Dominance of climate warming effects on recent drying trends over wet monsoon regions

Chang-Eui Park1,2, Su-Jong Jeong1, Chang-Hoi Ho2, Hoonyoung Park2, Shilong Piao3, Jinwon Kim4, Song Feng5

1School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055, China6
2School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, South Korea7
3College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China8
4Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 90024, CA, USA9
5Department of Geosciences, University of Arkansas, Fayetteville, 72701, AR, USA10

January 2017

Atmospheric Chemistry and Physics

Correspondence to: Su-Jong Jeong (waterbell@gmail.com)

Abstract

Understanding changes in continental surface dryness is key information for adapting to climate change because of the critical socioeconomic consequences. Recent studies reveal that spatial patterns of continental dryness trends are in contrast to the “dry gets drier, wet gets wetter” paradigm. Causes of the complexity in dryness trends remain uncertain because various climate parameters control continental dryness. Here, we quantify the relative effects of dominant climate drivers on dryness trends over continental East Asia, which is characterized by diverse hydro-climate regimes ranging from humid to arid, by analyzing observed data from 189 weather stations for the period of 1961-2010. Since the early 1980s, monsoon climate zones (east of 100°E) have been getting significantly drier, but the related mechanisms vary according to the hydro-climate regime. Drying trends in arid regions are mostly explained by reduced precipitation. In contrast, in humid areas, the increase in evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, is the primary condition for the increase in dryness. This drying impact of atmospheric moisture deficiency is much stronger in humid areas than in arid areas. Our results suggest that enhanced atmospheric water demands caused by warming can threaten water resources in wet monsoon areas and possibly in other warm and water-sufficient regions.
Introduction

The mechanism behind changes in continental fundamentally differs from that over the ocean because of limited surface moisture availability (Hoekstra and Mekonnen, 2012; Greve et al., 2014; Sherwood and Fu, 2014; Hegerl et al., 2015). In many assessments, precipitation (P), the amount of water supply, is regarded as a key variable for understanding variations in dryness, particularly in humid regions such as Asian monsoon regions (Wang et al., 2012; Kitoh et al., 2013; Liu and Allan, 2013). For example, in East Asia, dryness changes are generally summarized as “the dry western region (west of 100°E) is getting wetter, the dry northern region (east of 100°E and north of 35°N) is getting drier, and the wet southeastern region (east of 100°E and south of 35°N) is getting wetter” based on changes in annual mean P (Wang and Ding, 2006; Piao et al., 2010). In addition, a decrease in P leads to drying trends over the northern and central-east regions of India, part of the South Asian monsoon region (Zhou et al., 2008; Roxy et al., 2015). However, climate change significantly varies potential evapotranspiration (PET) (Liu et al., 2010; Han et al., 2012; Shan et al., 2012), the amount of atmospheric moisture demand. PET variations largely affect dryness trends that are in turn closely related to the occurrence of droughts, water scarcity, and tree mortality (Westerling et al., 2006; Williams et al., 2013; Dai, 2013). Drying impacts of PET increase are usually emphasized in water-limited regions (Westerling et al., 2006; Estes et al., 2014); however, humid areas are also expected to experience severe aridification in the 21st century because of a continuous increase in PET (Feng and Fu, 2013; Cook et al., 2014). Thus, the processes involved in the variability of dryness need to be examined over various hydro-climate regimes to better understand continental dryness changes.

This study aims to elucidate the mechanisms of dryness trends in continental East Asia through the analysis of observed climate data at 179 and 10 weather stations in mainland China and South Korea, respectively, for the period 1961–2010. The long-term trend in dryness is a critical concern for continental East Asia, as it is a region of massive populations, widely varying hydro-climate regimes, fragile ecosystems, and significant agricultural activities (Piao et al., 2010; Geng et al., 2014; Jeong et al., 2014). Also, the analysis region has recently experienced abrupt climate changes (Gong and Ho 2002; Yue et al., 2013). For example, northeast China experienced severe warming by 0.36 °C decade$^{-1}$ for the period of 1960-2006 (Piao et al. 2010). Rainfall intensity has significantly increased over southeastern China (Zhai et al., 2005). Previous assessments of trends in surface dryness show contradictory results over continental East Asia. Assessments based on grid reanalysis data generally
suggest that continental East Asia is getting drier due to an increase in PET accompanied by an increase in the vapor pressure deficit (VPD) (Feng and Fu, 2013; Greve et al., 2014; Huang et al., 2016). On the contrary, the other studies using site observations reported that more than half of the stations over mainland China show negative trends in both PET/P and PET, indicating a decrease in surface dryness, following a decrease in solar irradiance and wind speed despite continuous warming (Wu et al., 2006; Zhang et al., 2009; Huang et al., 2016). Thus, a quantitative analysis is needed to explain the contradiction between previous assessments regarding surface dryness over continental East Asia.

In this study, an aridity index, PET/P, defined as PET based on the Penman–Monteith equation (Penman, 1948; Allen et al., 1998) divided by P, is employed to assess surface dryness and its trends (Middleton et al., 1997; Estes et al., 2014; Greve et al., 2014). Over land, the amount of actual evaporation (AET) is constrained by the amount of P, which is also generally less than PET because of limited available water at the land surface (Fu and Feng, 2014; Greve et al., 2014). Thus, the PET/P ratio is more suitable for measuring the degree of water deficiency or surplus for a certain climate condition. If the value of PET/P is less than unity, the location is classified as a wet region, and vice versa. Likewise, as the aridity index decreases, the land surface becomes wetter, and vice versa. By the definition of the aridity index, trends in surface dryness can be resolved by combining the effects of changes in five climate parameters: P, net radiation (Rn), wind speed (WS), surface air temperature (Ta), and relative humidity (RH). Furthermore, we classify the analysis domain into three hydro-climate regimes based on the 50-year climatology of PET/P: arid (PET/P ≥ 2), transitional (1 ≤ PET/P < 2), and humid (PET/P < 1) (Geng et al., 2014) (Fig. S1). The ratio PET/P and regional classification allow the identification of climate parameters that are important for trends in surface dryness over the three hydro-climate regimes.

2 Methods and data

2.1 Climate dataset

Climate data for the period 1961–2010 are obtained from 179 and 10 meteorological sites in mainland China and South Korea, respectively. Data include daily mean air temperature, precipitation, wind speed at a height of 10 m, relative humidity, and sunshine duration. The quality of this data is controlled by the National Meteorological Center of the China Meteorological...
Administration and Korea Meteorological Administration. The meteorological sites satisfy the following criteria: 1) the existence of all climate parameters in the year 2010, 2) sufficient records for at least 10 years for the two analysis periods (i.e., 1961–1983 and 1984–2010).

2.2 Calculation of daily PET

Daily PET values are calculated from the Penman-Monteith approach, which is one of the credible methods for estimating atmospheric water demand (Sheffield et al., 2012). The formulation of daily PET following the Penman-Monteith approach is written as:

\[
PET = \frac{\Delta}{\Delta + \gamma} R_n + \frac{\gamma}{\Delta + \gamma} \frac{c_1(1 + c_2 U_2)(e_s - e_a)}{\lambda}
\]

where \(\Delta\) is the slope of the vapor pressure curve (kPa K\(^{-1}\)) at a certain temperature, \(\gamma\) is the psychrometric constant (kPa K\(^{-1}\)), \(R_n\) is the net radiation at the surface (mm day\(^{-1}\)), \(c_1\) is 6.43 MJ kPa\(^{-1}\) day\(^{-1}\), \(c_2\) is 0.536 s m\(^{-1}\), \(U_2\) is the wind speed at a height of 2 m (m s\(^{-1}\)), \(e_s\) is the saturation vapor pressure of the air (kPa), \(e_a\) is the actual vapor pressure (kPa), and \(\lambda\) is the latent heat of vaporization (MJ mm\(^{-1}\)) (Allen et al., 1998; Sheffield et al., 2012). This PET equation is a simplified form of the FAO Penman-Monteith equation that neglects stomatal conductance and heat flux from the ground. All of the variables are computed using the station-based climate data following an equation set that is described in the FAO56 report (Allen et al., 1998). The wind speed at a height of 2 m is computed from station-observed wind speed at 10 m using a wind profile relationship (Han et al., 2012). Station elevations are computed by linear interpolation and Global 30 Arc-Second Elevation (GTOPO30) of the United States Geological Survey to estimate the net radiation based on sunshine duration. There are differences between the interpolated elevation and actual elevation due to the limitation of spatial resolution, but the temporal variation of PET or the relative influence of climate parameters cannot be changed with the elevation differences.

2.3 Change-point analysis

We use two methods to find the change-point of the temporal variation of PET/P. One method defines the change-point when cumulative sum of PET/P variation for the \(t\)th year (\(C_t\)) is greatest (Pettitt, 1980). The cumulative sum \(C_t\) is provided as follows:

\[
C_0 = 0 \quad (2)
\]

\[
C_i = C_{i-1} + (X_i - \bar{X}) \quad (3)
\]
where \(X_i \) is the PET/P anomaly in year \(i \), and \(\bar{X} \) is the averaged PET/P for the whole analysis period. In the other change-point model (Elsner et al., 2000), \(X_i \) is the same, PET/P of the \(i \)th year. \(\bar{X} \) is defined as \(\log_{10}(X_i + 1) \). The step variable \(T_i \) is defined for an integer \(p \) that changes from 2 to \(q = N - 1 \) as follows:

\[
T_i(p) = \begin{cases} 0, & i < p \\ 1, & i \geq p
\end{cases} \quad (4)
\]

where \(N \) is the total number of years of the analysis period 1961–2010. Using the step-variable \(T_i \), a simple linear first-order regression model is suggested for an integer \(p \) as follows:

\[
Y_i = a_0(p) + a_1(p)T_i(p) + e_i(p) \quad (5)
\]

where \(a_0(p) \) is the intercept, \(a_1(p) \) the slope and \(e_i(p) \) the error of residual at \(Y_i \) for a fixed \(p \). In addition, the value of \(P(p) \) is computed by

\[
P(p) = \bar{a}_1(p)/se[\bar{a}_1(p)] \quad (6)
\]

where \(se[\bar{a}_1(p)] \) is the standard error of \(a_1(p) \). Let \(P(p_1) = \max(|P(2)|, |P(3)|, \ldots, |P(q)|) \). The \(p_1 \) can be a change-point if the \(P(p_1) \) is statistically significant.

2.4 Estimation of the relative influences of climate parameters

The derivative of the aridity index with respect to time is written using the following equation:

\[
\frac{d}{dt} \left(\frac{PET}{P} \right) = -\frac{PET \frac{dP}{dt}}{P^2} + \frac{1}{P} \frac{dPET}{dt} \quad (7)
\]

The first and second terms on right-hand side indicate temporal changes in the aridity index due to changes in \(P \) and \(PET \). \(PET \) can be decomposed into four climate parameters using multilinear regression:

\[
PET = a_{Rn}R_n + a_{WS}WS + a_{Ta}Ta + a_{RH}RH + b \quad (8)
\]

where \(a_{Rn}, a_{WS}, a_{Ta}, \) and \(a_{RH} \) are the regression coefficients of \(R_n, WS, Ta, \) and \(RH, \) respectively, and the constant \(b \) is the intercept. We obtain the time derivative of Eq. (8) as follows:

\[
\frac{dPET}{dt} = a_{Rn} \frac{dR_n}{dt} + a_{WS} \frac{dWS}{dt} + a_{Ta} \frac{dT_a}{dt} + a_{RH} \frac{dRH}{dt} \quad (9)
\]

where each term on the right-hand side indicates trends in \(PET \) with respect to changes in each climate variable individually. Finally, Eq. (7) is written as follows:
where the terms on the right-hand side indicate the trend in the aridity index considering changes in P, Rn, WS, Ta, and RH, sequentially. \bar{P} and \bar{PET} are the average of P and PET for the analysis period, respectively.

\begin{equation}
\frac{d}{dt} \left(\frac{PET}{P} \right) = -\frac{PET}{P^2} \frac{dP}{dt} + \frac{1}{P} \left(a_{Rn} \frac{dRn}{dt} + a_{WS} \frac{dWS}{dt} + a_{Ta} \frac{dTa}{dt} + a_{RH} \frac{dRH}{dt} \right)
\end{equation}

3 Results

3.1 Changes in dryness trends over continental East Asia during 1961-2010

Figure 1 depicts temporal variations in mean PET/P, P, and PET for all stations expressed as annual mean anomalies. For the entire period, PET/P decreases at a rate of -2.30% decade$^{-1}$ due to both increases in P (2.44% decade$^{-1}$) and decreases in PET (-0.52% decade$^{-1}$), implying reduced dryness caused by increased water supply as well as decreased atmospheric water demands. However, the temporal variation in PET/P is not monotonic. The change-point of the long-term trend in PET/P is 1983 based on two change-point analyses. This change-point is significant at the 99% confidence level. The trend in PET/P is negative (-1.81% decade$^{-1}$) for 1961–1983 and positive (1.66% decade$^{-1}$) for 1984–2010 (Fig. 1a). The decrease in PET/P before the early 1980s is due mainly to the relatively large increase in P (4.56% decade$^{-1}$) rather than the decrease in PET (-0.95% decade$^{-1}$) (Figs. 1a and 1b). In contrast, the increase in PET (1.22% decade$^{-1}$) largely contributes to the increase in PET/P during the later period (Figs. 1a and 1c).

The spatial distributions of PET/P, P, and PET trends are consistent with those of the overall changes in both periods (Fig. 2). Note that the scale of P trends (Figs. 2b and 2e) is reversed in order to represent drying and wetting trends as red and blue colors, respectively. For the earlier period, 60% of the total number of stations show decreasing trends in PET/P, particularly in the arid (northwestern and northern China) and humid regions (southeastern China) (Fig. 2a). Increasing trends in PET/P, with relatively small magnitudes, occur mainly in the transitional region (northeastern and southwestern China). The spatial pattern of the P trend is similar to that of the PET/P trend but with the opposite sign, suggesting that the changes in P are directly linked to changes in PET/P for most of the analysis region (Figs. 2a and 2b). Decreasing trends in PET appear in more
than three-quarters of the analysis domain, but these are significant only in humid regions because of their small magnitudes (Figs. 2a and 2c).

In the later period, the spatial patterns of the PET/P, P, and PET trends change drastically over the monsoon climate regions (east of 100°E) (Figs. 2d–2f). The trends in PET/P shift from negative to positive values in both the humid (southeastern China) and arid (northern and northeastern China) regions (Figs. 2a and 2d). These notable alterations of the PET/P trend lead to an increasing trend of overall mean PET/P after the early 1980s (Figs. 1a and 2d). Trends in P also change significantly: positive trends are reversed in the arid regions, and the magnitude of the increasing trend decreases in the humid regions (Figs. 2b and 2e). The P trends are consistent with the PET/P trends in the arid region but not in the humid area (Figs. 2d and 2e). Significant increases in PET explain the inconsistency between the trends in PET/P and P in the humid area (Figs. 2d and 2f).

The trend shifts that occur around the early 1980s are consistent with regional patterns of changes in climate variables in East Asian monsoon regions. The variations of P are directly associated with the decadal variability of the East Asian monsoon circulation. As monsoon circulation weakened, both meridional circulation and southerlies decreased over the East Asian monsoon region; hence, moisture transport is concentrated over southern China (Ding et al., 2008). These changes create favorable conditions for rainfall over the humid monsoon region but opposite situations over the arid monsoon region. Since the late 1970s, weakening of monsoon circulation has led to significant decreases and increases in P over arid and humid regions, respectively (Ding et al., 2008; Piao et al. 2010). The increasing trend in P over the humid area decreases or reverses as a result of the reduction in monsoon rainfall related to the recovery of monsoon circulation after the early 1990s (Liu et al., 2012; Zhu et al., 2012). As a consequence of changes in the monsoon circulation, the decreasing trends in P in the arid region are greater than the increasing trends in the humid area (Fig. 2e). Changes in other climate fields are linked to the positive PET trends (Fig. 2f). For example, the warming trend becomes more severe in the later period (Ge et al., 2013; Yue et al., 2013) (Figs. S2c and S2g). The trend in absorbed solar radiation changed from dimming to brightening, particularly in the humid region (Tang et al., 2011) (Figs. S2a and S2e). Consequently, the combined impacts of changes in climate parameters resulted in the increase in PET/P.
3.2 Relative influences of five climate parameters on changes in dryness trends

To identify the climate variable that contributed most significantly to the observed PET/P trends, we computed the relative influences of changes in P, Rn, WS, Ta, and RH on the PET/P trends over three hydro-climate regimes (Table S1). Figure 3 displays the averaged effects of five climate parameters and their confidence intervals over the three hydro-climate regimes for the two analysis periods. Here, positive values of a particular variable indicate increasing rates of PET/P with respect to changes in that variable only, and vice versa. Note that this analysis focuses on the monsoon region, which shows significant variability in the trends of PET/P. Stations located in western China (west of 100°E) are excluded. The mean climate of western China is distinctly different from the monsoon climate. Furthermore, the dryness trends in these regions are more strongly associated with variations in P for both analysis periods than with other climate variables (Fig. S3).

The relative effects of climate parameters are significantly different according to the analysis period and the hydro-climate regime, indicating that the mechanisms involved in changing PET/P trends operate differently (Fig. 3). Over the arid region, the positive effects of P, Ta, and RH (1.15%, 0.44%, and 0.55% decade$^{-1}$, respectively) increase the aridity before the early 1980s (Fig. 3a). In addition, the large confidence range of P indicates a substantial impact of P on the PET/P trends locally (Fig. S3a). In the later period, the change in P provides the largest influence (3.27% decade$^{-1}$), at least twice the magnitude of any other climate parameter. These results imply that the decrease in P is the main cause of the significantly increasing trend in PET/P over the arid region. In the transitional region, the negative influence of Rn (-0.85% decade$^{-1}$) appears to be the largest in the earlier period (Fig. 3b), but the wide confidence interval of P suggests that PET/P trends vary spatially according to the changes in P (Fig. S3a). In the later period, PET/P increased because of the positive influences of changes in P, Ta, and RH (2.02%, 0.97%, and 0.99% decade$^{-1}$, respectively), despite the negative effects of Rn and WS (-0.34% and -0.48% decade$^{-1}$, respectively). Thus, the increasing trend of PET/P in the transitional region is largely a consequence of surface warming (i.e., Ta) and decreases in P and RH. Over the humid area, negative effects of both P and Rn (-4.52% and -2.06% decade$^{-1}$, respectively) lead to the decrease of PET/P in the earlier period (Fig. 3c). The contribution from each of the other three variables is much smaller. In contrast, in the later period, the positive influences of Ta and RH (0.79% and 1.81% decade$^{-1}$, respectively) are somewhat larger than the negative influences of P and Rn (-1.08% and -0.70% decade$^{-1}$, respectively). Thus,
the increasing trend in PET/P over the humid region is mainly caused by the warming and subsequent increase in atmospheric water demand.

4 Discussions and Conclusions

The present study suggests that trends in surface dryness reverse from wetting to drying around the early 1980s over both arid and humid monsoon regions. In addition, major climate parameters determining dryness trends vary by both analysis period and by region. For the period of 1961-1983, trends in surface dryness are mostly attributed to changes in P, regardless of region. A significant decrease in Rn reinforces wetting trends over the humid area by decreasing PET. Large influences of P and Rn on dryness trends are consistent with the results of previous studies on trends in aridity and PET using daily observations of weather (Wu et al., 2006; Han et al., 2012).

In the later period, changes in P, Ta, and RH lead to drying trends over the monsoon regions. Figure 4 illustrates the impacts of the three variables on the dryness trend in the arid and humid monsoon regions, respectively. Over the arid monsoon region, PET/P is greatly increased by the positive effects of the three variables, whereas the humid monsoon region shows relatively small increases in PET/P because the positive effects of Ta and RH are offset by the negative effects of P. In contrast to the importance of the effect of evaporative potential on surface dryness in other water-limited regions (Westerling et al., 2006; Estes et al., 2012), the decrease in P plays a dominant role in the increasing PET/P trends in the arid monsoon region. In the humid monsoon area, the decrease in RH shows the largest effect on the PET/P trend, despite the relatively small magnitude of warming. The relationship between air temperature and saturation vapor pressure (e_s) (e.g., the Clausius–Clapeyron equation) explains the large influence of the decrease in RH. Due to high mean temperatures in the humid monsoon region (shades of the map in Fig. 4), warming leads to a steep increase in e_s and a subsequent decrease in RH, resulting in a large increase in evapotranspiration.

Our results based on point observations already include various anthropogenic impacts such as land use/land cover changes (LULCC) and increased aerosol emissions, which can influence climate and further surface dryness (Menon et al., 2002; Guo et al., 2013). For example, in the later period, positive influences of P are generally inconsistent with negative influences of
Rn (Fig. 3a) because of the decrease in P is favorable condition for the increase in Rn, which can result in positive influences of Rn on the surface dryness trend. We anticipate that aerosols can play an important role in the decrease in Rn in the arid region by absorbing and scattering solar irradiance. Furthermore, additional heating due to urbanization may cause different trends in atmospheric water demands between urban and rural areas (Han et al., 2012; Ren and Zhou, 2014). However, examining the effects of LULCC and aerosols on trends in surface dryness lies beyond scope of the present study.

The effects of Ta and RH, which act to dry land surfaces, increased significantly in recent decades in all regions (Fig. 3). Moreover, over the humid monsoon region, increases in RH show a greater influence on trends in surface dryness than increases in P. This is an unusual situation considering the large variability of summer monsoon rainfall over continental East Asia. The large influence of RH is supported by steep warming over the humid monsoon area after the early 1980s. This kind of drying mechanism is consistent with that suggested in assessments dealing with changes in surface dryness during the 20th and 21st centuries using reconstructed data and future climate projections (Sherwood and Fu, 2014). Thus, our study could be an observed precursor of the projected drying trends over the humid areas in 21st century (Cook et al., 2014; Yin et al., 2015).

The present results also indicate that drying of the land surface in response to warming is already in progress, not simply a future risk. Therefore, water management planning must consider the increased water demands associated with warming in order to mitigate water scarcity, even in the wet monsoon regions.
Code and data availability

Codes of NCAR Command Language version 6.3.0, Python, and Interactive Data Language for calculation and climate data are available upon request to the correspondence author Su-Jong Jeong (waterbell@gmail.com).

Author Contributions

C.-E. P. conceived and designed the study, analysed data, and wrote the paper. S.-J. J. helped conceive of the study, and wrote the paper. C.-H. H. wrote the paper. H. P. analysed data, and wrote the paper. S. P., J. K., and S. F. helped conceive of the study and wrote the paper.

Competing interests

The authors declare no competing financial interest.

Acknowledgements

This study was funded by the Korea Ministry of Environment as the “Climate Change Correspondence Program”.

References

Figure 1: Temporal variations of annual-mean PET/P (a), P (b), and PET (c) in continental East Asia. Yellow and blue bars indicate the positive and negative anomalies for PET/P and PET, respectively, but negative and positive anomalies for P, respectively. Black, blue, and red lines are linear regression lines (% decade$^{-1}$) for the periods 1961–2010, 1961–1983, and 1984–2010, respectively.
Figure 2: Spatial distributions of trends in PET/P, P, and PET over continental East Asia.

a−c: The spatial distribution of trends in annual-mean PET/P (a), P (b), and PET (c) for the period of 1961–1983. d−f: as a−c, but for the period 1984–2010. Inverse triangles, circles, and triangles represent stations classified as arid, transitional, and humid regions, respectively. The empty square indicates that the trend is significant at the 95% confidence level.
Figure 3: Relative influences (% decade\(^{-1}\)) of five climate parameters averaged over the three hydro-climate regimes: arid (a), transitional (b), and humid (c). The influences are computed for the two analysis periods: 1961–1983 and 1984–2010. Blue, pink, beige, orange, and cyan bars represent the respective influences of P, Rn, WS, Ta, and RH. Error bars represent confidence intervals at the 95% confidence level.
Figure 4: Schematic diagram of the contributions of P, Ta, and RH on the PET/P trends in arid and humid monsoon regions for the period of 1983–2010. Diagrams of the influences of P, Ta, and RH on the trend in PET/P over arid and humid monsoon regions in 1983–2010 are located to the right of annual-mean temperature over continental East Asia for 1961–2010 ($^\circ$C). Empty squares and filled circles are stations classified as arid and humid monsoon regions (east of 100°E), respectively.