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Abstract. The growth of mega-cities leads to air quality
problems directly affecting the citizens. Satellite measure-
ments are becoming of higher quality and quantity, which
leads to more accurate satellite retrievals of the enhanced air
pollutant concentrations over large cities. In this paper, we5

compare and discuss both an existing and a new method for
estimating urban scale trends in CO emissions using multi-
year retrievals from the MOPITT satellite instrument. The
first method is mainly based on satellite data, which has the
advantage of fewer assumptions, but also comes with uncer-10

tainties and limitations as shown in this paper. To improve
the reliability of urban to regional scale emission trend esti-
mation, we simulate MOPITT retrievals using the Weather
Research and Forecast model with chemistry core (WRF-
Chem). The difference between model and retrieval is used15

to optimize CO emissions in WRF-Chem, focusing on the
city of Madrid, Spain. This method has the advantage over
the existing method in that it allows both a trend analysis
of CO concentrations and a quantification of CO emissions.
Our analysis confirms that MOPITT is capable of detecting20

CO enhancements over Madrid, although significant differ-
ences remain between the yearly averaged model output and
satellite measurements (R2=0.75) over the city. After opti-
mization, we find Madrid CO emissions to be lower by 48%
for 2002 and by 17% for 2006 compared with the EdgarV4.225

emission inventory. The MOPITT derived emission adjust-
ments lead to better agreement with the European emission
inventory TNO-MAC-III for both years. This suggests that
the downward trend in CO emissions over Madrid is over-
estimated in EdgarV4.2 and more realistically represented30

in TNO-MAC-III. However, our satellite and model based

emission estimates have large uncertainties, around 20% for
2002 and 50% for 2006.

1 Introduction

During the last decades, global urbanisation has led to an in- 35

crease in the number of large cities. Several hundred cities
currently have more than a million inhabitants. These highly
populated cities with dense traffic networks are important
sources of many kinds of air pollutants that directly affect
the large fraction of the population living there (e.g., Pas- 40

cal et al., 2013; Kan et al., 2012; Romero-Lankao et al.,
2013). Therefore, global urbanisation increases the need for
air quality monitoring and prediction in large cities. Large
cities are also important sources of several greenhouse gases
(GHGs). A recent development in air quality and GHG mon- 45

itoring is the use of sensors on board of satellites to augment
ground-based measurement networks in cities. Especially in
cities without a dense measurement network, satellite data
can have an important added value. Thanks to improvements
in the quality, spatial resolution and sampling of data from 50

atmospheric composition sensors on board of satellites over
the past decades, detection and quantification of city emis-
sions is becoming feasible for an increasing number of air
pollution species (Streets et al., 2013). Nitrogen oxides (NO
and NO2, together called NOx) emissions from cities have 55

been successfully quantified in several studies (e.g., Beirle
et al., 2011; Liu et al., 2016). First steps have also been made
to quantify urban emissions of other species such as sulphur
dioxide using satellite observations (Fioletov et al., 2011).
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Urban carbon monoxide (CO) has also been studied (Pom-
mier et al., 2013; Clerbaux et al., 2008; Worden et al., 2012);
this paper is focused on quantifying urban CO emissions.

CO is a major air pollutant in cities. It is a toxic gas for hu-
mans at ground level at high concentration (usually < 1ppm5

in most present-day urban environments). The World Health
Organisation recommends a maximum of 9 ppm CO for eight
hour exposure (WHO, 2004). CO is an important precursor
of tropospheric ozone and a primary control on the oxidiz-
ing power of the atmosphere. The primary sink of CO is10

the hydroxyl radical (OH). The lifetime of CO varies be-
tween several weeks and several months, depending on the
location and season (e.g., Holloway et al., 2007; Khalil and
Rasmussen, 1990). The relatively long lifetime compared
to some other air pollutants results in a rather smooth spa-15

tial distribution. Therefore the difference in concentration
between the background atmosphere and regions close to
sources is smaller than for NOx, which has a lifetime of hours
to days. This makes CO sources harder to detect and quantify
than NOx sources. On the other hand, urban CO is easier to20

detect than urban carbon dioxide and methane, for example,
which have lifetimes of several years to decades leading to
well-mixed distributions and relatively small source signals.
Due to its intermediate lifetime, CO can be a good tracer
of pollution transport and has been used, for example, as a25

proxy for anthropogenic emissions of the important green-
house gas carbon dioxide (Gamnitzer et al., 2006). The in-
creasing availability of CO measurements from Earth orbit-
ing satellites raises the interest in the use of remote sensing
for studying urban CO emissions.30

The Measurement Of Pollution In The Troposphere (MO-
PITT) remote sensing instrument, on board the NASA Terra
satellite, has been measuring global CO concentrations since
March 2000. The added value of MOPITT compared to
other satellite instruments is that it can retrieve CO not only35

in the thermal infrared (~4.7µm) but also in the near in-
frared (~2.3µm) wavelengths, which together provide im-
proved sensitivity to CO near the Earth’s surface (Worden
et al., 2010; Deeter et al., 2009). ESA’s TROPOspheric Mon-
itoring Instrument (TROPOMI) instrument, to be launched in40

2017 on the Sentinel 5 precursor satellite, will also measure
CO concentrations in this shorter wavelength range around
2.3µm (Landgraf et al., 2016; Fu et al., 2016; Abida et al.,
2017). The TROPOMI spatial resolution, 7x7 km2 at nadir
and daily global coverage will be increased considerably45

compared to MOPITT which has 22x22 km2 spatial resolu-
tion and global coverage once every 2-3 days (Edwards et al.,
2004), making it even more suitable for city emission estima-
tion.

So far, satellite retrievals of CO have been used mainly50

in global scale analyses, quantifying large-scale CO emis-
sions (e.g. Hooghiemstra et al., 2012a; Leeuwen van et al.,
2013; Hooghiemstra et al., 2012b; Girach and Nair, 2014;
Yin et al., 2015; Jiang et al., 2017) with a primary interest in
biomass burning. Furthermore, the first attempts have been55

made to use MOPITT CO retrievals to estimate emission
changes over cities (Pommier et al., 2013). Clerbaux et al.
(2008) and Pommier et al. (2013) already demonstrated that
CO pollution plumes over large cities can be distinguished
from the background in satellite data. However, averaging 60

over long time periods was necessary to reduce measurement
noise. In addition, Pommier et al. (2013) calculated relative
trends in CO emissions from changes in the observed CO en-
hancement over cities in time. However, to move from this
estimation of relative trends to the quantification of the emis- 65

sions requires additional information on atmospheric disper-
sion.

The aim of this work is to estimate CO emissions from
cities by quantifying the relationship between local con-
centration enhancements and emissions, making use of the 70

Weather Research and Forecasting (WRF) model together
with the MOPITT retrievals. The method is developed in
a way that can easily be applied to other satellite data as
TROPOMI data; we expect the robustness of the method to
increase when used with the higher sampling and finer spatial 75

resolution of the TROPOMI data. We test the performance
of this method in comparison with the method for estimating
emission trends using only satellite data of Pommier et al.
(2013), which we will refer to as the "satellite-only" method,
focusing on specific aspects that can influence the estimation 80

of emission trends using the satellite-only method that do not
influence the emission estimation in our own method.

For the satellite-only method, we investigated nine target
cities: Baghdad, Delhi, Los Angeles, Mexico City, Moscow,
Paris, Sao Paulo, Tehran and Madrid. For our new method, 85

referred to as "WRF optimization", we focus on the city of
Madrid. Madrid is a source for which two high-resolution
emission inventories are available (Kuenen et al., 2014;
Crippa et al., 2016) and which, due to its climate and iso-
lated position from other sources has relatively favourable 90

conditions for the retrieval of CO using MOPITT; this
makes Madrid well suited for developing and testing the new
method.

This paper is organized as follows: section 2 describes
the MOPITT data and two methods to estimate emission 95

(trends): the satellite-only method and our own WRF opti-
mization technique. It also includes a brief description of the
WRF model. We then present results based on the satellite-
only technique (section 3.1), and analyse its limitations (sec-
tion 3.2). Next we describe the results of the WRF optimiza- 100

tion method (section 3.3) and the analysis of its limitations
(section 3.4). The summary and conclusions are presented in
section 4.
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2 Data and methods

2.1 MOPITT CO retrieval

MOPITT, on board the NASA Terra satellite, has been op-
erating almost continuously since it was launched December
1999 in a sun synchronous orbit with a local equator crossing5

time of approximately 10.30 am / pm (Edwards et al., 2004).
Data is available from March 2000 onwards. The size of pix-
els is 22 km x 22 km at nadir. The MOPITT swath is formed
by scanning a four-pixel linear detector array across the satel-
lite track and covers a total width of approximately 640 km.10

Neglecting the effects of clouds, near-global coverage takes
about 3 days (Edwards et al., 2004). The MOPITT instrument
uses gas correlation radiometry to determine CO concentra-
tions (Deeter et al., 2003). It has several instrument chan-
nels that sense infrared radiation (IR). The original MOPITT15

thermal infrared (TIR, ~4.7µm) retrieved CO dataset, has
been expanded with Near Infrared (NIR,~2.3µm) retrievals
(Deeter et al., 2009) and a combined NIR and TIR (here-
after called multispectral) product has been derived, with im-
proved sensitivity to CO near the Earth’s surface (Worden20

et al., 2010; Deeter et al., 2009). The multispectral product
combines the best features of both retrievals: higher sensi-
tivity in the lower troposphere over land from the NIR, and
vertical information in the free troposphere from the TIR
(Deeter et al., 2013, 2014). The NIR channel adds most in-25

formation in the lower troposphere and over land scenes with
low thermal contrast (e.g., moist vegetation, Deeter et al.,
2009). As the goal of our method requires maximum sen-
sitivity to CO in the lower troposphere, we will mostly use
the multispectral CO retrievals.30

For this research, MOPITT version 6 (and for compar-
isons with Pommier et al., 2013, version 5) level 2 data were
used for the period March 2000 - December 2008 (Deeter,
2013a). The data of version 5 have been validated exten-
sively (e.g. Deeter et al., 2013; Laat de et al., 2014), and35

version 6 data have been validated by Deeter et al. (2014;
2016). The validation results showed that the version 6 data
have reduced retrieval bias in the upper troposphere and con-
firms that the joint NIR and TIR product has enhanced sen-
sitivity to CO in the lower troposphere compared to the TIR40

only product. However, a negative concentration bias over
the Amazon basin was reported in the version 6 multispec-
tral product (Deeter et al., 2016). In version 6, compared to
the previous version 5 data, a geolocation bias has been cor-
rected (Deeter et al., 2014), and meteorological fields are de-45

rived from NASA MERRA instead of NCEP (Deeter et al.,
2014). Monthly varying a priori data in version 6 are based
on the CAM-CHEM model climatology for 2000-2009 grid-
ded on 1°x1° (Deeter, 2013a), instead of the coarser gridded
MOZART climatology used in V5 and V4.50

When using version 5 of the data, we corrected for the lo-
cation bias in longitude using the formula also applied by
Pommier et al. (2013, see Eq. 1). This method might give

slightly different corrections from the corrections the MO-
PITT team applied to version 6 of the data (Deeter, 2012), 55

especially in the temperate zones.

lonnew = lonorig +0.33× cos(latorig) (1)

In Eq. 1 lonnew is the corrected longitude in radians, derived
from the original coordinates (lonorig, latorig; in radians). The
NIR, TIR and combined multispectral data sets are made 60

available on 10 pressure levels (surface to 100 hPa in 100
hPa intervals). Generally, the NIR product compared to the
TIR product has relatively large random errors, requiring sig-
nificant spatial and/or temporal averaging (Deeter, 2013b).
The MOPITT retrieval, especially the TIR part, has a varying 65

vertical sensitivity. The monthly varying a priori CO clima-
tology constrains the retrieved profile. The relative weights
of the true atmospheric profile and a priori profile are repre-
sented by the Averaging Kernel (AK) matrix, which is made
available for every retrieval. The relationship between the re- 70

trieved volume mixing ratio (VMR) profile (xrtr), true VMR
profile (xtrue), a priori profile (xa) and averaging kernel matrix
(AK) is given in Eq. 2.

log10(xretr) = log10(xa)+AK(log10(xtrue)− log10(xa))

(2)

the equation is logarithmic as the MOPITT retrieval al- 75

gorithm assumes log-normal statistics for CO variability
(Deeter, 2013a). Only daytime (solar zenith angle < 80°) and
land pixels were used in this study to avoid a strongly varying
influence of the NIR channel in the multispectral retrieval. In
addition, retrievals were filtered for clouds, keeping data with 80

a cloud description diagnostic value of 1 or 2. The cloud de-
scription diagnostic value is based on combined signals from
MOPITT and MODIS (Moderate Resolution Imaging Spec-
trometer, also on board of Terra) on cloud coverage, with a
value of 1 indicating clear sky conditions according to MO- 85

PITT without information from MODIS, and a value of 2
indicating cloud free according to MOPITT and MODIS.

Due to the large pixel size of the MOPITT data relative
to the size of cities, the long revisit time of the satellite, and
the filtering on cloud free and daytime scenes, the number 90

of useful data over individual cities was limited. Because the
path of the urban pollution plume and background concentra-
tion field both vary strongly with meteorological conditions,
it was necessary to average the MOPITT data temporally and
spatially over a substantial time period to distinguish an ur- 95

ban signal from the background. The averaging technique of
Fioletov et al. (2011) was used for improving the spatial res-
olution, as described in the next paragraph.

2.2 Emission estimation: satellite-only

The work of Pommier et al. (2013), hereafter referred to as 100

P13, served as starting point for our own analysis. A brief
description of their method is given below. In P13 averages
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were made over respectively four and five years to analyse
the concentrations change from period 1: 2000-2003 to pe-
riod 2: 2004-2008 for eight large cities. In order to distin-
guish cities, besides the temporal averaging also spatial av-
eraging was applied, using the spatial oversampling tech-5

nique of Fioletov et al. (2011). For this satellite-only ap-
proach, a 200x200 km2 area around the target city is mapped
at 2x2 km2 resolution, with each high-resolution grid cell
representing the average value of all satellite data having
their footprint center within 28 km distance of that cell. The10

pixels were rotated in the direction of the wind using the
city center as rotation point, to align the urban plumes in
upwind-downwind direction. With this technique, the data
were oversampled to prevent urban plumes of CO from be-
ing smoothed out during the spatiotemporal averaging, as15

described also in Streets et al. (2013). The difference be-
tween the average MOPITT retrieved upwind and downwind
concentration was subsequently used as a proxy of emission
strength. Further, the Relative Difference (RD) quantifies the
relative change in the proxy of emission strength between the20

two time periods.
In our study, the same spatial averaging and wind rota-

tion techniques were used. For the wind data, 3-hourly wind
fields were used from the ERA Interim reanalysis project of
the European center for Medium-Range Weather Forecasts25

(Berrisford et al., 2009). These fields were averaged at 1°x1°
resolution and 60 hybrid sigma-pressure levels from the sur-
face to the top of the atmosphere using the pre-processor that
is used for generating wind fields for the global transport
model TM5 (Krol et al., 2005). For each day, the wind di-30

rection was taken for the grid box in which the city center of
the respective city is located and the time step closest to the
local overpass time of MOPITT. An average wind direction
was constructed over the lowest 15 hybrid pressure layers of
the TM5 model, roughly representing the average wind direc-35

tion in the planetary boundary layer (PBL) up to about 720
hPa. For every MOPITT overpass, the associated modelled
wind direction was recorded. This procedure is close but not
identical to P13, who used 0.75°x0.75° data from ECMWF
averaged from the surface to 700 hPa.40

The urban concentration enhancement was finally esti-
mated according to P13. First, for the total column CO,
wind rotations and averages were made for the two periods.
The time-averaged emission proxy in molecules/cm2 was
then calculated as the difference between the average of the45

five maximum downwind total columns (COtotdownwindi;
molec/cm2) minus the average of the five minimum upwind
CO total columns (COtotupwindi; molec/cm2) in a 20 km
broad band from 100 km upwind to 100 km downwind of
the city in the respective period, V d−V u, according to Eq.50

3 (from P13):

downwind−upwind difference = Vd−Vu =

5∑
i=1

max(COtotdownwindi)

5
−

5∑
i=1

min(COtotupwindi)

5
(3)

The standard deviations of the 5 highest downwind and of 55

the 5 lowest upwind concentrations were calculated. The sum
of these two standard deviations is used as the uncertainty in
V d−V u. From V d−V u, the relative difference (RD) be-
tween period 1 and period 2 was calculated to estimate the
trend in the concentration enhancement. The RD is defined 60

as the change between the two periods with respect to period
1 and is expressed as a percentage.

2.3 Emission estimation: WRF optimization

To quantify emissions, additional information is required
to determine the relation between emissions and concentra- 65

tions, involving transport. To take this into account, we com-
bined the satellite data with model data from the Weather
Research and Forecast (WRF) model. We minimized the dif-
ference between the model and the satellite gridded data by
changing the emissions in WRF to find the most probable 70

emissions. The method will be described in more detail in
this section.

2.3.1 WRF model

Model simulations of CO over Madrid were performed using
the WRF model (http://www.wrf-model.org/) version 3.2.1, 75

with the Advanced Research WRF core (ARW). WRF is a
numerical non-hydrostatic model developed at the National
Centers for Environmental Prediction (NCEP). It has several
choices of physical parameterizations, which allows appli-
cation of the model to a large range of spatial scales (Grell 80

et al., 2005). For this study we used an updated version of
the Yonsei University (YSU) boundary layer scheme (Hu
et al., 2013), the Unified Noah land surface model for surface
physics (Ek et al., 2003; Tewari et al., 2004), and the Dud-
hia scheme (Dudhia, 1989) and the Rapid Radiative Trans- 85

fer Method (RRTM) for shortwave and long wave radia-
tion (Mlawer et al., 1997). Cloud physics are solved with
the Grell-Freitas cumulus physics ensemble scheme (Grell
and Freitas, 2014). A built-in application of WRF-ARW is
WRF-Chem (Grell et al., 2005), which deals with chemi- 90

cal processes and tracer transport. WRF-Chem is an online
model, which means that the tracer transport is consistent
with all conservative transport done by the meteorological
model and that the chemistry can feedback on the dynam-
ical computations. In this research, only the model’s tracer 95

transport function was used, not the encoded chemistry of
WRF, to speed up the model. We considered this as a safe
option, since the photochemical lifetime of CO is too long
for its chemical degradation to play a significant role during

http://www.wrf-model.org/
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Figure 1. WRF domains d01 (red, 1500km x 1440km, resolution:
30x30 km2) and d02 (blue, 490km x 430 km, resolution: 10x10
km2). The location of Madrid is shown by a green star.

transport across the city domain. For our Madrid case study,
we set the model’s outer domain to the Iberian Peninsula and
part of the surrounding water bodies. This domain, modelled
at a resolution of 30x30 km2, defines boundary conditions
for a nested subdomain with a model resolution of 10x105

km2 covering an area of 490x430 km2 around Madrid (Fig.
1). All the analyses in this paper were done for a sub region
of 200x200 km2 around Madrid within this second domain.
Our WRF simulations were covering exactly one year, either
2002 or 2006. The time step used for calculations of dynam-10

ics and physics was 4 minutes in the outer domain and 80 sec-
onds in the inner domain. We used 30 dynamic vertical pres-
sure levels between the surface and 50 hPa. The CO bound-
ary conditions of the outer domain were based on MOPITT
profiles of climatological retrieved data. On each of the four15

lateral boundaries of the outer domain of WRF, the 9 year
(2000-2008) average MOPITT CO concentration per month
is taken over a half-degree zone adjacent to each boundary
or the nearest land pixels of MOPITT. The data were inter-
polated to provide the vertical profile for all vertical layers20

of WRF. These four, monthly varying, profiles have been im-
plemented into WRF as lateral boundary conditions for CO.
This is considered sufficiently detailed, since the background
concentrations will be scaled in our optimization technique
and no significant background pattern is expected to come25

with the data, which is also confirmed in section 3.5. The ini-
tial concentrations of CO within the domains were set to zero
and are expected to adapt quickly to the boundary conditions
by lateral transport. Initial and boundary conditions for me-
teorological parameters were based on data from the NCEP30

at a 1°x1° spatial and 6-hourly temporal resolution.

2.3.2 Emission datasets

CO emissions to use as prior estimates were taken from dif-
ferent anthropogenic emission inventories that are available
for Madrid. For the years 2002 and 2006 we used emissions 35

from the EdgarV4.2 inventory (available at a resolution of
0.1°x0.1°) for the corresponding years (Crippa et al., 2016).
We also used emissions from the European TNO-MACC in-
ventory (Kuenen et al., 2014) with a spatial resolution of
0.125°x0.0625°, for the years 2006 (version III) and 2007 40

(version II) in the sensitivity tests. All the emissions were re-
gridded to the resolution of the WRF domains and account
for monthly, weekly and hourly emission variations based on
temporal emissions factors reported by Gon van der et al.
(2011). More information on the different sectors included 45

in the emission datasets can be found in Appendix A.

2.3.3 Validation of WRF data

To verify the performance of the model, we compared
the model simulated CO concentrations to available in-situ
measurements in Madrid (http://gestiona.madrid.org/azul_ 50

internet/html/web/InformAnalizadoresAccion.icm, accessed
19 December 2016). CO concentration data are available for
2006 from two locations within our WRF domain: Moste-
los, a station in a park in the south of Madrid and Villa del
Prado, a background station in the Alberche basin. For both 55

locations the concentrations and patterns in concentrations
appear very similar between WRF and the observations (r
= 0.75 and r = 0.47 respectively), although WRF overesti-
mates the concentrations at the Villa del Prado station (Fig.
2, upper panel). The variation over the months with higher 60

concentrations in winter is well represented, most peaks seen
in the observations are also found in the model and concen-
tration differences between model and observation are gen-
erally within 0.1 mg/m3. It should be noted that the reso-
lution of the observations is 0.1 mg/m3, especially for the 65

background station Villa del Prado, this resolution is close
to the absolute value of the measurement (0.1 mg/m3 corre-
sponds to about 90 ppb) and could thus be considered a bit
coarse for measuring background concentrations. The over-
estimated CO concentration for the Villa del Prado station 70

is considered reasonable, since with the resolution of 10x10
km2 of WRF, the WRF pixel also includes two small towns
in this area, while the station is measuring at a very remote
location at the Villa del Prado station. On hourly time scale,
WRF also follows the observations quite well (Fig. 3, r = 75

0.31), stable low concentration patterns are also represented
in the model as such and higher concentrations with morn-
ing and afternoon peaks are also represented, although WRF
is not able to see all peaks and some peaks are under and
overestimated (differences of up to 1 mg/m3). Given the lim- 80

ited resolution used in WRF and the difficulty of representing
measurement sites in an urban environment, we consider the
performance of WRF adequate to make a reasonable compar-

http://gestiona.madrid.org/azul_internet/html/web/InformAnalizadoresAccion.icm
http://gestiona.madrid.org/azul_internet/html/web/InformAnalizadoresAccion.icm
http://gestiona.madrid.org/azul_internet/html/web/InformAnalizadoresAccion.icm
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Figure 2. For 2006, above and 2002, below: daily averaged WRF
surface concentrations (red and blue lines) compared to observa-
tions (orange and light blue lines) at two locations near Madrid.

Figure 3. Hourly WRF surface concentrations (red line) compared
to observations (orange line) at the Mostelos measurement station
near Madrid for 10 days in October.

ison with the coarser resolution satellite data. For 2002, only
data from the Mostelos station are available. In Fig.2, lower
panel, the comparison with these data is shown; the concen-
trations match also very reasonably for as well the peaks as
the yearly patterns (r = 0.73), the concentrations do most of5

the time overlap within 0.1 mg/m3.

2.3.4 Comparing MOPITT and WRF

The information of the MOPITT retrievals is not equally dis-
tributed over the 10 vertical levels, as mentioned earlier. For
a fair comparison between satellite observations and model10

simulations, the AK matrix and a priori profile for each re-
trieval has been applied to the corresponding model output,
ensuring a consistent vertical weighting of the model com-
pared with the measurements. The MOPITT averaging ker-
nel matrix was applied to the logarithm of model simulated15

CO concentrations following Eq. 2, using the interpolated
vertical model profile of CO from WRF as xtrue, xretr forms
then the WRF vertical profile on MOPITT levels with the ap-
plied averaging kernel matrix that is used for comparison. In
the comparison, average mixing ratios over all vertical MO-20

PITT layers are used. For this method we only used MOPITT
V6 data.

2.3.5 Simulation period

To reduce the random noise and to increase the signal from
relatively small sources, it is required to average MOPITT 25

data over longer time periods as earlier studies already men-
tioned (e.g., Clerbaux et al., 2008; Girach and Nair, 2014;
Deeter et al., 2014). Averaging times ranged in these stud-
ies from 1 month for the second study to 7 years for the first
study; it should be noted, however, that these studies used 30

coarser spatial resolutions: 1°x 1°. In our study we chose to
average 1 year of data, which resulted in quite good com-
parison with WRF: R2 = 0.75. This R2 value quantifies the
fraction of the variance in the MOPITT data that is explained
by WRF. We also found a clearly visible enhancement of CO 35

mixing ratio over the city of Madrid for this yearly period. A
description of the more detailed test we did that resulted in
the use of a period of a year can be found in Appendix B.

2.3.6 From model mixing ratios to emissions

For comparison with MOPITT, model simulations were done 40

for the years 2002 and 2006 with EdgarV4.2 emissions of the
corresponding years. For each year also a background sim-
ulation was performed where the boundary and initial con-
ditions are kept the same as in the simulations with emis-
sion but where emissions were switched off. The difference 45

between these simulations represents the contribution of the
emissions of Madrid to the simulated CO concentrations.

Since tracer transport in WRF is linear, the CO contri-
bution from Madrid scales linearly with its emission. Be-
cause of this, the optimal, i.e., best fit, emission was linked 50

to the inventory emission by a scaling factor (femis) of the
simulated urban plume: the difference between CO in the
emission and background simulation. To make this method
easily applicable to other regions and to limit the required
WRF computation time, we implemented only direct anthro- 55

pogenic CO emissions and assumed a uniform distribution
of other sources of CO (e.g., anthropogenic sources of CO in
the surroundings, direct natural sources and indirect sources
of CO such as the atmospheric oxidation of natural and an-
thropogenic volatile organic carbon compounds and methane 60

from the city or the surrounding forests). To account for these
missing sources in the 200x200 km2 area around Madrid, a
background correction factor (fback) was introduced that has
no spatial pattern but is simply a multiplication factor of the
concentrations in the background simulation. 65

After a WRF simulation, the WRF data were sampled ac-
cording to the MOPITT retrievals, the AK matrix and MO-
PITT a priori profile were applied, and the mixing ratios
were gridded on a 2x2 km2 grid and averaged over the entire
column with the oversampling technique of Fioletov et al. 70

(2011), as described in section 2.2 and used in P13. Using
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the total column data in molec/cm2, as done in P13, is not
appropriate here, due to the effects of orography that also in-
fluence the match between the model and satellite. Instead,
the column average CO mixing ratio was used. Note that we
do not use the surface layer CO mixing ratio but the total5

column since the bias, and bias drift, of the multispectral to-
tal column product is much lower than that of one or a few
layers near the surface (Deeter et al., 2014).

To estimate CO emissions, we used a simple optimization
scheme based on Brent’s method (Brent, 1973; Press et al.,10

1992). We minimized the difference between MOPITT and
WRF average column mixing ratios by varying fbackg and
femis iteratively using Brent’s method. Brent’s method is a
root finding algorithm, which we used to find the minimum
of the quadratic cost function J (ppb2), defined in Eq. 4:15

J =

n∑
i=1

((Xmod[i](fbackg,femis)−Xsat[i])
2) (4)

In this function, n is the number of grid cells within the
200x200 km2 optimization domain. Xmod[i] is the total col-
umn average mixing ratio (ppb) in the ith grid cell of the
model and Xsat[i] the mixing ratio (ppb) in the correspond-20

ing MOPITT grid cell. We filtered out data where the dif-
ference between MOPITT and WRF was more than three
times the standard deviation of their mean difference to pre-
vent outliers from influencing the emission estimation. The
Xmod is build up from data of the background simulation25

Xbackg and the full simulation including emissions Xemis

according to Eq. 5.

Xmod =Xbackg · fbackg +(Xemis −Xbackg) · femis (5)

2.3.7 Sensitivity tests

In order to determine how sensitive our method is to differ-30

ent spatial averaging, different prior emissions and different
filtering methods, we performed some sensitivity tests. We
tested the optimization with a 10 times coarser grid, i.e.,
20x20 km2, to investigate the sensitivity to the chosen grid
size and decrease the importance of patterns in the back-35

ground and emission. We also used different prior emission
patterns: for 2006 we started the optimization with TNO-
MACC-III emissions (Kuenen et al., 2014), for 2002 we did
a test optimization starting with emissions of 2006. We also
tested the sensitivity to emissions in the direct surroundings40

of the 200x200 km2. Extra background simulations were per-
formed in order to quantify this: simulations with emissions
outside of the 200x200 km2 box around Madrid, and, as
the normal simulation, without emissions in the urban area
where the optimization was performed.45

To analyse the robustness of the method, we repeated the
optimization using different data filters and investigated the
effect of optimizing the absolute difference instead of the

Figure 4. Total column CO concentration downwind minus upwind
of selected cities (see methods-section), comparing our study using
MOPITT version 5 (squares) and the study of Pommier et al. (2013,
triangles). Error bars represent uncertainties calculated according to
P13.

quadratic difference in Eq. 4. Four different filtering meth-
ods were tested to prevent outliers in the MOPITT data to 50

influence the estimation: 1) Filtering out all MOPITT data
that were more than three or 2) four standard deviations from
the yearly 200x200 km2 mean MOPITT CO concentration,
or filtering out all MOPITT and WRF data at the same time
and location that had a larger difference between them than 55

3) three (which is the default method) or 4) four standard
deviations from the mean difference between MOPITT and
WRF at the same time and location.

3 Results and discussion

3.1 Emission trend estimation and uncertainty based 60

on satellite data only

The first method we used to estimate emission trends from
large cities is the one applied before by P13. To estimate the
uncertainty in these values, we used both version 5, as in P13,
and version 6 of the MOPITT multispectral data in these cal- 65

culations.
The typical downwind minus upwind MOPITT columns

in our analysis - a proxy for the emission - range from 1×
1017 molecules/cm2 (Madrid, Delhi, Paris) up to 7× 1017

molecules/cm2 (Mexico City). When using MOPITT version 70

5 data (V5), we found some significant differences between
our study and P13 (total difference range: 0.006-1.8× 1017

molec/cm2), with an average absolute discrepancy between
our study and P13 of 0.5× 1017 molecules/cm2 over 2000-
2003 and 2004-2008 together (Table A1, Fig. 4). 75

The changes between the 2000-2003 and 2004-2008 peri-
ods, used to assess the trend in the emissions, are between
+0.2×1017 and −2.4×1017 molecules/cm2. This results in
negative trends (RDs, see section 2.2) in the order of −48%
to −4% for most cities (Fig. 5) and a positive RD of 15% for 80

Delhi and +5% for Madrid. As we attempted to use exactly
the same method as P13, with only a slight difference in the
use of wind data, our results suggest that the uncertainties of
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Figure 5. Calculated Relative Differences, comparing results of the
satellite-only approach from this study (diamonds for MOPITT ver-
sion 6, stars for MOPITT version 5) and the study of Pommier et al.
(2013; squares). The error bars represent trend uncertainties, fol-
lowing the calculation method that was used in P13.

the emission proxies in P13 (0.01-0.1×1017 molecules/cm2)
were underestimated. A more realistic uncertainty for the
emission proxy should rather be in the order of the mean dis-
crepancy we found, i.e., 0.5× 1017 molecules/cm2.

Comparisons of the MOPITT V6 data with P13, expected5

to give some differences due to the different retrieval algo-
rithm of V6 compared to V5, also show rather large differ-
ences (Table A2), with an average discrepancy of 0.4× 1017

molecules/cm2. When the results of our approach are com-
pared between using V5 and V6 of the data (compare Table10

A1 with Table A2), we find absolute discrepancies between
0.009× 1017 and 1.01× 1017 molecules/cm2 with an aver-
age discrepancy of 0.3× 1017 molec/cm2. The differences
between V5 and V6 with our approach are thus smaller than
the individual ones compared to P13, but still not negligible.15

For Madrid, using V6, we find a negative trend of −33%
(Table A2). The magnitudes of the RDs, see Fig. 5, found in
our study are clearly different from those found in P13 and
in the case of Sao Paulo the RD even shows an opposite sign
(+40% vs. −27% in P13). Using V6, only one of our RDs20

was within the error range of P13 given for the RD. For V5,
only two of the RD estimations were inside the error range
given in P13. The RD estimations, however, do agree with an
absolute uncertainty difference of ~20% for most cities, so
the method still has some value to make a rough estimation25

of trends in a simple and fast way. An explanation for the
large discrepancies in RDs, while the Vd − Vu values are
relatively close, is that the absolute changes between the two
periods are close to our revised uncertainty estimate, and the
RDs are thus almost in the uncertainty range of the method.30

Our results demonstrate that the method described in P13
gives a useful first guess of trends in emission, but also that
the robustness of the method is only limited: the emission
trends are small in comparison with the uncertainty in the

upwind−downwind estimates and they are thus not well re- 35

solved by the method. V6 differs from V5 mainly by a cor-
rection for the geolocation bias, an updated a priori and dif-
ferent meteorological fields (Deeter, 2013a). In an attempt to
better understand the factors limiting the robustness of the
approach, we identified a number of limitations inherent to 40

the method, partly based on the differences between MO-
PITT V5 and V6, which will be discussed in the next section
(3.2).

3.2 Limitations of the satellite-only approach: possible
sources of errors and sources of uncertainties 45

In this section, we will analyse the possible influence of tem-
poral variations in sampling, a priori and the averaging kernel
on the estimation of multi-year average emission trends from
MOPITT retrievals, which possibly give errors in the emis-
sion trend estimation. We will also look at the influence of 50

choices to filter and rotate the data that lead to uncertainties
in the trend estimation. The effects of bias drift in the MO-
PITT retrievals, described in the validation papers (Deeter
et al., 2013, 2014), are not tested here. The influence is how-
ever, expected to be negligible, since the total column prod- 55

uct is used to estimate emission trends which has a drift of
0.001±0.003% per year for the V5 and 0.003 ±0.002% per
year for the V6 multispectral product and the drift is existent
in both the upwind and the downwind CO column.

3.2.1 Sampling differences and averaging period 60

The a priori information that is used in the MOPITT re-
trievals is the same each year, but accounts for seasonal vari-
ation. Close to cities this seasonal variation reflects both the
change in emissions over the year, with higher emissions in
winter and low emissions in summer and the seasonal cy- 65

cle of the OH sink, which varies with season and peaks in
summer (e.g. Girach and Nair, 2014; Lal et al., 2000; Nov-
elli et al., 1998), leading also to low CO mixing ratios in
summer. Because of this, seasonal variations in measurement
coverage may bias annual averages. For example, a year with 70

fewer overcast days in summer than an average year - so less
data filtered out - would lead to a lower annual average CO
estimation compared to an average year, even if the CO mix-
ing ratios were exactly the same in those years. However,
uneven sampling would not affect the RD calculation as long 75

as the background and the city signal are influenced equally.
To investigate the sensitivity of the RD calculation to uneven
sampling, we analysed the a priori data for the years 2000-
2008. The a priori is a good measure for this, since it is ex-
tracted from the retrieval data and therefore sampled in the 80

same way as the retrievals.
When we averaged a priori data, annual mean a priori CO

varied by 1×1016-1×1017 molec/cm2 between years, which
is of the same order of magnitude as the long term trends in
CO that are estimated with the satellite-only method (Fig. 85



I.N. Dekker et al.: Quantification of CO emissions with MOPITT and WRF 9

6, left). The effect can be seen very well in the years 2000
and 2001. In 2000 there are no satellite data for the months
January and February, biasing the average towards low sum-
mer columns. Oppositely, in 2001, June and July data are
missing, which increases the annual mean. In the right panel5

of Fig. 6, the downwind minus upwind concentration differ-
ences per year are calculated for the a priori data for cities
with enhanced CO mixing ratio over their centers in the a
priori. For Baghdad, Moscow and Madrid, the 2000 Vd −
Vu is lower than that of 2001. New Delhi, with a different10

yearly CO pattern due to the monsoon, does not show this
difference. In this picture, however, also all the other years
show varying emission proxys of similar quantity. This sug-
gests that the sampling problem has also a spatial dimen-
sion. The calculated RDs for the four cities based on a priori15

data are not zero percent, as expected for annually repeating
priors, but +11.8% for Madrid, −13.3% for Bagdad, 20.6%
for Moscow and −2% for Delhi. These results indicate that
temporal variations in sampling may significantly influence
emissions trends obtained using the satellite-only method.20

Some recent studies on CO trends over larger regions over-
came the uneven sampling problem by de-seasonalizing the
data before studying trends (Strode et al., 2016; Girach and
Nair, 2014). In our method using the WRF model (see be-
low), the problem of uneven sampling is largely solved as25

we sample our model according to the availability of satellite
data.

3.2.2 Role of the a priori

When using only satellite data to estimate emission trends, it
is important to consider how satellite data are obtained: the30

maximum a posteriori retrieval is based on a set of measured
radiances, a radiative transfer model, and a model-derived a
priori profile. The averaging kernel represents the weighting
of the measured signal and the a priori information in the
retrieved CO profile (see section 2.1). The a priori informa-35

tion of MOPITT version 6 is based on monthly climatologies,
temporally and spatially interpolated to generate a priori val-
ues for a specific location and day (Deeter et al., 2014) on
a 1°x1°(latitude x longitude) spatial resolution. This results
in a priori fields which are already quite detailed: the a pri-40

ori data of the eight cities of P13 and Madrid reveal already
the location of some of the large cities. The MOPITT V5
and V6 data make use of different a priori information. For
all of the cities there are slightly different concentration pat-
terns in the a priori products between these two versions. This45

raises the question to what extent the differences in emissions
trends derived from the two MOPITT versions in Fig. 5 are
explained by different a priori. To investigate this in more
detail, we compared the emission estimation of the satellite-
only approach for the standard and a uniform a priori over the50

whole domain. From this test, however, we could only find a
minor contribution of the a priori to the RD. For Madrid we
find, for example, 2% change in RD estimation when a uni-

Figure 6. Left: variations in annual mean a priori total column CO
over the years due to uneven sampling. Averages were made over
the 200x200 km2 domain around each city. Right: variations in an-
nual mean downwind−upwind differences in total column a priori
CO over the years, only cities with a distinct city-like pattern in the
a priori are shown.

form a priori was used, for Baghdad we find a 3% change, for
New Delhi a 6% change and for Moscow a 2% change. The 55

differences are, however, somewhat larger, i.e. in the order of
5%, when we replace the version 6 a priori with the version 5
a priori data. This last step, however, required the use of the
data that was available in both V6 and V5 of the data, lead-
ing to a decrease in the amount of data where the estimations 60

were based on. To be sure to look at the effect of the a priori
only, we used the WRF model data for the years 2002 and
2006 to calculate the RD with a uniform a priori (the average
MOPITT a priori) and the standard MOPITT a priori. From
this test, we found a decrease in the RD of only 1.2% when 65

the uniform a priori was used. The change in a priori thus
causes around 5% change in RD estimation between version
5 and 6.

3.2.3 Averaging kernel stability

Since the city CO emissions take place in the lowest layers 70

of the atmosphere, the amplitude of the retrieved city signal
depends strongly on the sensitivity of the MOPITT retrieval
to these altitudes; any temporal change in this sensitivity will
influence the emission trend estimation. Yoon et al. (2013)
already concluded that a temporal change in the AK can 75

lead to a significant error in the trend estimation of retrieved
CO. Our analysis shows that there is a change in the average
multispectral AK shape over the years 2000 to 2004 over
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Figure 7. Yearly averaged AK area (Rodgers, 2000) values over the
400km2 area around Madrid for the years 2000 to 2008, March -
December (except June, July to minimize biases from uneven sam-
pling), for the V6 NIRTIR product. Left: vertical profiles from the
surface to the top level for corresponding main diagonal value of
the AK. Right: change in average AK compared to the year 2000
for the surface level (blue) and 400hPa level (green).

Madrid (Fig. 7). The slight shift in AK sensitivity reduces
the sensitivity to the lowest layers (from surface to 800 hPa)
and increases the sensitivity to the mid-troposphere (300-500
hPa). After 2004, these sensitivities stabilize, except for some
year-to-year variation. To show this, we used the AK area5

(Rodgers, 2000): for each vertical layer the sum of all values
of the corresponding row in the AK matrix, averaged over
the years for all months with data in all years of our sample
period (i.e. March-December, except June, July); note that
the figures are very similar to the figures where all avail-10

able months are taken for each year (not shown). We found
downward trends near the surface of −16 ±6 %, and up-
ward trends at 400 hPa of +8 ±3 % over the years 2000-2004
(Fig.7, right panel). In Fig.7 we show this effect for Madrid,
but it is visible for all cities analysed in P13. This sensitivity15

change might have been caused by instrument degradation,
variability in meteorological conditions and/or changes in the
CO abundance over the years (Strode et al., 2016). The NIR
data show a decreasing sensitivity over all layers in time. The
increasing sensitivity to the layers higher up comes from the20

TIR data (Fig. A1).
The AK trends may not be large but the city CO signal

compared to background is not large either. As the CO con-
centration gradient around sources is largest in the layers
near the surface, and lower higher up, the trend in the AK25

causes an artificial negative trend in the concentration en-
hancement over cities, biasing the emission trends derived
from the satellite-only method. For Madrid, we tested this
by constructing a synthetic dataset of MOPITT retrievals for
the years 2000 to 2008, all based on WRF-Chem simulated30

CO vertical profiles over Madrid for 2002 sampled at MO-
PITT time and location. For each year, we constructed arti-
ficial AKs based on the MOPITT AKs. Every AK is scaled
such that the annual mean sensitivity remains at the level of
2002 for each AK layer. This led to a negative difference in35

RD of −5% compared to the same calculation with original
AKs. From this result, we conclude that the stability of the

AK is influencing the emission trend estimation using the
satellite-only method, which introduces an uncertainty when
using satellite data from MOPITT and potentially also other 40

instruments. It should be noted, however, that the averaging
kernel is quite specific for each retrieval and replacing it by
a corrected AK, as done here, is justified as a sensitivity test
but is not considered a solution to the problem, as indicated
by the data description paper published in Deeter (2002). 45

3.2.4 The rotation point selection

In the satellite-only approach, a wind rotation technique is
applied to calculate upwind − downwind differences. This
technique selects a single point in the center of the city as ro-
tation point. However, we found that the estimated upwind − 50

downwind differences are sensitive to the location of this ro-
tation point, which is problematic since it is hard to tell what
the exact center of a city is. Moving this rotation point for
example from the center defined by Wikipedia to the center
point defined by Google Maps (GM), which differs 0.7-3.9 55

km for our selected cities - both locations could be equally
well defined as center - gives downwind−upwind differences
varying by 0.03× 1017-0.3× 1017 molec/cm2, correspond-
ing to RDs varying by 8%-25% (Fig.8). As a solution for
this problem, we using the weighted emission center of the 60

city instead of the general center would be a fairer way to
use this method. We tested this for the city of Madrid for the
weighted center point in the TNO-MACC emission inventory
and weighted center point of the EdgarV4.2 emission inven-
tory. We found a positive RD of +3% for the Edgar center 65

and a negative RD of −4% for the MACC center, which was
located 8 km more southwards. These last estimations are
probably better estimations of the real trend, since it uses the
center of the emissions instead of the center of the buildings,
but it also shows that this problem is difficult to solve, since 70

the exact center of emissions is also not known.
The satellite-only method is thus highly sensitive to the se-

lected location of the rotation point, which introduces a large
uncertainty in the estimated emission trends. This outcome
is particularly relevant for the use of MOPITT data, because 75

of a location bias in MOPITT version 5, which has been cor-
rected in version 6. This can be an important reason for the
differences in emission trends found between V5 and V6. We
note that the geolocation bias correction that was used in P13
and our study was slightly different from the correction done 80

for V6 of the data by the MOPITT team (Deeter, 2012). This
is a potential source of error since small location shifts can
have a substantial effect on the RD estimation.

3.2.5 Other sources of uncertainties

Since we used a slightly different pressure level for top of the 85

boundary layer (BL) than P13 to calculate the average wind
direction, we tested the sensitivity of the relative difference
calculation to the height over which the wind-direction was
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Figure 8. Upwind − Downwind difference (left axis, orange, green)
and Relative Difference calculation (right axis, blue points) for
Madrid, Bagdad, Delhi and Moscow using different rotation points
within the city center. GM: GoogleMaps location of the center, GM
shifted: 5 km shift of this point to another center location, Wiki:
Wikipedia location of the center. Wikipedia center points are off
by 3.9, 3.1, 2.1 and 0.7 km from the GM center points for Madrid,
Bagdad, Delhi and Moscow respectively.

averaged. For this test we took the average over 12 (low BL),
15 (normal BL) or 18 (high BL) hybrid pressure layers, re-
spectively at an average pressure of 808 hPa, 717 hPa and
613 hPa. The height of the averaging was found quite im-
portant in determining the value of the RD. For some cities,5

the differences were rather small, but for Moscow, Paris, Sao
Paulo and Delhi, significant differences were found between
the RD values for the calculations using different pressure
layers. We found absolute differences of over 20%, and an
opposite trend sign for Delhi, where the downwind - upwind10

difference between the two periods is rather small. Just as
was found for the dependence on the location of the rotation
point, the downwind-upwind emission estimation values are
usually quite close to each other, but the difference between
2000-2003 and 2004-2008 is relatively small compared to the15

spread in downwind-upwind values of one period, leading to
large differences in the RD values, as P13 also described in
the supporting information of the paper. From this we con-
clude that the choice of the height over which the wind direc-
tion is averaged is important for the satellite-only technique.20

Since there is no objective criterion to choose the “best”
height for rotating the CO column values, this introduces an-
other systematic source of error that will affect the reliability
of the results. By extending the cloud filtering from data with
less than five percent clouds, as we did by filtering on cloud25

diagnostic 1 or 2, to data with a maximum of zero percent
clouds, as in P13, the amount of data is reduced by less than
a percent. The emission estimation, however, still changes
for some cities. For Paris, the downwind-upwind difference
is changing by 27% for the 2004-2008 period. The absolute30

RD change is around 6% for most cities, although for Delhi a
21% difference was found. We do not filter MOPITT data for
retrievals containing water bodies other than rejecting water

and mixed retrievals using the standard MOPITT flags. Since
MOPITT is not able to measure CO in the near-infrared over 35

areas with low albedo, such as water, this can lead to biases
in the emission trend estimates in our method. For Los An-
geles and Sao Paulo, which are both close to the coast, our
analysis may include some scenes with fractional areas of
water, while P13 filtered these out. This might explain part 40

of the difference in RD estimation seen in Fig. 5, especially
for Sao Paulo. As described in the supporting information
of P13 also the averaging radius, the size of the grid cells,
and the across-wind averaging distance can significantly in-
fluence the RD estimation. 45

3.3 WRF optimization method

To overcome the limitations of the satellite-only approach
and to be able to quantify emissions, we developed a differ-
ent method using the WRF model in addition to the satel-
lite data. For this method, the model is sampled at the loca- 50

tion and time of each individual satellite measurement. Since
the model accounts for the seasonality in CO, the model and
satellite data are influenced in the same way by uneven sea-
sonal sampling. Therefore, its influence on the derived trend
is expected to cancel out. The model optimization approach 55

does not need wind rotation, avoiding the uncertainties intro-
duced by this procedure. Likewise, any variation or trend in
the AK influences the model in the same way as it does with
the measurements. In addition, the model accounts for influ-
ences of varying meteorological conditions on the dispersion 60

of the city plume. Besides these advantages of using WRF,
there is one notable drawback, which is the computational
cost of a simulation covering several years. As explained in
the methods section, we do simulations of 1 year; the ac-
companying R2 between the gridded oversampled WRF and 65

MOPITT is then 0.75.
Emissions were estimated by minimizing the cost function

as described in the methods section (see paragraph 2.3.6). In
all simulations, the modelled CO columns were smaller over
the whole domain compared to the satellite, probably due to 70

the omission of secondary and natural CO sources (e.g., from
oxidation of naturally emitted hydrocarbons) in the model.
Over larger geographical regions, biogenic sources can con-
tribute to 40%-80% of the CO column (Choi et al., 2010;
Hudman et al., 2008). As explained, we therefore optimize 75

both the background and the anthropogenic emissions by two
scaling factors, taking into account the AK in the comparison
between MOPITT and the WRF data.

3.3.1 Emission estimation based on the WRF
optimization method 80

We performed emission optimizations for the years 2002
and 2006. Starting with the initial emissions for each asso-
ciated year from EdgarV4.2, we find optimum of 52% of
the EdgarV4.2 emissions in 2002 and 83% of the estimated
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EdgarV4.2 emissions in 2006. This allows us to directly esti-
mate emissions for Madrid for these years: averaged over the
200x200 km2 domain the corresponding emission is 0.22 Tg
of CO for 2002 and 0.20 Tg of CO for 2006. Fig. 9 and 10
show the column averaged mixing ratio patterns before and5

after optimizing the emission, in comparison with the MO-
PITT signal and the remaining difference between WRF and
MOPITT.

Differences with the emission inventories of this magni-
tude are very well possible: the EMEP/EEA air pollution10

guide, also referenced in the articles describing the TNO-
MACC emission dataset, reports uncertainties for CO emis-
sions in the range of 50 and 200% for the sources that are
most important in cities, such as (road) transport and com-
mercial, institutional and residential combustion (European15

Environment Agency, 2013).
Fig. 11 shows for the years 2002 and 2006 the offset be-

tween the model and the satellite data before and after apply-
ing the background and emission optimization. The initial
misfits are in the range of 0 to −8 ppb (around 4% relative20

to the mean CO column mixing ratio around Madrid of ~90
ppb). The model gives initially lower concentrations than the
satellite, which is accounted for in the optimization of the
background.

3.3.2 Sensitivity tests25

It must be noted, however, that our method is quite sensitive
to specific settings used in the inversion. To further investi-
gate the robustness of the WRF optimization method a series
of experiments have been performed, varying the data filter-
ing method (section 2.3.6) and the a priori emissions (using30

EdgarV4.2, TNO-MACC-II and TNO-MACC-III). The re-
sults of these tests are summarized in Fig. 12 and Table 1.
The results of the default procedure that are shown as blue
triangles in Fig. 13 are underlined in Table 1. When we av-
erage the results of all tests, the average optimum is 45% of35

the original emission for 2002 and 87% of the original emis-
sion for 2006 (Fig. 9, upper panel). This is quite close to the
estimates from the standard method, although the range of
possible emissions indicates a sizeable uncertainty: for 2002,
the emissions range between 0.15 and 0.24 Tg of CO over the40

200x200 km2 area around the city center of Madrid, for 2006
this range is between 0.19 and 0.26 (with one outlier of 0.32)
Tg CO, an uncertainty of 23% on the average value. Includ-
ing the TNO-MACC (versions 2 and 3, for the year 2006)
inventories as alternative emission patterns, upper part of the45

range increased to 0.44 Tg for 2006 (Fig. 13, lower panel),
based on the new average value, this is an uncertainty of 56%.
The large sensitivity to the a priori emission pattern can be
explained by the use of a single scaling factor to optimize
the city emissions. Therefore, uncertainties in the emission50

inventory pattern, for example due to missing sources, are
difficult to correct for, using our current inverse modelling

setup. This was found to be a more general problem in inver-
sion studies (Jacob et al., 2016).

To investigate the importance of the background and emis- 55

sion pattern, we performed an additional optimization in
which we reduced the spatial resolution by averaging the re-
trievals and model data to a 20x20 km2 grid (instead of 2x2
km2) in the domain around Madrid. Using this approach, we
find reduced optimal emissions, with differences up to 20% 60

(Table 1, optimization method: 20x20).
Sensitivity to the prior emission pattern has been in-

vestigated in further detail by (1) changing WRF’s back-
ground emissions, (2) inspecting the differences when us-
ing a different emission pattern by using both TNO-MACC 65

and EdgarV4.2 emissions as priori in the model for 2006, (3)
using the EdgarV4.2 2006 emissions as prior in the model
for 2002 and (4) using TIR instead of the multispectral MO-
PITT data to do the optimization. The results have been anal-
ysed by examining the impact on the shape of the cost func- 70

tion (Fig. 12). While the value of the cost function at the
minimum quantifies how well the data are fitted, the second
derivative of the cost function quantifies the robustness of the
emission estimate. For all the 2006 optimizations the second
derivative of the cost function is lower, i.e., is less steep than 75

for the standard optimization for 2002, indicating that the un-
certainty of the estimated emissions is smaller for 2002 than
for 2006. The effect of the different sensitivity tests on the
cost function is described below.

To investigate the contribution of emissions outside the op- 80

timization area on the pattern in CO in the optimization area,
we performed a sensitivity test (sensitivity 1) replacing the
normal background simulation, without any emissions, with
a background simulation that has emissions in the area out-
side the 200x200 km2 optimization area. In the ideal case 85

these "background emissions", i.e., the emissions within the
WRF domains around the optimization area, only contribute
to the background of the 200x200 km2 area around Madrid
without affecting the city pattern. In this case, it is sufficient
to optimize the background with only one factor. If the emis- 90

sions do contribute to the pattern, we expect the results to
have lower cost function values in the optimum. The im-
pact on the optimized emission of Madrid was, however, well
within the estimation uncertainty, as can be seen in Fig. 12
from the difference between solid and dotted lines. These 95

show that the differences between the cost function values
with and without accounting for these emissions are negli-
gible. The emission estimates, however, with this replaced
background, are, especially for 2002 consistently lower than
with the standard background, on average 16% for 2002 and 100

1% for 2006.
Emission patterns differ between the TNO-MACC and the

Edgar inventories (sensitivity 2). The cost function minimum
was slightly lower for the simulation with the TNO-MACC-
III inventory compared to the simulation that uses Edgar 105

emissions. The TNO-MACC-III simulation, however, also
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Figure 9. Column average mixing ratios of CO for 2002 before and after emission optimization in WRF: a) only background optimization.
b) MOPITT V6 signal. c) Difference WRF−MOPITT after background optimization. d) WRF after background and emission optimization.
e) As b. f) As c but now after background and emission optimization. The optimal emission is found to be 0.52 times the original emission.

Figure 10. As Fig. 9 for 2006: (a) only background optimization. (b) MOPITT V6 signal. (c) Difference WRF−MOPITT after background
optimization. (d) WRF after background and emission optimization. (e) As b. (f) As c but now after background and emission optimization.
The optimum emission is found to be 0.83 times the original emission

produces a minimum that is clearly less confined and there-
fore less robust.

For 2002, implementing 2002 emissions clearly gave bet-
ter results than implementing 2006 emissions (sensitivity 3,
not shown). In the end, the most reliable results for 2002 and5

2006 were obtained using EdgarV4.2 emissions in combina-
tion with multispectral data.

The cost function of the TIR optimization (sensitivity 4) is
as steep as that of the standard multispectral optimization, but
the cost function values are much higher in the minimum, in-10

dicating that the TIR data are more difficult to fit by scaling
the emissions in WRF. This can be explained by emissions
outside the 200x200km2 region having a relatively strong in-

fluence on the CO mixing ratios at altitudes where the TIR
retrievals are most sensitive. 15

Despite the various influences on the accuracy of the WRF
optimization discussed in this section, the uncertainties in the
estimates, 23% for 2002 and up to 56% for 2006 are still
smaller than the reported uncertainties in the emission inven-
tories of 50%-200%. This confirms that estimating city CO 20

emissions using MOPITT and WRF seems feasible. How-
ever, the current noise in MOPITT data requires averaging
over at least yearly time periods before there was a clearly
distinguishable signal of Madrid. Next to this, further im-
provements in the methodology are needed to decrease the 25

uncertainty, such as the improved treatment of the back-
ground concentration.
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Figure 11. Comparison of prior and posterior misfits of the WRF
model to the MOPITT retrievals. Left: year 2002, right: year 2006.
Blue bars depicture the difference between the model and satellite
data before optimization, the white bars the difference after back-
ground optimization and the green bars the difference after back-
ground and emission optimization.

3.3.3 Limitations of the WRF optimization method

As we found in the sensitivity tests, an important source of
uncertainty is the background optimization. As can be seen
in the images in the right most columns of Fig. 9 and 10, con-
siderable differences between MOPITT and WRF remain in5

the background column mean mixing ratios after optimiza-
tion. Optimizing the background with a single scaling factor
for the whole domain is clearly insufficient to account for the
complex pattern of differences between the model and the
satellite. Part of the pattern is probably still related to noise10

in the MOPITT data, since we did not filter for very low or
high values in MOPITT, although they can have an important
effect on several cells with the oversampling technique.

Another possible explanation for the remaining differ-
ences between the modelled and observed patterns might be15

other sources of CO, which are not (yet) included in the WRF
model, such as the atmospheric oxidation of volatile organic
carbon compounds from the city or the surrounding forests.
Some forested areas in the north of Madrid indeed appear
to be blue on the difference maps of both 2002 and 2006,20

pointing to underestimated concentrations in the model com-
pared to MOPITT, suggesting that emissions of short-lived
biogenic volatile organic carbon (VOC, quickly converted to
CO) emitted from forests might play a role.

It should also be noted that we did not test for errors in25

WRF in the representation of the dilution and advection apart
from the comparison we made with local ground measure-
ments (section 2.3.4).

3.3.4 Trend estimation with the WRF optimization
method30

To infer the trend in CO emissions from Madrid using the
WRF optimization method, emissions were optimized for
two different years: 2002 and 2006. Because of the three
years in between and the limited inter-annual variability, it
is possible to estimate the trend in emissions over Madrid35

in this period. Both the EdgarV4.2 and the TNO-MACC-
III emission inventories report downward trends in the emis-

Figure 12. Comparison of the cost functions of WRF inversions
using Edgar for the year 2002 (red), 2006 (blue), MACC III for
2006 (light blue). Dark blue: Inversion using Edgar and MOPITT
V6 TIR data instead of NIRTIR for 2006. Dotted lines: Emissions
outside the 200x200km2 area are accounted for in the background
run. Solid lines: No emissions outside the 200x200km2 area in the
background run. Note that for the MACC run the initial emission is
lower than for the Edgar run, so the multiplication factor does not
give an indication of the quantitative difference in optimal emission.

sions over Madrid, with EdgarV4.2 showing the largest de-
crease (−46% and −25% for respectively EdgarV4.2 and
TNO-MACC-III between 2002 and 2006 over Madrid). With 40

our emission optimization approach, however, we found a
trend of only −8%. Averaged over all sensitivity tests, we
even found an upward trend of about 8% (Fig. 13, upper
panel). When the TNO-MACC II or III emissions were used
to simulate the city plume we find a 35% increase in emission 45

between 2002 and 2006 (Fig. 13, lower panel).
In the satellite-only approach, as mentioned earlier, we

find for V6 a decrease of 33% between the 2000-2003 and
the 2004-2008 period over Madrid. However, when we limit
this satellite-only analysis to the years 2002 and 2006, a 5% 50

emission increase is found (Vd − Vu = 1.014×1017 in 2002
and 1.07× 1017 in 2006), which is in better agreement with
the small increase estimated with the average of all sensitiv-
ity tests of the WRF optimization method and the relatively
small decrease estimated with the standard WRF optimiza- 55

tion method.
In all cases, the emission estimation and trend seem to

be lower and less negative than emission and trend reported
by EdgarV4.2 over Madrid and more similar to the TNO-
MACC-III inventory. 60
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Table 1. Optimization-derived CO emissions comparing different approaches

Emission
inventory

Background run Optimization
method

2002 emis-
sion [kg/yr]

2006 emis-
sion [kg/yr]

Edgar
emissions

No anthro emissions
outside 200x200km2

abs(y1−y2) No filter 2.31E+08 1.97E+08

Filter >3 stdev WRF−MOPITT 2.31E+08 1.98E+08
(y1−y2)2 No filter 2.00E+08 1.97E+08

Filter >3 stdev WRF−MOPITT 2.02E+08 1.99E+08
Filter >3 stdev squared 2.15E+08 1.97E+08
Filter MOITT > 4x stdev outliers 2.00E+08 2.57E+08
Filter MOPITT >3x stdev outliers 2.40E+08 2.34E+08

20x20 No filter 1.95E+08 2.02E+08
Filter >3 stdev WRF−MOPITT 1.95E+08 2.03E+08

Edgar
emissions

Anthro emissions out-
side 200x200 km2

abs(y1−y2) No filter 2.17E+08 1.92E+08

Filter >3 stdev WRF−MOPITT 2.16E+08 1.93E+08
(y1−y2)2 No filter 1.58E+08 1.90E+08

Filter >3 stdev WRF−MOPITT 1.62E+08 1.91E+08
Filter >3 stdev squared 1.84E+08 1.90E+08
Filter MOITT > 4x stdev outliers 1.58E+08 2.46E+08
Filter MOPITT >3x stdev outliers 1.93E+08 3.19E+08

20x20 No filter 1.55E+08 1.91E+08
Filter >3 stdev WRF−MOPITT 1.56E+08 1.92E+08

MACCv3
emissions

No anthro emissions
outside 200x200km2

abs(y1−y2) No filter 3.59E+08

Filter >3 stdev WRF−MOPITT 3.58E+08
(y1−y2)2 No filter 3.75E+08

Filter >3 stdev WRF−MOPITT 3.74E+08
Filter >3 stdev squared 3.68E+08
Filter MOPITT > 4x stdev outliers 4.43E+08
Filter MOPITT >3x stdev outliers 4.24E+08

20x20 No filter 3.89E+08
Filter >3 stdev WRF−MOPITT 3.89E+08

MACCv2
emissions

No anthro emissions
outside 200x200km2

abs(y1−y2) No filter 2.89E+08

Filter >3 stdev WRF−MOPITT 2.87E+08
(y1−y2)2 No filter 3.23E+08

Filter >3 stdev WRF−MOPITT 3.23E+08
Filter >3 stdev squared 3.17E+08
Filter MOPITT > 4x stdev outliers 3.64E+08
Filter MOPITT >3x stdev outliers 3.84E+08

20x20 No filter 3.32E+08
Filter >3 stdev WRF−MOPITT 3.32E+08

4 Summary and conclusions

We have developed a new method to quantify CO emissions
of cities based on a combination of satellite data and model
simulations. This method is an extension of the method de-
veloped by Pommier et al. (2013), based on the pixel averag-5

ing technique of Fioletov et al. 2011 to oversample satellite
data, enabling the city signals to be distinguished within a
reasonable time frame. We extended the urban-scale emis-
sion trend estimation techniques by adding CO mole frac-

tions modelled with the WRF model. The comparison of 10

model and satellite data enabled us to quantify the CO emis-
sions over Madrid, whereas the satellite-only method was
only able to determine a trend in the emissions. We identi-
fied and discussed limitations of the satellite-only technique:
it is influenced by sampling differences between years, it is 15

slightly dependent on the a priori information used in the
MOPITT retrievals (RD changes ~3%-5%), it is influenced
by a trend in the averaging kernel (RD changes 5%), it is
strongly dependent on the exact location of the wind-rotation
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Figure 13. CO emissions in totals per year for the 200x200 km2

area around Madrid, comparing inversion and inventory estimates.
Blue triangles, solid line: inversion results for the year 2002 and
2006; blue dotted: EdgarV4.2; Green: TNO-MACC-II; Red dotted:
TNO-MACC-III. The grey error bars and thick grey bar represent
the range and the mean of the solutions obtained in various sensi-
tivity tests (see text): upper panel: emission estimations based on
EdgarV4.2 prior only; lower panel: including other prior emissions
in the WRF model for optimization (see text). The uncertainty of
the Edgar and MACC emission inventory estimates are estimated at
50%-200% (Kuenen et al., 2014).

(RD changes up to 25% for locations up to 5 kilometres
apart) and some uncertainty can also come from the chosen
height for wind averaging for the rotation (RD changes up
to 22%) and the chosen cloud filter method (RD changes of
around 6% but 21% for Delhi). Our results suggest that the5

uncertainties of the emission proxies in P13 (0.01-0.1×1017

molecules/cm2) are too optimistic. A more realistic uncer-
tainty for the emission proxy should rather be in the or-
der of the mean discrepancy that we found between our re-
sults for V5 of the MOPITT data and P13, i.e., 0.5× 101710

molecules/cm2. The absolute changes between the two pe-
riods in emission proxy are close to our revised uncertainty
estimate. This leads to RDs that are very often in the uncer-
tainty range of the method.

Some effort can be made to overcome the largest part of15

these problems, by e.g., deseasonalizing the data, accounting
for the change in AK and using the emission inventory cen-
ter for wind rotation of the data. This will probably increase
the reliability and robustness of the satellite-only trend esti-
mation. We chose, however, to investigate another method,20

which also enabled us to quantify the emissions. With this
method, we do not suffer from the limitations of the satellite-
only approach, as in our approach the model data is sampled
according to the satellite data and no wind rotation is required
because the model accounts for influences of varying meteo-25

rological conditions on the dispersion of the city plume. For
the WRF-optimization method, it is needed to average one
year of data to sufficiently reduce the noise in the MOPITT

retrievals to observe a clear signal from the city of Madrid.
Averaging over a year will also smooth both the MOPITT 30

and WRF data and reduce the effect of random model errors,
while still providing a shorter period compared to the four
and five year periods used in P13. To estimate the emissions,
a quadratic cost function of the difference between the satel-
lite and model data was minimized by adapting the emissions 35

in the model. The optimum was found using Brent’s method
scaling two factors. To account for missing sources, we op-
timized the background concentrations with a single scaling
factor over the whole area. The emission estimation is based
on the change in emission factor. 40

For 2002 we found that at the optimum the emissions were
0.52 times the original emissions in Edgar. For 2006 we esti-
mated the emissions to be 0.83 times the reported emissions
in Edgar. These values are more in agreement with the TNO-
MACC-III inventory values for emissions around Madrid. 45

After optimization, however, the remaining differences be-
tween WRF and MOPITT are still large. This is probably
caused by differences in the CO patterns between MOPITT
and WRF, especially for 2006. Additional data filtering to re-
duce this error or the use of other a priori emission patterns 50

influences the optimized emissions significantly. For 2002
we found a possible range of emissions between 0.15 and
0.24 Tg of CO over the 200x200 km2 area around the city
center of Madrid, for 2006 the estimations range between
0.19 and 0.26 (with one outlier of 0.32) Tg CO. Expressed 55

as a percentage this is an uncertainty of 23% in the 2002
emission and up to 56% for the 2006 emission. These values
are still smaller than the reported uncertainties in the used
emission inventories of 50%-200% (Kuenen et al., 2014).
These uncertainties are comparable to our estimated uncer- 60

tainty in the satellite-only method, but we also note that this
new method is able to quantify emissions and that the uncer-
tainties are based on one-year average MOPITT and model
data, instead of the 4 and 5 year averages which were used
in the satellite-only method. Our relatively simple method 65

can thus be used to make an (approximate) estimation of city
emissions. Our study confirms that estimating city CO emis-
sions using MOPITT and WRF is feasible, however, further
development of the method is needed to improve precision
and robustness. 70
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Appendix A: Emission datasets

Sectors in Edgar: Agricultural waste burning, residential,
road transportation, non-road transportation, fossil fuel fires,
large scale biomass burning (Emissions from savannah burn- 110

ing (4E) and land use change and forestry (5) are not grid-
ded), combustion in manufacturing industry, metal processes,
energy industry and waste incinerator, non-metallic paper
chemical industry; transformation, oil production and re-
finering. 115
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Sectors in MACC: Combustion in energy and transforma-
tion industries, non-industrial combustion plants, combus-
tion in manufacturing industry, production processes, extrac-
tion and distribution of fossil fuels and geothermal energy,
solvents and other product use, road transport, other mobile5

sources and machinery, waste treatment and disposal, agri-
culture.

Appendix B: Simulation periods

For the quantification of CO emissions from Madrid, we
tested four different simulation periods in WRF. In this test,10

we optimized the trade-off between minimizing model cal-
culation time and maximizing retrieval information content.
The following averaging periods were selected: 10 days
(from 1-10 July 2006), a full month (July 2006), a four
months summer season (June-September 2006, JJAS) and15

a full year (2006). The shorter periods are all chosen in
summer, as most data are available in this season. WRF
was sampled for each individual MOPITT retrieval apply-
ing the AK, as described earlier, and a spatial comparison
was made between the WRF and MOPITT-derived images of20

200x200km2 over Madrid. For each period the oversampling
method was applied to grid both WRF and MOPITT data on
the 2x2km2 grid; no wind rotation was done. The scatterplots
of these gridded data are shown in Fig. A2. Each subplot con-
sists of the 10,000 points of this grid (note that for the shorter25

periods, there are overlapping points, originating from neigh-
bouring grid cells that rely on the same data). Generally, the
spatial variation in the WRF column averaged CO mixing
ratios is much smaller compared to the MOPITT data, be-
cause of the limited precision of the individual data and the30

smaller variability in the CO signal in WRF. After averaging
10 days and 1 month of data the variability in MOPITT is
still much higher than the variability in WRF, R2 values are
respectively 0.43 and 0.33. This is probably partly due to the
high measurement noise in MOPITT and partly caused by35

the lack of spatial variability in the model. Using four sum-
mer months (JJAS) or one year leads to better results, with
R2 values of 0.55 and 0.75 respectively. The period of a year
gave clearly the best, and useful, results and was therefore se-
lected for emission estimation. A CO mixing ratio enhance-40

ment over the city was also best visible for the yearly period
(not shown).
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Figure A1. Yearly averaged AK area (Rodgers, 2000) values for the 200x200km2 domain around Madrid from the surface (values plotted
at 1000hPa, note that the average surface pressure around Madrid is actually closer to 900hPa) to the 50 hPa level for the years 2000-2008,
March to December (except June, July to minimize biases from uneven sampling, for NIR (left) and TIR (right)).
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Figure A2. Comparison between MOPITT V6 and WRF for different temporal sampling times. WRF results are sampled according to the
coordinates of single MOPITT retrievals and both are averaged on a 2x2km2 grid, (a) for a 10 day period (1-10 July 2006), (b) for a 1 month
period (July 2006), (c) for a 4 month period: June-September 2006 and (d) for the whole year 2006.
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Table A1. MOPITT V5 multispectral Downwind−upwind differences (Vd−Vu) in total column CO over large cities and the relative differ-
ence (RD) between 2000-2003 and 2004-2008, comparing results from this study and Pommier et al. (2013). The values from Pommier et
al. (2013) are provided in parentheses

Megacity (Coordinates) Vd − Vu: Our study,
(Pommier et al.) 2000-2003
[1017 molec/cm2]

Vd − Vu: Our study,
(Pommier et al.) 2004-2008
[1017 molec/cm2]

RD: Our study, (Pommier et
al.) [%]

Moscow (55.75°N,37.62°E) 2.41±0.04 (2.8±0.03) 1.74±0.05 (2.3±0.06) −27.9±4.5 (−18.5±3.7)
Paris (48.85°N,2.35°E) 1.48±0.06 (1.3±0.05) 0.58±0.03 (1.0±0.03) −60.7±8.5 (−22.2±6.9)
Mexico (19.4°N,99.1°W) 7.27±0.06 (7.0±0.09) 5.08±0.04 (4.2±0.06) −30.1±1.6 (−39.9±2.6)
Tehran (35.68°N,51.42°E) 5.06±0.05 (4.4±0.02) 3.20±0.03 (2.5±0.06) −21.5±2.6 (−42.9±2.8)
Baghdad (33.32°N,44.42°E) 2.31±0.03 (2.2±0.01) 1.23±0.04 (1.2±0.03) −46.7±4.4 (−46.5±2.9)
Los Angeles (34.05°N,118.23°W) 4.82±0.07 (6.1±0.11) 3.38±0.07 (4.9±0.07) −29.8±3.7 (−19.6±3.4)
Sao Paulo (23.53°S,46.62°W) 1.96±0.03 (1.5±0.04) 1.79±0.05 (1.1±0.03) + 5.74±4.9 (−26.9±5.4)
Delhi (28.63°N,77.22°E) 1.16±0.02 (0.9±0.02) 1.42±0.04 (1.1±0.04) + 22.0±4.3 (+ 22.4±5.8)
Madrid* (40.41°N,3.71°W) 0.79±0.02 (–) 0.95±0.02 (–) + 20.5±4.6 (–)

*Madrid was not included in the study of Pommier et al. (2013)
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Table A2. MOPITT V6 multispectral Downwind−upwind differences (Vd−Vu) in total column CO over large cities and the relative differ-
ence (RD) between 2000-2003 and 2004-2008, comparing results from this study and Pommier et al. (2013). The values from Pommier et
al. (2013) are provided in parentheses

Megacity (Coordinates) Vd − Vu: Our study,
(Pommier et al.) 2000-2003
[1017 molec/cm2]

Vd − Vu: Our study,
(Pommier et al.) 2004-2008
[1017 molec/cm2]

RD: Our study, (Pommier et
al.) [%]

Moscow (55.75°N,37.62°E) 3.19±0.04 (2.8±0.03) 2.08±0.04 (2.3±0.06) −34.9±3.1 (−18.5±3.7)
Paris (48.85°N,2.35°E) 1.29±0.02 (1.3±0.05) 0.94±0.03 (1.0±0.03) −27.3±4.4 (−22.2±6.9)
Mexico (19.4°N,99.1°W) 6.98±0.05 (7.0±0.09) 5.34±0.05 (4.2±0.06) −23.4±1.6 (−39.9±2.6)
Tehran (35.68°N,51.42°E) 4.05±0.06 (4.4±0.02) 3.04±0.02 (2.5±0.06) −24.8±2.0 (−42.9±2.8)
Baghdad (33.32°N,44.42°E) 2.24±0.03 (2.2±0.01) 1.37±0.02 (1.2±0.03) −39.0±2.8 (−46.5±2.9)
Los Angeles (34.05°N,118.23°W) 5.75±0.06 (6.1±0.11) 3.32±0.12 (4.9±0.07) −36.6±3.6 (−19.6±3.4)
Sao Paulo (23.53°S,46.62°W) 1.70±0.02 (1.5±0.04) 2.38±0.08 (1.1±0.03) + 40.0±4.4 (−26.9±5.4)
Delhi (28.63°N,77.22°E) 1.09±0.02 (0.9±0.02) 1.11±0.02 (1.1±0.04) + 2.24±5.6 (+22.4 ±5.8)
Madrid* (40.41°N,3.71°W) 0.97±0.03 (–) 0.64±0.02 (–) −33.0±5.7 (–)

*Madrid was not included in the study of Pommier et al. (2013)
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