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Abstract. The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a

strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly

distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and

surface-area-to-volume ratio (SAV) and the bounding volume of each ice sphere collection is given by the snowflake maxi-

mum dimension. Radar backscatter cross sections for the icesphere collections are calculated at X-, Ku-, Ka-, and W-band5

frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs). Ad-

ditionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator

of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures

cover a wide range of triple-frequency signatures that werepreviously determined from radar reflectivity measurements and

illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results10

show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the param-

eterization of snowflake mass, indicating the importance ofsnowflake SAV for the interpretation of snowfall triple-frequency

radar signatures.

1 Introduction

Snowfall retrievals from radar remote sensing of snow clouds are highly sensitive to the applied characterization of the15

snowflake microstructure, i.e., of snowflake mass and shape (e.g., Matrosov, 2007; Liu, 2008; Kulie et al., 2010; Cooper et al.,

2017). To analyze and model snowfall radar signatures, snowflakes have often been represented by (i) mixed ice–air spheres or

spheroids parameterized with respect to snowflake size and aspect ratio (e.g., Matrosov, 1992; Hogan et al., 2006, 2012)or by

(ii) detailed three-dimensional (3D) shape models of single snow crystals or aggregate snowflakes based on various idealized

ice crystals like bullet rosettes, dendrites, plates, or columns (e.g., Kulie and Bennartz, 2009; Nowell et al., 2013; Ori et al.,20

2014; Honeyager et al., 2016).

In recent years, several studies have found that the ‘soft’ spheroidal particle model, where the volume, density, and complex

index of refraction of a homogeneously mixed ice–air spheroid are derived from the snowflake size, mass, and aspect ratio,

yields a realistic description of microwave backscatter only for small snowflakes and at low frequencies (e.g., Petty and Huang,

2010; Tyynelä et al., 2011; Nowell et al., 2013). Furthermore, the analysis of radar reflectivity measurements collected simul-25
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taneously at three microwave frequency bands has shown thatthe range of observed snowfall triple-frequency radar signatures

is much larger than the total range of modeled snowfall radarsignatures when representing snowflakes by soft spheroids;espe-

cially triple-frequency radar signatures of snowfall characterized by large aggregate snowflakes fall outside the modeled range

(Leinonen et al., 2012; Kulie et al., 2014; Kneifel et al., 2015). Using detailed 3D shape models instead of soft spheroids leads

to a wider range of modeled snowfall triple-frequency radarsignatures and indicates better agreement between observed and5

modeled snowfall radar signatures.

Due to the large variety of (visually distinct) snow types defined by characteristic geometric shapes resembling the snowflake

microstructure, such as planar dendrites or aggregates of plates (Magono and Lee, 1966; Kikuchi et al., 2013; Fontaine et al.,

2014), and the high natural variability of snowflake microstructural properties like size and aspect ratio (e.g., Brandes et al.,

2007; Gergely and Garrett, 2016), modeling microwave backscatter in snowfall based on detailed snowflake 3D shape models10

requires significant computational resources and time, e.g., when determining backscatter cross sections for a large number

of snowflake models with the widely used discrete dipole approximation (Draine and Flatau, 1994). Therefore, it would be

desirable to identify ‘effective’ microstructural parameters that quantify snowflake shape independent of snow type and still

explain important features of observed and modeled snowfall radar signatures, thus further constraining snowflake shape for

snowfall remote sensing.15

In materials science, four basic characteristics play a central role for an objective and quantitative description of 3D mi-

crostructures: volume fraction or equivalently (mass) density, surface area per volume, integrated mean curvature per volume,

and integrated Gaussian curvature per volume (Ohser and Mücklich, 2000). Physical and chemical properties strongly depend

on these characteristics and can often already be analyzed faithfully when the 3D microstructure is quantified through all

or some of these four characteristics. Ice volume fraction or snow density and the ratio of ice surface area to volume are20

crucial for modeling light scattering and radiative transfer at optical wavelengths in falling and deposited snow, forexam-

ple (Grenfell and Warren, 1999; Grenfell et al., 2005; Kokhanovsky and Zege, 2004; Picard et al., 2009; Gergely et al., 2010).

Besides snowflake density, however, none of these four basiccharacteristics have been investigated to evaluate the impact of

snowflake shape on snowfall microwave scattering signatures.

In this study, snowflake density and surface-area-to-volume ratio (SAV) are used to model snowflake backscatter cross25

sections at X-, Ku-, Ka-, and W-band frequencies and then derive snowfall triple-frequency radar signatures for realistic

snowflake size distributions. The impact of snowflake SAV on snowfall triple-frequency radar signatures is analyzed based

on high-resolution snowflake imaging data collected with the Multi-Angle Snowflake Camera (MASC; Garrett et al., 2012),a

pre-established density–diameter relationship for deriving snowflake mass from snowflake maximum dimension according to

Heymsfield et al. (2004), and the snowflake SAV range given by Honeyager et al. (2014).30

First, MASC measurements are presented in Sect. 2. The applied method for modeling snowflake backscatter cross sections

and snowfall triple-frequency radar signatures is described in Sect. 3. Individual snowflakes are represented by collections of ice

spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and SAV and the bounding

volume of each ice sphere collection is defined by the snowflake maximum dimension. Backscatter cross sections of these

collections of ice spheres are calculated with the generalized multiparticle Mie solution (Xu, 1995; Xu and Å. S. Gustafson,35
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2001). For the same snowflake mass, different SAV values leadto collections of ice spheres characterized by a different ice

sphere size and number. This characteristic forms the basisfor analyzing the impact of snowflake SAV on modeled snowflake

backscatter cross sections and snowfall triple-frequencyradar signatures in Sect. 4. The analysis includes a comparison with

snowfall triple-frequency radar signatures determined for soft spheroids and for snowflakes modeled according to the self-

similar Rayleigh–Gans approximation (Hogan and Westbrook, 2014; Hogan et al., 2017). Additionally, snowflake complexity5

values obtained from MASC images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar

signatures. The results are discussed in the context of observed and modeled snowfall radar signatures that were presented in

previous studies. Section 5 summarizes the findings and conclusions.

2 Snowflake observations

First, the Multi-Angle Snowflake Camera (MASC) and the derived snowflake microstructural properties are described briefly10

(a more detailed description of a similar MASC model using slightly different camera optics and of the performed MASC

image analysis was given byGarrett et al., 2012). As the applied approach for modeling the impact of snowflake SAV on

snowfall radar signatures is partly based on collected snowflake data, MASC measurement results are also presented before the

modeling method is introduced in Sect. 3.

2.1 Measurement method15

Estimates of near-surface snowflake microstructural properties are obtained from MASC photographs taken at Alta (UT, USA)

and at Barrow (AK, USA) during winter 2013–2014 and spring 2014. The MASC provides multi-view snowflake images from

three cameras that are separated by36◦ and point at an identical focal point at a distance of 10 cm.Snowflake images are

recorded at a resolution of about 30 µm with horizontal fieldsof view of about 40 mm at the focal-point distance. The cameras

and three light-emitting diodes serving as flash lights are triggered simultaneously at a maximum rate of 2 Hz as snowflakes20

fall through an array of near-infrared emitter–detector pairs sampling the horizontal fields of view of the cameras.Snowflakes

with maximum dimensions of 0.2 mm and larger are recorded by the MASC and identified in the images using a Sobel edge

detection algorithm. Figure 1 shows images of two snowflakescaptured by the MASC center camera at Alta.

In this study, MASC images are used to derive the snowflake diameterD or maximum dimension along the snowflake major

axis, the orientation angleθ of the snowflake major axis with respect to the horizontal plane, and the snowflake complexityχ25

defined as the ratio of the snowflake perimeter to the circumference of a circle with the same area as the snowflake projection

image (illustrated in Fig. 1). For all snowflakes,D, θ, andχ are given as average values determined from the MASC single-view

images of the snowflakes.

The applied definition ofχ quantifies snowflake complexity based on the boundary curve length of two-dimensional (2D)

snowflake images. Projection images of spherical snow particles are characterized by a circular boundary curve independent of30

viewing direction, and thus by a complexity ofχ= 1. As a circle has the shortest perimeter of any boundary curvefor a given

enclosed area, all non-spherical particle shapes lead to complexity values ofχ > 1. Accordingly, heavily rimed graupel snow
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Figure 1. (left) MASC single-view images of two snowflakes: (top) aggregate snowflake and (bottom) heavily rimed graupel snow. (right) Il-

lustration of the corresponding projection images of perimeterP (highlighted white regions) and area-equivalent circles of circumfer-

enceC (outlined in red), leading to complexity valuesχ= P

C
of (top) χ= 2.1, (bottom)χ= 1.2. Derived snowflake diametersD and

orientation anglesθ are indicated by solid and dotted magenta lines, respectively: (top) D = 5.7 mm, θ = 16◦; (bottom)D = 2.3 mm,

θ = 31◦.

is described by a low snowflake complexity ofχ≈ 1 and large aggregate snowflakes are characterized by higher complexity

values (see examples in Fig. 1).Lowerχ values are then expected to indicate stronger snowflake riming in general (see also

Garrett and Yuter, 2014, who used a definition of snowflake complexity which additionally included brightness variations

within each MASC image to classify snowflakes according to their degree of riming).

One MASC was installed at Alta Ski Resort at 2590 m above sea level (a.s.l) in Collins Gulch within the Wasatch Mountain5

Range. A second MASC was located at Barrow at the North Slope of Alaska Atmospheric Radiation Measurement (ARM) site

at 10 m a.s.l., approximately 500 km north of the Arctic Circle on the coast of the Arctic Ocean.

2.2 Measurement results

Figure 2 shows the distributions of snowflake diameterD, complexityχ, and orientation angleθ derived from all qualifying

MASC observations with realistic complexity values ofχ≥ 1 that were collected at Alta from December 2013 to April 201410

and at Barrow in April and May 2014, resulting in a MASC data set of 4.4 · 105 sampled snowflakes. Snowflake size distribu-

tionsN(D) are expressed as frequency size distributions and reflect the number of snowflakes sampled at Alta (4.3 · 105) and

at Barrow (104). For snowflake complexity and orientation, the presented relative distributions are normalized with respect to

the maximum valuesNmax(χ) andNmax(θ) of the respective frequency distributionsN(χ) andN(θ).

The distributions of snowflake diameters and complexities in Fig. 2 are dominated by small values and show exponential15

decay for diameters ofD & 1 mm and for the entire complexity range ofχ≥ 1. In contrast to snowflake diameters and com-
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Figure 2. Snowflake (frequency) size distributionsN(D) and relative distributions of snowflake complexityχ and orientationθ for 4.4 ·105

snowflakes sampled by MASC at Alta and Barrow. Dashed lines represent minimum and maximum slope parametersΛmin andΛmax of

exponential snowflake size distributionsN(D) and exponential complexity distributionsN(χ) fitted to 47 snowstorms at Alta and to 7

snowstorms at Barrow.The number of recorded extreme values outside the plotted range is 33 forD and 43 forχ. Mean orientation angles

at Alta and at Barrow areθ = 40◦ andθ = 45◦, respectively. Numerical values ofΛmin, Λmax, and meanΛ are given in the text.

plexities, snowflake orientation angles are characterizedby a nearly uniform distribution with mean values ofθ = 40◦ derived

for the set of MASC observations at Alta andθ = 45◦ at Barrow.

Similar to previous studies that have used exponential snowflake size distributions to describe snowfall (e.g., Matrosov,

2007; Kneifel et al., 2011), snowflake (frequency) size distributionsN(D) [mm−1] in this study are expressed through

N(D) =N0 exp(−ΛD) , (1)5

whereΛ is the exponential slope parameter specifying the width of the distribution andN0 [mm−1] denotes the scaling factor

determined by the snowflake sample size. Commonly,N(D) andN0 are additionally normalized with respect to atmospheric

volume to account for the atmospheric snow water content, givingN(D) andN0 in units of mm−1 m−3. As the normalization

of N(D) has no impact on the analyzed dual-wavelength ratios of modeledZe in Sect. 4.2, the scaling factorN0 is ignored in

the analysis and exponential distributions are specified only through the exponential slope parameterΛ.10
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Exponential snowflake size distributionsN(D) were fitted to MASC data restricted toD > 1 mm and collected for 47

snowstorms at Alta and 7 snowstorms at Barrow.These snowstorms lasted between 4 h and 24 h, and102 to 104 snowflakes

were recorded during each snowstorm. Small sample sizes of102 snowflakes correspond to snowstorms at Barrow marked by

very low snowfall liquid equivalent of less than about 1 mm and by strong crosswinds that affected overall sampling efficiency.

Large sample sizes of up to104 snowflakes correspond to high-intensity snowfall at Alta. For each snowstorm, the sampled5

snowflakes were divided into 20 size bins according to their diameterD. An exponential snowflake size distributionN(D) was

then determined by the non-linear least squares method for fitting Eq. (1) to the binned snowflake size distribution.

For uniform visualization in Fig. 2,N(D) curves illustrating the total range of exponential size distributions fitted to the

MASC data from Alta and from Barrow were rescaled to the totalnumber of snowflakes sampled at the respective location.

At Alta, N(D) are characterized by exponential slope parameters ofΛmin = 0.5 mm−1 ≤ Λ≤ Λmax = 3.1 mm−1 with mean10

Λ = 1.2 mm−1. At Barrow, the range ofN(D) is given by0.6≤ Λ≤ 3.6 mm−1 with meanΛ = 1.5 mm−1. The derived

exponential slope parameters yield snowflake size distributionsN(D) that are in line with previously presented snowflake size

distributions using different measurement methods, e.g.,by Brandes et al. (2007) and Tiira et al. (2016), with their reported

median volume diametersD0 of the derived snowflake size distributions converted toΛ = 3.67/D0 for N(D) given by Eq. (1).

For each analyzed snowstorm, the sampled snowflakes were also divided into 20 bins according to their complexityχ,15

and an exponential snowflake complexity distributionN(χ) =N1 exp(−Λχ) was fitted to the binned distribution by the non-

linear least squares method. At Alta, the range ofN(χ) is characterized by exponential slope parameters ofΛmin = 1.5≤ Λ≤

Λmax = 5.5 with meanΛ = 3.3. At Barrow, a range of1.2≤ Λ≤ 5.0 is found with meanΛ = 2.2 (see Fig. 2).

To illustrate the correlation between snowflake diameterD and complexityχ, Fig. 3 shows a logarithmic 2D histogram

of the frequency distributions forD andχ at Alta and Barrow (Fig. S1 in the Supplement shows the corresponding non-20

logarithmic 2D histogram). Calculated mean complexity valuesχ per size bin∆D are shown separately for both MASC

data sets collected at Alta (χ/∆D given forD ≤ 15 mm) and at Barrow (χ/∆D given forD ≤ 10 mm) to indicate typical

snowflake complexities at the two locations. Despite the skewed distribution ofχ within the size bins, the choice of whether

typical snowflake complexities are quantified through the mean or through the median complexity per size bin has only a minor

influence on the derived results in this study and does not affect the drawn conclusions.25

As already seen in Fig. 2, small values ofD andχ dominate the distributions in Fig. 3. Additionally, mean complexityχ gen-

erally increases with increasing snowflake diameter. Notably, snowflake complexities ofχ= 1.0 are not observed for snowflake

diameters ofD & 3 mm. These results are consistent with previous observations suggesting that larger snowflakes are generally

aggregates characterized by a high complexity of the snowflake microstructure (Garrett and Yuter, 2014).

Based on the mean snowflake complexity valuesχ per size bin∆D shown in Fig. 3, a snowflake complexity–diameter30

relationship is then defined by a modified power law as

χ(D) = 1+ aDb , (2)

with parametersa andb. Power laws have been applied to parameterize a variety of snowflake propertiesy with respect to

snowflake size, illustrated by the density–diameter relationship in Eq. (3), for example. In Eq. (2), the constant ofχ0 = 1 is
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Figure 3. Logarithmic 2D histogram for all MASC data of snowflake diameter D and complexityχ presented in Fig. 2, with bin sizes of

∆D = 0.1 mm and∆χ= 0.01. Mean complexity values per size bin are indicated byχ/∆D for snowflake data recorded at Alta and at

Barrow separately. Snowflake complexity–diameter relationshipsχ(D) for the data sets collected at Alta and at Barrow are determined by

the non-linear least squares method for fitting Eq. (2) to thevalues ofχ/∆D and characterized by the power-law exponentb.

added to the commonly used pure power law of the formy(D) = aDb due to the definition ofχ, which leads to a minimum

value ofχmin(D) = χ0 = 1 (Sect. 2.1).

Figure 3 shows the twoχ(D) curves for the MASC data from Alta and from Barrow determinedby the non-linear least

squares method for fitting Eq. (2) to the mean complexity valuesχ per size bin∆D. These twoχ(D) relationships, with fitted

parameters ofa= 0.20, b= 0.75 at Alta anda= 0.36, b= 0.54 at Barrow, are dominated by the power-law term ofaDb for5

large snowflakes and thus follow the observed increase inχ with increasing snowflake diameter, but also reflect the observed

convergence ofχ→ 1 for small snowflakes.Furthermore, the mean complexity valuesχ per size bin∆D and the two derived

χ(D) curves generally indicate lower snowflake complexities (ata given snowflake diameter) for the MASC data recorded at

Alta.

3 Modeling method10

In this study, snowflakes are specified by their diameter, mass, and surface-area-to-volume ratio (SAV). Snowflake diameters

were derived from a large set of MASC observations in Sect. 2.In Sect. 3, the quantification of snowflake mass and SAV is

described, and the approach for modeling snowflake backscatter cross sections and snowfall triple-frequency radar signatures

is presented.
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3.1 Snowflake mass

No coincident measurements of snowflake mass are available for the analyzed MASC data in Sect. 2. Therefore, snowflake

mass is derived from measured snowflake diameterD following a previously determined density–diameter relationship that

uses a similar definition of snowflake diameter (Heymsfield etal., 2004, abbreviated as ‘H04’ throughout the text). H04 de-

termined effective ice-cloud particle densities by combining observations by airborne 2D optical array probes with coincident5

measurements of cloud ice water content. According to theirresults, snowflake densityρf [g cm−3] and massmf [mg] are

calculated from snowflake maximum dimensionD [mm] for a spherical snowflake bounding volumeVf of diameterD:

ρf(D) = 0.104D−0.950 (3)

and

mf(D) = ρf(D)Vf =
π

6
ρf(D)D3 . (4)10

Here, derivedρf(D) values are limited to the density of pure iceρice = 0.917 g cm−3, leading to densities ofρf(D) = ρice for

snowflakes withD ≤ 0.1 mm.

With Eqs. (3) and (4), snowflake massmf can alternatively be expressed through the radiusreq of a single mass-equivalent

ice sphere given by

r3eq(D) =
3mf(D)

4πρice
. (5)15

Analyzed snowflake and snowfall backscatter properties in Sect. 4 are determined from different modeling approaches

that all rely on the same parameterization of snowflake mass following Eqs. (3)–(5). The impact of the parameterization of

snowflake mass on the presented results and conclusions is evaluated byuniformly increasing and decreasingall snowflake

densitiesρf(D) obtained from Eq. (3) by 25 % and by 50 %.

20

3.2 Snowflake surface-area-to-volume ratio

The normalized snowflake surface-area-to-volume ratioξ is defined as the ratio of snowflake surface-area-to-volume ra-

tio SAVf to the surface-area-to-volume ratioSAVs of a mass-equivalent ice sphere:

ξ =
SAVf

SAVs

. (6)

This definition ofξ for snowflake 3D microstructures is conceptually similar tothe definition of complexityχ applied to25

snowflake 2D projection images in Sect. 2.For a given ice volume or mass, an ice sphere has the smallest surface area of any

3D microstructure and a surface-area-to-volume ratio ofSAVf = SAVs = 3/r with ice sphere radiusr, leading to a normalized

SAV of ξ = 1. Increasing values ofξ > 1 then imply a larger deviation of the snowflake shape from an ice sphere, and thus an

increasing complexity of the snowflake 3D microstructure.
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Figure 4. Synthetically generatedξ(D) relationships for deriving normalized snowflake surface-area-to-volume ratioξ from snowflake

diameterD by Eq. (7) withD ≤Dmax = 23.6 mm. Shownξ(D) curves reflect the total range ofξ(D) relationships used for modeling

snowfall triple-frequency radar signatures in Sect. 4.2.

Snowflake SAV is quantified from the total range ofξ values determined by Honeyager et al. (2014). They used a Voronoi

cell-based approach to define an effective SAV by Eq. (6) for their database of snowflake 3D shape models and found values

of 1≤ ξ ≤ 5.

The impact of snowflake SAV on snowfall radar signatures is analyzed based on synthetically generated expressionsξ(D).

Theseξ(D) relate normalized SAV to snowflake diameter with1≤ ξ(D)≤ 5 for 0≤D ≤Dmax, whereDmax refers to the5

maximum diameter of the snowflake size distribution. Based on the MASC observations in Sect. 2.2 where the average

snowflake complexityχ(D) for all snowflakes with diameterD was derived from snowflake 2D projection images and ex-

pressed through a power law plus constant of one in Eq. (2),ξ(D) relationships indicating the complexity of the snowflake 3D

microstructure are again formulated as modified power laws of

ξ(D) = 1+ pDq . (7)10

Figure 4 shows severalξ(D) curves that illustrate the total range of power-law exponents q considered in the analysis, in-

cluding constant values determined by settingq = 0. The parameterp is merely a scaling factor confining Eq. (7) to the interval

of 1≤ ξ(D) ≤ 5. Only monotonically increasingξ(D) with q ≥ 0 are considered because the analyzed MASC observations in

Sect. 2.2 indicated an overall increase in snowflake complexity with increasing snowflake size.

Constantξ(D) = 1.0, 1.6, 2.0, 2.5, 3.0, 4.0, and 5.0 shown in Fig. 4 are used to model snowflake backscatter cross sections15

in Sect. 4.1 and lead to a wide range of snowfall triple-frequency radar signatures in Sect. 4.2. The discussion of how snowflake

surface-area-to-volume ratio affects modeled snowfall triple-frequency radar signatures in Sect. 4.2 focuses on these constant

ξ(D). Nonetheless, non-constantξ(D) given by Eq. (7) with exponentsq > 0 are included in the analysis to outline the total

range of modeled snowfall triple-frequency radar signatures and to establish a relationship between normalized snowflake
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surface-area-to-volume ratioξ and snowflake complexityχ that reflects the similarity of these two characteristics and can be

applied to estimateξ(D) relationships for the recorded MASC data at Alta and at Barrow.

The method for relatingξ to χ uses the two complexity–diameter relationshipsχ(D) fitted to the MASC data in Fig. 3.

To estimateξ(D) relationships at Alta and at Barrow, it is assumed that the snowflake complexity range of1≤ χ(D)≤

χ(Dmax) = χmax at each location corresponds to the full snowflake SAV range of 1≤ ξ ≤ 5 with5

ξ(χ) = 1+
5− 1

χmax − 1
(χ(D)− 1) . (8)

After inserting Eq. (2) forχ(D), Eq. (8) leads to a modified power law forξ(D) given by Eq. (7), with power-law exponent of

q = b. Only the scaling factora in Eq. (2) is modified by Eq. (8) to mapχ(D) onto the interval of1≤ ξ ≤ 5.

High values ofq ≫ 1 in Eq. (7) lead toξ(D) relationships marked by a steep increase fromξ = 1 to ξ = 5 for large snowflake

diameters (see Fig. 4), corresponding to a sudden change in snowflake shape from ice spheres to complex 3D shapes found for10

aggregates, for example. This is an unrealistic description of snowflake shape because such an abrupt transition is not seen in

snowflake observations. Figure 3 showed power-law exponents of b. 1, leading toq . 1 according to Eq. (8). Nonetheless,

ξ(D) with q ≫ 1 are also included for completeness. Section 4.2 indicates that theseξ(D) relationships contribute only a small

fraction to the total range of modeled snowfall triple-frequency radar signatures and do not affect the drawn conclusions.

3.3 Snowflake backscatter cross sections15

Microwave backscatter by a snowflake is modeled at X-, Ku-, Ka-, and W-band frequencies of 10, 14, 35, and 94 GHz, respec-

tively. Here, the (radar) backscatter cross sectionσb is calculated for mass- and SAV-equivalent collections of non-overlapping

ice spheres with the generalized multiparticle Mie (GMM) solution (Xu, 1995; Xu and Å. S. Gustafson, 2001). Calculatedσb

values correspond to the differential scattering cross sections at backscatter multiplied by4π (see Bohren and Huffman (1983)

for a discussion on commonly applied conventions for expressing backscatter by a particle). The modeling approach is outlined20

in Fig. 5 and described in this section.

A snowflake defined by the diameterD, the massmf(D), and the normalized surface-area-to-volume ratioξ is represented

by a collection of ice spheres where the radiusrcl and the numberNcl of the constituent ice spheres are specified bymf , or

equivalently byreq through Eq. (5), and byξ:

rcl(req, ξ) =
req
ξ

,25

Ncl(ξ) = ξ3 . (9)

The snowflake diameterD specifies the (spherical) bounding volumeVf of the collection of ice spheres according to Eq. (4).

Limitations of this representation and implications for the modeling results presented in Sect. 4 are discussed in Appendix A.

Equation (9) preserves snowflake mass and normalized surface-area-to-volumeratio given bymf =
4π
3
ρicer

3
eq =

4π
3
ρiceNclr

3
cl

and ξ = SAVf/SAVs = ( 3
rcl

)/( 3
req

), respectively.This approach derives the parameterization of the constituent ice spheres30

from effective microstructural properties of the modeled snowflake in contrast to other methods where mass and shape of the

constituent ice crystals were parameterized in detail and the microstructure of the modeled snowflake was then derived by

aggregation of the ice crystals (e.g., Westbrook et al., 2004; Nowell et al., 2013; Leinonen and Moisseev, 2015).
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Figure 5. Sketch of the modeling approach described in Sect. 3.3, withthree examples highlighted in red, green, and blue. The impact of

normalized snowflake surface-area-to-volume ratios of1≤ ξ ≤ 5 on modeled snowflake backscatter cross sectionsσb is investigated by

applying the generalized multiparticle Mie (GMM) solutionto collections of randomly distributed ice spheres characterized by the radiusrcl

and the numberNcl of the constituent ice spheres and by the snowflake diameterD indicating the spherical bounding volume of the ice

sphere collections.

The MASC observations presented in Sect. 2.2 showed nearly uniform distributions of snowflake orientation angles and

therefore suggest randomly oriented snowflakes for the analyzed snowfall data. To account for random snowflake orientation

in the applied modeling approach and also include a variety of 3D microstructures derived for the same values ofD, mf(D),

andξ, 500 realizations of randomly distributed non-overlapping ice spheres insideVf are used to model each configuration of

D andξ, or equivalently each configuration ofrcl andNcl. The snowflake backscatter cross sectionσb(D;ξ) is determined5

as the mean of all backscatter cross sectionsσb,1(D;ξ), ...,σb,500(D;ξ) that are calculated by the GMM solution for the 500

individual realizations. Here, the refractive index of allconstituent ice spheres is given by the complex refractive indexnice,λ

of pure ice calculated according to Mätzler and Wegmüller (1987), leading to refractive indices ofnice,λ = 1.8+ 2.3 · 10−4i,

1.8+ 3.2 · 10−4i, 1.8+ 8.2 · 10−4i, and1.8+ 2.4 · 10−3i at 10, 14, 35, and 94 GHz, respectively.

Sets of 500 realizations were chosen for averaging because mean values ofσb(D;ξ) stabilize to within relative differences10

of less than 0.1 once101 to 102 collections of randomly distributed ice spheres are included (see Fig. S2 in the Supplement for

details). These uncertainties inσb(D;ξ) are small compared to the impact ofξ on modeledσb(D;ξ), characterized by relative

differences of up to a factor of102 in Sect. 4.1. The presented methodology then quantifies the impact of normalized SAV on

the calculated backscatter cross sections without including effects due to the spatial distribution or clustering of theNcl ice

spheres inside the bounding volumeVf .15
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To analyze the impact of snowflake surface-area-to-volume ratio on modeled backscatter cross sections for a given snowflake

diameterD, σb(D;ξ) are calculated for seven values ofNcl = 1, 4, 8, 16, 27, 64, and 125, corresponding to normalized

snowflake surface-area-to-volume ratios ofξ = 1.0, 1.6, 2.0, 2.5, 3.0, 4.0, and 5.0, respectively. Backscatter cross sections for

intermediate values ofNcl = ξ3 are determined from linear interpolations of the seven calculatedσb(D;ξ) values. The pa-

rameterξ, describing the snowflake microstructure, and the numberNcl, specifying the corresponding collections of randomly5

distributed ice spheres inside the snowflake bounding volume, are used interchangeably throughout this study according to

Eq. (9).

For comparison, the analysis also includes mass-equivalent soft (mixed ice–air) oblate spheroids and snowflakes mod-

eled according to the self-similar Rayleigh–Gans approximation (SSRGA; Hogan and Westbrook, 2014; Hogan et al., 2017).

Backscatter cross sections of randomly oriented soft spheroids with major axis lengthD are calculated with the T-matrix10

method (Waterman, 1971), using the implementation of Mishchenko and Travis (1998) within the PyTMatrix software pack-

age of Leinonen (2014). Aspect ratios ofα= 1, 0.6, and 0.2 are considered, representing soft spheres with α= 1, spheroids

that are characterized by typical average values ofα= 0.6 found in snowflake observations (e.g., Korolev and Isaac, 2003;

Gergely and Garrett, 2016) and used for the interpretation of snow- and ice-cloud radar measurements (Matrosov et al., 2005;

Hogan et al., 2012), and spheroids described by extreme values of observed snowflake aspect ratios ofα= 0.2. Effective re-15

fractive indices of the soft spheroids are determined by applying the Maxwell–Garnett mixing rule (Maxwell Garnett, 1904) for

volume mixtures of ice inclusions in air, given by the massmf(D) and the volumeαVf of the spheroidal snowflakes, and for the

complex refractive indexnice,λ of pure ice. The SSRGA has been derived to approximate backscatter cross sections for detailed

3D shape models of aggregate snowflakes based on a statistical description of mean snowflake microstructure and deviation

from the mean microstructure. Calculatedσb values with the SSRGA represent ensemble averages for 101 different realiza-20

tions of the snowflake 3D microstructure with the same snowflake diameterD, for 50 random orientations of each snowflake

3D shape model, and for then illuminating each of the reoriented 3D shape models along its three orthogonal directions. Here,

the SSRGA is applied to snowflake masses derived by Eqs. (3) and (4) and for complex refractive indicesnice,λ of pure ice,

using the parameterizations listed by Hogan et al. (2017) for synthetic aggregate snowflakes that were generated according to

Westbrook et al. (2004), abbreviated as ‘W04’ throughout the text, and according to Nowell et al. (2013), abbreviated as‘N13’.25

3.4 Snowfall triple-frequency radar signatures

In this study, snowfall triple-frequency radar signaturesare defined by the two dual-wavelength ratios of modeled snowfall

radar reflectivity factors at (i) Ka and W band and at (ii) either X and Ka band or Ku and Ka band, where X, Ku, Ka, and W

band refer to frequencies of 10, 14, 35, and 94 GHz, respectively. The selected frequencies are within ±1 GHz of X-, Ku-, Ka-,

and W-band frequencies commonly used for the analysis of snowfall triple-frequency radar signatures (e.g., Leinonen et al.,30

2012; Kulie et al., 2014; Kneifel et al., 2015, 2016; Yin et al., 2017).

To derive snowfall triple-frequency radar signatures at X,Ka, and W band and at Ku, Ka, and W band, snowflake (radar)

backscatter cross sectionsσb modeled according to Sect. 3.3 are first integrated for exponential snowflake size distribu-

tionsN(D) expressed through Eq. (1), yielding the corresponding snowfall (equivalent) radar reflectivity factorsZe (e.g.,

12



Matrosov, 2007; Liu, 2008):

Ze =
λ4

π5

∣

∣

∣

∣

∣

n2
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n2
w,λ − 1

∣

∣

∣

∣

∣

2 Dmax
∫

0

σb(D;ξ)N(D)dD , (10)

wherenw,λ denotes to the complex refractive index of liquid water at wavelengths ofλ= 30.0, 21.4, 8.6 and 3.2 mm for the

analyzed frequencies of 10, 14, 35, and 94 GHz, respectively. Here,nw,λ is determined for pure water at a temperature of0 ◦C

following Meissner and Wentz (2004).5

Snowfall triple-frequency radar signatures are then givenby dual-wavelength ratios (DWRs, Kneifel et al., 2011) of

DWR λ1/λ2 = 10 · log10

(

Ze,λ1

Ze,λ2

)

= dBZe,λ1
− dBZe,λ2

[dB] , (11)

whereλ1/λ2 indicate the pairs of analyzed radar frequency bands of X/Ka, Ku/Ka, and Ka/W.

Radar reflectivity factorsZe are calculated by Eq. (10) for snowflake diameters ofD ≤Dmax = 23.6 mm, or for mass-

equivalent ice sphere radii ofreq ≤ 2.1 mm according to Eqs. (3)–(5). This size range covers more than 99.99 % of all10

snowflakes that were observed with the MASC in Sect. 2.2. Snowflake size distributionsN(D) given by Eq. (1) with ex-

ponential slope parameters of0.3≤ Λ≤ 5.0 mm−1 are included in the analysis. This range ofΛ covers allN(D) determined

from the MASC measurements that were presented in Sect. 2.2,corresponds to size distributions derived from snowflake ob-

servational data that were collected with different measurement methods (e.g., Brandes et al., 2007; Tiira et al., 2016), and is

similar toΛ ranges used in prior studies that have analyzed snowfall triple-frequency radar signatures (Kneifel et al., 2011;15

Leinonen et al., 2012).

In Sect. 4.2, snowfall triple-frequency radar signatures are also modeled for size distributions limited to snowflake diameters

of D ≤ 10.0 mm andD ≤ 5.0 mm. The corresponding triple-frequency radar signatures are derived by applying the presented

modeling approach for modified snowflake maximum diameters of Dmax = 10.0 mm andDmax = 5.0 mm.

4 Modeling results and discussion20

4.1 Snowflake backscatter cross sections

Figure 6 shows snowflake backscatter cross sectionsσb modeled according to Sect. 3.3 at 35 and 94 GHz and for snowflake

diameters ofD ≤ 14.4 mm, corresponding to mass-equivalent ice sphere radii ofreq ≤ 1.5 mm. The total range ofσb for all

diameters ofD ≤ 23.6 mm, for all considered snowflake models, and for frequenciesof 10 and 14 GHz is included in Fig. S3

in the Supplement.25

For soft spheres, Figs. 6 and S3 show strong resonances in calculatedσb typical for applying Mie scattering theory to

large particles (Mie, 1908; Bohren and Huffman, 1983). The higher the frequency, and thus the larger the effective size of

a spherical particle with diameterD relative to the wavelength, the more oscillations are observed within the total diameter

range. Oscillations inσb are heavily dampened for spheroids due to orientation averaging ofσb and for SSRGA results due to

averaging over an ensemble of many different realizations of non-spherical snowflake shape models. Collections of randomly30
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Figure 6. Modeled snowflake backscatter cross sectionsσb at 35 and 94 GHz for (i) collections of1≤Ncl ≤ 125 randomly distributed

ice spheres inside a spherical bounding volume of diameterD, corresponding to normalized surface-area-to-volume ratios of 1≤ ξ ≤ 5,

for (ii) the self-similar Rayleigh–Gans approximation (SSRGA) applied to N13 and to W04 snowflake 3D shape models, and for (iii) soft

spheres and oblate spheroids with aspect ratios ofα= 1 andα= 0.6, respectively. Results for (single) mass-equivalent ice spheres given

by Ncl = 1, for snowflakes modeled according to the SSRGA, and for soft ice spheres and spheroids were calculated at a resolution of

∆req = 0.01 mm. For collections ofNcl = 4, 8, 16, 27, 64, and 125 ice spheres, dots mark values ofσb(D;ξ) that were calculated at a

resolution of∆req ≈ 0.14 mm following Sect. 3.3, and lines indicate spline interpolations of the calculatedσb(D;ξ). Modeledσb for the

full range of considered snowflake diametersD ≤ 23.6 mm, for soft spheroids characterized by extreme aspect ratios ofα= 0.2, and for

microwave frequencies of 10 and 14 GHz are shown in Fig. S3 in the Supplement.

distributed ice spheres inside the (spherical) snowflake bounding volume also lead to a much weaker oscillation patternin

σb than soft spheres of diameterD because the refractive indexnice,λ of pure ice generally differs significantly from the

effective refractive indices of soft spheres determined with the Maxwell–Garnett mixing rule (real and imaginary parts of soft-
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sphere effective refractive indices are smaller and thus closer to one and zero, respectively) and because the ice spheres are

characterized by a radius ofrcl ≪D/2 and therefore by a much smaller effective size relative to the wavelength (see Sect. 3.3).

In Fig. 6, calculated backscatter cross sectionsσb(D;ξ) for collections of1≤Ncl = ξ3 ≤ 125 randomly distributed ice

spheres inside the snowflake bounding volume cover a maximumrange of over 2 orders of magnitude forreq ≈ 0.85 mm or

D ≈ 6.3 mm at 35 GHz and forreq ≈ 0.44 mm orD ≈ 2.4 mm at 94 GHz. Outside the Mie resonance regions,σb(D;ξ)5

decrease with increasing normalized surface-area-to-volume ratioξ. This trend is consistent with results of Honeyager et al.

(2014) who found smaller backscatter cross sections for greater snowflake surface complexity when modeling microwave

backscatter for their snowflake 3D shape models with the discrete dipole approximation.

A comparison of theσb curves in Figs. 6 and S3 shows that differences inσb associated with the choice of snowflake model

generally increase with increasing snowflake diameter and microwave frequency. In Fig. 6,σb curves can be distinguished10

visibly from each other forreq > 0.3 mm or D > 1.4 mm at 35 GHz whileσb curves already split forreq ≈ 0.2 mm or

D ≈ 0.6 mm at 94 GHz, for example. SSRGA results for the N13 and W04 snowflake parameterizations are similar to each

other and fall within the indicated range ofσb(D;ξ) for collections of1≤Ncl = ξ3 ≤ 125 randomly distributed ice spheres

for small snowflake diameters and low microwave frequencies. For large snowflake diameters and high frequencies, however,

backscatter cross sectionsσb calculated by the SSRGA are up to 1 order of magnitude smallerthan the minimumσb(D;ξ).15

Compared to soft spheres,σb values calculated by the SSRGA are up to 4 orders of magnitudehigher in Fig. 6.

The N13 and W04 snowflake parameterizations according to theSSRGA used in this study were originally derived for

snowflake 3D shape models with diametersD . 10 mm by Hogan et al. (2017). Nonetheless, these SSRGA parameterizations

are applied to snowflake diameters up toDmax = 23.6 mm in the presented analysis to allow a direct comparison with modeled

backscatter by collections of randomly distributed ice spheres and by soft spheres and spheroids (this extension of theSSRGA20

validity range is briefly discussed below).

Diameters ofD = 10.0 mm andD = 5.0 mm, indicated in Fig. S3 by vertical dashed lines, are used asmaximum di-

ametersDmax for the analysis of truncated snowflake size distributions in Sect. 4.2.Combined with the analysis of mod-

eled snowfall triple-frequency radar signatures forDmax = 23.6 mm, the results for snowflake size distributions truncated

at Dmax = 10.0 mm and atDmax = 5.0 mm then characterize the impact of large snowflakes withD > 10.0 mm and with25

D > 5.0 mm on modeled snowfall triple-frequency radar signatures.

Notably, snowfall triple-frequency radar signatures modeled according to the SSRGA for N13 and W04 snowflake parame-

terizations and snowflake size distributions truncated atDmax = 10.0 mm in Sect. 4.2 show similar characteristic differences

with respect to triple-frequency radar signatures modeledfor collections of randomly distributed ice spheres and forsoft

spheres and spheroids as the differences found for snowflakesize distributions spanning the total analyzed range of diameters30

up toDmax = 23.6 mm. Therefore, application of the two SSRGA snowflake parameterizations beyond the size range they

were originally derived for by Hogan et al. (2017) is not expected to significantly affect the corresponding analysis results and

conclusions in this study.
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Figure 7. Modeled snowfall triple-frequency radar signatures givenby dual-wavelength ratios ofDWR Ka/W and eitherDWR X/Ka or

DWR Ku/Ka.DWRs are determined according to Sect. 3.4 for exponential sizedistributions characterized by snowflake diameters ofD ≤

23.6 mm and exponential slope parameters of0.3≤ Λ≤ 5.0 mm−1. Snowflakes are represented by (i) collections of randomly distributed ice

spheres inside the spherical snowflake bounding volume, by (ii) the N13 and W04 snowflake parameterizations according tothe self-similar

Rayleigh–Gans approximation (SSRGA), and by (iii) soft spheres and oblate spheroids. The gray area indicates the plumeof all triple-

frequency curves derived for collections of randomly distributed ice spheres that are described by synthetically generatedξ(D) relationships

expressed through Eq. (7) and summarized in Fig. 4. Darker shade of gray marks the region ofDWR combinations derived for high power-

law exponents ofq > 2.5 in Eq. (7). Colored rectangles are adapted from Kneifel et al. (2015) and roughly outline regions associated with

the presence of large aggregate snowflakes (cyan) and rimed snowflakes (graupel; magenta) that were inferred by relatingsnowfall triple-

frequency radar reflectivity measurements at X, Ka, and W band to coincident in situ snowflake observations. Corresponding triple-frequency

radar signatures for snowflake size distributions limited toD ≤ 10.0 mm and toD ≤ 5.0 mm are shown in Figs. S7 and S8, respectively.

4.2 Snowfall triple-frequency radar signatures

An overview of the snowfall radar reflectivity factorsZe derived from the modeled snowflake backscatter cross sections in

Sect. 4.1 is included in Fig. S4 in the Supplement but not discussed in this study. Snowfall triple-frequency radar signatures

are shown in Fig. 7. For all considered snowflake models, using DWR Ku/Ka to quantify triple-frequency radar signatures in

combination withDWR Ka/W leads to compressed triple-frequency curves by∆DWR. 3 dB compared to usingDWR X/Ka.5

But the general shape of each curve and characteristic differences among the shapes of all curves are not affected by the choice

of defining triple-frequency radar signatures with respectto eitherDWR X/Ka orDWR Ku/Ka.
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Triple-frequency curves for soft spheres and spheroids with aspect ratios ofα= 1, 0.6, and 0.2 in Fig. 7 are characterized by

strictly increasingDWRs with decreasing exponential slope parametersΛ of the snowflake size distribution. For a given value

of Λ, DWRs determined for the three aspect ratios are generally within 3 dB from each other.

Modeled triple-frequency radar signatures for the N13 and W04 snowflake parameterizations according to the SSRGA

roughly follow the shape of the curves determined for soft spheres and spheroids for high values ofΛ, but show a maximum in5

DWR Ka/W nearΛ≈ 0.5 mm−1. A further decrease of0.5≥ Λ≥ 0.3 mm−1 then leads to a decrease inDWR Ka/W by less

than 1 dB, resulting in triple-frequency curves roughly shaped like a comma sign.Based on synthetic aggregate snowflakes

generated according to W04, Stein et al. (2015) related the maximum inDWR Ka/W to the fractal geometry of the modeled

aggregate snowflakes.

For collections of randomly distributed ice spheres insidethe (spherical) snowflake bounding volume, triple-frequency10

curves in Fig. 7 derived for low normalized surface-area-to-volume ratios ofξ ≈ 1 show only a slow increase inDWR X/Ka or

DWR Ku/Ka with decreasingΛ and therefore occupy a region below the triple-frequency curves determined for soft spheres

and spheroids and for the N13 and W04 snowflake parameterizations. Increasing values ofξ lead to curves that follow the

shapes of the triple-frequency curves derived for soft spheres and spheroids withα= 1 andα= 0.6 for narrow snowflake

size distributions characterized by high values ofΛ. However, triple-frequency curves derived for collections of randomly15

distributed ice spheres generally reach a strong maximum inDWR Ka/W at an intermediate value ofΛ and then sharply bend

back toward lowerDWR Ka/W with a further decrease inΛ. This behavior leads to hook-shaped triple-frequency curves. The

strength of the ‘hooking’ increases with increasingξ, quantified through the difference between maximumDWR Ka/W and the

value ofDWR Ka/W corresponding to the minimum slope parameter ofΛ = 0.3 mm−1. Additionally, higher values ofξ result

in triple-frequency curves that roughly follow the shape ofspheroidal curves up to higher values ofDWR X/Ka orDWR Ku/Ka20

before hooking toward lowerDWR Ka/W (see also Fig. 8 for triple-frequency curves determined for ξ = 6).

The hook shape of triple-frequency curves derived for intermediate and high normalized surface-area-to-volume ratios ξ

in Fig. 7 is similar to the general shape of snowfall triple-frequency curves that were previously modeled by Kneifel et al.

(2011) and Leinonen et al. (2012) based on non-spheroidal snowflake 3D shape models. Neither soft spheres and spheroids nor

the N13 and W04 snowflake parameterizations according to theSSRGA yield triple-frequency curves showing such a strong25

maximum inDWR Ka/W at intermediate values ofΛ.

Modeling snowfall triple-frequency radar signatures for collections of randomly distributed ice spheres inside the snowflake

bounding volume also leads to a much wider range of triple-frequency radar signatures in Fig. 7 than the region between the

triple-frequency curves derived for soft spheres and spheroids or for the N13 and W04 snowflake parameterizations according

to the SSRGA. Modeled triple-frequency curves for1≤ ξ ≤ 5 cover a range of up to about 10 dB inDWR X/Ka, 8 dB30

in DWR Ku/Ka, and 7 dB inDWR Ka/W (see also Fig. S5). In contrast, soft spheres and spheroids or the N13 and W04

snowflake parameterizations according to the SSRGA showDWR ranges of generally about 3 dB and less.

The total range of triple-frequency radar signatures modeled for collections of randomly distributed ice spheres in Fig. 7 cov-

ers a large part of all observed triple-frequency signatures in snowfall radar reflectivity measurements by Kulie et al.(2014),

Kneifel et al. (2015), and Yin et al. (2017).This modeled range also includes many of the triple-frequency radar signatures35
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that Stein et al. (2015) observed in their radar reflectivitymeasurements at 3, 35, and 94 GHz and modeled based on synthetic

aggregate snowflakes generated according to W04. In the present study, the overlap between modeled W04 triple-frequency

curve and the total range of triple-frequency radar signatures modeled for collections of randomly distributed ice spheres in-

creases for smallΛ, and thus for broad snowflake size distributions characterized by larger snowflakes, when higher normalized

surface-area-to-volume ratios ofξ > 5 are also included in the modeling approach (see Fig. 8 for theeffect of includingξ = 6).5

Modeled triple-frequency radar signatures in Fig. 7 for intermediate and high values ofξ combined with small exponential

slope parametersΛ of the snowflake size distribution correspond to triple-frequency radar signatures that were related to the

presence of large aggregate snowflakes by Kneifel et al. (2015). The region of triple-frequency radar signatures that they related

to snowfall characterized by rimed snowflakes, denoted as graupel in Fig. 7, contains triple-frequency curves modeled for low

normalized surface-area-to-volume ratios ofξ ≈ 1 in this study. High values ofξ indicate high complexity of the snowflake10

microstructure (Sect. 3.2), as expected for aggregate snowflakes. Furthermore, broad snowflake size distributions characterized

by smallΛ in Eq. (1) contain a higher amount of large snowflakes, consistent with the observation of large aggregates for

triple-frequency radar signatures that correspond to small Λ. Extensive snowflake riming, on the other hand, is associated with

a coarsening or rounding of the snowflake microstructure dueto the accretion of supercooled water droplets. This reduction

in the complexity of the snowflake microstructure for strongly rimed snowflakes is reflected in the applied modeling approach15

by low normalized surface-area-to-volume ratios, leadingto relatively flat triple-frequency curves with consistently low dual-

wavelength ratiosDWR X/Ka andDWR Ku/Ka for ξ ≈ 1.

In contrast, snowfall triple-frequency radar signatures that were modeled by Leinonen and Szyrmer (2015) based on detailed

3D shape models of rimed snowflakes extend to higher values ofDWR X/Ka andDWR Ku/Ka and roughly span the region

between the W04 and N13 triple-frequency curves shown in Fig. 7 for small exponential slope parametersΛ, depending on the20

amount of riming assigned to the snowflake 3D shape models. Nonetheless, Fig. S6 indicates that truncated size distributions of

the rimed snowflake 3D shape models analyzed by Leinonen and Szyrmer (2015), i.e., snowflake size distributions excluding

large snowflakes, again lead to flat triple-frequency curvescharacterized by consistently lowDWR X/Ka andDWR Ku/Ka, in

line with the snowfall triple-frequency radar signatures related to snowflake riming by Kneifel et al. (2015) and modeled for

low normalized snowflake surface-area-to-volume ratios ofξ ≈ 1 in this study (see also the discussion below of how truncated25

snowflake size distributions and different parameterizations of snowflake mass affect modeled snowfall triple-frequency radar

signatures).

Triple-frequency curves determined for soft spheres and spheroids and for the N13 and W04 snowflake parameterizations

according to the SSRGA cover a much smaller region of the indicated range of observed snowfall triple-frequency radar

signatures in Fig. 7 than the triple-frequency radar signatures modeled for collections of randomly distributed ice spheres30

inside the snowflake bounding volume and do not explain the distinct regions related to the presence of large aggregates and

rimed snowflakes that were observed by Kneifel et al. (2015).Notably, even if various combinations of snowflake gamma size

distributions, mass–diameter relationships, aspect ratios, and distributions of preferentially horizontally oriented snowflakes

are used to model snowfall triple-frequency radar signatures for soft spheroids, the range of modeled triple-frequency radar
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Figure 8. Modeled snowfall triple-frequency radar signatures for exponential size distributions with snowflake diameters ofD ≤ 23.6 mm.

The notation follows Fig. 7 with additionalDWRs determined for ice sphere collections with a normalized surface-area-to-volume ratio of

ξ = 6 and by applying Eq. (8) to the MASC measurement results from Alta and from Barrow presented in Fig. 3. Corresponding triple-

frequency radar signatures for exponential size distributions limited toD ≤ 10.0 mm are shown in Fig. S9.

signatures does not show significantly better agreement with the observed range of snowfall triple-frequency signatures in radar

reflectivity measurements (Leinonen et al., 2012; Kneifel et al., 2015).

Comparing radar reflectivity measurements and in situ snowflake observations, Kneifel et al. (2015) also found that a clear

distinction between different snow types was not feasible for combinations of lowDWR Ka/W and lowDWR X/Ka. Here, this

ambiguity can be explained by the similarity of all triple-frequency curves in Fig. 7 for high exponential slope parametersΛ,5

and thus for narrow snowflake size distributions according to Eq. (1). Modeled triple-frequency radar signatures for narrow

snowflake size distributions are dominated by small snowflakes; and for small snowflakes, the differences in the modeled

snowflake backscatter cross sections shown in Figs. 6 and S3 are not significant enough to cause a clear separation of the

modeled triple-frequency curves in Fig. 7 at highΛ. For larger snowflakes, larger differences among modeled backscatter cross

sections are found in Figs. 6 and S3. As broader snowflake sizedistributions characterized by lower values ofΛ contain a10

higher amount of large snowflakes, the modeled triple-frequency curves in Fig. 7 are more easily distinguished at smallΛ.

Modeled snowfall triple-frequency radar signatures basedon the MASC measurements of snowflake complexityχ presented

in Sect. 2.2 are shown in Fig. 8. The twoξ(D) relationships derived by inserting Eq. (2) into Eq. (8),with fitted exponents

of q = b= 0.75 for the MASC data recorded at Alta andq = b= 0.54 for the Barrow data,still lead to hook-shaped triple-

frequency curves with a maximum inDWR Ka/W at intermediate values ofΛ. However, the maximum value ofDWR Ka/W15

is smaller and the hook shape istherefore less pronounced than for triple-frequency curves derived for constant normalized

snowflake surface-area-to-volume ratios ofξ & 3 in Fig. 7.
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Figure 9. Impact of snowflake maximum diameterDmax = 23.6, 10.0, 5.0 mm on modeled snowfall triple-frequency radar signatures for

exponential snowflake size distributions with exponentialslope parameters of0.3≤ Λ≤ 5.0 mm−1. Modeling results for collections of

Ncl = 1, 27, 125 randomly distributed ice spheres inside the spherical snowflake bounding volume correspond to normalized surface-area-

to-volume ratios ofξ = 1, 3, 5, respectively.

Thus far, all snowfall radar signatures have been determined for exponential snowflake size distributions with snowflake

diameters ofD ≤Dmax = 23.6 mm. To investigate the effect of truncating snowflake size distributions already at smaller

maximum diameters, snowfall triple-frequency radar signatures were also modeled for exponential snowflake size distributions

limited to D ≤Dmax = 10.0 mm andD ≤Dmax = 5.0 mm. The modeling results are presented in Figs. S7 and S8 in the

Supplement and summarized in Fig. 9.5

In general, truncation at smallerDmax leads to an ‘un-hooking’ or flattening of the derived triple-frequency curves. ForD ≤

10.0 mm, modeled snowfall triple-frequency radar signatures inFig. 9 follow the corresponding triple-frequency curves derived

for D ≤ 23.6 mm down to snowflake size distributions characterized by exponential slope parameters ofΛ≈ 1.0 mm−1 before

splitting off (toward higher values ofDWR Ka/W for Ncl = ξ3 = 27, 125 and toward lowerDWR X/Ka andDWR Ku/Ka

for Ncl = ξ = 1). Triple-frequency curves derived forD ≤ 5.0 mm already start to deviate visibly from the two correspond-10

ing curves determined forD ≤ 23.6 mm and forD ≤ 10.0 mm at higher values ofΛ≈ 2.0 mm−1. Additionally, truncating

snowflake size distributions atDmax = 5.0 mm leads to a smaller total range of modeledDWR X/Ka andDWR Ku/Ka, con-

sistent withDWR modeling results by Kneifel et al. (2011) for truncated snowflake size distributions of various snowflake 3D

shape models. For low normalized surface-area-to-volume ratios, indicated byNcl = ξ = 1 in Fig. 9, truncation atDmax =

5.0 mm also leads to a smaller range of modeledDWR Ka/W. The comparison of the triple-frequency curves in Fig.9 shows15
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the strong impact of the maximum diameterDmax of the snowflake size distribution on modeled snowfall triple-frequency

radar signatures.

For snowflake size distributions limited to diameters ofD ≤Dmax = 10.0 mm, modeled snowfall triple-frequency radar

signatures based on the MASC measurements of snowflake complexity χ at Alta and at Barrow are included in Fig. S9.

Compared to Fig. 8, truncation atDmax = 10.0 mm leads to an increase in modeledDWRs of up to about 3 dB. These5

differences are caused by the strong influence ofDmax on the value ofχ(Dmax) = χmax calculated with Eq. (2),i.e.,χmax

of the twoχ(D) relationships illustrated in Fig. 3 decreases for snowflakesize distributions truncated at smallerDmax, which

translates into higher normalized snowflake surface-area-to-volume ratiosξ(χ) for D ≤Dmax = 10.0 mm following Eq. (8).

A reliable determination ofDmax is therefore also important for modeling snowfall triple-frequency radar signatures based on

snowflake complexity measurements.10

Combining the hook shape of triple-frequency curves derived for high normalized surface-area-to-volume ratios in Figs. 7

and 8 with the flattening of triple-frequency curves due to the truncation of snowflake size distributions at smaller maximum

diameters as illustrated in Fig. 9, modeled triple-frequency radar signatures for snowfall characterized by high snowflake

surface-area-to-volume ratios and small snowflake diameters can resemble snowfall triple-frequency radar signatures mod-

eled for soft spheroids. This explains why some non-spheroidal snowflake shape models may lead to similarly high val-15

ues of modeledDWR Ka/W> 10 dB as soft spheroids, e.g., for the aggregates of needle-shaped ice crystals analyzed by

Leinonen et al. (2012). According to Fig. 9, values ofDWR Ka/W> 10 dB are expected for snowfall characterized by nor-

malized snowflake surface-area-to-volume ratios ofξ ≈ 5 and exponential snowflake size distributions limited to snowflake

diameters ofD ≤Dmax = 5.0 mm with exponential slope parameters ofΛ. 1.0 mm−1. Higher values ofξ > 5 already lead

to DWR Ka/W> 10 dB for less restrictive snowflake size distributions with respect toDmax andΛ.20

All presented results have been determined for only one parameterization of snowflake massmf(D) according to Sect. 3.1.

Previous studies have shown, however, that the uncertaintyin modeled snowfall radar reflectivity factorsZe due to the param-

eterization ofmf(D) is significant. Hammonds et al. (2014) found uncertainties inZe related tomf(D) on the order of 4 dB at

X, Ku, Ka, and W band, for example. To evaluate the impact of the parameterization of snowflake mass on the modeled snow-

fall triple-frequency radar signatures in this study,DWRs for collections ofNcl = 1, 27, 125 randomly distributed ice spheres25

inside the snowflake bounding volume (corresponding to low,intermediate, and high normalized surface-area-to-volume ratios

of ξ = 1, 3, 5) were also derived afteruniformly increasing and decreasingthe density valuesρf(D) obtained from the H04

density–diameter relationship, and thus the snowflake massesmf(D) given by Eqs. (3) and (4), by 25 % and by 50 %. Derived

triple-frequency curves for the modifiedρf(D) are shown in Figs. S10 and S11, and the impact of the parameterization of

snowflake mass on modeledZe andDWRs is summarized in Fig. 10.30

The analyzedρf(D) range leads to a corresponding range in modeledZe of ∆dBZe > 3.5 dB and a range in derivedDWRs

of ∆DWR< 3.0 dB in Fig. 10. Generally, differences of∆dBZe & 6 dB and of∆DWR. 1 dB are found, except for snow-

fall characterized byξ = 1, indicative of heavily rimed graupel snow according to Fig.7, and snowflake size distributions

with exponential slope parameters ofΛ. 2 mm−1. Similar trends are also noted for snowflake size distributions limited to

D ≤Dmax = 10.0 mm andD ≤Dmax = 5.0 mm (not shown).Here, an increase (decrease) inρf(D) for snowfall charac-35
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Figure 10. Impact of the parameterization of snowflake mass on modeled snowfall radar reflectivity factorsZe and dual-wavelength ra-

tios (DWRs) for exponential size distributionsN(D) with snowflake diameters ofD ≤ 23.6 mm and exponential slope parameters of

0.3≤ Λ≤ 5.0 mm−1. Shown∆dBZe and∆DWR curves indicate the maximum difference in derived dBZe values andDWRs that is as-

sociated withuniformly increasing and decreasingall snowflake densitiesρf(D) obtained from the H04 density–diameter relationship, and

thus all snowflake massesmf(D) determined from Eqs. (3) and (4), by 25 % and by 50 %. Modeling results for dBZe at 14 GHz and for

DWR Ku/Ka are similar to shown dBZe at 10 GHz andDWR X/Ka, respectively. Collections ofNcl = 125 ice spheres, corresponding to a

normalized surface-area-to-volume ratio ofξ = 5, lead to similar∆dBZe and∆DWR as the included ice sphere collections withNcl = 27

or ξ = 3.

terized byξ = 1 additionally yields consistently higher (lower)DWR Ka/W for all Λ and thus an increase (decrease) in the

modeledDWR Ka/W range (see Fig. S11 for truncation atDmax = 10.0 mm; and extreme differences∆DWR for ξ = 1 are

illustrated in Fig. S12 by comparing triple-frequency radar signatures determined for the H04 snowflake density–diameter

relationship with triple-frequency radar signatures determined for a snowflake mass–diameter relationship which wasderived

by Locatelli and Hobbs (1974) specifically to describe lump graupel). These results demonstrate that modeledDWRs are less5

sensitive to uncertainties associated with the parameterization of snowflake mass than modeledZe at a single wavelength but

can still be affected significantly by these uncertainties,especially at low normalized surface-area-to-volume ratios.
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Nonetheless, even high differences of∆DWR> 1 dB associated with changes inρf(D) andmf(D) of ±50 % are generally

much smaller than the differences∆DWR of up to about 10 dB inDWR X/Ka, 8 dB inDWR Ku/Ka, and 7 dB inDWR Ka/W

associated with the range of normalized surface-area-to-volume ratios of1≤ ξ ≤ 5 (compare Fig. 10 with Fig. S5). The pre-

sented analysis then highlights the importance of snowflakesurface-area-to-volume ratio for a detailed interpretation of ob-

served and modeled snowfall triple-frequency radar signatures.5

5 Conclusions

In this study, snowflake (radar) backscatter cross sectionswere modeled at X-, Ku-, Ka-, and W-band radar frequencies of10,

14, 35, and 94 GHz based on representing individual snowflakes by collections of randomly distributed ice spheres. The size

and number of the constituent ice spheres are defined by the snowflake mass derived from the snowflake maximum dimension

or diameterD and by the snowflake surface-area-to-volume ratio (SAV); the bounding volume of each collection of ice spheres10

is given by a sphere of diameterD. SAV was quantified through the normalized ratioξ of snowflake SAV to the SAV of a

single mass-equivalent ice sphere for a range of1≤ ξ ≤ 5.

Snowfall triple-frequency radar signatures were then determined from dual-wavelength ratios (DWRs) of the snowfall equiv-

alent radar reflectivity factorsZe that were calculated using the modeled snowflake backscatter cross sections. Based on near-

surface snowflake observations collected by high-resolution multi-view imaging at Alta (UT, USA) and at Barrow (AK, USA),15

Ze andDWRs were calculated for exponential snowflake size distributions with snowflake diameters ofD ≤Dmax = 23.6 mm

and exponential slope parameters of0.3≤ Λ≤ 5.0 mm−1.

The analysis focused on the impact of snowflake SAV on modeledsnowfall triple-frequency radar signatures. Additionally,

snowflake complexity values obtained from the snowflake images and averaged over one winter season were used as an indica-

tor of snowflake SAV to derive snowfall triple-frequency radar signatures at Alta and at Barrow. Finally, the effect of truncating20

snowflake size distributions atDmax = 10.0 mm and atDmax = 5.0 mm on modeled triple-frequency radar signatures was in-

vestigated, and the impact of the parameterization of snowflake mass on modeledDWRs was evaluated byuniformly increasing

and decreasing all snowflake densities, and thus all snowflake masses, by up to 50 %.

Important findings are summarized by the following bullet points:

– Average snowflake complexity increases with increasing snowflake size.25

– Modeled snowflake backscatter cross sections generally decrease with increasing snowflake surface-area-to-volume ra-

tio (SAV).

– Modeled snowfall triple-frequency radar signatures covera wide range of snowfall triple-frequency signatures previously

determined from radar reflectivity measurements.

– Snowflake SAV and truncated snowflake size distributions offer a physical interpretation of snowfall triple-frequency30

radar signatures that is consistent with previously observed differences in snowfall triple-frequency radar signatures
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related to the presence of large aggregate snowflakes and rimed snowflakes and that may explain why some snowfall

triple-frequency radar signatures apparently point to a spheroidal snowflake shape.

– While modeledZe show high sensitivity to the parameterization of snowflake mass, with typical differences of∆dBZe &

6 dB for the analyzed snowflake density range, derivedDWRs are less sensitive, with corresponding differences of

∆DWR. 1 dB except for low SAV.5

– The analyzed impact of the parameterization of snowflake mass on modeled snowfall triple-frequency radar signatures

is generally much smaller than the analyzed impact of snowflake SAV.

Overall, the results indicate a strong influence of snowflakeSAV on modeled snowfall radar signatures that may be exploited

in the interpretation of snowfall triple-frequency radar measurements, e.g., to distinguish snow types characterized by differ-

ent snowflake SAV. For a detailed analysis of snowfall triple-frequency radar signatures based on snowflake SAV, however,10

a more comprehensive quantification of snowflake SAV will be needed. This should include characteristic differences and

similarities in snowflake SAV among various snow types and reveal potential relationships between snowflake SAV and other

microstructural parameters important for the interpretation of snowfall radar signatures like snowflake size and mass.

Accordingly, current and future databases of microwave scattering properties determined for detailed snowflake 3D shape

models would benefit from incorporating snowflake surface area as additional microstructural parameter (besides snowflake15

size and mass).Common features anddifferences in modeled scattering properties could then berelated not only to visually

distinct snow types (and snowflake size and mass) but also to snowflake surface-area-to-volume ratio, providing a quantitative

description of the snowflake microstructure across all snowtypesand thereby helping to further constrain snowflake shape for

snowfall remote sensing.

Based on a more comprehensive quantification of snowflake surface-area-to-volume ratio that reflects characteristic differ-20

ences among snow types, the outlined approach for relating normalized snowflake surface-area-to-volume ratioξ to snowflake

complexityχ obtained from snowflake images could be applied to deriveξ(D) relationships for a variety of snowfall con-

ditions. Snowfall triple-frequency radar signatures could then be modeled from theseξ(D) relationships and compared to

triple-frequency radar reflectivity measurements. Such comparisons would show whetherξ(D) relationships derived from

snowflake imgaging data can adequately describe snowflake surface-area-to-volume ratio for the interpretation of snowfall25

triple-frequency radar signatures and may therefore lead to a parameterization of snowflake shape byξ(D) relationships simi-

lar to the parameterization of snowflake mass by snowflake density–diameter or mass–diameter relationships commonly used

in snowfall remote sensing.

6 Data availability

Modeled snowflake backscatter cross sections and dual-wavelength ratios of snowfall equivalent radar reflectivity factors are30

included in the Supplement. Additional data may be obtainedby contacting the corresponding author.
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Appendix A: Representation of snowflakes by collections of randomly distributed ice spheres

In this study, snowflakes defined by the maximum dimension or diameterD, the massmf(D), and the normalized surface-

area-to-volume ratioξ are represented by collections of randomly distributed icespheres where the radiusrcl and the num-

berNcl of the constituent ice spheres are specified by Eq. (9) and thediameter of the (spherical) bounding volumeVf of each

ice sphere collection is given byD. The Appendix discusses limitations of this representation and implications for the modeled5

radar signatures.

To generate collections of non-overlapping ice spheres inside Vf according to Eq. (9),ξ3 =Ncl has to be an integer and

the snowflake massmf(D) has to be sufficiently low. Backscatter cross sectionsσb(D;ξ) were calculated for collections of

Ncl = 1, 4, 8, 16, 27, 64, and 125 ice spheres, corresponding to normalized surface-area-to-volume ratios ofξ = 1.0, 1.6,

2.0, 2.5, 3.0, 4.0, and 5.0, respectively (see Sect. 3.3). Backscatter cross sections for all intermediate values, integers and10

non-integersξ3, were determined from linear interpolations. These interpolatedσb(D;ξ) were used in Sect. 4.2 to outline

the total range of modeled snowfall triple-frequency radarsignatures for1≤ ξ ≤ 5 and to derive triple-frequency curves for

the two sets of MASC observations at Alta and at Barrow. Most of the discussion in Sect. 4, however, focused on ice sphere

collections characterized by the sevenNcl or correspondingξ values with calculatedσb(D;ξ). Uncertainties associated with

the interpolation ofσb(D;ξ) for 1≤ ξ ≤ 5 should therefore play only a minor role in the presented analysis.15

To determine radar reflectivity factorsZe with Eq. (10),σb(D;ξ) for collections of multiple ice spheres were calculated

only for snowflake diameters ofD > 0.55 mm, corresponding to (single) mass-equivalent ice sphere radii of req > 0.16 mm.

For smaller snowflakes, Eqs. (3) and (4) lead to high snowflakemasses that could not be reached consistently by randomly

placing non-overlapping ice spheres given by Eq. (9) insidethe snowflake bounding volumeVf . Here,σb was calculated

only for a single mass-equivalent ice sphere specified byξ = 1, and the value ofσb(D;ξ = 1) was then assigned to all ice20

sphere collections, leading toσb(D;1 ≤ ξ ≤ 5) = σb(D;ξ = 1) for D ≤ 0.55 mm orreq ≤ 0.16 mm. This simplification has

no significant impact on modeled snowfall triple-frequencyradar signatures in Sect. 4.2 because radar reflectivity factors

determined with Eq. (10) are only affected weakly by the backscatter cross sections of small snowflakes. Even when snowflake

diameters ofD ≤ 0.55 mm are ignored completely, modeledZe decrease andDWRs increase by less than about 0.3 dB

for snowflake size distributions with exponential slope parameters ofΛ≤ 2.0 mm−1. Slightly higher changes in modeled25

Ze andDWRs are noted for snowflake size distributions characterized by higher values ofΛ, with a maximum decrease of

1.7 dB in modeledZe at 94 GHz and a maximum increase of 0.8 dB inDWR Ka/W found for an extreme slope parameter of

Λ = 5.0 mm−1. These differences are generally much smaller than the impact of normalized SAV on modeledZe andDWRs

discussed in Sect. 4.2.

At 10 and 14 GHz, allσb(D;1< ξ ≤ 5) for 0.55<D ≤ 1.4 mm or 0.16< req ≤ 0.3 mm were additionally replaced by30

σb(D;ξ = 1) to obtain smooth spline interpolants ofσb(D;ξ) across the entire range ofD (see Sect. 4.1). The effect of these

modifications on modeled snowfall triple-frequency radar signatures in Sect. 4.2 is again small, with associated differences

in modeledZe and inDWR X/Ka andDWR Ku/Ka of less than about 0.1 dB forΛ≤ 2.0 mm−1 and slightly increasing

differences for higherΛ up to a maximum of 0.7 dB atΛ = 5.0 mm−1.
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As Ncl non-overlapping ice spheres were placed randomly inside the spherical bounding volumeVf specified by the

snowflake diameterD (see Sect. 3.3), the maximum dimension or diameterDcl of each generated ice sphere collection is

always smaller thanD (Dcl 6= 2rcl; rcl quantifies the size of each individual ice sphere within the collection,Dcl indicates the

size of the entire collection). Figure S13 illustrates the relation between snowflake diameterD and the mean diameterDcl of

500 generated collections of randomly distributed ice spheres insideVf . High values ofNcl = ξ3, i.e., collections of many small5

ice spheres, lead to small relative differences betweenD andDcl of less than 5 %. For collections ofNcl = 4 (and thus fewer

but larger) ice spheres,Dcl is up to about 25 % smaller than the snowflake diameter. Nonetheless, the calculated backscatter

cross sectionsσb for the ice sphere collections show only a weak correlation with the diameterDcl (see examples in Fig. S14),

and Fig. S15 illustrates the weak influence of the differences betweenD andDcl on the modeled snowfall triple-frequency

radar signatures. Here, dual-wavelength ratiosDWR X/Ka, DWR Ku/Ka, andDWR Ka/W generally change by less than 1 dB10

when the mean diameterDcl of the generated ice sphere collections is used instead of the snowflake diameterD to deter-

mine the corresponding snowfall radar reflectivity factorsZe with Eq. (10). These differences are again small compared to

differences inDWRs associated with the range of normalized surface-area-to-volume ratios of1≤ ξ ≤ 5.
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