Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest

Linda M.J. Kooijmans, Kadmiel Maseyk, Ulli Seibt, Wu Sun, Timo Vesala, Ivan Mammarella, Pasi Kolari, Juho Aalto, Alessandro Franchin, Roberta Vecchi, Gianluigi Valli, Huilin Chen.

5

Table S1. 222Rn exhalation rates (FRn) in Hyytiälä as obtained from different references. For monthly rates published in Szegvary et al. (2009) and López-Coto et al. (2013) we only show the months that are relevant for this study.

Reference	$F_{Rn} (mBq m^{-2} s^{-1})$	Variability
Szegvary et al., 2007 [*]	15.3	61.51 °N, 23.79 °E, 46 km distance
		from Hyytiälä, 24.7 % SWC
Szegvary et al., 2009°	7.4	June
	11.0	July
	11.5	August
	14.7	September
	16.0	October
	13.8	November
	12.4 ± 3.1	Average
Manohar et al., 2013°	7.0	
López-Coto et al., 2013º	7.8	June
	7.7	July
	7.6	August
	7.5	September
	7.5	October
	7.3	November
	7.6 ± 0.2	Average
Karstens et al., 2015°	4.0	Soil moisture map ERA-Interim
	11.4	Soil moisture map NOAH
Total average	9.6 ± 4.1	

* Measured

10 ° Modelled

Figure S1: Overview of (a) meteorological conditions (SWC, T_{air} and RH), (b) VPD, (c) g_{sCOS} , (d) EC-based fluxes F_{COS-EC} and NEE_{EC} and (e) radon-based fluxes F_{COS-Rn} and NEE_{Rn}. 5-day running averages are plotted in corresponding colors. For g_{sCOS} , the running average is only plotted up to September 1st as only very few data points are available after that period.

Figure S2: Correlations of F_{COS-EC} with g_{sCOS} , T_{air} , VPD, and u_* . All data are averages over individual nights (with nighttime defined as sun elevation below -3°). In this plot F_{COS-EC} is not filtered based on u_* as this would leave too few data points to make a correlation.