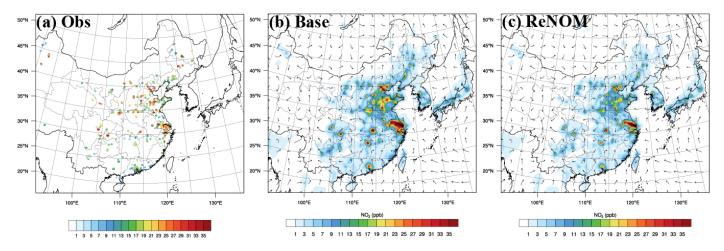
Supporting information for:

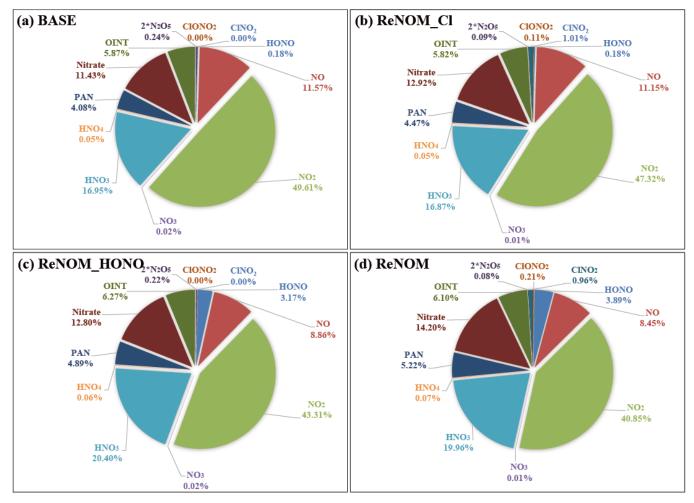
Integrated Impacts of Nitrous Acid and Nitryl Chloride on Ozone: New Module Developments for Reactive Nitrogen in WRF-Chem and Applications in summertime over China

Li Zhang¹, Qinyi Li¹, Tao Wang^{1,*}, Ravan Ahmadov^{2,3}, Qiang Zhang⁴, Meng Li⁴, Mengyao Lv⁵

¹ Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China,


² Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA,

³ Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA,


⁴Center for Earth System Science, Tsinghua University, Beijing, China,

⁵ National Meteorological Center, China Meteorological Administration, Beijing, China

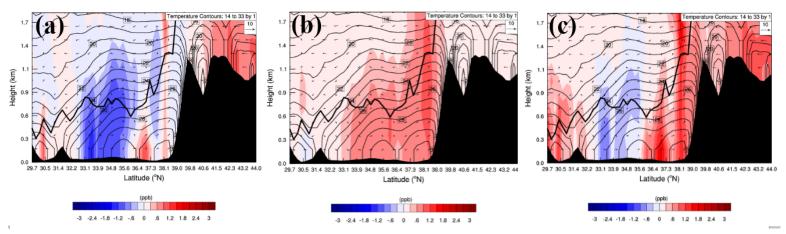

**Correspondence to:* T. Wang (cetwang@polyu.edu.hk)

Figure S1. Spatial distributions of the (a) observed daily-averaged NO₂ concentration and modeled ones in (b) the Base case and (c) ReNOM case during the simulation period.

Figure S2. Regional averages of NO_y partitioning over eastern China in (a) BASE case, (b) ReNOM_Cl case, (c) ReNOM_HONO case, and (d) ReNOM case.

Figure S3. Vertical distributions of daytime ozone enhancements in (a) ReNOM_HONO case, (b) ReNOM_Cl case, and (c) ReNOM case in the domain intercepting the northern China and central China. Vectors present the average v-w wind components (m s¹), dash lines the temperature ($^{\circ}$ C), and black line the simulated planetary boundary layer height during daytime.