1

A new diagnostic for tropospheric ozone production

2

Peter M. Edwards¹* & Mathew J. Evans^{1,2}

3 ¹ Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York,

4 Heslington, York, YO10 5DD, UK

5 ² National Centre for Atmospheric Science, Department of Chemistry, University of York, Heslington,

6 York, YO10 5DD, UK

7 <u>*pete.edwards@york.ac.uk</u>

8 Abstract

9 Tropospheric ozone is important for the Earth's climate and air quality. It is produced 10 during the oxidation of organics in the presence of nitrogen oxides. Due to the range 11 of organic species emitted and the chain like nature of their oxidation, this chemistry 12 is complex and understanding the role of different processes (emission, deposition, 13 chemistry) is difficult. We demonstrate a new methodology for diagnosing ozone 14 production based on the processing of bonds contained within emitted molecules, the 15 fate of which is determined by the conservation of spin of the bonding electrons. 16 Using this methodology to diagnose ozone production in the GEOS-Chem chemical 17 transport model, we demonstrate its advantages over the standard diagnostic. We 18 show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on 19 OH are all important in determining the ozone production within the model and its 20 sensitivity to changes. This insight may allow future model-model comparisons to 21 better identify the root causes of model differences.

22 1. Introduction

The chemistry of the troposphere is one of oxidation [*Levy*, 1973; *Kroll et al.*, 2011]. Organic compounds together with nitrogen and sulfur containing molecules are emitted into the troposphere where they are oxidised into compounds which can either be: absorbed by the biosphere; are involatile enough to form aerosols; can deposit to the surface; or be taken up by clouds and rained out. The oxidation of these compounds is significantly slower than might be expected based on the atmospheric composition of 20% molecular oxygen (O_2).

30

31 The inefficiency of ground state O_2 as an atmospheric oxidant is due to its electronic 32 structure. In quantum mechanics, all atomic particles have an intrinsic angular 33 momentum known as spin [Atkins and De Paula, 2014]. The spin of an electron is 34 described by the spin quantum number, s, and can have values of either $+\frac{1}{2}$ or $-\frac{1}{2}$ for a 35 single electron. The Pauli exclusion principle states that if two electrons occupy the 36 same orbital then their spins must be paired, and thus cancel. With two unpaired 37 electrons ground state O_2 is a spin-triplet with a total spin quantum number $S=\frac{1}{2}+\frac{1}{2}=1$ (giving a term symbol of ${}^{3}\Sigma_{a}^{-}$). In contrast, virtually all trace chemicals emitted into 38 the atmosphere contain only paired electrons and are thus spin-singlets (S=0). The 39 40 quantum mechanical spin selection rule $\Delta S=0$ means that allowed electronic 41 transitions must not result in a change in electron spin. From a simplistic perspective 42 (i.e. ignoring nuclear spin interactions, inter-system crossings, nuclear dipole effects 43 etc.) this spin selection rule means that the reaction of ground state O₂ with most emitted compounds is effectively spin forbidden. Electronically excited O₂ (${}^{1}\Delta_{g}$ or 44 ${}^{1}\Sigma_{a}^{+}$) is a spin singlet and is more reactive in the atmosphere but low concentrations 45 limit its role [Larson and Marley, 1999]. Instead, atmospheric oxidation proceeds 46 47 predominantly via reactions with spin-doublet oxygen-derived species ($S=\frac{1}{2}$), notably the hydroxyl (OH) and peroxy radicals (RO₂ = HO₂, CH₃O₂, C₂H₅O₂, etc.), or spin-48 singlet species (e.g. ozone (O₃)). 49

One of the few spin-triplet species in the atmosphere other than O_2 is the ground state 50 of atomic oxygen ($O({}^{3}P)$), which readily undergoes a spin allowed reaction with O_{2} to 51 52 produce the spin-singlet O₃ molecule. This spin allowed reaction is responsible for the 53 creation of O₃ in both the stratosphere, where it forms the protective O₃ layer, and the 54 troposphere. The ability of O₃ to oxidise other spin-singlet species makes it a powerful 55 oxidant, and it is thus considered a pollutant with negative health effects. Sources of O(³P) within the troposphere are limited because solar photons at sufficiently short 56 wavelengths to directly photolyse O_2 to $O(^{3}P)$ are essentially unavailable. 57

Aside from the photolysis of O_3 itself, the only other significant source of tropospheric $O({}^{3}P)$ is the photolysis of nitrogen dioxide (NO₂) [*Crutzen*, 1971]. Nitrogen oxides are emitted into the troposphere as nitrogen oxide (NO), which can be oxidised to NO₂ by O₃ and other oxidants. A large thermodynamic energy barrier prevents oxidation of NO to NO₂ by the OH radical [*Nguyen et al.*, 1998], and therefore NO oxidation occurs through reaction with either O₃ or RO₂. In terms of O₃ production, the oxidation of NO by O₃ forms a null cycle. Thus only the reaction of
NO with RO₂ leads to a net production of O₃.

66 Exploring the distribution, source and sinks of tropospheric O₃ is a central theme of 67 atmospheric science. Chemical transport models (online and offline) are essential 68 tools enabling this understanding but their validity needs to be continually assessed. 69 Model-model comparison exercises are commonly performed to assess performance, 70 and comparisons of modelled O₃ budgets traditionally form part of this assessment 71 [Stevenson et al., 2006; Wu et al., 2007; Wild, 2007; Young et al., 2013]. Ozone 72 production is diagnosed from the flux of NO to NO₂ via reaction with each of the 73 speciated RO₂ in the model's chemical schemes. This approach provides information 74 on the relative importance of the different RO_2 in the fast $NO + RO_2$ reactions within 75 the model, but gives very little detail on how the longer time scale model processes 76 (emissions, chemistry, deposition) influence O_3 production. Thus exploring the 77 reasons that models differ in their O₃ production is difficult and progress has been 78 slow.

A new diagnostic framework that links large scale model drivers such as emission,
chemistry, and deposition to O₃ production would allow an improved assessment of
why model ozone budgets differ. We attempt to provide such a framework here.

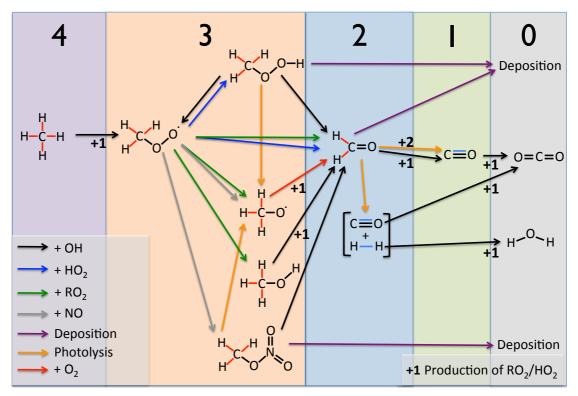
82

2. A new diagnostic framework.

83 The rate of production of tropospheric O_3 is limited by the rate of oxidation of NO to 84 NO_2 , which is in turn limited by the rate of production of peroxy radicals (RO_2). 85 Peroxy radicals form through association reactions of hydrogen (H) atoms or alkyl 86 radicals (both spin-doublets, $S=\frac{1}{2}$) with O₂, forming a highly reactive spin-doublet 87 radical on an oxygen atom. This spin allowed reaction converts spin-triplet O₂ that 88 cannot react with spin-singlet pollutants into a spin-doublet O₂ containing species that 89 can. As such the formation of RO_2 is central to the atmosphere's oxidation capacity, 90 and its production is limited by the rate of production of H atoms or alkyl radicals. 91 Thus the maximum potential rate of tropospheric O_3 production is equal to the rate at 92 which H atoms and alkyl radicals are produced.

Hydrogen atoms and alkyl radicals are predominantly produced via the spin allowed
breaking of the spin-pairing between the two electrons in a C or H containing covalent
bond (S=0), such as those in hydrocarbons. These spin-pairings can be broken in the

96 atmosphere either chemically or photolytically, with the products necessarily 97 conserving spin. The breaking of a covalent bond by a photon (s=1) can result in two 98 products with $S=\frac{1}{2}$ or two products with S=0. Likewise, oxidation by a radical ($S=\frac{1}{2}$) 99 will result in one product with S=0 and one with $S=\frac{1}{2}$, because the unpaired electron 100 on the radical reactant pairs with one of the covalent bond electrons to produce a spin-


101 singlet.

102 Although the majority of RO₂ is formed from emitted C or H containing covalent 103 bonds, there are a few notable exceptions. Hydrogen atoms can also be produced 104 through the oxidation of CO to CO₂ by OH. During this reaction the coordinate bond 105 between the C and O atom is broken and the H atom is produced via the breaking of 106 the O-H bond. The other notable exception is the oxidation of an SO₂ lone pair of 107 electrons to SO₃ by OH, where again the H atom produced comes from the OH. In 108 both of these exceptions a spin-singlet electron pairing (CO coordinate bond or SO₂) 109 lone pair) is broken during the production of the H atom, and we can therefore 110 consider these reactions as similar to the breaking of C or H containing covalent bond. 111 For simplicity these spin-singlet electron pairings that can be broken in the 112 troposphere to produce either a H atom or alkyl radical will be referred to as 113 "oxidisable bonds" (C-C, C-H, C=C, CO coordinate bond, S:).

114 Tropospheric O_3 production occurs through the oxidation of NO by RO₂. Following 115 the above rationale, these RO₂ are produced during the spin allowed breaking of 116 oxidisable bonds predominantly contained within emitted VOCs. This perspective 117 allows us to build a new metric for the production of tropospheric O₃ based around the 118 spin conserving properties of oxidisable bond breaking. In the extreme case, all 119 oxidisable bonds are photolysed to produce two spin-doublet RO₂ products, which 120 then react exclusively with NO to generate O₃. Thus at steady state, the maximum rate 121 of O_3 production is equal to the rate of production of RO_2 which is equal to twice the 122 rate of destruction of the number of oxidisable bonds. This in turn is equal to twice the 123 rate of emission of oxidisable bonds. Deviation from this maximum is determined by:

- 124 The relative importance of processes that produce spin-singlet vs. spin-125 doublet products during oxidisable bond breaking;
- 126
- The fraction of spin-doublet products from oxidisable bond breaking which 127 form RO₂;
- 128 The fraction of RO_2 that go on to oxidize NO to NO_2 .

129 To illustrate this Fig. 1 shows the tropospheric oxidation of a methane (CH₄) molecule 130 through various steps to either a carbon dioxide (CO_2) molecule or a species that is 131 deposited (CH₃OOH, CH₂O, CH₃NO₃). Methane contains 4 x C-H oxidisable bonds 132 (8 paired bonding-electrons) and as the oxidation proceeds, the number of oxidisable 133 bonds decays to zero. Figure 1 highlights the steps in the tropospheric CH₄ oxidation 134 mechanism that form spin-doublet products, with between 1 and 5 RO₂ produced 135 depending on the oxidation pathway. This compares with the theoretical maximum of 136 8 if all the original C-H bonds were photolysed to yield 2 spin-doublet products.

137

Figure 1. Peroxy radical production during the tropospheric oxidation of CH₄. Moving from left to right, the oxidisable bonds (emitted = red, produced = blue) present in CH₄ are removed via a range of tropospheric processes, indicated by the coloured arrows. The large numbers across the top of the figure indicate the number of oxidisable bonds at each stage of this oxidation. The production of RO₂ is indicated by the +1/+2 numbers with the associated process arrows for producing 1 or 2 RO₂ respectively.

The principal atmospheric source of oxidisable bonds is the emission of C-H, C-C and C=C bonds in hydrocarbons, with the only other significant sources being the emission of CO and the chemical production of CO and H_2 during hydrocarbon oxidation. Over a long enough timescale, the global atmosphere can be considered to 149 be in a chemical steady state, where the rate of loss of oxidisable bonds is balanced by 150 the rate of production or emission. Thus the O_3 production rate can be described by 151 equation (1), where the O_3 production metric P_sO_3 is equal to the number of spin-152 paired electrons in oxidisable bonds (i.e. twice the sum of the number of oxidisable 153 bonds emitted (E_{bonds}) and chemically produced (P_{bonds})), multiplied by the number of 154 spin-doublet radicals produced per oxidisable bond break divided by the maximum of 155 2 (F_{Radicals}), multiplied by the fraction of the radicals produced which are RO₂ (F_{RO2}), 156 multiplied by the fraction of RO₂ that goes on to react with an NO to produce an O₃ 157 molecule (F_{NO}). A small correction (I) for the production of RO₂ via reactions of spin-158 doublet radicals other than those that result in the breaking of oxidisable spin-pairings 159 (e.g. $O_3 + OH \rightarrow HO_2 + O_2$) is included.

160

$$P_s O_3 = \left(\left(2 \times (E_{bonds} + P_{bonds}) \times F_{radicals} \times F_{RO_2} \right) + I \right) \times F_{NO}$$
(1)

161 3. Implementation

We use the GEOS-Chem model to evaluate this new O₃ production diagnostic. GEOS-162 163 Chem is a global chemical transport model of tropospheric chemistry, aerosol and 164 transport (www.geos-chem.org version 9-02). The model is forced by assimilated 165 meteorological and surface fields (GEOS-5) from NASA's Global Modelling and 166 Assimilation Office, and was run at 4°x5° spatial resolution. The model chemistry 167 scheme includes O_X, HO_X, NO_X, BrO_X and VOC chemistry as described in Mao et al. 168 [2013] as are the emissions. The new P_sO_3 diagnostic has been implemented via the 169 tracking of reactions by type in the GEOS-Chem chemical mechanism file (further 170 details given in the SI). This tracking of reactions enables the fate of all oxidisable 171 bonds as well as the production and loss of all RO₂ within the model to be determined 172 using the standard GEOS-Chem production and loss diagnostic tools. Model simulations were run for 2 years (July 1st 2005 – July 1st 2007) with the first year used 173 174 as a spin up and the diagnostics performed on the second year.

The standard GEOS-Chem diagnostic for O_3 production (*PO*₃) is shown on the left side of Table 1. This emphasizes the very fast cycling between NO and NO₂, but provides little in terms of higher process level information. The right side of Table 1 shows the new budget for P_sO_3 , which tracks the processing of oxidisable bonds within the model. Both diagnostic methods give the same final answer but our new methodology provides more process level detail. Figure 2 illustrates this new process 181 based approach, showing the flow of emitted oxidisable spin-paired electrons (bonds) to O_3 and the magnitude of the various mechanisms that contribute to and compete 182 with O_3 production. The annual oxidisable bond emission of 389 T mol yr⁻¹ has the 183 potential to create 778 T mol yr^{-1} of radicals. If all oxidisable bonds were broken by 184 photons to produce two radical products the RO₂ production would be 778 T mol yr⁻¹. 185 If the oxidisable bonds were instead broken via radical reaction (e.g. OH) then RO₂ 186 production would be 389 T mol yr⁻¹. The various oxidisable bond breaking / removal 187 pathways within the model result in the production of 280 T mol yr⁻¹ of RO₂, with the 188 remainder largely producing stable spin singlet products. 189

Of the 280 T mol yr⁻¹ RO₂ produced, 112 T mol yr⁻¹ reacts with NO to produce O_3 . 190 The remainder is lost through the reaction or deposition of RO₂ reservoir species 191 $(RO_{2v} = RO_2 + peroxides + peroxy-acetyl nitrates)$. For example the production of 192 methylperoxide ($CH_3O_2 + HO_2 = CH_3OOH$) results in the loss of 2 RO₂'s. However, 193 194 the reaction of methylperoxide with OH can re-release CH_3O_2 ($CH_3OOH + OH =$ 195 $CH_3O_2 + H_2O_2$). Thus, the production of methylperoxide represents the loss of a HO_2 196 and the movement of a CH₃O₂ into a peroxide RO_{2v} reservoir species. The deposition 197 of a peroxide molecule is thus the loss of a RO_{2y} reservoir species. Notable in Fig. 2 is 198 that the role of PAN and nitrate removal of global RO_{2v} is negligible, instead being 199 dominated by peroxide production and loss and the reaction of RO_2 with O_3 .

PO ₃ / T mol Yr ⁻¹		PO₃ / T mol Yr ⁻¹ (except $F_{Radicals}$, F_{RO2} , and F_{NO} which are all unitless)	
$NO + HO_2 \rightarrow NO_2$	74	E _{bonds}	330
$NO + CH_3O_2 \rightarrow NO_2$	27	P _{bonds}	58
Other $RO_2 + NO \rightarrow NO_2$	10	F _{radicals}	0.40
Other	1	F _{RO2}	0.86
		Inorganic RO ₂ source	15
		F _{NO}	0.40
PO ₃	112	$P_{s}O_{3}$	112

Table 1. Comparison of ozone production diagnostics for GEOS-Chem base
simulation. Standard model PO₃ diagnostics (left column) show reactions
responsible for NO to NO₂ conversions but provide little process level

information. The new P_sO₃ (right) provides increased information on the
processes controlling O₃ production within the model.

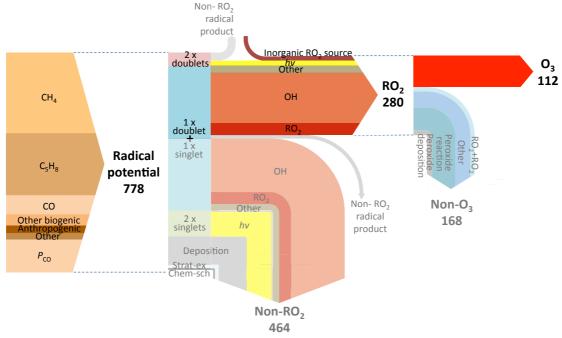


Figure 2. Flow of oxidisable bonds to O₃ production in the GEOS-Chem base simulation. Arrows are coloured according to process and the arrow thickness is proportional to the flux through that channel. Spin-paired electrons are input as oxidisable bonds into the model (left arrow), with the potential to create 778 T mol yr⁻¹ of radicals. The actual fate of these bonds is shown in the central arrow, producing 280 T mol yr⁻¹ of RO₂, of which 112 T mol yr⁻¹ reacts with NO to produce O₃ (right arrow).

213 **3.1 Emitted oxidisable bonds**

214 The fuel for tropospheric oxidation chemistry is the emission of oxidisable bonds, predominantly in the form of hydrocarbons. The production of tropospheric O₃ from 215 the spin-paired bonding electrons emitted into the standard GEOS-Chem model 216 occurs with an efficiency of 14% (112 T mol yr $^{-1}$ molecules of $\rm O_3$ produced / 778 T 217 mol yr⁻¹ spin-paired electrons emitted as oxidisable bonds, Fig.2). These spin-paired 218 219 bonding electrons are predominantly emitted in the form of CH_4 , isoprene (C_5H_8) and 220 CO (37%, 28%, and 9% respectively). Oxidisable bonds produced during chemical 221 reactions (P_{bonds}), account for 15% of the net source. Figure 3 shows emissions of CO 222 and hydrocarbons in the standard GEOS-Chem simulation in terms of mass of carbon 223 per compound, number of oxidisable bonds per compound and as number of bonds in 224 different oxidisable bond types. The commonly used carbon mass approach splits 225 emissions approximately equally between each of the major sources (CH₄ (29%), 226 Isoprene (32%) and CO (30%)). In contrast, the oxidisable bonds accounting approach 227 apportions hydrocarbon emissions 44%, 33% and 11% for CH₄, isoprene and CO 228 respectively. This highlights the high number of oxidisable bonds per carbon atom in 229 CH_4 (4) compared to isoprene (2.8) and CO (1). Thus efforts to consider emissions on 230 a per-bond basis may provide more insight into chemical processes, as it is these 231 bonds that ultimately determine the chain-like chemistry rather than the mass of 232 carbon atoms. This helps to emphasise the relative importance of CH₄ emissions on 233 global tropospheric chemistry compared with other emissions such as isoprene or CO. 234 The type of oxidisable bond emitted is overwhelmingly C-H (71%).

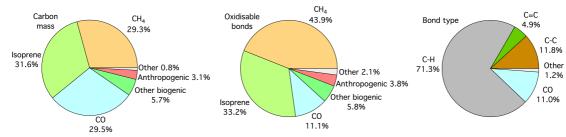
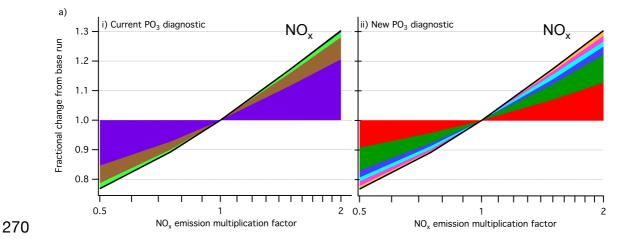
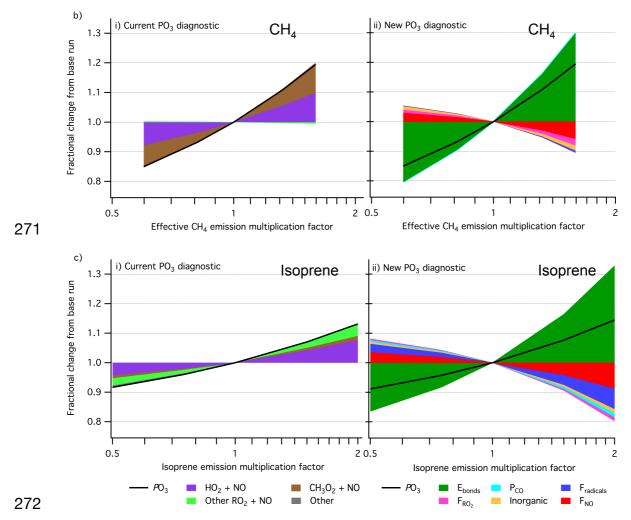


Figure 3. Pie charts showing hydrocarbon emissions in the base GEOS-Chem
simulation. Emissions split by carbon mass (left), number of oxidisable bonds
(centre) and bond type (right).

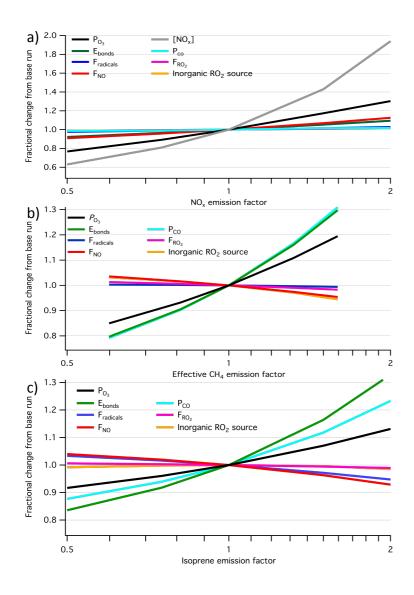

235


239 The total emission and production of oxidisable bonds has the potential to create 778 T mol vr⁻¹ of radicals. However, only 6% of the oxidisable spin-pairings are broken to 240 241 give the maximum 2 spin-doublet products (e.g. radical channel of CH₂O photolysis). 242 The majority (68%) are oxidized via reaction with a spin-doublet species (OH) to 243 produce 1 spin-singlet and 1 spin-doublet product (e.g. OH + VOC). The remaining 26% of spin-paired electrons are removed to form two spin-singlets (e.g. the non-244 radical channel of CH₂O photolysis). Thus, of the 778 Tmol yr⁻¹ spin-paired electrons 245 emitted or produced only 265 T mol yr⁻¹ (34%) are converted into RO₂, with an 246 additional 15 T mol yr⁻¹ produced from reactions such as $O_3 + OH \rightarrow HO_2 + O_2$ (*I*). 247 The efficiency of O₃ production from the available oxidisable bonds is further reduced 248 as only 40% of the 280 T mol vr⁻¹ of RO₂ produced react with NO to produce NO₂. 249 250 The remainder is lost either through the self-reaction of RO₂ or via loss through 251 deposition or reaction of RO_{2v} reservoir species (e.g. peroxides). Thus overall 14% of 252 the emitted bonding electrons go on to make O₃.

The new O_3 production diagnostic presented here (P_sO_3) shows the impact of processes such as emission, deposition and chemical mechanism, and provides significantly more detail than the standard PO_3 diagnostic approach (Table 1). We now explore the sensitivity of model O_3 production to changing emissions of NO_x and VOC from the perspective of the two diagnostic methods.

4 Model sensitivities

259 Understanding model response to changing emissions is an important tool for 260 considering policy interventions. The major controls on O₃ production are emissions 261 of NO_x and VOCs. We show in Fig. 2 that from the perspective of global O_3 262 production, oxidisable bond emissions are dominated by CH₄ and isoprene. Figure 4 263 shows the impact of changing emissions of NO_x, isoprene and CH₄ on O₃ production 264 from both the perspective of this new methodology and the conventional NO+RO₂ 265 diagnostic approach. A set of 5 simulations was performed for each model sensitivity 266 investigated (NO_x , isoprene and CH_4), with a common base simulation, resulting in 13 267 simulations in total. The following sections investigate these model responses and use 268 the new diagnostic to provide insight into the processes driving the observed response 269 in O_3 production.


273 Figure 4. Understanding the effect of NO_x and VOC emissions on ozone 274 production at the process level. Stack plots showing fractional change in model 275 PO₃ compared to base simulation and associated contributions from the current 276 PO_3 (i) and new P_sO_3 (ii) diagnostic parameters under changing NO_x emissions 277 (a), effective CH_4 emission (b) and isoprene emission (c). The P_sO_3 diagnostic 278 parameters are derived for each model simulation using the diagnostic 279 implementation described in Sect. 3, and the fractional change in each parameter 280 from the base simulation calculated.

4.1 NO_x emissions

Figure 4a diagnoses the relative response of GEOS-Chem O_3 production to changing NO_x emissions, using simulations where NO_x emissions from anthropogenic, biomass burning, biofuels, soil and lighting sources were multiplied by factors of 0.5 - 2. Increasing NO_x emissions increases O₃ production. The standard RO₂+NO diagnostic (Fig.4a(i)) shows that fractional contributions to the total change in *P*O₃ from HO₂ 287 (67%), methyl-peroxy (CH₃O₂) (25%), and other RO₂ (8%) remain approximately 288 constant across the NO_x emission range investigated. This diagnostic provides little 289 detail on the processes driving the change in O₃ production under changing NO_x 290 emissions. In contrast, Fig. 4a(ii) is based on the new P_sO_3 diagnostic and shows a 291 range of process level changes occurring as NO_x emissions change.

292 4.1.1 Impact of changing NO_x emission on F_{NO}

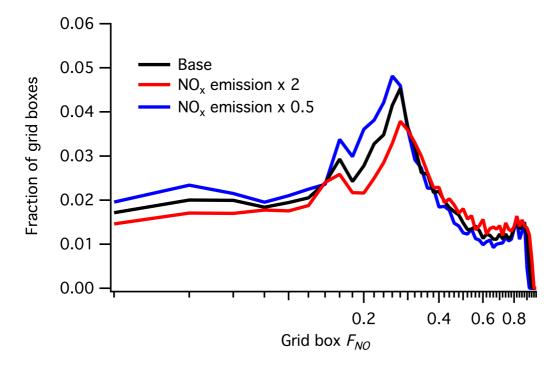
293 Unsurprisingly, as NO_x emissions increase the fraction of RO₂ reacting with NO to 294 produce NO₂ (F_{NO}) increases (red section in Fig. 4a(ii)). However, this impact only 295 accounts for around 40% of the increase in P_sO_3 . Figure 5a shows the fractional 296 change in all the P_sO_3 efficiency parameters and the global mean NO_x concentration 297 as a function of the changing NO_x emission. As NO_x emissions increase the increase 298 in NO_x concentration in the model is somewhat dampened. Halving the NO_x emission 299 leads to NO_x burdens dropping by ~35%, and doubling leads to an increase of 95%. 300 This dampening is due to the impact of NO_x emissions on OH (see section 4.1.2), 301 which is the dominant sink for NO_x . Increasing NO_x increases OH concentrations, 302 which in turn shortens the NO_x lifetime thus dampening the response of concentration 303 to emission.

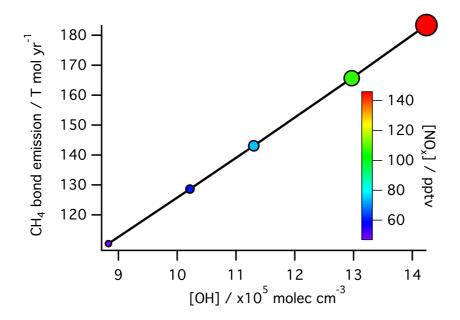
304

Figure 5. Fractional change in new P_sO_3 diagnostic parameters from base run against changing NO_x emission (a); effective CH₄ emission (b); and isoprene emission (c).

308 The response of F_{NO} to changes in NO_x emissions is also dampened relative to the 309 change in NO_x emissions. This is due to spatial variability in F_{NO} , which is not 310 affected uniformly by changing NO_x emissions. Figure 6 shows the probability 311 distribution of F_{NO} values across all model grid boxes for the base simulation and the 312 half and doubled NO_x emission simulations (black, blue and red lines respectively). 313 For example, in a grid-box in the continental boundary layer where RO₂ reacts 314 overwhelmingly with NO, doubling the NO_x emission may move F_{NO} from 0.90 to 315 0.95 but it can't double it. Similarly, in the remote boundary layer where RO₂ reacts 316 overwhelmingly with other RO_2 doubling NO_x emissions may move F_{NO} from 0.3 to

- 317 0.4 but again it doesn't double. Thus the geographical spread of NO_x chemistry limits 318 the change in F_{NO} caused by changing NO_x emissions. The spatial variability in the 319 new P_sO_3 diagnostic parameters shows that this approach has significant potential in
- **320** the analysis of regional O_3 budgets as well as global.




Figure 6. Effect of NO_x emission on distribution of F_{NO} values (log scale). F_{NO} values for each model grid box in the base and NO_x emission x 0.5 and x 2 simulations, split into 50 x 0.02 width bins.

325 4.1.2 Impact of changing NO_x emission on E_{bonds}

321

Figure 4a(ii) shows that 60% of the response in P_sO_3 to changing NO_x emission is due 326 327 to factors other than F_{NO} , with 40% of the increase due to changes in the emissions 328 (Ebonds: 32%) and chemical production (Pbonds: 8%) of oxidizable bonds. This increase 329 in E_{bonds} is surprising given VOC emissions are unchanged in these simulations. 330 However, increasing NO_x emissions results in an increased OH concentration in the 331 model, which then leads to an increase in CH_4 oxidation. Methane (CH_4) 332 concentrations are fixed in GEOS-Chem, resulting in an increase in the effective CH₄ 333 emission as OH concentrations increase, causing an increase in the total bond 334 emission (E_{bonds}). Figure 7 shows the response of effective CH₄ bond emission to 335 global mean OH concentration as it changes with global mean NO_x concentration.

336 More CH_4 oxidation also leads to more CH_2O production and in turn more CO337 production (P_{CO}), accounting for a significant fraction of the increase in this term.

338

Figure 7. Effective CH₄ emissions as a function of global mean OH concentration,
for simulations where NO_x emissions were changed. Marker size and colour
indicate global NO_x concentration.

342 4.1.3 Impact of changing NO_x emission on F_{radicals}, F_{RO2} and *I*

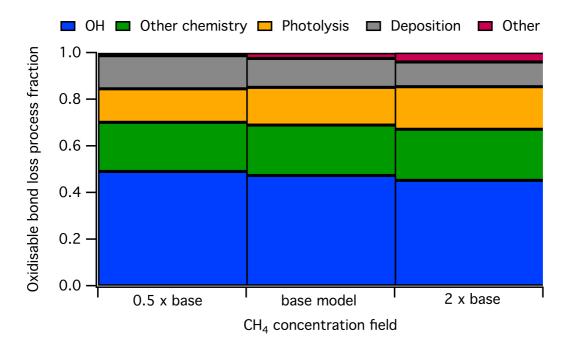
343 The fraction of radicals produced from bond oxidation (F_{radicals}) and the fraction of 344 those radicals which are RO_2 (F_{RO2}) show slight positive increase with NO_x emission, 345 accounting for 9% and 6% of the change in P_sO_3 respectively. This reflects changes in 346 the partitioning of the fate of the oxidisable bonds, and is largely due to the changes in 347 OH. As OH increases with NO_x emission, the rate of chemical oxidation of bonds 348 increases at the expense of other losses, in particular deposition. The inorganic RO₂ 349 source term (I) also correlates with NO_x emission, as it is largely determined by the 350 concentrations of OH and O₃. This change accounts for 5% of the observed change in 351 P_sO_3 .

Thus, with this new diagnostic methodology it is evident that only 40% of the model O₃ production response to changing NO_x emission is due to the direct effect of increasing NO concentration on the rate of RO_2 + NO reactions. Another 40% is due to fixing the concentration of CH₄ within the model, with the final 20% due to the increased OH concentration competing for the available oxidisable bonds and resulting in increased RO₂ production.

358 4.2 Changing effective CH₄ emissions

As Fig. 2 shows CH_4 to be the largest single source of oxidisable bonds, this section investigates the response of the O₃ production diagnostics to changing CH_4 emissions. Figure 4b shows the O₃ production diagnostics response to varying the CH_4 emission rate within the model. As the model uses prescribed CH_4 concentrations, these were varied by factors of between 0.5 and 2 from the base simulation and the CH_4 emission diagnosed from the loss rate of CH_4 to reaction with OH, the only CH_4 loss in the model. We describe this as the effective CH_4 emission.

366 As effective CH₄ emission increases, O₃ production also increases. The standard 367 diagnostic (Fig.4b(i)) shows that this increase occurs through an increased rate of 368 reaction of HO₂ and CH₃O₂ with NO, as would be expected as these are the RO₂ 369 produced during CH_4 oxidation. The rate of other RO_2 + NO reactions actually 370 decreases slightly as CH₄ emissions increase, due to lower OH concentrations and 371 increased competition for NO from HO₂ and CH₃O₂. The new diagnostic (Fig.4b(ii)), 372 however, shows the increase in O₃ production with increasing effective CH₄ emission 373 is not simply a result of more HO_2 and CH_3O_2 .


374 4.2.1 Impact of changing effective CH₄ emission on F_{NO}

375 The observed change in P_sO_3 is around one third smaller than would be expected from 376 the increase in the oxidisable bond emission (E_{bonds}) and bond production (P_{bonds}) 377 terms alone. This is due to a countering decrease in the other efficiency parameters 378 with increasing effective CH₄ emission. Figure 5b shows the fractional change in all 379 the efficiency parameters as a function of the changing effective CH_4 emission. The 380 decrease in the fraction of RO₂ reacting with NO to produce NO₂ (F_{NO}) is driven by 381 increasing O₃ concentrations, which push the NO/NO₂ ratio towards NO₂. This 382 reduces the availability of NO to react with RO₂ thereby reducing O₃ production. This 383 shift in the NO/NO₂ ratio also increases NO_x loss within the model with increasing 384 CH₄ emission, as the increased CH₄ oxidation increases RO₂ concentrations resulting 385 in larger losses of NO₂ via compounds such as peroxyacetyl nitrate (PAN) and 386 peroxynitric acid (PNA).

387 4.2.2 Impact of changing effective CH₄ emission on E_{bonds}

388 Increasing the effective CH_4 emission results in an increase in E_{bonds} . Changing the 389 fraction of total emitted oxidisable bonds from CH_4 does however have significant

390 consequences on the loss mechanisms of these bonds, which influences the other 391 efficiency parameters. Figure 8 show the split of oxidisable bond loss mechanisms in the base simulation and those with the CH₄ concentration fields multiplied by 0.5 and 392 393 2. As the effective CH₄ emission increases the fraction of bonds lost via OH 394 decreases, despite the actual number of oxidisable bonds lost to OH increasing. A 395 larger fraction of bonds are therefore lost via the other mechanisms shown in Fig. 8 396 rather than reaction with OH. As CH₄ removal occurs predominantly in the free 397 troposphere, increasing the effective CH₄ emission also results in a reduction in the 398 fraction of oxidisable bonds lost via deposition. The largest fractional increase in bond 399 loss mechanism with increasing effective CH₄ emission is for photolysis, with the 400 increase in the "other" fraction due to increased loss of bonds to the stratosphere with 401 increasing CH₄.

402

Figure 8. Oxidisable bond loss mechanism fractions under changing effective
CH₄ emissions (0.5 x CH₄ concentration field, base simulation and 2 x CH₄
concentration field).

406 4.2.3 Impact of changing effective CH₄ emission on F_{radicals}, F_{RO2} and *I*

407 The fraction of oxidisable bonds that goes on to produce radicals ($F_{radicals}$) and the 408 fraction of these that are RO₂ (F_{RO2}) also decrease with increasing effective CH₄ 409 emissions. This is due to decreasing global OH concentration resulting from increased 410 loss by reaction with CH₄ and a decreasing NO concentration. This favours bond loss 411 via pathways that produce less RO_2 (e.g. CH_2O photolysis). The long lifetime of CH_4 412 compared with the majority of other sources of oxidisable bonds, also results in a 413 decrease in the fraction of bonds lost to deposition as total bond oxidation increases 414 fractionally in the free troposphere where deposition is a less significant loss 415 mechanism than in the boundary layer.

416 4.3 Changing isoprene emission

- 417 The species through which the oxidisable bonds are emitted has a significant impact 418 on O_3 production, due to their subsequent removal mechanisms. For example, in a 419 simulation where the only emission of oxidisable bonds is CO, $F_{radicals}$ is 0.5 and F_{RO2} 420 is 1 as the only CO sink is reaction with OH to produce one HO₂ (OH + CO \rightarrow HO₂ + 421 CO₂). The CO coordinate bond, which in theory has the potential to produce 2 422 radicals, only produces 1 radical, which is an RO₂.
- 423 Isoprene has the most complex chemistry in the model and is the second largest 424 source of bonds into the atmosphere after CH_4 (Fig. 3). Figure 4c shows the response 425 of the two O₃ production diagnostics to varying the isoprene emission within the 426 model. The standard diagnostic (Fig.4c(i)) shows that the most significant increase in 427 PO_3 from increasing isoprene emissions is from NO + HO₂ and non-CH₃O₂ peroxy 428 radicals, with a smaller increase from CH_3O_2 . The new P_sO_3 diagnostic (Fig.4c(ii)) 429 again provides more insight, showing significant offsetting of around a half between 430 the terms.

431 4.3.1 Impact of changing isoprene emission on F_{NO}

432 The increased isoprene emission leads to a similar change in the magnitude of the 433 total number of oxidisable bonds emitted (Ebonds) as the simulations in which effective 434 CH₄ emission were varied. However, the countering decrease in all of the efficiency 435 parameters is much larger for isoprene than for CH₄. Figure 5c shows the fractional 436 change in the new P_sO_3 ozone production diagnostic parameters as a function of 437 isoprene emissions compared to the base simulation. The change in F_{NO} is due to both 438 a decrease in global mean NO_x concentrations with increasing isoprene and the spatial 439 distribution of isoprene emissions. The majority of global isoprene emissions are in 440 regions with low NO_x emissions, and thus low values of F_{NO}. Figure 9 shows a 441 decrease in global mean NO_x, and global mean OH concentrations with increasing 442 isoprene emissions, however, the effect is less than that seen when CH₄ is responsible

for the same increase in oxidisable bond emission. This is due in a large part to thespatial scales over which the two compounds impact.

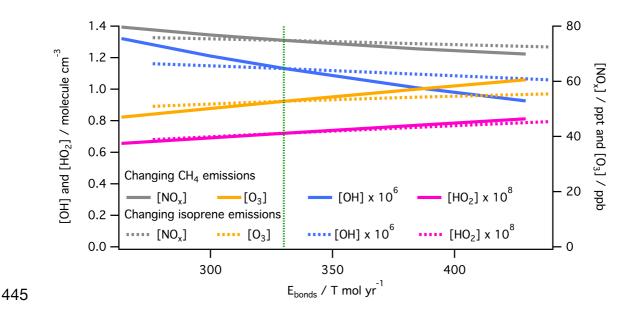
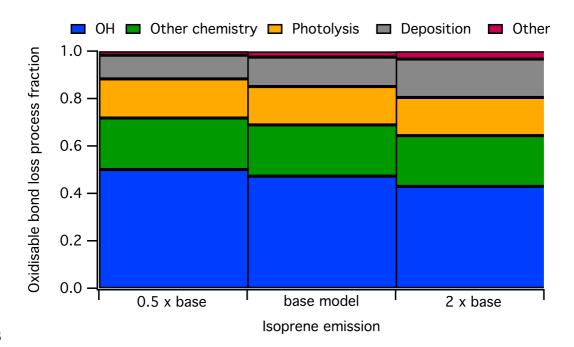


Figure 9. The effect of oxidisable bond parent species on OH, HO₂, O₃ and NO_x concentrations. Global mean [OH], [HO₂], [O₃] and [NO_x] for simulations where the effective CH₄ emission (solid lines) and isoprene emission (dashed lines) were changed, against model E_{bonds} . The dashed vertical green line indicates E_{bonds} in the base simulation (330 T mol yr⁻¹).


451 4.2.2 Impact of changing isoprene emission on Ebonds

452 As isoprene is the second largest source of oxidisable bonds (Fig. 3), increasing the 453 isoprene emission results in a significant increase in E_{bonds}. Differences in both the 454 spatial distribution of emissions and the oxidation chemistry of isoprene and CH₄, 455 however, means that the impact of the increases in E_{bonds} on O₃ production are 456 significantly different for the two compounds. This is predominantly because the 457 fraction of oxidisable bonds that are physically deposited for isoprene is high 458 compared to those emitted as CH₄. This increase is due to i) the higher solubility of 459 isoprene oxidation products compared to those of CH₄, and ii) the higher reactivity of 460 isoprene means its oxidation occurs in the boundary layer where both dry and wet 461 deposition is most effective.

462 Figure 10 shows the fate of oxidisable bonds in the base simulation and those with the
463 isoprene emissions multiplied by 0.5 and 2. The complex myriad of products formed
464 during the isoprene oxidation mechanism also results in the production of many

465 highly oxygenated multifunctional compounds with high Henrys law solubility466 constants, meaning they are more readily lost to deposition.

467

469 Figure 10. Oxidisable bond loss mechanism fractions under changing isoprene470 emissions.

471 Increasing the isoprene emission also has a slight offsetting impact on the effective 472 CH_4 emission, as increased isoprene concentrations decrease OH concentrations, and 473 thus decrease the effective CH_4 emission. A doubling in isoprene emission causes a 474 6% reduction in the effective emission of CH_4 .

475

476 4.3.3 Impact of changing isoprene emission on F_{radicals}, F_{RO2} and *I*

477 As shown in Fig. 3c(ii), increasing the isoprene emission results in a reduction in all 478 P_sO_3 efficiency parameters. The reductions in $F_{radicals}$ is due to the higher fraction of 479 oxidisable bonds that are lost via non-radical forming pathways (e.g. deposition) for 480 isoprene relative to the other main oxidisable bond emission sources CH₄ and CO. 481 The slight decreases of F_{RO2} and *I* with increasing isoprene emission are 482 predominantly due to changes in OH and NO_x (Fig. 9).

483 The complex chemistry of isoprene oxidation combined with the spatial distribution of 484 isoprene emissions means the increase in O₃ production due to increases in isoprene 485 emissions is roughly half what might be expected from the increase in oxidisable bond 486 emission alone (i.e. if the increase was *via* CO instead of isoprene).

487 **5.** Conclusions

488 We have shown that this bond-focussed approach to O_3 production provides a 489 significantly more detailed understanding of the processes involved. The role of 490 modelled VOC emissions and O₃ burden has been reported previously [Wild, 2007; Young et al., 2013]. However previous efforts extending this to a general process led 491 492 approach has not been successful. This new approach provides a tool with which the 493 processes controlling O₃ production can be investigated, and a metric by which 494 different emissions can be compared. For example, the differing chemistry of isoprene 495 and CH₄ shows that even though their emissions of carbon mass are comparable, the 496 atmosphere responds in different ways, with the isoprene bonds being less effective in 497 producing O₃ than CH₄ bonds. By quantifying multiple steps in the O₃ production 498 process, competing changes in the system become apparent (as shown in Fig. 4b(ii) 499 and c(ii) and are thus testable. This enables the effect of model approximations on O_3 500 production to be quantified (e.g. the effect of NO_x on CH₄ emissions when using CH₄ 501 concentration fields).

502 This new diagnostic also points towards the importance of observational datasets for 503 assessing our understanding of tropospheric chemistry. Although the budget presented 504 in Fig. 2 provides an annually integrated global estimate it points towards local 505 comparisons that can be made to assess model fidelity. Comparisons, both their 506 magnitude and their ratios, between observed and modelled bond concentration, bond 507 emission and loss fluxes (e.g. OH reactivity [*Yang et al.*, 2016] or depositional fluxes 508 [*Wesely and Hicks*, 2000]), and O_3 production [*Cazorla and Brune*, 2010] would all 509 provide comparisons for outputs from the P_sO_3 diagnostic and help assess model 510 performance.

511 Future work is necessary to identify the usefulness of this approach on smaller spatial 512 and temporal scales. For regional modelling scale, the transport flux of bonds into the 513 domain would need to be considered alongside the emissions of bonds. However, this 514 might help to disentangle O₃ production due to local VOC emissions from that due to 515 VOC emissions outside of the domain. This bond focussed approach may also have 516 usefulness on shorter timescales. For example, when considering vertical fluxes in and 517 out of the boundary layer, a bond centred approach could help. What fraction of the 518 bonds emitted at the surface are exported to the free troposphere. If a measurement of 519 reactivity flux could be made this could be tested experimentally.

520 Another potentially important application is in model-model comparisons. Increases 521 in our understanding of why different models calculate different O₃ production and 522 burdens has been slow [Stevenson et al., 2006; Wu et al., 2007; Young et al., 2013]. 523 Although a complete tagging like that described here is unlikely to occur for all of the 524 models involved in the comparison, a small number of additional diagnostics is likely 525 to produce a significantly better understanding of the models. Diagnosing (1) the total 526 bond flux (direct emissions plus the flux for those species kept constant), (2) the rate 527 of production of RO_2 and (3) the rate of production of O_3 could help differentiate why 528 certain models produce more or less O₃ than others. The ratios between these fluxes 529 would help identify what aspect of the emissions of chemistry differs between the 530 models.

531 References

- 532 Atkins, P. W., and J. De Paula (2014), *Atkins' Physical chemistry*, 10th ed., Oxford
 533 University Press.
- 534 Cazorla, M., and W. H. Brune (2010), Measurement of ozone production sensor,
 535 *Atmos. Meas. Tech.*, 3(3), 545–555, doi:10.5194/amt-3-545-2010.
- 536 Crutzen, P. J. (1971), Ozone production rates in an oxygen-hydrogen-nitrogen oxide
 537 atmosphere, J. Geophys. Res., 76(30), 7311–7327,
 538 doi:10.1029/JC076i030p07311.
- 539 Kroll, J. H. et al. (2011), Carbon oxidation state as a metric for describing the
 540 chemistry of atmospheric organic aerosol., *Nat. Chem.*, 3(2), 133–139,
 541 doi:10.1038/nchem.948.
- 542 Larson, R. A., and K. A. Marley (1999), Singlet oxygen in the environment, *Environ*.
 543 *Photochem.*, 2, 123–136.
- 544 Levy, H. (1973), Photochemistry of minor constituents in the troposphere, *Planet*.
 545 *Space Sci.*, *21*(4), 575–591, doi:10.1016/0032-0633(73)90071-8.
- Mao, J., F. Paulot, D. J. Jacob, R. C. Cohen, J. D. Crounse, P. O. Wennberg, C. A.
 Keller, R. C. Hudman, M. P. Barkley, and L. W. Horowitz (2013), Ozone and
 organic nitrates over the eastern United States: Sensitivity to isoprene chemistry, *J. Geophys. Res. Atmos.*, *118*(19), 1–13, doi:10.1002/jgrd.50817.
- Nguyen, M. T., R. Sumathi, D. Sengupta, and J. Peeters (1998), Theoretical analysis
 of reactions related to the HNO2 energy surface: OH + NO and H + NO2, *Chem. Phys.*, 230(1), 1–11, doi:10.1016/S0301-0104(97)00383-2.
- 553 Stevenson, D. S. et al. (2006), Multimodel ensemble simulations of present-day and
 554 near-future tropospheric ozone, J. Geophys. Res. Atmos., 111(8),
 555 doi:10.1029/2005JD006338.
- Wesely, M. L., and B. B. Hicks (2000), A review of the current status of knowledge
 on dry deposition, , *34*.
- Wild, O. (2007), Modelling the global tropospheric ozone budget: exploring the
 variability in current models, *Atmos. Chem. Phys.*, 7, 2643–2660,
 doi:10.5194/acpd-7-1995-2007.

23

- Wu, S., L. J. Mickley, D. J. Jacob, J. A. Logan, R. M. Yantosca, and D. Rind (2007),
 Why are there large differences between models in global budgets of
 tropospheric ozone?, *J. Geophys. Res. Atmos.*, *112*(5), 1–18,
 doi:10.1029/2006JD007801.
- Yang, Y., M. Shao, X. Wang, A. C. Nölscher, S. Kessel, A. Guenther, and J. Williams
 (2016), Towards a quantitative understanding of total OH reactivity: A review, *Atmos. Environ.*, 134(2), doi:10.1016/j.atmosenv.2016.03.010.
- Young, P. J. et al. (2013), Pre-industrial to end 21st century projections of
 tropospheric ozone from the Atmospheric Chemistry and Climate Model
 Biogeosciences Intercomparison Project (ACCMIP), *Atmos. Chem. Phys.*, *13*(10), 5277–5298, doi:10.5194/acp-13-5277-2013.
- 572

573 Author contributions

574 All work presented here was conceived by P.M.E. and M.J.E. The implementation,

575 model simulations and analysis were carried out by P.M.E., and the manuscript was576 written by P.M.E. with substantial input from M.J.E..

577 Additional information

578 The authors declare no competing financial interests.

579 Acknowledgements

580 P.M.E. was supported by NERC Grant NE/K004603/1. This work was also supported

581 by the NERC funded BACCHUS project (NE/L01291X/1). GEOS-Chem

582 (www.geos-chem.org) is a community effort and we wish to thank all involved in the

583 development of the model.