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1 Evaluation of CMAQ/2D-VBS simulations 24 

The meteorological prediction lays the foundation for air quality simulation. In this study, the 25 

meteorological parameters simulated by WRFv3.7 are compared with the observational data 26 

obtained from the National Climatic Data Center (NCDC), where hourly or 3-h observations 27 

are available for 28 sites distributed within the inner domain. Due to the limited observational 28 

data available, the statistical evaluation was restricted to the temperature at 2 m, wind speed 29 

and wind direction at 10 m, and humidity at 2 m. The statistical indices used include the bias, 30 
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gross error (GE), root mean square error (RMSE), systematic RMSE (Sys RMSE), 1 

unsystematic RMSE (Unsys RMSE), and index of agreement (IOA). A detailed explanation 2 

of these indices can be found in Baker (2004). 3 

Table S3 lists the model performance statistics and the benchmarks suggested by Emery et 4 

al. (2001). These benchmark values were derived based on performance statistics of the Fifth-5 

Generation NCAR/Penn State Mesoscale Model (MM5) from a number of studies over the 6 

U.S. domain (mostly at grid resolution of 12km or 4km), and have been widely accepted in 7 

many regional air quality modeling studies. We expect these standards should also be 8 

applicable to our simulation domain. For wind speed, wind direction, and temperature, all 9 

statistical indices are within the benchmark range. For humidity, the GE for the July 10 

simulation slightly exceeds this benchmark (2.2 g/kg vs 2.0 g/kg) which might be due to the 11 

high humidity in summer, while all other statistical indices are within the benchmarks, 12 

indicating an acceptable performance. In summary, these statistics indicate an overall decent 13 

performance of meteorological predictions. 14 

During the simulation period, the Ministry of Environmental Protection of China (MEP) 15 

has been publishing hourly PM2.5 concentrations for 138 state-controlled observatioanl sites in 16 

the inner domain on its official website (http://datacenter.mep.gov.cn). We compare simulated 17 

monthly mean PM2.5 concentrations with these observations, and employ a number of 18 

statistical indices including mean observation, mean simulation, normalized mean bias 19 

(NMB), normalized mean error (NME), mean fractional bias (MFB), and mean fractional 20 

error (MFE) to give a quantitative assessment of the model performance, as shown in Table 21 

S4. The definitions of these indices have been documented in previous papers (Wang et al., 22 

2010; Boylan and Russell, 2006). It can be seen that the PM2.5 concentrations are slightly 23 

underestimated in all months, with NMBs ranging between -24.8% and -2.6%, probably 24 

attributable to the exclusion of fugitive dust emissions. Boylan and Russell (2006) proposed 25 

that a model performance goal (the level of accuracy that is considered to be close to the best 26 

a model can be expected to achieve) was met if MFB ≤ ±30% and MFE ≤ 50%, and the model 27 

performance criteria (the level of accuracy that is considered to be acceptable for modeling 28 

applications) was met if MFB ≤ ±60% and MFE ≤ 75%. Table S4 shows that all the statistical 29 

indices meet the model performance goal, indicating a good modeling performance. 30 

Having compared the monthly average PM2.5 concentrations, we continue to evaluate 31 

simulated temporal variation of PM2.5 concentrations. As described in Section 2.2 in the main 32 

text, we define 5 target regions for the development of the ERSM prediction system, i.e., 33 
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Beijing, Tianjin, Northern Hebei, Eastern Hebei, and Southern Hebei. We select one 1 

representative site in each target region, and compared the hourly PM2.5 simulations with 2 

observations, as shown in Figs. S1-S5. The figures show that the modeling system can capture 3 

the temporal variation of PM2.5 concentrations fairly well. The correlation coefficients range 4 

between 0.49 and 0.83 in January, March, and October, indicating good model performance. 5 

The correlation coeffects are relatively lower in July (0.21-0.49), in association with the 6 

relatively large discrepancies in meteorological simulations. Despite the lower correlation 7 

coefficients in July, the absolute errors are still acceptable considering the smaller PM2.5 8 

concentrations during summer. 9 

Furthermore, we compare the simulated concentrations of major PM2.5 chemial 10 

components with observational data at 7 sites in the inner domain (unpublished data of 11 

Tsinghua University). The model performance statistics are summarized in Table S5. NO3
- 12 

concentrations are overestimated (NMB = 16.3%), while SO4
2- concentrations are 13 

underestimated (NMB = -47.5%). There is a 25.1% underestimation in NH4
+ concentrations. 14 

The overestimation of NO3
- and underestimation for SO4

2- are consistent with previous studies 15 

over East Asia, probably attributed to the lack of some chemical formation pathways in the 16 

modeling system, such as SO2 heterogeneous reactions on the dust surface and the oxidation 17 

of SO2 by NO2 in aerosol water (Fu et al., 2016; Cheng et al., 2016; Wang et al., 2016). 18 

Elemental carbon (EC) concentrations are remarkably overestimated by 86.6%. EC 19 

concentrations are strongly affected by local emissions, while the spatial distribution of our 20 

emission inventory may not sufficiently capture local emission sources surrounding 21 

observational sites, leading to model-observation discrepancy. The overestimation may also 22 

be attributable to the absence of EC aging in CMAQ/2D-VBS, which leads to reduced 23 

fraction of hydrophilic EC and thus reduced wet depsition. Finally, concentrations of organic 24 

carbon (OC) are underestimated by 36.8%, although the CMAQ/2D-VBS mdoel has been 25 

demonstrated to significantly reduce the underestimation in OC as compared to the default 26 

CMAQ model (Zhao et al., 2016). Future studies are needed to further improve the OC 27 

simulation results. Similar to the evaluation of PM2.5 simulations, we also adopt the 28 

benchmarks proposed by Boylan and Russell (2006). Since Boylan and Russell (2006) 29 

suggested that less abundant species would have less stringent performance goals and criteria 30 

than PM10/PM2.5, we just adopt the model performance criteria (MFB ≤ ±60% and MFE ≤ 31 

75%) described above. Table S5 shows that all the statistical indices meet the model 32 

performance criteria, indicating an overall decent model performance. 33 
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2 Selection of heavy-pollution episodes 1 

We collect hourly PM2.5 concentrations at 138 state-controlled monitoring sites over the 2 

Beijing-Tianjin-Hebei (BTH) region during 2013-2015 from the Ministry of Environmental 3 

Protection (MEP) data center (http://datacenter.mep.gov.cn/). The daily-average PM2.5 4 

concentrations for each prefecture-level city are subsequently calculated. For any given day, it 5 

is regarded as a regional heavy-pollution day if over 75% prefecture-level cities have daily-6 

average PM2.5 concentrations larger than 75 g/m3. If three or more continuous days are 7 

identified as heavy-pollution days, these days are treated as a regional heavy-pollution 8 

episode. In total, 47 regional heavy-pollution episodes are selected. 9 

We subsequently employ the HYSPLIT model (Hybrid Single Particle Lagrangian 10 

Integrated Trajectory Model) to identify potential source regions of the heavy-pollution 11 

episodes. The HYSPLIT model provides the best-guess transport trajectory for an air parcel to 12 

arrive at a target location, based on meteorological data. It has been widely used in 13 

atmospheric studies including those conducted in the BTH region (Zhang et al., 2013; Jin et 14 

al., 2016; Yao et al., 2016). Since Beijing is located in the central part of the BTH region, we 15 

select Beijing urban center (39.95N, 116.43E) as the target location for the calculation of 16 

transport trajectory. It is noted, however, the calculated trajectories generally reflect the large-17 

scale meteorological patterns which affects the air pollutant transport over the entire BTH 18 

region rather than just Beijing; this can be confirmed from the source attribution results 19 

during three typical episodes (Section 3.4 of the main text). For each heavy-pollution day and 20 

each of two heights (500 m and 1000 m), the trajectories are simulated at four time points, i.e., 21 

0:00, 6:00, 12:00, and 18:00. Each trajectory is calculated for the last 72 hours at 1-h time 22 

resolution. The model is driven by meteorological fields obtained from NCEP GDAS (Global 23 

Data Assimilation System) at 1° × 1° resolution. While the HYSPLIT model can only 24 

calculate the transport trajectories, the Concentration Weighted Trajectory (CWT) method, an 25 

improved back tarjactory method, enables a quantitative estimation of the contribution from 26 

various source regions (Wang et al., 2015). On the basis of the HYSPLIT simulation results, 27 

we further use the CWT method to estimate the contribution of each source region to PM2.5 28 

concentrations at the target location. 29 

Table S7 summarizes the potential source regions of the 47 heavy-pollution episodes. It is 30 

clear that the source regions with the highest occurrence frequencies are South (74.5%), Local 31 

(57.4%), Northwest (29.8%), Southeast (10.6%), West (8.5%), and North (4.3%). In this 32 

study, we selected (1) January 5-7, 2014, (2) October 7-11, 2014, and (3) October 29-31, 33 
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2014 as representatives for the Local, South, and Southeast types. For the heavy-pollution 1 

episodes with major contribution from the Northwest, our back trajactory analysis indicate 2 

that the air mass usually origniates from some desert regions. We do not include this type in 3 

our analysis because (1) such dust episodes dominated by coarse particles are different from 4 

the haze episodes this paper focuses on; (2) the ERSM prediction system developed in this 5 

study mainly covers the BTH region, and the long-range transport from the northwestern 6 

provinces is beyond the focus of this study.  7 

 8 
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Tables and figures 1 

Table S1. Emissions of major air pollutants in prefecture-level cities over the BTH region in 2 

2014 (kt yr-1). 3 

 
NOx SO2 NMVOC NH3 PM10 PM2.5 BC OC 

Beijing 343.6 166.0 357.7 52.2 79.4 55.5 13.3 11.6 
Tianjin 344.6 240.3 338.0 45.4 148.2 111.6 16.3 25.8 
Shijiazhuang 255.4 169.8 239.7 85.2 198.5 146.1 23.9 33.5 
Chengde 76.5 39.6 56.8 32.7 47.4 35.7 6.1 9.7 
Zhangjiakou 96.8 46.5 57.2 33.8 52.0 39.5 6.9 11.4 
Qinhuangdao 66.7 33.9 52.2 21.8 39.3 29.7 5.3 8.1 
Tangshan 247.9 125.8 186.0 66.1 129.3 96.2 15.3 24.1 
Langfang 80.5 60.8 104.7 33.8 84.9 62.7 10.5 14.4 
Baoding 165.0 107.1 201.5 87.0 151.4 115.4 20.4 32.3 
Cangzhou 144.1 102.6 170.0 66.0 144.7 107.0 17.3 24.6 
Hengshui 78.4 56.3 93.1 49.1 81.3 60.8 9.8 14.9 
Xingtai 142.4 91.6 114.6 58.9 98.7 74.9 12.8 20.9 
Handan 198.4 102.2 148.9 80.0 112.3 86.0 14.9 25.5 
Total 2240.3 1342.4 2120.4 712.0 1367.5 1021.2 172.7 256.9 

  4 
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Table S2. Provincial emissions of major air pollutants in China in 2014 (kt yr-1). 1 

 
NOx SO2 NMVOC NH3 PM10 PM2.5 BC OC 

Beijing 344 166 358 52 79 55 13 12 

Tianjin 345 240 338 45 148 112 16 26 

Hebei 1552 936 1425 627 1140 854 143 219 

Shanxi 934 979 692 197 789 578 127 146 

Inner Mongolia 1146 1088 665 366 656 492 112 140 

Liaoning 1155 885 1099 382 641 477 68 130 

Jilin 656 369 502 272 479 360 52 105 

Heilongjiang 755 301 655 346 578 456 78 172 

Shanghai 353 528 725 41 141 96 10 9 

Jiangsu 1599 983 2085 462 977 707 80 168 

Zhejiang 1110 1138 1675 173 443 299 32 50 

Anhui 1176 591 1081 417 863 651 91 221 

Fujian 799 503 711 167 341 240 28 51 

Jiangxi 623 397 499 239 474 312 38 70 

Shandong 2717 2334 2529 790 1530 1120 164 258 

Henan 1932 1036 1480 954 1379 1004 130 232 

Hubei 1234 1201 982 435 877 628 110 171 

Hunan 952 839 828 483 792 562 91 151 

Guangdong 1685 1032 1683 365 686 478 56 115 

Guangxi 736 743 728 352 660 494 46 123 

Hainan 139 96 146 59 64 46 4 11 

Chongqing 551 998 418 175 352 253 38 71 

Sichuan 1172 1661 1282 786 876 671 98 254 

Guizhou 676 1062 380 249 565 431 87 137 

Yunnan 681 483 449 337 457 339 54 94 

Tibet 27 6 16 98 12 9 1 3 

Shaanxi 749 748 585 211 527 396 79 127 

Gansu 405 286 286 165 307 235 36 69 

Qinghai 125 52 61 86 82 62 8 12 

Ningxia 210 215 100 40 135 96 14 16 

Xinjiang 886 861 405 248 400 296 47 78 

Total 27422 22754 24867 9621 17450 12812 1953 3441 

  2 
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Table S3. Performance statistics for meteorological variables. 1 

Variable Index Unit Jan Mar Jul Oct Benchmark 

Wind Speed 

Mean OBS m/s 2.68 2.95 2.53 2.40 
 

Mean SIM m/s 2.81 3.06 2.66 2.63 
 

Bias m/s 0.13 0.11 0.13 0.24 ≤±0.5 

GE m/s 1.23 1.25 1.19 1.11 ≤2 

RMSE m/s 1.86 1.76 1.6 1.58 ≤2 

Sys RMSE m/s 1.4 1.12 1.13 1.11 
 

Unsys RMSE m/s 1.2 1.33 1.11 1.10 
 

IOA 
 

0.67 0.73 0.65 0.71 ≥0.6 

Wind Direction 

Mean OBS ° 230.79 239.51 205.37 195.17 
 

Mean SIM ° 249.28 220 201.04 195.10 
 

Bias ° 2.99 0.49 -3.45 2.76 ≤±10 

Temperature 

Mean OBS K 270.3 280.64 298.54 285.70 
 

Mean SIM K 270.03 280.33 298.54 285.92 
 

Bias K -0.27 -0.3 0 0.21 ≤±0.5 

GE K 1.41 1.66 1.75 1.34 ≤2 

RMSE K 1.86 2.28 2.38 1.81 
 

Sys RMSE K 0.43 0.52 0.51 0.47 
 

Unsys RMSE K 1.79 2.21 2.31 1.73 
 

IOA 
 

0.97 0.97 0.94 0.97 ≥0.8 

Humidity 

Mean OBS g/kg 1.54 2.83 14 6.02 
 

Mean SIM g/kg 1.66 2.82 13.01 5.49  

Bias g/kg 0.12 -0.01 -0.99 -0.53 ≤±1 

GE g/kg 0.32 0.58 2.2 1.01 ≤2 

RMSE g/kg 0.47 0.81 2.8 1.38  

Sys RMSE g/kg 0.23 0.44 1.76 0.92  

Unsys RMSE g/kg 0.4 0.67 2.12 0.96  

IOA  0.86 0.85 0.76 0.81 ≥0.6 

  2 
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Table S4. Statistical results for the comparison of PM2.5 concentrations simulated by 1 

CMAQ/2D-VBS with surface observations. 2 

 
Jan Mar Jul Oct 

Model 
performance 
goal a 

Model 
performance 
criteria a 

Data pairs b 3751 3596 3627 4216 - - 
NMB (%) -24.8 -21.3 -4.2 -2.6 - - 
NME (%) 27.7 24.8 19.3 25.0 - - 

MFB (%) -29.4 -24.1 -7.8 -1.9 ≤±30 ≤±60 

MFE (%) 33.4 28.7 22.7 24.8 ≤50 ≤75 

R 0.64 0.73 0.64 0.58 - - 
a The model performance goals and model performance criteria are adopted from Boylan and Russell 3 

(2006). 4 
b The data used in the statistical analysis are daily PM2.5 concentrations. 5 

 6 

Table S5. Statistical results for the comparison of PM2.5 chemical component concentrations 7 

simulated by CMAQ/2D-VBS with observations at 7 surface sites over the BTH region. 8 

 
NO3

- SO4
2- NH4

+ OC EC 
Model performance 
criteria a 

Data pairs b 278 278 278 273 271 - 
NMB (%) 16.3 -47.5 -25.1 -36.8 86.6 - 
NME (%) 67.7 60.6 56.9 52.8 98.6 - 

MFB (%) -2.6 -51.3 -37.7 -48.4 57.2 ≤±60 

MFE (%) 65.6 76.4 74.2 71.2 67.3 ≤75 

R 0.681 0.637 0.638 0.412 0.389 - 
a The model performance criteria are adopted from Boylan and Russell (2006). 9 
b The data used in the statistical analysis are daily concentrations of PM2.5 chemical components. 10 
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Table S6. Description of out-of-sample scenarios 12 

Case number Description 

1-6 Control variables of precursors in Beijing change but the other variables stay the same as 
the base case. For case 1-3, the emission ratios (defined as the ratios of the changed 
emissions to the emissions in the base case) of all control variables of precursors in 
Beijing are set to 0.1, 0.5, and 1.15, respectively. Case 4-6 are generated randomly by 
applying LHS method for the control variables of precursors in Beijing. 

7-12 The same as case 1-6 but for Tianjin. 
13-18 The same as case 1-6 but for Northern Hebei. 
19-24 The same as case 1-6 but for Eastern Hebei. 
25-30 The same as case 1-6 but for Southern Hebei. 
31-40 Control variables of precursors change randomly (with LHS method applied) but those of 

primary inorganic PM2.5 stay the same as the base case. 
41-44 Control variables of primary inorganic PM2.5 change randomly (with LHS method 



 11

applied) but those of precursors stay the same as the base case. 
45-54 These cases are generated randomly by applying LHS method for all control variables. 

 1 

 2 

Table S7. Identification of potential source regions for 47 heavy-pollution episodes during 3 

2013-2015 over the BTH region. 4 

NO. Year Period Potential source region 

1 2013 January 18-23 Local + Northwest (long distance) 
2 January 26-31 Local + South (short distance) + Southeast (short distance) 
3 February 23-28 South (short distance) + Northwest (long distance) 
4 March 5-8 South (short distance) 
5 March 15-18 Local + South (short distance) + Northwest (long distance) 
6 April 2-4 Local + South (medium distance) + Northwest (medium distance) 
7 May 6-8 South (short distance) + South (medium distance) 
8 July 18-20 South (short distance) 
9 September 17-19 Local 

10 
September 27 to 
October 1 

South (short distance) 

11 October 4-7 South (short distance) 

12 
October 30 to 
November 2 

Local + South (short distance) + South (medium distance) 

13 November 21-24 
Local + Northwest (short distance) + Northwest (medium 
distance) 

14 December 1-4 Local + Northwest (short distance) + North (short distance) 
15 December 6-8 Local + South (short distance) + Southeast (short distance) 
16 December 21-25 Local + South (short distance) 
17 2014 January 5-7 Local + South (short distance) 
18 January 13-19 Local + South (short distance) 
19 January 22-24 South (short distance) 

20 February 11-16 
Local + South (short distance) + South (medium distance) + 
Southeast (short distance) 

21 February 20-26 South (short distance) + Southeast (short distance) 
22 March 8-11 Local + South (short distance) 
23 March 23-28 South (medium distance) 
24 March 31 to April 2 Local + South (short distance) + South (medium distance) 
25 April 7-9 South (medium distance) 
26 April 12-14 South (short distance) + South (medium distance) 
27 April 23-25 South (short distance) + South (medium distance) 

28 October 7-11 
South (short distance) + South (medium distance) + South (long 
distance) 

29 October 17-20 
South (short distance) + South (medium distance) + South (long 
distance) 

30 October 23-25 
Local + South (short distance) + South (medium distance) + 
Northwest (long distance) 

31 October 29-31 South (short distance) + Southeast (short distance) 



 12

32 November 19-21 
Local + South (short distance) + South (medium distance) + 
Northwest (long distance) 

33 December 26-29 
Local + South (medium distance) + West (medium distance) + 
Northwest (long distance) 

34 2015 January 3-5 Local + West (long distance) 
35 January 8-10 Local + Northwest (long distance) 
36 January 14-16 South (medium distance) + South (long distance) 
37 January 22-26 Local + West (long distance) 

38 February 19-21 North (medium distance)、South (long distance) 

39 March 6-8 Local + West (long distance) 
40 March 15-17 Local + Northwest (long distance) 
41 April 9-11 Local 
42 May 26-28 Local + South (medium distance) 
43 October 14-17 South (medium distance) + Northwest (long distance) 
44 November 10-15 Local + South (medium distance) 

45 
November 27 to 
December 1 

South (medium distance) + Northwest (long distance) 

46 December 7-10 Local 
47 December 21-26 Northwest (long distance) 

 1 

2 
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 1 

Figure S1. Comparison of simulated and observed PM2.5 concentrations at the Dongsi site in 2 

Beijing in (1) January, (2) March, (3) July, and (4) October. In July, the simulations and 3 

observations are for a nearby Langfang site because the observations at the Dongsi site are 4 

missing. 5 

 6 
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 1 

Figure S2. Comparison of simulated and observed PM2.5 concentrations at the Tuanbowa site 2 

in Tianjin in (1) January, (2) March, (3) July, and (4) October. 3 

 4 
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 1 

Figure S3. Comparison of simulated and observed PM2.5 concentrations at the Chengde site in 2 

Northern Hebei in (1) January, (2) March, (3) July, and (4) October. 3 

 4 



 16

 1 

Figure S4. Comparison of simulated and observed PM2.5 concentrations at the Cangzhou site 2 

in Eastern Hebei in (1) January, (2) March, (3) July, and (4) October. 3 

 4 



 17

 1 

Figure S5. Comparison of simulated and observed PM2.5 concentrations at the Baoding site in 2 

Southern Hebei in (1) January, (2) March, (3) July, and (4) October. 3 

 4 
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 1 
Figure S6. Contributions of precursor (NOX, SO2, NH3, NMVOC, IVOC, and POA) and 2 

primary inorganic PM2.5 emissions from individual regions to monthly mean PM2.5 3 

concentrations in March and October. The contributions are quantified by comparing the base 4 

case with sensitivity scenarios in which emissions from a specific source are reduced by 80%. 5 

The results for January, July, and the 4-month mean are given in Fig. 6. 6 
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Figure S7. Sensitivity of monthly mean NO3

-, SO4
2-, and OA concentrations to stepped 1 

control of individual air pollutants in March and October. The meanings of X-axis, Y-axis, 2 

coloured bars, black dotted lines, and red stars are the same as Fig. 4 but for NO3
-/SO4

2-/OA. 3 

The results for January and July are given in Fig. 7. 4 


