economic sectors (Wang et al., 2008; Han et al., 2016; Wang et al., 2014a; Liu et 28 

al., 2016) to PM2.5 concentrations over the BTH region, either on a seasonal basis (Streets et 29 

al., 2007; Wang et al., 2008; Han et al., 2016; Liu et al., 2016) or during a specific heavy-30 

pollution episode (Li and Han, 2016; Wang et al., 2014a). To improve the computational 31 

efficiency, several mathematic techniques embedded in CTMs have been developed to 32 
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simultaneously calculate the sensitivities of the modeled concentrations to multiple emission 1 

sources, including the Decoupled Direct Method (Yang et al., 1997) and Adjoint Analysis 2 

(Sandu et al., 2005; Hakami et al., 2006). Zhang et al. (2016) used the Adjoint Analysis 3 

method to examine sensitivities of PM2.5 concentrations in the BTH region to pollutant 4 

emissions during several pollution periods. However, these studies have inadequately 5 

captured the nonlinearity in the responses of PM2.5 concentrations to pollutant emissions, 6 

which can be extremely strong due to complex chemical mechanisms (Wang et al., 2011). 7 

Moreover, no studies have simultaneously evaluated the response of PM2.5 concentrations in 8 

BTH to emissions of multiple pollutants from different sectors and regions, which we need to 9 

consider and balance to develop cost-effective control strategies. 10 

In light of the drawbacks of the preceding methods, the Response Surface Modeling 11 

(RSM) technique (denoted by “conventional RSM” technique hereafter to distinguish from 12 

the ERSM technique) has been developed by using advanced statistical techniques to 13 

characterize the nonlinear relationship between model outputs and inputs (U.S. Environmental 14 

Protection Agency, 2006; Xing et al., 2011; Wang et al., 2011). This technique has been 15 

applied to the United States (U.S. Environmental Protection Agency, 2006) and the Eastern 16 

China (Wang et al., 2011) to evaluate the response of PM2.5 and its chemical components to 17 

pollutant emissions. Recently, we developed the Extended Response Surface Modeling 18 

(ERSM) technique (Zhao et al., 2015b), which substantially extended the applicability of 19 

conventional RSM to an increased number of variables and geographical regions with an 20 

acceptable amount of computational burden. 21 

Given the advantage of the ERSM technique, here we apply it to over 1000 simulations by 22 

the Community Multi-scale Air Quality model with Two-Dimensional Volatility Basis Set 23 

(CMAQ/2D-VBS) to systematically evaluate the nonlinear response of PM2.5 and its major 24 

chemical components to emission changes of multiple pollutants from different sectors and 25 

regions over the BTH region. The major sources contributing to PM2.5 and its major 26 

components are identified and the nonlinearity in the response of PM2.5 to emission changes is 27 

characterized. Based on results of this study, suggestions for PM2.5 control policies over the 28 

BTH region are proposed. 29 
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2 Methodology 1 

2.1 CMAQ/2D-VBS configuration and evaluation 2 

The CMAQ/2D-VBS model was developed in our previous study (Zhao et al., 2016) by 3 

incorporating the 2D-VBS model framework into CMAQv5.0.1. Compared with the default 4 

CMAQ, the CMAQ/2D-VBS model explicitly simulates aging of secondary organic aerosol 5 

(SOA) formed from non-methane volatile organic compounds (NMVOC), aging of primary 6 

organic aerosol (POA), and photo-oxidation of intermediate-volatility organic compounds 7 

(IVOC), thereby significantly improving the simulation results of organic aerosol (OA) and 8 

SOA. The model parameters within the 2D-VBS framework have been optimized in our 9 

previous studies (Zhao et al., 2015a; Zhao et al., 2016) based on a series of smog-chamber 10 

experiments. Here we use the same model parameters as those of the “High-Yield VBS” 11 

configuration reported in Zhao et al. (2016), which agrees best with surface OA and SOA 12 

observations among three model configurations. An application in the Eastern China reveals 13 

that CMAQ/2D-VBS reduces the underestimation in OA concentrations from 45% (default 14 

CMAQv5.0.1) to 19%. More importantly, while the default CMAQv5.0.1 substantially 15 

underestimates the fraction of SOA in OA by 5–10 times and can not track oxygen-to-carbon 16 

ratio (O:C), the SOA fraction and O:C simulated by CMAQ/2D-VBS agree fairly well with 17 

observations.  18 

We apply the CMAQ/2D-VBS model over the BTH region. One-way, double nesting 19 

simulation domains are used, as shown in Fig. 1. Domain 1 covers East Asia with a grid 20 

resolution of 36 km×36 km; domain 2 covers the BTH and its surrounding regions with a grid 21 

resolution of 12 km×12 km. We use the SAPRC99 gas-phase chemistry module and the 22 

AERO6 aerosol module, in which the treatment of OA is replaced with the 2D-VBS 23 

framework. The aerosol thermaldynamics is based on ISORROPIA-II. The initial and 24 

boundary conditions for Domain 1 are kept constant as the model default profile, and those 25 

for Domain 2 are extracted from the output of Domain 1. A 5-day spin-up period is used to 26 

reduce the influence of initial conditions on modeling results. 27 

The Weather Research and Forecasting Model (WRF, version 3.7) is used to generate the 28 

meteorological fields. The National Center for Environmental Prediction (NCEP)’s Final 29 

Analysis reanalysis data at 1.0º × 1.0º and 6-h resolution are used to generate the first guess 30 

field. The NCEP’s Automated Data Processing (ADP) data are used in the objective analysis 31 

scheme. The major physics options for WRF include the Kain-Fritsch cumulus scheme, the 32 
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Pleim-Xiu land-surface module, the Asymmetric Convective Model with non-local upward 1 

mixing and local downward mixing (ACM2) for planetary boundary layer (PBL) 2 

parameterization, the Morrison double-moment scheme for cloud microphysics, and the Rapid 3 

Radiative Transfer Model for GCMs (RRTMG) radiation scheme. Terrain and land use data 4 

are obtained from the Moderate resolution Imaging Spectroradiometer (MODIS). The 5 

simulation periods are January, March, July, and October in 2014, representing winter, spring, 6 

summer, and fall. We select these four months because the occurrence frequencies of various 7 

meteorological types in these months are statistically most similar to the average conditions in 8 

winter, spring, summer, and fall during 2004-2013 (Wu, 2016). 9 

A high-resolution anthropogenic emission inventory in 2014 has been developed using an 10 

“emission factor method” (Fu et al., 2013; Zhao et al., 2013b) for the BTH region by 11 

Tsinghua University. The emissions from area and mobile sources are first calculated for each 12 

prefecture-level city based on statistical data, and subsequently distributed into the model 13 

grids according to spatial distribution of population, GDP, and road networks. A unit-based 14 

method (Zhao et al., 2008) is applied to estimate and locate the emissions from large point 15 

sources (LPS) including power plants, iron and steel plants, and cement plants. The 16 

anthropogenic emission inventory in other provinces of China was origninally developed for 17 

2010 and 2012 in our previous studies (Zhao et al., 2013b; Zhao et al., 2013a; Wang et al., 18 

2014b; Cai et al., 2016), which has been updated to 2014 in this study following the same 19 

methodology. Table S1 summarizes emissions of major air pollutants in each prefecture-level 20 

city over the BTH region in 2014; Table S2 gives the provincial emissions in the whole China 21 

in 2014. The emissions for other countries are obtained from the MIX emission inventory (Li 22 

et al., 2015a) for 2010, which is the latest year available. The biogenic emissions were 23 

calculated by the Model of Emissions of Gases and Aerosols from Nature (MEGAN; 24 

Guenther et al., 2006). 25 

We compared the simulation results of WRFv3.7 and CMAQ/2D-VBS with 26 

meteorological observations obtained from the National Climatic Data Center (NCDC), PM2.5 27 

observations at 138 state-controlled observational sites, and observations of major PM2.5 28 

chemical components at 7 sites within the modeling domain. We show that the meteorological 29 

and chemical simulations generally agree well with observations, with performance statistics 30 

mostly within the benchmark values proposed by previous studies. Details of the model 31 
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evaluation methods and results are given in the Supplementary Information (Section 1, Table 1 

S3-S5, Fig. S1-S5). 2 

2.2 Development of ERSM prediction system 3 

The detailed methodologies of the conventional RSM and ERSM techniques have been 4 

described in our previous papers (Zhao et al., 2015b; Xing et al., 2011). Here we only 5 

summarize some key components. The conventional RSM technique characterizes the 6 

relationships between a response variable (e.g., PM2.5 concentration) and a set of control 7 

variables (i.e., emissions of particular pollutants from particular sources) based on a number 8 

of randomly generated emission control scenarios (Xing et al., 2011; Wang et al., 2011). The 9 

PM2.5 concentration for each emission scenario is calculated with a CTM (CMAQ/2D-VBS in 10 

this study), and the conventional RSM is subsequently established using the Maximum 11 

Likelihood Estimation - Empirical Best Linear Unbiased Predictors (MLE-EBLUPs) 12 

developed by Santner et al. (2003). Due to the limitation of the conventional RSM technique 13 

with respect to variable number, we have developed the ERSM technique (Zhao et al., 2015b) 14 

to extend the applicability to an increased number of variables and geographical regions. The 15 

ERSM technique first quantifies the relationship between PM2.5 concentrations and precursor 16 

emissions for each single region using the conventional RSM technique as described above, 17 

and then assesses the effects of inter-regional transport of PM2.5 and its precursors on PM2.5 18 

concentration in the target region. In order to quantify the interaction among regions, we 19 

introduce a key assumption that the emissions of precursors in the source region affect PM2.5 20 

concentrations in the target region through two major processes: (1) the inter-regional 21 

transport of precursors enhancing the chemical formation of secondary PM2.5 in the target 22 

region; (2) the formation of secondary PM2.5 in the source region followed by transport to the 23 

target region. We quantify the individual contributions of these two processes as well as the 24 

contribution of local emissions in the target region, which are subsequently integrated to 25 

derive the total PM2.5 concentrations in the target region. 26 

For application of the RSM/ERSM techniques to the BTH region, we define 5 target 27 

regions in the inner modeling domain (Domain 2), i.e., Beijing, Tianjin, Northern Hebei (N 28 

Hebei), Eastern Hebei (E Hebei), and Southern Hebei (S Hebei), as shown in Fig. 1. The 29 

decomposition of the Hebei province is based on a preliminary analysis of the pollutant 30 

transport patterns over the BTH region (Section 2 in the Supplementary Information). The 31 

simulation using back trajectory method indicates that four major types of heavy-pollution 32 
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episodes in Beijing are primarily contributed by air mass from the south, the local area, the 1 

northwest, and the southeast. We develop two RSM/ERSM prediction systems (Table 1). The 2 

response variables for both of them are concentrations of PM2.5, SO4
2-, NO3

-, and OA over the 3 

urban areas of prefecture-level cities in the five target regions. The first prediction system use 4 

the conventional RSM technique and 101 emission control scenarios generated by the Latin 5 

Hypercube Sample (LHS) method (Iman et al., 1980) to map atmospheric concentrations 6 

versus total emissions of NOX, SO2, NH3, NMVOC+IVOC, and POA in all five target regions. 7 

This prediction system is intended for the validation (Section 3.1) of the second system, 8 

which is established using the ERSM technique. For the second system, the emissions of 9 

PM2.5 precursors and primary inorganic PM2.5 in each of the 5 regions are categorized into 7 10 

and 4 control variables, respectively, resulting in 55 control variables in total (see Table 1). 11 

We generate 1121 scenarios (see Table 1) to build the response surface, following the method 12 

detailed in Zhao et al. (2015b). Specifically, the scenarios include (1) 1 CMAQ/2D-VBS base 13 

case; (2) 200 scenarios generated by applying LHS method for the control variables of 14 

precursors in Beijing, 200×4 scenarios generated in the same way for Tianjin, Northern Hebei, 15 

Eastern Hebei, and Southern Hebei; (3) 100 scenarios generated by applying LHS method for 16 

the total emissions of NOX, SO2, NH3, NMVOC+IVOC, and POA in all 5 regions; and (4) 20 17 

scenarios where one of the control variables of primary inorganic PM2.5 emissions is set to 18 

0.25 for each scenario. Here the scenario numbers (200 in group 2 and 100 in group 3) are 19 

determined based on numerical experiments conducted in our previous studies (Xing et al., 20 

2011; Wang et al., 2011), which showed that the response surface for 7 and 5 variables could 21 

be built with good prediction performance (mean normalized error < 1%; correlation 22 

coefficient > 0.99) using 200 and 100 scenarios, respectively. Finally, we generate 54 23 

independent scenarios for out-of-sample validation, which will be detailed in Section. 3.1. 24 

For application of the ERSM prediction system to quantitatively characterize the 25 

sensitivity of PM2.5 concentrations to emission changes, we define “PM2.5 sensitivity” as the 26 

change ratio of PM2.5 concentration divided by the reduction ratio of a emission source, 27 

following previous studies (Zhao et al., 2015b; Wang et al., 2011). 28 

 Sa
X= ൣ൫C*-Ca൯ C*⁄ ൧ ൫1-a൯ൗ  (4) 29 

where Sa
X is the PM2.5 sensitivity to emission source X at its emission ratio a; C* and Ca are 30 

PM2.5 concentrations in the base case (when the emission ratio of X is 1) and in the control 31 
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scenario where the emission ratio of X is a, respectively. Similar indices can be defined for 1 

chemical components of PM2.5, such as NO3
-, SO4

2-, and OA. 2 

 3 

3 Results and discussion 4 

3.1 Validation of ERSM performance 5 

The performance of the conventional RSM technique has been well evaluated in our previous 6 

papers (Xing et al., 2011; Wang et al., 2011), so we only describe the validation of the ERSM 7 

technique. Following Zhao et al. (2015b), we assess the performance of the ERSM prediction 8 

system using the “out-of-sample” and 2D-isopleths validation methods, which focus on the 9 

accuracy and stability of the prediction system, respectively. 10 

For out-of-sample validation, we use the ERSM prediction system to calculate the PM2.5 11 

concentrations for 54 “out-of-sample” control scenarios, i.e., scenarios independent from 12 

those used to build the prediciton system, and compare with the corresponding CMAQ/2D-13 

VBS simulation results. These 54 out-of-sample scenarios (summarized in Table S6) include 14 

40 cases (case 1-40) where the control variables of precursors change but those of primary 15 

inorganic PM2.5 stay the same as the base case, 4 cases (case 41-44) the other way around, and 16 

10 cases (case 45-54) where control variables of precursors and primary inorganic PM2.5 17 

change simultaneously. Most cases are generated randomly with the LHS method (case 4-6, 18 

10-12, 16-18, 22-24, 28-54), and some cases are designed where all control variables are 19 

subject to large emission changes (case 1-3, 7-9, 13-15, 19-21, 25-27).  20 

Figure 2 compares the ERSM-predicted and CMAQ/2D-VBS-simulated PM2.5 21 

concentrations for the out-of-sample scenarios using scattering plots. Table 2 summarizes the 22 

statistics of the model performance. The definitions of normalized error (NE), mean 23 

normalized error (MNE), and normalized mean error (NME) are given as follows: 24 

 NE= หPi-Siห Siൗ  (1) 25 

 MNE= 1
Ns
∑ ൣหPi-Siห Siൗ ൧Ns
i=1  (2) 26 

 NME=∑ หPi-Siห
Ns
i=1 ∑ Si

Ns
i=1ൗ  (3) 27 

where Pi and Si are the ERSM-predicted and CMAQ/2D-VBS-simulated value of the ith out-28 

of-sample scenario; Ns is the number of out-of-sample scenarios. Figure 2 shows that the 29 

ERSM predictions and CMAQ/2D-VBS simulations agree well with each other. The 30 

correlation coefficients are larger than 0.99, and the MNEs and NMEs are less than 1% for all 31 
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four months. The maximum NEs could be as large as 11% for particular month and region, 1 

but the 95% percentiles of NEs are all within 4.4%. NEs exceeding 4.4% happen only for the 2 

scenarios where most control variables are reduced substantially, indicating relatively large 3 

errors at low emission rates, which is consistent with our previous study (Zhao et al., 2015b). 4 

Note that all sensitivity scenarios used in Sections 3.2-3.4 have ≤ 80% emission reductions, 5 

which helps to avoid relatively large errors. We also examine the errors in predicted PM2.5 6 

response, which is defined as the difference between PM2.5 concentration in an emission 7 

control scenario and that in the base case. Table 2 shows that the NMEs of PM2.5 response are 8 

within 5.6% for all months. In summary, the out-of-sample validation indicates an overall 9 

good agreement between ERSM predictions and CMAQ/2D-VBS simulations. 10 

We further examine whether the ERSM technique can capture the trends in PM2.5 11 

concentrations in response to continuous changes in precursor emissions, i.e., the stability of 12 

the ERSM technique. To this end, we compare the 2D-isopleths of PM2.5 concentrations as a 13 

function of simultaneous changes in two precursors’ emissions in all five regions derived 14 

from the ERSM and conventional RSM techniques; the stability of the latter has been fully 15 

demonstrated (Xing et al., 2011; Wang et al., 2011). Figure 3 illustrates the PM2.5 isopleths in 16 

Beijing as a function of three combinations of precursors, i.e., NOX vs NH3, SO2 vs NH3, and 17 

VOC+IVOC vs POA; the isopleths for other regions are very similar and thus not shown. The 18 

X- and Y-axis of the figures represent the “emission ratio”, defined as the ratios of the 19 

changed emissions to the emissions in the base case. For example, an emission ratio of 0.7 20 

means the emission of a particular control variable accounts for 70% that of the base case. 21 

The colour isopleths represent PM2.5 concentrations. The comparison shows that the shapes of 22 

isopleths derived from both prediction systems generally agree with each other. The 23 

agreement is very good for the case of VOC+IVOC vs POA, and for the cases of NOX vs NH3 24 

and SO2 vs NH3 when the emission ratios for NOX and NH3 are larger than 0.2. Relatively 25 

large errors occur at low NOX/NH3 emission ratios (< 0.2) due primarily to a very strong 26 

nonlinearity in these emission ranges. For application in control policy analysis, > 80% 27 

emission reductions are extremely rare as limited by the technologically feasible reduction 28 

potentials (Wang et al., 2014b). The general consistency between RSM and ERSM-predicted 29 

isopleths demonstrates the stability of the ERSM prediction system. In other words, although 30 

the ERSM predictions are definitely subject to numerical errors, these errors could not 31 

challenge the major conclusions on the effectiveness of emission reductions. 32 
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3.2 Response of PM2.5 concentrations to emissions of air pollutants 1 

Having demonstrated the reliability of the ERSM prediction system, we employ it to 2 

investigate the responses of PM2.5 concentrations to emissions of various pollutants from 3 

different sectors and regions. We use “PM2.5 sensitivity” defined in Section 2.2 to 4 

quantitatively characterize the sensitivity of PM2.5 concentrations to emission changes. Figure 5 

4 illustrates the sensitivity of 4-month (January, March, July, and October) mean PM2.5 6 

concentrations to stepped control of individual air pollutants and individual pollutant-sector 7 

combinations in the BTH region, which are derived from the ERSM technique. Among all 8 

pollutants, the 4-month mean PM2.5 concentrations are most sensitive to the emissions of 9 

primary inorganic PM2.5 in all five regions, and the PM2.5 sensitivities vary from 24% to 36% 10 

according to region. When primariy inorganic PM2.5 emissions from various sectors are 11 

differentiated, the industry sector is found to make the largest contribution to PM2.5 12 

concentrations, followed by the residential and commercial sectors; the contribution of power 13 

plants is negligibly small because of smaller emissions and higher stacks. The PM2.5 14 

sensitivities to primariy inorganic PM2.5 emissions remain constant at various reduction ratios. 15 

While primary inorganic PM2.5 represents the single pollutant which makes the largest 16 

contribution to PM2.5 concentrations, the total contributions of all precursors (NOX, SO2, NH3, 17 

NMVOC, IVOC, and POA), which range between 31% and 48%, exceed that of primary 18 

inorganic PM2.5 (24-36%). Among the precursors, PM2.5 concentrations are primarily sensitive 19 

to the emissions of NH3, NMVOC+IVOC, and POA, and their relative importance differ 20 

according to reduction ratio. The PM2.5 sensitivity to NH3 increases substantially with the 21 

increase of reduction ratio, primarily attributable to the transition from NH3-rich to NH3-poor 22 

regimes when more controls are enforced. The PM2.5 sensitivies to POA and NMVOC+IVOC, 23 

however, decrease slightly with the increase of reduction ratio. This is because that, based on 24 

the gas-particle absorptive partitioning theory, organics have a higher tendency to partition 25 

into the particle phase at larger OA concentrations. As a result of the nonlinearity, the PM2.5 26 

sensitivities to POA and NMVOC+IVOC emissions are larger than those to NH3 emissions at 27 

small reduction ratios (e.g., 20%), while it is the other way around at large reduction ratios 28 

(e.g., 80%). The PM2.5 sensitivity to SO2 emissions is considerably smaller compared with the 29 

three precursors above, and does not change significantly as a function of reduction ratio. The 30 

response of PM2.5 concentrations to NOX emissions could change from negative to positive 31 

with the increase of reduction ratio, which has been reported in several previous studies 32 
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(Dong et al., 2014; Zhao et al., 2013c; Cai et al., 2016). Small NOX emission reductions could 1 

lead to increase in O3 and HOX concentrations in several seasons owing to a NMVOC-limited 2 

photochemical regime, which on one hand enhances SO4
2- and SOA formation, and on the 3 

other hand, could also increase NO3
- concentrations by accelerating the nocturnal formation of 4 

N2O5 and HNO3 through the NO2 + O3 reaction at low temperatures. A substantial reduction 5 

in NOX emissions, however, transforms the NMVOC-limited regime to a NOX-limited regime, 6 

resulting in a successive decline in concentrations of O3, HOX, and most PM2.5 chemical 7 

components. In addition, the responses of PM2.5 concentrations to NOX emission changes are 8 

discrepant in different regions. For example, NOX emission reductions can mostly lead to 9 

PM2.5 decline in Northern Hebei, because this region, which is the northernmost region within 10 

BTH, is substantially affected by emissions in other regions. Considering that the 11 

photochemistry typically changes from a NMVOC-limited regime in urban areas at surface to 12 

a NOX-limited regime in rural areas or at upper levels (Xing et al., 2011), the NOX emission 13 

reductions in upwind regions are more likely to result in a net PM2.5 decline compared with 14 

local emission reductions. Note that NOX emissions were recently found to oxidize SO2 in 15 

aerosol water, leading to additional PM2.5 formation (Cheng et al., 2016; Wang et al., 2016a). 16 

Incorporation of this process in the model may affect the simulated response of PM2.5 to NOX 17 

emissions. Regarding emission sectors, the contributions of SO2 and NOX emissions are 18 

domiated by “other sources” (sources other than LPS) because they emit larger amount of 19 

pollutants at lower height compared with LPS. When all pollutants are controlled together, the 20 

PM2.5 sensitivity generally increases with reduction ratio, indicating that additional air quality 21 

benefit could be achieved, larger than the expectation from linear extropolation, if more 22 

control measures are implemented. 23 

Figure 5 illustrates the PM2.5 sensitivities to individual pollutant-sector combinations in 24 

each month. The source contribution features are significantly discrepant in different months. 25 

The contributions of primary inorganic PM2.5 emissions to PM2.5 concentrations are notably 26 

higher in January than in other months, which is probably attributed to weaker dilution and 27 

slower chemical reactions in January. Regarding different emission sectors of primary 28 

inorganic PM2.5, the industrial sector plays a dominant role in all months except January, 29 

when the residential and commercial sectors make a similar or even larger contribution as 30 

compared to the industrial sector. This result highlights the importance of low-level 31 

residential and commercial sources for PM2.5 pollution controls in the winter. The 32 
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contributions of precursors are dominated by POA and NMVOC+IVOC in January, while in 1 

July, NOX, SO2, and NH3, which are known to be precursors of secondary inorganic aerosols, 2 

make larger contributions than POA and NMVOC+IVOC. The responses of PM2.5 3 

concentrations to NOX emissions can be opposite in different seasons. Specifically, in July, 4 

NOX emission reductions always induce decrease in PM2.5 concentrations due to a NOX-5 

limited photochemical regime. In January, however, even a 80% reducion in NOX emissions 6 

(roughly the maximum technically feasible reduction ratio) could result in a net PM2.5 increase, 7 

as a result of a strong NMVOC-limited regime. To achieve a net PM2.5 reduction in January, it 8 

would be necessary to simultaneously reduce NOX emissions outside the BTH region. 9 

We further evaluate the contributions of primary inorganic PM2.5 and precursor emissions 10 

from various regions to PM2.5 concentrations (Fig. 6, Fig. S6). Here the contributions are 11 

quantified by comparing the base case with sensitivity scenarios in which emissions from a 12 

specific source are reduced by 80%, which reaches the maximum technologically feasible 13 

reduction ratios of major pollutants in most areas (Wang et al., 2014b). Obviously, the 14 

contributions of total primary inorganic PM2.5 emissions in the BTH region are dominated by 15 

local sources, which account for over 75% of the total primary inorganic PM2.5 contributions. 16 

When precursor emissions are decomposed into different regions, local sources usually also 17 

represent the largest contributors, but precursor emissions from other regions (denoted by 18 

“regional precursor emissions” hereafter) could also make significant contributions, 19 

depending on seasons and regions. The importance of regional precursor emissions relative to 20 

local ones is remarkably higher in July and over the northern part of BTH (e.g., Northern 21 

Hebei, Beijing) than in January and over the sourthern part of BTH (e.g., Sourthern Hebei). 22 

Over the BTH region, heavy pollution is frequently associated with southerly wind while 23 

strong northerly wind often blows away PM2.5 pollution (Jia et al., 2008; Zheng et al., 2015), 24 

which explains the higher importance of regional precursor emissions in the northern part of 25 

BTH. The higher regional contributions in the summer can be explained by the sourtherly 26 

monsoon and stronger vertical mixing favoring inter-regional transport of air pollutants. We 27 

also examine the contributions of emissions outside the BTH region to PM2.5 concentrations in 28 

the five target regions. The results reveal that these emissions contribute 24-33% of the 4-29 

month mean PM2.5 concentrations, among which more than 80% could be attributed to 30 

precursor emissions. Among the four months, the contribution of emissions outside BTH is 31 

considerably smaller in January (12-21%) as compared to other months (29-38%). 32 
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3.3 Response of PM2.5 chemical components to emissions of air pollutants 1 

Ambient PM2.5 is comprised of complicated chemical components with distinctly different 2 

formation pathways. To gain deeper insight into the formation mechanisms and source 3 

attribution of PM2.5, we examine the sensitivities of major PM2.5 components, including NO3
-, 4 

SO4
2-, and OA, to stepped control of individual air pollutants, as shown in Fig. 7 (January and 5 

July) and Fig. S7 (March and October). NO3
- concentrations are most sensitive to NH3 6 

emissions in all months except July, when the sensitivities of NO3
- concentrations to NH3 and 7 

NOX emissions are similar. The NO3
-
 sensitivities to NOX emissions differ significantly 8 

according to season. In most months, NO3
- concentrations are positively correlated with NOX 9 

emissions. In January, however, the sensitivities of NO3
- concentrations to NOX emissions are 10 

mostly negative and could be positive at large reduction ratios, which can be explained by a 11 

very strong NMVOC-limited photochemical regime, and abundant ice water for 12 

heterogeneous formation of HNO3 from N2O5 at cold temperatures. The sensitivites of NO3
- to 13 

both NH3 and NOX emissions show pronounced increasing trends with the increase of 14 

reduction ratio, in agreement with the strong nonlinearity in these two pollutants described in 15 

Section 3.2. NMVOC emissions make moderate positive contributions to NO3
-, with the 16 

largest and smallest contributions occuring in January and July in conjunction with NMVOC-17 

limited and NOX-limited photochemical regimes, respectively. Finally, SO2 emissions have 18 

very small influences on NO3
- concentrations. 19 

For SO4
2-, SO2 emissions represent the dominant contributor in all months. The sensitivity 20 

of SO4
2- concentrations to SO2 emissions does not change significantly with respect to 21 

reduction ratio, consistent with the results shown in Section 3.2. The contributions of NH3 22 

emissions to SO4
2- concentrations are quite small except in October, when NH3 accounts for 23 

approximately one fourth the contribution of SO2. NOX emissions affect SO4
2- concentrations 24 

by altering O3 and HOX concentrations (photochemical pathway) as well as by competing 25 

with SO2 for NH3 (thermodynamic pathway). The overall net effects of these two pathways 26 

are mostly negative, with positive effects occuring only in July at large reduction ratios. 27 

NMVOC emissions can impose small impact on SO4
2- concentrations primarily through 28 

changing O3 and HOX concentrations. 29 

The emissions of POA and NMVOC+IVOC are obviously two major contributors to OA 30 

concentrations. The relative importance of the two is strongly dependent on season. In July, 31 

POA and NMVOC+IVOC make similar contributions to OA concentrations, while POA 32 
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usually contributes more in other months. In January, the contribution of POA could account 1 

for about four times those of NMVOC+IVOC. Similar to SO4
2-, the impact of NOX emissions 2 

on OA concentrations also works through two pathways. Besides the abovementioned 3 

photochemical pathway, NOX emission reductions could lead to OA increases due to the fact 4 

that SOA yield, defined as the ratio of SOA formation to the consumption of a precursor, is 5 

generally higher at a low-NOX condition than at a high-NOX condition. As an integrated effect, 6 

the responses of OA concentrations to NOX emissions are negative in most situations. 7 

3.4 PM2.5 responses to emission reductions during heavy-pollution episodes 8 

Having shown the responses of monthly-mean PM2.5 concentrations to pollutant emissions, 9 

we are also interested in heavy-pollution episodes, in which the source contributions could be 10 

quite different from the monthly-mean results, largely due to variations in meteorological 11 

conditions. To provide more insight into the control strategies for heavy pollution, we use the 12 

ERSM technique to investigate the source contribution features during three typical heavy-13 

pollution episodes. We first select 47 heavy-pollution episodes over the BTH region during 14 

2013-2015 (Table S7). Subsequently, we employ the Hybrid Single Particle Lagrangian 15 

Integrated Trajectory (HYSPLIT) model (Stein et al., 2015) and Concentration Weighted 16 

Trajectory (CWT) method (Cheng et al., 2013) to identify the potential source regions for 17 

PM2.5 during each episode, and categorize these episodes according to their source regions. 18 

We then select a representative episode from each of three most important pollution types in 19 

which the air mass primarily originates from local areas (“Local” type), from the south 20 

(“South” type), and from the southeast (“Southeast” type). We give preference to episodes 21 

within the four-month simulation period of this study to facilitate a comparison with the 22 

monthly-mean source contribution features. For this reason, we select (1) January 5-7, 2014, 23 

(2) October 7-11, 2014, and (3) October 29-31, 2014 as representatives of the “Local”, 24 

“South”, and “Southeast” types. The selection of heavy-pollution episodes is detailed in 25 

Section 2 of the Supplementary Information. 26 

Figure 8 shows the contribution of precursor and primary inorganic PM2.5 emissions from 27 

individual regions to PM2.5 concentrations during the three heavy-pollution episodes, and Fig. 28 

9 illustrates the sensitivity of PM2.5 concentrations to stepped control of individual pollutant-29 

sector combinations. During January 5-7, 2014 (“Local” type), the contributions of local 30 

emission sources to PM2.5 concentrations far exceed those from other regions within BTH as 31 

well as from outside of BTH (Fig. 8). In contrast to the monthly mean results (Section 3.2), 32 
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the contributions of primary inorganic PM2.5 emissions are comparable to, and even larger 1 

than those of precursor emissions in the BTH region. The total contributions of primary PM2.5 2 

(including POA) account for as high as 70-80% of the contributions of all pollutants within 3 

the BTH region, which highlights the crucial importance of primary PM2.5 controls during this 4 

episode. Moreover, the controls of NMVOC, NH3, and SO2 emissions could contribute 5 

moderately to reducing PM2.5 concentrations. However, NOX emission reduction induces an 6 

increase in PM2.5 concentrations, even at an 80% reduction ratio. Therefore, effective 7 

temporary control measures for this episode should focus on the controls of local emissions, 8 

with emphasis laid on primary PM2.5. 9 

During October 7-11, 2014 (“South” type), the contributions of emissions outside BTH to 10 

PM2.5 concentrations are as large as 33% in Beijing, and 40-50% in other regions. Within the 11 

BTH region, the emissions from Southern Hebei can have similar effects to local emissions 12 

on PM2.5 concentrations in Beijing, indicating a strong long-range transport from the south. In 13 

addition, the total contributions of precursor emissions about double those of primary 14 

inorganic PM2.5 emissions. Among all precursors, PM2.5 concentrations are mainly sensitive to 15 

emissions of NH3, NMVOC+IVOC, and POA. The sensitivity of PM2.5 concentrations to NOX 16 

emissions increases dramatically with reduction ratio. Although small NOX reductions may 17 

slightly elevate PM2.5 concentrations, large NOX emission reduction (> 50%) can result in 18 

significant PM2.5 reduction. To effectively mitigate PM2.5 pollution during this episode, we 19 

should implement control measures for precursor emissions in both the BTH region 20 

(especially the southern part) and regions south of BTH. The NOX emissions, if controlled, 21 

should be reduced by at least 50% to avoid adverse side effect. 22 

For October 29-31, 2014 (“Southeast” type), PM2.5 concentrations are also significantly 23 

affected by emissions outside the BTH region. Within the BTH region, the PM2.5 24 

concentrations in Beijing and Northern Hebei are about equally affected by local emissions 25 

and emissions from Eastern Hebei and Southern Hebei, while local emissions play dominant 26 

roles in other regions. The emissions of both precursor and primary inorganic PM2.5 within the 27 

BTH region make important contributions to PM2.5 concentrations, and the relative 28 

significance of the two is dependent on region. All precursors except NOX can contribute 29 

considerably to PM2.5 reductions, and the sensitivity of PM2.5 to NH3 increase rapidly with 30 

emission ratio. NOX emissions are negatively correlated with PM2.5 concentrations in most 31 

cases. Regarding the temporary control strategy for this episode, it is preferable to implement 32 
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joint controls of primary PM2.5 and precursors both within and outside the BTH region, with 1 

stringent measures over the Eastern and Southern Hebei. 2 

From the analysis above, we conclude that the source contributions are tremendously 3 

different in these three episodes, which have been demonstrated to represent some key 4 

features of the corresponding pollution types (“Local”, “South”, and “Southeast” types). 5 

Therefore, episode-specific control strategies need to be formulated based on the source 6 

contribution features of individual pollution types. A caveat is that whether all conclusions 7 

drawn from the three episodes can be generalized to the corresponding pollution types is still 8 

uncertain. To gain a more comprehensive understanding of the source attribution and control 9 

strategies of various heavy-pollution episodes, a model simulation of more episodes and a 10 

more detailed classification appear warranted in future investigations. 11 

4 Conclusion and implications 12 

In the present study, we investigated the nonlinear response of PM2.5 and its major chemical 13 

components to emission changes of multiple pollutants from different sectors and regions 14 

over the BTH region, using the ERSM technique coupled with the CMAQ/2D-VBS model. 15 

Among individual pollutants, primary inorganic PM2.5 makes the largest contribution (24-16 

36%) to the 4-month mean PM2.5 concentrations. The contribution from primary inorganic 17 

PM2.5 is especially high in heavily polluted winter, and is dominated by the industry as well as 18 

residential and commercial sectors. The total contributions of all precursors to PM2.5 19 

concentrations range between 31% and 48%. Among the precursors, PM2.5 concentrations are 20 

primarily sensitive to the emissions of NH3, NMVOC+IVOC, and POA. With the increase of 21 

reduction ratio, the sensitivities of PM2.5 concentrations to pollutant emissions remain roughly 22 

constant for primary inorganic PM2.5 and SO2, increase substantially for NH3 and NOX, and 23 

decrease slightly for POA and NMVOC+IVOC. The contributions of primary inorganic PM2.5 24 

emissions to PM2.5 concentrations are dominated by local emission sources, which account for 25 

over 75% of the total primary inorganic PM2.5 contributions. For precursors, however, 26 

emissions from other regions could play similar roles to local emission sources in the summer 27 

and over the northern part of BTH. Different PM2.5 chemical components are associated with 28 

distinct source contribution features. The NO3
- and SO4

2- concentrations are most sensitive to 29 

emissions of NH3 and SO2, respectively. The emissions of the POA and NMVOC+IVOC are 30 

two major contributors to OA concentrations, with their relative importance depending on 31 

season. 32 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-428, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 31 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



18 

 

The source contribution features are significantly different for three typical heavy-1 

pollution episodes, which belong to three distinct pollution types. The PM2.5 concentrations in 2 

the first episode (“Local” type) are dominated by local sources and primary PM2.5 emissions, 3 

while the second episode (“South” type) is primarily affected by precursor emissions from 4 

local and southern regions. The third episode (“Southeast” type) is significantly influenced by 5 

emissions of both primary inorganic PM2.5 and precursors from multiple regions. Future 6 

investigations are needed to acquire generalized patterns for the source contributions of 7 

various heavy-pollution types. 8 

The results of the present study have important implications for PM2.5 control policies 9 

over the BTH region. First, the controls of primary PM2.5 emissions should be a priority in 10 

PM2.5 control strategies. Primary PM2.5, including primary inorganic PM2.5 and POA, 11 

contribute over half of the 4-month mean PM2.5 concentrations, which is even higher in the 12 

winter when heavy pollution frequently occurs. The industry sector and the residential and 13 

commercial sectors represent 85% of the total primariy PM2.5 emissions, and therefore should 14 

be the focus of primary PM2.5 controls. In particular, we should pay special attention to the 15 

residential and commercial sectors, which account for half of the total contribution of primary 16 

PM2.5 emissions to PM2.5 concentrations in the winter but have been frequently neglected in 17 

China’s previous control policies. Second, the control policies for NMVOC and IVOC 18 

emissions should be strengthened. The sensitivity of PM2.5 concentrations to NMVOC+IVOC 19 

is one of the largest among all precursors. In particular, the controls of NMVOC and IVOC 20 

emissions are very effective for PM2.5 reduction even at the initial control stage, as indicated 21 

by the large sensitivity at small reduction ratios. Moreover, NMVOC reduction is also crucial 22 

for the mitigation of O3 pollution considering a NMVOC-limited regime over the urban and 23 

its surrounding areas (Xing et al., 2011). Third, in the long run, NOX emissions should be 24 

substantially reduced, approaching their maximum feasible reduction levels, in both the BTH 25 

and its surrounding regions. Fourth, more stringent control policies should be enforced in 26 

Southern Hebei, which on one hand suffers from the most severe PM2.5 pollution (Wang et al., 27 

2014a), and on the other hand, significantly affects both local and regional PM2.5 28 

concentrations. Last but not least, considering the distinct source contributions in different 29 

heavy pollution episodes, episode-specific temporary control strategies should be formulated 30 

according to the source contribution feature of the specific pollution type. 31 

 32 
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Tables and figures 1 

Table 1. Description of the RSM/ERSM prediction systems developed in this study. 2 

Method Control variables Control scenarios 

Conventional 
RSM 
technique 

5 control variables: 
total emissions of NOX, SO2, NH3, 
NMVOC+IVOC, and POA 

101 control scenarios: 
1) 1 CMAQ/2D-VBS base case;  
2) 100a scenarios generated by applying 
LHS method for the 5 variables. 

ERSM 
technique 

55 control variables in total: 
11 control variables in each of the 5 regions, 
including 7 nonlinear control variables, i.e., 
1) NOX/large point sources (LPS)b 
2) NOX/other sources 
3) SO2/LPS 
4) SO2/other sources 
5) NH3/all sources 
6) NMVOC+IVOC/all sources 
7) POA/all sources 
and 4 linear control variables, i.e., 
8) Primary inorganic PM2.5/power plants 
9) Primary inorganic PM2.5/Industry 
10) Primary inorganic PM2.5/residential & 
commercial 
11) Primary inorganic PM2.5/transportation 
 

1121 control scenarios: 
1) 1 CMAQ/2D-VBS base case; 
2) 1000 scenarios, including 200a 
scenarios generated by applying LHS 
method for the nonlinear control 
variables in Beijing, 200 scenarios 
generated in the same way for Tianjin, 
200 scenarios for Northern Hebei, 200 
scenarios for Southern Hebei, and 200 
scenarios for Eastern Hebei; 
3) 100a scenarios generated by applying 
LHS method for the total emissions of 
NOX, SO2, NH3, NMVOC+IVOC, and 
POA; 
4) 20 scenarios where one primary 
inorganic PM2.5 control variable is set to 
0.25 for each scenario. 

a 100 and 200 scenarios are needed for the response surfaces for 5 and 7 variables, respectively (Xing et al., 3 

2011; Wang et al., 2011). 4 
b LPS includes power plants, iron and steel plants, and cement plants 5 

6 
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Table 2. Comparison between ERSM-predicted and CMAQ/2D-VBS-simulated PM2.5 concentrations for 1 

54 out-of-sample scenarios. 2 

Month Variable Statistical index Beijing Tianjin 
Northern 
 Hebei 

Eastern  
Hebei 

Southern  
Hebei 

Jan 
 

PM2.5 concentration 
 

R 0.998 0.998 0.995 0.997 0.997 
MNE (%) 0.52 0.55 0.64 0.67 0.60 
Maximum NE (%) 7.56 6.98 10.67 8.01 8.03 
95% percentile of NEs (%) 1.61 2.86 2.92 3.46 3.02 
NME (%) 0.44 0.46 0.57 0.53 0.53 

PM2.5 response NME (%) 3.36 3.48 4.25 4.00 3.88 

Mar 
 

PM2.5 concentration 
 

R 0.999 0.996 0.998 0.995 0.999 
MNE (%) 0.37 0.54 0.39 0.57 0.49 
Maximum NE (%) 3.75 6.58 4.30 5.04 3.22 
95% percentile of NEs (%) 1.53 3.15 2.03 4.35 2.03 
NME (%) 0.31 0.45 0.34 0.49 0.42 

PM2.5 response NME (%) 2.38 4.32 2.70 4.55 3.59 

Jul 
 

PM2.5 concentration 
 

R 0.997 0.998 0.998 0.999 0.999 
MNE (%) 0.94 0.54 0.46 0.37 0.47 
Maximum NE (%) 5.05 5.02 4.65 1.83 3.62 
95% percentile of NEs (%) 3.47 2.33 2.17 1.49 1.87 
NME (%) 0.80 0.47 0.41 0.33 0.39 

PM2.5 response NME (%) 4.97 3.71 2.80 2.58 2.78 

Oct 
 

PM2.5 concentration 
 

R 0.996 0.994 0.999 0.999 0.999 

MNE (%) 0.83 0.70 0.36 0.39 0.36 

Maximum NE (%) 8.90 11.19 3.79 3.90 2.46 

95% percentile of NEs (%) 3.04 3.50 1.44 2.10 1.64 

NME (%) 0.67 0.58 0.30 0.35 0.32 

PM2.5 response NME (%) 4.51 5.64 2.20 3.29 2.79 

  3 
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 1 

Figure 1. Double nesting domains used in CMAQ/2D-VBS simulation (left) and the definition 2 

of five target regions in the innermost domain, denoted by different colours (right). The grey 3 

lines in the right figure represent the boundaries of prefecture-level cities. 4 
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January March 

  
July October 

  
Figure 2. Comparison of PM2.5 concentrations predicted by the ERSM technique with out-of-1 

sample CMAQ/2D-VBS simulations. The dashed line is the one-to-one line indicating perfect 2 

agreement. 3 

10

30

50

70

90

110

130

150

10 30 50 70 90 110 130 150

E
R

S
M

-p
re

ci
ct

ed
 P

M
2.

5
co

n
c.

/(
μ

g
/m

3 )

CMAQ-simulated PM2.5 conc./(μg/m3)

Beijing
Tianjin
N Hebei
E Hebei
S Hebei

20

30

40

50

60

70

80

90

100

110

20 30 40 50 60 70 80 90 100 110
E

R
S

M
-p

re
ci

ct
e

d
 P

M
2.

5
c

o
n

c
./

(μ
g

/m
3 )

CMAQ-simulated PM2.5 conc./(μg/m3)

Beijing
Tianjin
N Hebei
E Hebei
S Hebei

20

30

40

50

60

70

80

20 30 40 50 60 70 80

E
R

S
M

-p
re

c
ic

te
d

 P
M

2.
5

co
n

c.
/(

μ
g

/m
3 )

CMAQ-simulated PM2.5 conc./(μg/m3)

Beijing
Tianjin
N Hebei
E Hebei
S Hebei

30

50

70

90

110

130

30 50 70 90 110 130

E
R

S
M

-p
re

c
ic

te
d

 P
M

2.
5

co
n

c.
/(

μ
g

/m
3 )

CMAQ-simulated PM2.5 conc./(μg/m3)

Beijing
Tianjin
N Hebei
E Hebei
S Hebei

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-428, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 31 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



28
 

 

 
Ja

nu
ar

y 
M

ar
ch

 
 

C
on

ve
nt

io
na

l R
SM

 
E

R
SM

 
C

on
ve

nt
io

na
l R

SM
 

E
R

S
M

 

N
O

X
 

vs
 

N
H

3 

 
 

 
 

S
O

2 
 

vs
 

N
H

3 

 
 

 
 

V
O

C
+

IV
O

C
 

vs
 

P
O

A
 

 
 

 
 

Fi
gu

re
 3

. 
C

om
pa

ri
so

n 
of

 t
he

 2
-D

 i
so

pl
et

hs
 o

f 
PM

2.
5 

co
nc

en
tr

at
io

ns
 i

n 
B

ei
ji

ng
 i

n 
re

sp
on

se
 t

o 
th

e 
si

m
ul

ta
ne

ou
s 

ch
an

ge
s 

of
 p

re
cu

rs
or

 
1 

em
is

si
on

s 
in

 a
ll 

fi
ve

 r
eg

io
ns

 d
er

iv
ed

 f
ro

m
 t

he
 c

on
ve

nt
io

na
l 

R
S

M
 t

ec
hn

iq
ue

 a
nd

 t
he

 E
R

S
M

 t
ec

hn
iq

ue
. 

T
he

 X
- 

an
d 

Y
-a

xi
s 

re
pr

es
en

t 
th

e 
2 

em
is

si
on

 r
at

io
, 

de
fi

ne
d 

as
 t

he
 r

at
io

s 
of

 t
he

 c
ha

ng
ed

 e
m

is
si

on
s 

to
 t

he
 e

m
is

si
on

s 
in

 t
he

 b
as

e 
ca

se
. 

T
he

 c
ol

ou
r 

co
nt

ou
rs

 r
ep

re
se

nt
 P

M
2.

5 
3 

co
nc

en
tr

at
io

ns
 (

un
it

: 
g 

m
-3

).
 

4 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-428, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 31 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



29
 

  
1 

 
Ju

ly
 

O
ct

ob
er

 
 

C
on

ve
nt

io
na

l R
SM

 
E

R
SM

 
C

on
ve

nt
io

na
l R

SM
 

E
R

S
M

 

N
O

X
 

vs
 

N
H

3 

 
 

 
 

S
O

2 
 

vs
 

N
H

3 

 
 

 
 

V
O

C
+

IV
O

C
 

vs
 

P
O

A
 

 
 

 
 

Fi
gu

re
 3

. C
on

ti
nu

ed
.

2 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-428, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 31 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



 30

 1 
Figure 4. Sensitivity of 4-month mean PM2.5 concentrations to stepped control of individual 2 

air pollutants (left) and individual pollutant-sector combinations (right). The X-axis shows the 3 

reduction ratio (= 1 – emission ratio). The Y-axis shows PM2.5 sensitivity, which is defined as 4 

the change ratio of concentration divided by the reduction ratio of emissions. The coloured 5 

bars denote the PM2.5 sensitivities when a particular emission source is controlled while the 6 

others stay the same as the base case; the black dotted line denotes the PM2.5 sensitivity when 7 

all emission sources are controlled simultaneously. The red stars represent PM2.5 8 

concentrations in the base case. 9 
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 1 
Figure 5. Sensitivity of monthly mean PM2.5 concentrations to stepped control of individual 2 

air pollutants from individual sectors in January, March, July, and October. The meanings of 3 

X-axis, Y-axis, coloured bars, black dotted lines, and red stars are the same as Fig. 4. 4 
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 2 
Figure 6. Contributions of precursor (NOX, SO2, NH3, NMVOC, IVOC, and POA) and 3 

primary inorganic PM2.5 emissions from individual regions to PM2.5 concentrations. The 4 

contributions are quantified by comparing the base case with sensitivity scenarios in which 5 

emissions from a specific source are reduced by 80%. This figure illustrates contributions to 6 

4-month mean PM2.5 concentrations and monthly mean PM2.5 concentrations in January and 7 

July. The results for March and October are given in Fig. S6.   8 
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Figure 7. Sensitivity of monthly mean NO3

-, SO4
2-, and OA concentrations to stepped control 1 

of individual air pollutants in January and July. The meanings of X-axis, Y-axis, coloured 2 

bars, black dotted lines, and red stars are the same as Fig. 4 but for NO3
-/SO4

2-/OA. The 3 

results for March and October are given in Fig. S7. 4 
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Figure 8. Contribution of precursor (NOX, SO2, NH3, NMVOC, IVOC, and POA) and primary 3 

inorganic PM2.5 emissions from individual regions to PM2.5 concentrations during three 4 

typical heavy-pollution episodes. 5 
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Figure 9. Sensitivity of PM2.5 concentrations to stepped control of individual air pollutants 2 

from individual sectors during three heavy-pollution episodes. The meanings of X-axis, Y-3 

axis, coloured bars, and black dotted lines are the same as Fig. 4. 4 
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