1 Supplementary Information for

- 2 A modeling study of the nonlinear response of fine
- 3 particles to air pollutant emissions in the Beijing-Tianjin-
- 4 Hebei region
- 5
- 6 Bin Zhao^{1,2,3}, Wenjing Wu^{1,2}, Shuxiao Wang^{1,2}, Jia Xing^{1,2}, Xing Chang^{1,2}, Kuo-
- 7 Nan Liou³, Jonathan H. Jiang⁴, Yu Gu³, Carey Jang⁵, Joshua S. Fu⁶, Yun Zhu⁷,
- 8 Jiandong Wang^{1,2}, Jiming Hao^{1,2}
- 9 [1] School of Environment, and State Key Joint Laboratory of Environment Simulation and
- 10 Pollution Control, Tsinghua University, Beijing 100084, China
- 11 [2] State Environmental Protection Key Laboratory of Sources and Control of Air Pollution
- 12 Complex, Beijing 100084, China
- 13 [3] Joint Institute for Regional Earth System Science and Engineering and Department of
- 14 Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA
- 15 [4] Jet propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- 16 [5] U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
- 17 [6] Department of Civil and Environmental Engineering, University of Tennessee, Knoxville,
- 18 TN 37996, United States
- 19 [7] School of Environmental Science and Engineering, South China University of
- 20 Technology, Guangzhou 510006, China
- 21
- 22 Correspondence to: Shuxiao Wang (shxwang@tsinghua.edu.cn)
- 23

24 **1** Evaluation of CMAQ/2D-VBS simulations

The meteorological prediction lays the foundation for air quality simulation. In this study, the meteorological parameters simulated by WRFv3.7 are compared with the observational data obtained from the National Climatic Data Center (NCDC), where hourly or 3-h observations are available for 28 sites distributed within the inner domain. Due to the limited observational data available, the statistical evaluation was restricted to the temperature at 2 m, wind speed and wind direction at 10 m, and humidity at 2 m. The statistical indices used include the bias, gross error (GE), root mean square error (RMSE), systematic RMSE (Sys RMSE),
 unsystematic RMSE (Unsys RMSE), and index of agreement (IOA). A detailed explanation
 of these indices can be found in Baker (2004).

Table S3 lists the model performance statistics and the benchmarks suggested by Emery et 4 5 al. (2001). These benchmark values were derived based on performance statistics of the Fifth-6 Generation NCAR/Penn State Mesoscale Model (MM5) from a number of studies over the 7 U.S. domain (mostly at grid resolution of 12km or 4km), and have been widely accepted in 8 many regional air quality modeling studies. We expect these standards should also be 9 applicable to our simulation domain. For wind speed, wind direction, and temperature, all 10 statistical indices are within the benchmark range. For humidity, the GE for the July 11 simulation slightly exceeds this benchmark (2.2 g/kg vs 2.0 g/kg) which might be due to the 12 high humidity in summer, while all other statistical indices are within the benchmarks, 13 indicating an acceptable performance. In summary, these statistics indicate an overall decent 14 performance of meteorological predictions.

15 During the simulation period, the Ministry of Environmental Protection of China (MEP) 16 has been publishing hourly PM2.5 concentrations for 138 state-controlled observatioanl sites in 17 the inner domain on its official website (http://datacenter.mep.gov.cn). We compare simulated 18 monthly mean $\text{PM}_{2.5}$ concentrations with these observations, and employ a number of 19 statistical indices including mean observation, mean simulation, normalized mean bias 20 (NMB), normalized mean error (NME), mean fractional bias (MFB), and mean fractional 21 error (MFE) to give a quantitative assessment of the model performance, as shown in Table 22 S4. The definitions of these indices have been documented in previous papers (Wang et al., 2010; Boylan and Russell, 2006). It can be seen that the $PM_{2.5}$ concentrations are slightly 23 24 underestimated in all months, with NMBs ranging between -24.8% and -2.6%, probably 25 attributable to the exclusion of fugitive dust emissions. Boylan and Russell (2006) proposed 26 that a model performance goal (the level of accuracy that is considered to be close to the best 27 a model can be expected to achieve) was met if MFB $\leq \pm 30\%$ and MFE $\leq 50\%$, and the model 28 performance criteria (the level of accuracy that is considered to be acceptable for modeling 29 applications) was met if MFB $\leq \pm 60\%$ and MFE $\leq 75\%$. Table S4 shows that all the statistical 30 indices meet the model performance goal, indicating a good modeling performance.

Having compared the monthly average $PM_{2.5}$ concentrations, we continue to evaluate simulated temporal variation of $PM_{2.5}$ concentrations. As described in Section 2.2 in the main text, we define 5 target regions for the development of the ERSM prediction system, i.e., 1 Beijing, Tianjin, Northern Hebei, Eastern Hebei, and Southern Hebei. We select one 2 representative site in each target region, and compared the hourly PM_{2.5} simulations with observations, as shown in Figs. S1-S5. The figures show that the modeling system can capture 3 4 the temporal variation of PM_{2.5} concentrations fairly well. The correlation coefficients range 5 between 0.49 and 0.83 in January, March, and October, indicating good model performance. 6 The correlation coeffects are relatively lower in July (0.21-0.49), in association with the 7 relatively large discrepancies in meteorological simulations. Despite the lower correlation 8 coefficients in July, the absolute errors are still acceptable considering the smaller $PM_{2.5}$ 9 concentrations during summer.

10 Furthermore, we compare the simulated concentrations of major PM_{2.5} chemial 11 components with observational data at 7 sites in the inner domain (unpublished data of 12 Tsinghua University). The model performance statistics are summarized in Table S5. NO₃⁻ concentrations are overestimated (NMB = 16.3%), while SO_4^{2-} concentrations are 13 underestimated (NMB = -47.5%). There is a 25.1% underestimation in NH_4^+ concentrations. 14 The overestimation of NO_3^- and underestimation for SO_4^{2-} are consistent with previous studies 15 over East Asia, probably attributed to the lack of some chemical formation pathways in the 16 17 modeling system, such as SO₂ heterogeneous reactions on the dust surface and the oxidation 18 of SO₂ by NO₂ in aerosol water (Wang et al., 2013; Fu et al., 2016; Cheng et al., 2016). 19 Elemental carbon (EC) concentrations are remarkably overestimated by 86.6%. EC 20 concentrations are strongly affected by local emissions, while the spatial distribution of our 21 emission inventory may not sufficiently capture local emission sources surrounding 22 observational sites, leading to model-observation discrepancy. The overestimation may also 23 be attributable to the absence of EC aging in CMAQ/2D-VBS, which leads to reduced 24 fraction of hydrophilic EC and thus reduced wet depsition. Finally, concentrations of organic 25 carbon (OC) are underestimated by 36.8%, although the CMAQ/2D-VBS mdoel has been 26 demonstrated to significantly reduce the underestimation in OC as compared to the default 27 CMAQ model (Zhao et al., 2016). Future studies are needed to further improve the OC 28 simulation results. Similar to the evaluation of $PM_{2.5}$ simulations, we also adopt the 29 benchmarks proposed by Boylan and Russell (2006). Since Boylan and Russell (2006) 30 suggested that less abundant species would have less stringent performance goals and criteria than $PM_{10}/PM_{2.5}$, we just adopt the model performance criteria (MFB $\leq \pm 60\%$ and MFE \leq 31 32 75%) described above. Table S5 shows that all the statistical indices meet the model 33 performance criteria, indicating an overall decent model performance.

1 2 Selection of heavy-pollution episodes

2 We collect hourly PM2.5 concentrations at 138 state-controlled monitoring sites over the 3 Beijing-Tianjin-Hebei (BTH) region during 2013-2015 from the Ministry of Environmental 4 Protection (MEP) data center (http://datacenter.mep.gov.cn/). The daily-average PM_{2.5} 5 concentrations for each prefecture-level city are subsequently calculated. For any given day, it 6 is regarded as a regional heavy-pollution day if over 75% prefecture-level cities have dailyaverage PM_{2.5} concentrations larger than 75 μ g/m³. If three or more continuous days are 7 8 identified as heavy-pollution days, these days are treated as a regional heavy-pollution 9 episode. In total, 47 regional heavy-pollution episodes are selected.

10 We subsequently employ the HYSPLIT model (Hybrid Single Particle Lagrangian 11 Integrated Trajectory Model) to identify potential source regions of the heavy-pollution 12 episodes. The HYSPLIT model provides the best-guess transport trajectory for an air parcel to 13 arrive at a target location, based on meteorological data. It has been widely used in 14 atmospheric studies including those conducted in the BTH region (Zhang et al., 2013; Jin et 15 al., 2016; Yao et al., 2016). Since Beijing is located in the central part of the BTH region, we 16 select Beijing urban center (39.95N, 116.43E) as the target location for the calculation of 17 transport trajectory. It is noted, however, the calculated trajectories generally reflect the large-18 scale meteorological patterns which affects the air pollutant transport over the entire BTH 19 region rather than just Beijing; this can be confirmed from the source attribution results 20 during three typical episodes (Section 3.4 of the main text). For each heavy-pollution day and 21 each of two heights (500 m and 1000 m), the trajectories are simulated at four time points, i.e., 22 0:00, 6:00, 12:00, and 18:00. Each trajectory is calculated for the last 72 hours at 1-h time 23 resolution. The model is driven by meteorological fields obtained from NCEP GDAS (Global 24 Data Assimilation System) at $1^{\circ} \times 1^{\circ}$ resolution. While the HYSPLIT model can only 25 calculate the transport trajectories, the Concentration Weighted Trajectory (CWT) method, an 26 improved back tarjactory method, enables a quantitative estimation of the contribution from 27 various source regions (Wang et al., 2015). On the basis of the HYSPLIT simulation results, 28 we further use the CWT method to estimate the contribution of each source region to $PM_{2.5}$ 29 concentrations at the target location.

Table S7 summarizes the potential source regions of the 47 heavy-pollution episodes. It is clear that the source regions with the highest occurrence frequencies are South (74.5%), Local (57.4%), Northwest (29.8%), Southeast (10.6%), West (8.5%), and North (4.3%). In this study, we selected (1) January 5-7, 2014, (2) October 7-11, 2014, and (3) October 29-31,

- 2 2014 as representatives for the Local, South, and Southeast types. For the heavy-pollution 2 episodes with major contribution from the Northwest, our back trajactory analysis indicate 3 that the air mass usually origniates from some desert regions. We do not include this type in 4 our analysis because (1) such dust episodes dominated by coarse particles are different from 5 the haze episodes this paper focuses on; (2) the ERSM prediction system developed in this 6 study mainly covers the BTH region, and the long-range transport from the northwestern 7 provinces is beyond the focus of this study.
- 8
- 9

10 References

- Baker, K.: Meteorological Modeling Protocol for Application to PM2.5/Haze/Ozone
 Modeling Projects[R/OL]:
 <u>http://www.epa.state.oh.us/portals/27/SIP/Attain/D8_Meteorological_Modeling_Protoc</u>
 ol.pdf, access: 2015-03-01, 2004.
- Boylan, J. W., and Russell, A. G.: PM and light extinction model performance metrics, goals,
 and criteria for three-dimensional air quality models, Atmos Environ, 40, 4946-4959,
 DOI 10.1016/j.atmosenv.2005.09.087, 2006.
- Cheng, Y. F., Zheng, G. J., Wei, C., Mu, Q., Zheng, B., Wang, Z. B., Gao, M., Zhang, Q., He,
 K. B., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol
 water as a source of sulfate during haze events in China, Science Advances, 2, e1601530,
 DOI: 10.1126/sciadv.1601530, 2016.
- Emery, C., Tai, E., and Yarwood, G.: Enhanced meteorological modeling and performance
 evaluation for two texas episodes. Report to the Texas Natural Resources Conservation
 Commission:
- 25http://www.tceq.state.tx.us/assets/public/implementation/air/am/contracts/reports/mm/E26nhancedMetModelingAndPerformanceEvaluation.pdf, access: 2015-03-01, 2001.
- Fu, X., Wang, S. X., Chang, X., Cai, S. Y., Xing, J., and Hao, J. M.: Modeling analysis of
 secondary inorganic aerosols over China: pollution characteristics, and meteorological
 and dust impacts, Sci Rep-Uk, 6, 10.1038/srep35992, 2016.
- Jin, X. C., Xiao, C. J., Li, J., Huang, D. H., Yuan, G. J., Yao, Y. G., Wang, X. H., Hua, L.,
 Zhang, G. Y., Cao, L., Wang, P. S., and Ni, B. F.: Source apportionment of PM2.5 in
 Beijing using positive matrix factorization, Journal of Radioanalytical and Nuclear
 Chemistry, 307, 2147-2154, 10.1007/s10967-015-4544-0, 2016.
- 34 Wang, L. T., Jang, C., Zhang, Y., Wang, K., Zhang, Q. A., Streets, D., Fu, J., Lei, Y., 35 Schreifels, J., He, K. B., Hao, J. M., Lam, Y. F., Lin, J., Meskhidze, N., Voorhees, S., 36 Evarts, D., and Phillips, S.: Assessment of air quality benefits from national air pollution 37 control policies in China. Part II: Evaluation of air quality predictions and air quality 38 benefits assessment, Atmos Environ, 44. 3449-3457, DOI 39 10.1016/j.atmosenv.2010.05.058, 2010.
- Wang, Y., Zhang, Q. Q., He, K., Zhang, Q., and Chai, L.: Sulfate-nitrate-ammonium aerosols
 over China: response to 2000-2015 emission changes of sulfur dioxide, nitrogen oxides,
 and ammonia, Atmos Chem Phys, 13, 2635-2652, DOI 10.5194/acp-13-2635-2013,
 2013.

- Wang, Y., Wang, G. C., and Chen, L.: Transportation source and transportation process of
 PM10 and PM2.5 in seasons of Jinan, Environ Sci Technol, 38, 175-182, 2015.
- Yao, L., Yang, L. X., Yuan, Q., Yan, C., Dong, C., Meng, C. P., Sui, X., Yang, F., Lu, Y. L.,
 and Wang, W. X.: Sources apportionment of PM2.5 in a background site in the North
 China Plain, Sci Total Environ, 541, 590-598, 10.1016/j.scitotenv.2015.09.123, 2016.
- Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z.,
 Zhao, Y., and Shen, Z.: Chemical characterization and source apportionment of PM2.5
 in Beijing: seasonal perspective, Atmos Chem Phys, 13, 7053-7074, 10.5194/acp-137053-2013, 2013.
- Zhao, B., Wang, S. X., Donahue, N. M., Jathar, S. H., Huang, X. F., Wu, W. J., Hao, J. M.,
 and Robinson, A. L.: Quantifying the effect of organic aerosol aging and intermediatevolatility emissions on regional-scale aerosol pollution in China, Sci Rep-Uk, 6,
 10.1038/srep28815, 2016.
- 14
- 15

1 Tables and figures

- 2 Table S1. Emissions of major air pollutants in prefecture-level cities over the BTH region in
- 3 2014 (kt yr⁻¹).

	NOx	SO_2	NMVOC	NH ₃	PM_{10}	PM _{2.5}	BC	OC
Beijing	343.6	166.0	357.7	52.2	79.4	55.5	13.3	11.6
Tianjin	344.6	240.3	338.0	45.4	148.2	111.6	16.3	25.8
Shijiazhuang	255.4	169.8	239.7	85.2	198.5	146.1	23.9	33.5
Chengde	76.5	39.6	56.8	32.7	47.4	35.7	6.1	9.7
Zhangjiakou	96.8	46.5	57.2	33.8	52.0	39.5	6.9	11.4
Qinhuangdao	66.7	33.9	52.2	21.8	39.3	29.7	5.3	8.1
Tangshan	247.9	125.8	186.0	66.1	129.3	96.2	15.3	24.1
Langfang	80.5	60.8	104.7	33.8	84.9	62.7	10.5	14.4
Baoding	165.0	107.1	201.5	87.0	151.4	115.4	20.4	32.3
Cangzhou	144.1	102.6	170.0	66.0	144.7	107.0	17.3	24.6
Hengshui	78.4	56.3	93.1	49.1	81.3	60.8	9.8	14.9
Xingtai	142.4	91.6	114.6	58.9	98.7	74.9	12.8	20.9
Handan	198.4	102.2	148.9	80.0	112.3	86.0	14.9	25.5
Total	2240.3	1342.4	2120.4	712.0	1367.5	1021.2	172.7	256.9

	NOx	SO ₂	NMVOC	NH ₃	PM ₁₀	PM _{2.5}	BC	OC
Beijing	344	166	358	52	79	55	13	12
Tianjin	345	240	338	45	148	112	16	26
Hebei	1552	936	1425	627	1140	854	143	219
Shanxi	934	979	692	197	789	578	127	146
Inner Mongolia	1146	1088	665	366	656	492	112	140
Liaoning	1155	885	1099	382	641	477	68	130
Jilin	656	369	502	272	479	360	52	105
Heilongjiang	755	301	655	346	578	456	78	172
Shanghai	353	528	725	41	141	96	10	9
Jiangsu	1599	983	2085	462	977	707	80	168
Zhejiang	1110	1138	1675	173	443	299	32	50
Anhui	1176	591	1081	417	863	651	91	221
Fujian	799	503	711	167	341	240	28	51
Jiangxi	623	397	499	239	474	312	38	70
Shandong	2717	2334	2529	790	1530	1120	164	258
Henan	1932	1036	1480	954	1379	1004	130	232
Hubei	1234	1201	982	435	877	628	110	171
Hunan	952	839	828	483	792	562	91	151
Guangdong	1685	1032	1683	365	686	478	56	115
Guangxi	736	743	728	352	660	494	46	123
Hainan	139	96	146	59	64	46	4	11
Chongqing	551	998	418	175	352	253	38	71
Sichuan	1172	1661	1282	786	876	671	98	254
Guizhou	676	1062	380	249	565	431	87	137
Yunnan	681	483	449	337	457	339	54	94
Tibet	27	6	16	98	12	9	1	3
Shaanxi	749	748	585	211	527	396	79	127
Gansu	405	286	286	165	307	235	36	69
Qinghai	125	52	61	86	82	62	8	12
Ningxia	210	215	100	40	135	96	14	16
Xinjiang	886	861	405	248	400	296	47	78
Total	27422	22754	24867	9621	17450	12812	1953	3441

1 Table S2. Provincial emissions of major air pollutants in China in 20	014 (kt yr ⁻¹).
---	-----------------------------

Variable	Index	Unit	Jan	Mar	Jul	Oct	Benchmark
	Mean OBS	m/s	2.68	2.95	2.53	2.40	
	Mean SIM	m/s	2.81	3.06	2.66	2.63	
	Bias	m/s	0.13	0.11	0.13	0.24	<u>≤</u> ±0.5
Wind Succh	GE	m/s	1.23	1.25	1.19	1.11	≤2
wind Speed	RMSE	m/s	1.86	1.76	1.6	1.58	≤2
	Sys RMSE	m/s	1.4	1.12	1.13	1.11	
	Unsys RMSE	m/s	1.2	1.33	1.11	1.10	
	IOA		0.67	0.73	0.65	0.71	≥0.6
	Mean OBS	0	230.79	239.51	205.37	195.17	
Wind Direction	Mean SIM	0	249.28	220	201.04	195.10	
	Bias	0	2.99	0.49	-3.45	2.76	≤±10
	Mean OBS	K	270.3	280.64	298.54	285.70	
	Mean SIM	Κ	270.03	280.33	298.54	285.92	
	Bias	Κ	-0.27	-0.3	0	0.21	≤±0.5
Temperature	GE	Κ	1.41	1.66	1.75	1.34	≤2
	RMSE	Κ	1.86	2.28	2.38	1.81	
	Sys RMSE	Κ	0.43	0.52	0.51	0.47	
	Unsys RMSE	Κ	1.79	2.21	2.31	1.73	
	IOA		0.97	0.97	0.94	0.97	≥ 0.8
	Mean OBS	g/kg	1.54	2.83	14	6.02	
Humidity	Mean SIM	g/kg	1.66	2.82	13.01	5.49	
	Bias	g/kg	0.12	-0.01	-0.99	-0.53	<u>≤</u> ±1
	GE	g/kg	0.32	0.58	2.2	1.01	≤2
	RMSE	g/kg	0.47	0.81	2.8	1.38	
	Sys RMSE	g/kg	0.23	0.44	1.76	0.92	
	Unsys RMSE	g/kg	0.4	0.67	2.12	0.96	
	IOA		0.86	0.85	0.76	0.81	≥0.6

1 Table S3. Performance statistics for meteorological variables.

1 Table S4. Statistical results for the comparison of monthly PM_{2.5} concentrations simulated by

	Jan	Mar	Jul	Oct	Model performance goal ^a	Model performance criteria ^a
NMB (%)	-24.8	-21.3	-4.2	-2.6	-	-
NME (%)	27.7	24.8	19.3	25.0	-	-
MFB (%)	-29.4	-24.1	-7.8	-1.9	$\leq \pm 30$	$\leq \pm 60$
MFE (%)	33.4	28.7	22.7	24.8	≤50	≪75
R	0.64	0.73	0.64	0.58	-	-

2 CMAQ/2D-VBS with surface observations.

^a The model performance goals and model performance criteria are adopted from Boylan and Russell
 (2006).

4 5

6 Table S5. Statistical results for the comparison of PM_{2.5} chemical component concentrations

	NO ₃ -	SO4 ²⁻	$\mathrm{NH_4}^+$	OC	EC	Model performance criteria ^a
NMB (%)	16.3	-47.5	-25.1	-36.8	86.6	-
NME (%)	67.7	60.6	56.9	52.8	98.6	-
MFB (%)	-2.6	-51.3	-37.7	-48.4	57.2	$\leq \pm 60$
MFE (%)	65.6	76.4	74.2	71.2	67.3	≤75
R	0.681	0.637	0.638	0.412	0.389	-

7 simulated by CMAQ/2D-VBS with observations at 7 surface sites over the BTH region.

8 ^a The model performance criteria are adopted from Boylan and Russell (2006).

10 Table S6. Description of out-of-sample scenarios

Case number	Description
1-6	Control variables of precursors in Beijing change but the other variables stay the same as
	the base case. For case 1-3, the emission ratios (defined as the ratios of the changed
	emissions to the emissions in the base case) of all control variables of precursors in
	Beijing are set to 0.1, 0.5, and 1.15, respectively. Case 4-6 are generated randomly by
	applying LHS method for the control variables of precursors in Beijing.
7-12	The same as case 1-6 but for Tianjin.
13-18	The same as case 1-6 but for Northern Hebei.
19-24	The same as case 1-6 but for Eastern Hebei.
25-30	The same as case 1-6 but for Southern Hebei.
31-40	Control variables of precursors change randomly (with LHS method applied) but those of
	primary inorganic PM _{2.5} stay the same as the base case.
41-44	Control variables of primary inorganic PM2.5 change randomly (with LHS method
	applied) but those of precursors stay the same as the base case.
45-54	These cases are generated randomly by applying LHS method for all control variables.

⁹

- 1 Table S7. Identification of potential source regions for 47 heavy-pollution episodes during
- 2 2013-2015 over the BTH region.

NO.	Year	Period	Potential source region
1	2013	January 18-23	Local + Northwest (long distance)
2		January 26-31	Local + South (short distance) + Southeast (short distance)
3		February 23-28	South (short distance) + Northwest (long distance)
4		March 5-8	South (short distance)
5		March 15-18	Local + South (short distance) + Northwest (long distance)
6		April 2-4	Local + South (medium distance) + Northwest (medium distance)
7		May 6-8	South (short distance) + South (medium distance)
8		July 18-20	South (short distance)
9		September 17-19	Local
		September 27 to	
10		October 1	South (short distance)
11		October 4-7	South (short distance)
		October 30 to	
12		November 2	Local + South (short distance) + South (medium distance)
13		November 21-24	Local + Northwest (short distance) + Northwest (medium
			distance)
14		December 1-4	Local + Northwest (short distance) + North (short distance)
15		December 6-8	Local + South (short distance) + Southeast (short distance)
16		December 21-25	Local + South (short distance)
17	2014	January 5-7	Local + South (short distance)
18		January 13-19	Local + South (short distance)
19		January 22-24	South (short distance)
20		February 11-16	Local + South (short distance) + South (medium distance) + Southeast (short distance)
21		February 20-26	South (short distance) + Southeast (short distance)
22		March 8-11	Local + South (short distance)
23		March 23-28	South (medium distance)
24		March 31 to April 2	$L_{ocal} + South (short distance) + South (medium distance)$
25		April 7-9	South (medium distance)
26		April 12-14	South (short distance) + South (medium distance)
20		April 23-25	South (short distance) + South (medium distance)
27		ripin 25 25	South (short distance) + South (medium distance) + South (long
28		October 7-11	distance)
29		October 17-20	South (short distance) + South (medium distance) + South (long distance)
30		October 23-25	Local + South (short distance) + South (medium distance) +
31		October 29-31	Northwest (long distance) South (short distance) + Southeast (short distance)
22		NI 1 10 01	Local + South (short distance) + South (medium distance) +
32		November 19-21	Northwest (long distance)
33		December 26-29	Local + South (medium distance) + West (medium distance) + Northwest (long distance)
34	2015	January 3-5	Local + West (long distance)

35	January 8-10	Local + Northwest (long distance)
36	January 14-16	South (medium distance) + South (long distance)
37	January 22-26	Local + West (long distance)
38	February 19-21	North (medium distance), South (long distance)
39	March 6-8	Local + West (long distance)
40	March 15-17	Local + Northwest (long distance)
41	April 9-11	Local
42	May 26-28	Local + South (medium distance)
43	October 14-17	South (medium distance) + Northwest (long distance)
44	November 10-15	Local + South (medium distance)
15	November 27 to	South (modium distance) + Northwest (long distance)
43	December 1	South (medium distance) + Northwest (long distance)
46	December 7-10	Local
47	December 21-26	Northwest (long distance)

Figure S1. Comparison of simulated and observed $PM_{2.5}$ concentrations at the Dongsi site in Beijing in (1) January, (2) March, (3) July, and (4) October. In July, the simulations and observations are for a nearby Langfang site because the observations at the Dongsi site are missing.

Figure S2. Comparison of simulated and observed PM_{2.5} concentrations at the Tuanbowa site
in Tianjin in (1) January, (2) March, (3) July, and (4) October.

Figure S3. Comparison of simulated and observed PM_{2.5} concentrations at the Chengde site in
Northern Hebei in (1) January, (2) March, (3) July, and (4) October.

Figure S4. Comparison of simulated and observed PM_{2.5} concentrations at the Cangzhou site
in Eastern Hebei in (1) January, (2) March, (3) July, and (4) October.

Figure S5. Comparison of simulated and observed PM_{2.5} concentrations at the Baoding site in
Southern Hebei in (1) January, (2) March, (3) July, and (4) October.

Figure S7. Sensitivity of monthly mean NO_3^- , SO_4^{2-} , and OA concentrations to stepped control of individual air pollutants in March and October. The meanings of X-axis, Y-axis, coloured bars, black dotted lines, and red stars are the same as Fig. 4 but for $NO_3^-/SO_4^{2-}/OA$.

4 The results for January and July are given in Fig. 7.