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Abstract 13 

With frequent air pollution episodes in China, growing research emphasis has been put on 14 

quantifying meteorological influences on PM2.5 concentrations. However, these studies 15 

mainly focus on isolated cities whilst meteorological influences on PM2.5 concentrations at 16 

the national scale have yet been examined comprehensively. This research employs the CCM 17 

(Cross Convergent Mapping) method to understand the influence of individual meteorological 18 

factors on local PM2.5 concentrations in 188 monitoring cities across China. Results indicate 19 

that meteorological influences on PM2.5 concentrations are of notable seasonal and regional 20 

variations. For the heavily polluted North China region, when PM2.5 concentrations are high, 21 

meteorological influences on PM2.5 concentrations are strong. The dominant meteorological 22 

influence for PM2.5 concentrations varies across locations and demonstrates regional 23 

similarities. For the most polluted winter, the dominant meteorological driver for local PM2.5 24 

concentrations is mainly the wind within the North China region whilst precipitation is the 25 

dominant meteorological influence for most coastal regions. At the national scale, the 26 

influence of temperature, humidity and wind on PM2.5 concentrations is much larger than that 27 

of other meteorological factors. Amongst eight factors, temperature exerts the strongest and 28 

most stable influence on national PM2.5 concentrations in all seasons. Due to notable temporal 29 

and spatial differences in meteorological influences on local PM2.5 concentrations, this 30 

research suggests pertinent environmental projects for air quality improvement should be 31 

designed accordingly for specific regions.  32 
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Introduction 34 

With rapid social and economic growth in China, both the government and residents are 35 

placing more and more emphasis on the sustainability of the ambient environment, and 36 

air quality has become one of the most concerned social and ecological issues. Since 37 

2013, the frequency of air pollution episodes with high PM2.5 concentrations and the 38 

number of cities influenced by PM2.5 pollution have increased notably in China. 39 

Statistical records from the national air quality publishing platform 40 

(http://113.108.142.147:20035/emcpublish/) revealed that PM2.5 induced pollution 41 

episodes occurred in 25 provinces and more than 100 middle-large cities whilst there 42 

were on average 30 days with hazardous PM2.5 concentrations for each monitoring city 43 

in 2014.  44 

High PM2.5 concentrations not only influence people’s daily life (e.g. high PM2.5 45 

concentrations caused severe traffic jam), but also severely threaten the health of 46 

residents that suffer from polluted air quality. Recent studies have suggested that 47 

airborne pollutants, PM2.5 in particular, are closely related to cardiovascular 48 

disease-related mortality (Garrett and Casimiro, 2011, Li et al., 2015a; Lanzinger et al., 49 

2015), emergency room visits (Qiao et al., 2014) and all year non-accidental mortality 50 

(Pasca et al., 2014). Due to its strong negative influences on public health , scholars have 51 

been working towards a better understanding of sources (Guo et al., 2012; Zhang et al., 52 

2013；Gu et al., 2014; Liu et al., 2014; Cao et al., 2014), characteristics (Wei et al., 2012; 53 

Zhang et al., 2013; Hu et al., 2015; Zhang, F. et al., 2015; Zhen et al., 2016; Zhang et al., 54 

2016) and seasonal variations (Cao et al., 2012; Shen et al., 2014; Yang and Christakos, 55 

2015; Wang et al., 2015; Chen et al., 2015; Chen, Y. et al. 2016; Chen, Z. et al., 2016) of 56 

PM2.5. Meanwhile, large-scale research on the variation and distribution of PM2.5 57 

concentrations has been conducted using a variety of remote sensing sources and spatial 58 

data analysis methods (Ma et al., 2014; Kong et al., 2016).  59 

One key issue for air quality research is to find the source and influencing factors for 60 

airborne pollutants. Although quantitative contributions of different sources (e.g. coal 61 

burning and automobile exhaust) to airborne pollutants remain controversial, 62 

meteorological influences on airborne pollutants have been examined in depth by more 63 

and more scholars. Recent studies conducted in different countries indicated that PM2.5 64 

concentrations were closely related to temperature (Pearce et al., 2011; Yadav et al., 2014; 65 

http://113.108.142.147:20035/emcpublish/
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Grundstrom et al., 2015)，wind speed (Galindo et al., 2011; El-Metwally and Alfaro, 66 

2013; Yadav et al., 2014) and precipitation (Yadav et al., 2014). Meanwhile, 67 

meteorological influences on PM2.5 concentrations across China have also become a hot 68 

research topic. Yao (2017) revealed a generally negative correlation between evaporation 69 

and PM2.5 concentrations in a series of cities within the North China plain. Huang et al. 70 

(2015) and Yin et al., (2016) found a negative influence of sunshine duration and a 71 

positive influence of relative humidity on PM2.5 concentrations in Beijing. Li et al. (2015) 72 

suggested that air pressure and temperature were positively correlated with PM2.5 73 

concentrations in Chengdu. For Nanjing (Chen, T. et al., 2016) and Hong Kong (Fung et 74 

al., 2014), precipitation exerted a strong influence on PM2.5 concentrations in winter, 75 

when the influence of wind speed on PM2.5 concentrations was weak. Meanwhile, wind 76 

speed exerted a major influence on PM2.5 concentrations in Beijing in winter. Through 77 

experiments, Guo (et al., 2016) found that the influence of precipitation on PM2.5 78 

concentrations in Xi’an was weaker than that in Guangzhou. Zhang et al. (2015b) 79 

quantified the correlations between meteorological factors and main airborne pollutants 80 

in three megacities, Beijing, Shanghai and Guangzhou, and pointed out that the 81 

influences of meteorological factors on the formation and concentrations of PM2.5 varied 82 

significantly across seasons and geographical locations. Chen, Z. et al. (2017) quantified 83 

the meteorological influences on local PM2.5 concentrations in the Beijing-Tianjin-Hebei 84 

region and revealed that wind, humidity and solar radiation were major meteorological 85 

factors that significantly influenced local PM2.5 concentrations in winter. These studies 86 

revealed the correlations between PM2.5 concentrations and a diversity of meteorological 87 

factors in some specific cities. However, findings from these studies conducted at a local 88 

scale cannot reveal regional and national patterns of meteorological influences on PM2.5 89 

concentrations in China. In addition, these studies mainly employed short-term 90 

observation data (e.g. one season or one year) and thus revealed characteristics of 91 

meteorological influences on PM2.5 concentrations may be biased by inter-annual 92 

variations.  93 

Due to the diversity of meteorological factors and complicated interactions between 94 

them, Pearce et al (2011) suggested that multiple models and methods should be 95 

comprehensively employed to quantify the influence of meteorological factors on local 96 

airborne pollutants. For complicated interactions between different factors, Sugihara et al. 97 
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(2012) suggested that correlation analysis between two variables in a complicated 98 

ecosystem might lead to mirage correlations and the extracted correlation coefficient 99 

between two variables could be influenced significantly by other variables in the 100 

ecosystem. Therefore, Sugihara et al. (2012) proposed a CCM (Cross Convergent 101 

Mapping) method to qualify the bi-direction coupling between two variables without the 102 

influence from other variables. The CCM method can effectively remove mirage 103 

correlations and extract reliable causality between two variables. Our previous research 104 

(Chen, Z., 2017) found that the CCM method performed better in quantifying the 105 

influence of individual meteorological factors on PM2.5 concentrations than traditional 106 

correlation analysis through comprehensive comparison. However, this study mainly 107 

focused on the meteorological influences on PM2.5 concentrations in a specific region. As 108 

pointed out by some scholars (He et al., 2017), interactions between meteorological 109 

factors and airborne pollutants are of great variations across different regions. China is a 110 

large country, including many regions with completely different air pollution levels, 111 

geographical conditions and meteorological types. To better understand the variations of 112 

meteorological influences on PM2.5 concentrations, a comparative study at the national 113 

scale is required. 114 

According to these challenges, this research aims to analyze and compare the influence 115 

of individual meteorological factors on PM2.5 concentrations across China.  Based on 116 

the CCM causality analysis, we quantified the influence of eight meteorological factors 117 

on PM2.5 concentrations in 188 monitoring cities across China using the observation data 118 

from March, 2014 to February, 2017. To comprehensively understand the 119 

spatio-temporal patterns of meteorological influences on PM2.5 concentrations across 120 

China, we a). investigated comprehensive meteorological influences on PM2.5 121 

concentrations in 37 regional representative cities, b) extracted the seasonal dominant 122 

meteorological factor for each monitoring city, and c) conducted a comparative statistics 123 

of the influence of different meteorological factors on PM2.5 concentrations at the 124 

national scale.  125 
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2 Materials 126 

2.1 Data sources 127 

2.1.1 PM2.5 data 128 

PM2.5 data are acquired from the website PM25.in. This website collects official data of 129 

PM2.5 concentrations provided by China National Environmental Monitoring Center 130 

(CNEMC) and publishes hourly air quality information for all monitoring cities. Before 131 

Jan 1st, 2015, PM25.in publishes data of 190 monitoring cities. Since Jan 1st, 2015, the 132 

number of monitoring cities has increased to 367. By calling specific API (Application 133 

Programming Interface) provided by PM25.in, we collect hourly PM2.5 data for target 134 

cities. The daily PM2.5 concentrations for each city is calculated using the averaged value 135 

of hourly PM2.5 concentrations measured at all available local observation stations. For a 136 

consecutive division of different seasons and multiple-year analysis, we collected PM2.5 137 

data from March 1st, 2014 to February 28th, 2017 for the following analysis.   138 

2.1.2 Meteorological data 139 

The meteorological data for these monitoring cities are obtained from the “China 140 

Meteorological Data Sharing Service System”, part of National Science and Technology 141 

Infrastructure. The meteorological data are collected through thousands of observation 142 

stations across China. Previous studies (Zhang et al., 2015b; Pearce et al., 2011; Yadav et 143 

al., 2014) revealed that such meteorological factors as relative humidity, temperature, 144 

wind speed, wind direction, solar radiation, evaporation, precipitation, and air pressure 145 

might be related to PM2.5 concentrations. Therefore, to comprehensively understand 146 

meteorological driving forces for PM2.5 concentrations in China, all these potential 147 

meteorological factors were selected as candidate factors. To better quantify the role of 148 

individual meteorological factors in affecting local PM2.5 concentrations, these factors 149 

are further categorized into some sub-factors: evaporation (small evaporation and large 150 

evaporation), temperature (daily max temperature, mean temperature, minimum 151 

temperature, and largest temperature difference for the day), precipitation (total 152 

precipitation from 8am-8pm, total precipitation from 8pm-8am and total precipitation for 153 

the day), air pressure (daily max pressure, mean pressure and minimum pressure), 154 

humidity (daily mean and minimum relative humidity), radiation (sunshine duration for 155 
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the day, short for SSD), wind speed (mean wind speed, max wind speed and extreme 156 

wind speed), wind direction (max wind direction for the day). Some meteorological 157 

factors are briefly explained here. Evaporation indicates the amount of 158 

evaporation-induced water loss during a certain period and is usually calculated using the 159 

depth of evaporated water in a container. For this research, small (large) evaporation 160 

indicates the amount of evaporated water measured using a container with a diameter of 161 

10cm (30cm) during 24 hours (unit: mm). Generally, the measured values using the two 162 

types of equipment are of slight differences. SSD represents the hours of sunshine 163 

measured during a day for a specific location on earth. The max wind speed indicates the 164 

max mean wind speed during any 10 minutes within a day’s time. The extreme wind 165 

speed indicates the max instant (for 1s) wind speed within a day’s time. The max wind 166 

direction indicates the dominant wind direction for the period with the max wind speed. 167 

As there are one or more observation stations for each city, the daily value for each 168 

meteorological factor for each city was calculated using the mean value of all available 169 

observation stations within the target city. To conduct time series comparison, we also 170 

collected meteorological data from March 1st, 2014 to February 28th, 2017.  171 

2.2 Study sites 172 

For a comprehensive understanding of meteorological influences on local PM2.5 173 

concentrations across China，all monitoring cities (except for Liaocheng and Zhuji, 174 

where continuous valid meteorological data were not available) during the study period 175 

were selected for this research. The 188 cities included most major cities (Beijing, 176 

Shanghai, Guangzhou, etc.) in China. For regions (e.g. Beijing-Tianjin-Hebei region) 177 

with heavy air pollution, the density of monitored cities was much higher than that in 178 

regions with good air quality. 179 

3 Methods 180 

Due to complicated interactions in the atmospheric environment, it is highly difficult to 181 

quantify the causality of individual meteorological factors on PM2.5 concentrations 182 

through correlation analysis. Instead, a robust causality analysis method is required.  183 

To extract the coupling between individual variables in complex systems, Sugihara et al. 184 

(2012) proposed a convergent cross mapping (CCM) method. Different from Granger 185 

causality (GC) analysis (Granger, 1980), the CCM method is sensitive to weak to 186 
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moderate coupling in ecological time series. By analyzing the temporal variations of two 187 

time-series variables, their bidirectional coupling can be featured with a convergent map. 188 

If the influence of one variable on the other variable is presented as a convergent curve 189 

with increasing time series length, then the causality is detected; If the curve 190 

demonstrates no convergent trend, then no causality exists. The predictive skill (defined 191 

as   value), which ranges from 0 to 1, suggests the quantitative causality of one 192 

variable on the other.  193 

The principle of CCM algorithms is briefly explained as follows (Luo et al. 2014). Two 194 

time series {X}= [X(1), …, X(L)] and {Y} = [Y(1), …, Y(L)] are defined as the temporal 195 

variations of two variables X and Y. For r = S to L (S < L), two partial time series 196 

[X(1), …, X(LP)] and [Y(1), …, Y(LP)] are extracted from the original time series (r is the 197 

current position whilst S is the start position in the time series). Following this, the 198 

shadow manifold MX is generated from {X}, which is a set of lagged-coordinate vectors 199 

x(t) = <X(t), X(t- ), ..., X(t-(E-1) )> for t = 1+(E-1)   to t = r. To generate a 200 

cross-mapped estimate of Y(t) ( Ŷ (t)|MX), the contemporaneous lagged-coordinate vector 201 

on MX, x(t) is located, and then its E+1 nearest neighbors are extracted, where E+1 is the 202 

minimum number of points required for a bounding simplex in an E-dimensional space 203 

(Sugihara and May, 1990). Next, the time index of the E+1 nearest neighbors of x(t) is 204 

denoted as t1, ..., tE+1. These time index are used to identify neighbor points in Y and then 205 

estimate Y(t) according to a locally weighted mean of E+1 Y(ti) values (Equation 1). 206 
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Where wi is a weight calculated according to the distance between X(t) and its ith nearest 208 

neighbor on MX. Y(ti) are contemporaneous values of Y. The weight wi is determined according to 209 

Equation 2.  210 
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 whilst d[x(t), x(ti)] represents the Euclidean distance between 
212 

two vectors. 
213 

In our previous research, interactions between the air quality in neighboring cities (Chen, 214 

Z. et al., 2016), and bidirectional coupling between individual meteorological factors and 215 
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PM2.5 concentrations (Chen, Z. et al., 2017) were quantified effectively using the CCM 216 

method. By comparing the performance of correlation analysis and CCM method, Chen, 217 

Z. et al. (2017) suggested that correlation analysis might lead to a diversity of biases due 218 

to complicated interactions between individual meteorological factors. Firstly, some 219 

mirage correlations (two variables with a moderate correlation coefficient) extracted 220 

using the correlation analysis were revealed effectively using the CCM method (the   221 

value between two variables was 0). Secondly, some weak coupling, which was hardly 222 

detected using the correlation analysis (the correlation between the two variables were 223 

not significant), was extracted using the CCM method (a small   value). Meanwhile, 224 

as Sugihara et al. (2012) suggested, the correlation between two variables could be 225 

influenced significantly by other agent variables and thus the value of correlation 226 

coefficient between two variables could not reflect the actual causality between them. 227 

Chen et al. (2017) further revealed that the correlation coefficient between individual 228 

meteorological factors and PM2.5 concentrations was usually much larger than the   229 

value. This indicated that the causality of individual meteorological factors on PM2.5 230 

concentrations was generally overestimated using the correlation analysis, due to the 231 

influences from other meteorological factors. In this case, the CCM method is an 232 

appropriate tool for quantifying bidirectional interactions between PM2.5 concentrations 233 

and individual meteorological factors in complicated atmospheric environment.  234 

4 Results 235 

Seasonal variations of PM2.5 concentrations have been revealed in Beijing (Chen et al., 236 

2015; Chen, Y. et al., 2016; Chen, Z. et al., 2016), Nanjing (Shen et al., 2014), Shandong 237 

Province (Yang and Christakos, 2015) and the Beijing-Tianjin-Hebei region (Wang et al. 238 

2015; Chen, Z. et al., 2017). In addition to these local and regional studies, Cao et al. 239 

(2012) further compared seasonal variations of PM2.5 concentrations in seven southern 240 

cities (Chongqing, Guangzhou, Hong Kong, Hangzhou, Shanghai, Wuhan, and Xiamen) 241 

and seven northern cities (Beijing, Changchun, Jinchang, Qingdao, Tianjin, Xi’an, and 242 

Yulin) across China.  Hence, the research period was divided into four seasons. 243 

According to traditional season division for China, spring was set as the period between 244 

March 1st, 2014 and May 31st, 2014; summer was set as the period between June 1st, 245 

2014 and August 31st, 2014; autumn was set as the period between September 1st, 2014 246 

and November 30th, 2014; and winter was set as the period between December 1st, 2014 247 
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and February 28th, 2015. For each city, the bidirectional coupling between individual 248 

meteorological factors and PM2.5 concentrations in different seasons was analyzed 249 

respectively using the CCM method. The CCM method is highly automatic and only few 250 

parameters need to be set for running this algorithm: E (number of dimensions for the 251 

attractor reconstruction), (time lag) and b (number of nearest neighbors to use for 252 

prediction). The value of E can be 2 or 3. A larger value of E produces more accurate 253 

convergent maps. The variable b is decided by E (b = E + 1). A small value of   leads 254 

to a fine-resolution convergent map, yet requires much more processing time. Through 255 

experiments, we found that the final results were not sensitive to the selection of 256 

parameters and different parameters mainly exerted influences on the presentation effects 257 

of CCM. In this research, to acquire optimal interpretation effects of convergent cross 258 

maps, the value of   was set as 2 days and the value of E was set 3. For each 259 

meteorological factor, its causality coupling with PM2.5 concentrations can be 260 

represented using a convergent map. Since it is not feasible to present all these 261 

convergent maps here, we simply display some exemplary maps to demonstrate how 262 

CCM works (Fig 1). As a heavily polluted city, we presented the interactions between 263 

PM2.5 concentrations and meteorological factors in Beijing in winter, when the local 264 

PM2.5 concentration was the highest, as an example. Four major meteorological factors, 265 

wind, humidity, radiation and temperature, which exerted much stronger influences on 266 

PM2.5 concentrations than other factors, were employed. Due to the strong bidirectional 267 

coupling between PM2.5 concentrations and these meteorological factors, Figure 1 not 268 

only demonstrates how CCM output could be interpreted, but also provides readers with 269 

a general comparison of the magnitude of simultaneous influences of different 270 

meteorological factors on the local PM2.5 concentration and its feedback effects. 271 
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 272 

Fig 1. Illustrative CCM results to demonstrate the bidirectional coupling between 273 

meteorological factors and PM2.5 concentrations in Beijing (2014, winter) 274 

 : predictive skills. L : the length of time series. A xmap B stands for convergent cross mapping B 275 

from A, in other words, the causality of variable B on A. For instance, PM2.5 xmap mean humidity 276 

stands for the causality of mean humidity on PM2.5 concentrations. Mean humidity xmap PM2.5 277 

stands for the feedback effect of PM2.5 concentrations on mean humidity.   indicates the 278 

predictive skills of using mean humidity to retrieve PM2.5 concentrations. 279 

According to Fig 1, one can see that the quantitative influence of individual 280 

meteorological factors on PM2.5 was well extracted using the CCM method whilst the 281 

feedback effect of PM2.5 on specific meteorological factors was revealed as well. For 282 

Beijing, mean humidity and maximum wind speed exerted a strong influence on local 283 

PM2.5 concentrations in winter (   > 0.4) whilst SSD and minimum temperature also had 284 

a weaker influence on local PM2.5 concentrations. (   close to 0.2 ). On the other hand, 285 
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high PM2.5 concentrations had an even stronger feedback influence on mean humidity, 286 

maximum wind speed and SSD ( 
 
close to 0.6) whilst PM2.5 had little influence on 287 

minimum temperature (  close to 0). The bidirectional coupling between PM2.5 288 

concentrations and individual meteorological factors provides useful reference for a 289 

better understanding of the form and development of PM2.5-induced air pollution 290 

episodes. For Beijing, low wind speed (high humidity and low SSD) in winter results in 291 

high PM2.5 concentrations, which in turn causes lower wind speed (higher humidity and 292 

lower SSD). In consequence, PM2.5 concentrations are increased further by the changing 293 

wind (humidity and SSD) situation. This mechanism causes a quickly rising PM2.5 294 

concentrations, which brings the atmospheric environment to a comparatively stable 295 

status. In this case, persistent high-concentration PM2.5 is unlikely to disperse and usually 296 

lasts for a long period in this region. Similarly, bidirectional interactions between PM2.5 297 

concentrations and other meteorological factors can as well be quantified using the CCM 298 

method. Since the main aim of this research is to understand the influence of individual 299 

meteorological factors on PM2.5 concentrations across China, the feedback effect of 300 

PM2.5 concentrations on specific meteorological factors is not explained in details herein.  301 

The   value is a direct indicator of quantitative causality. For this research, the 302 

maximum   value of all sub-factors in the same category was used as the causality of 303 

this specific meteorological factor on PM2.5 concentrations. E.g. for a specific city, the 304 

maximum   value of max temperature, mean temperature, minimum temperature, and 305 

largest temperature difference for the day is used as the influence of temperature on local 306 

PM2.5 concentrations. For this research, we collected meteorological and PM2.5 data for 307 

three consecutive years. To avoid the analysis of inconsecutive time series, which may 308 

influence the CCM result, we did not calculate the general influence of individual 309 

meteorological factors on PM2.5 concentrations during 2014-2016 by analyzing three 310 

isolated periods (e.g. April- June, 2014, April-June, 2015, and April- June, 2016) as a 311 

complete data set. Instead, for each city, we quantified the influence of individual 312 

meteorological factors on PM2.5 concentrations for each season in 2014, 2015 and 2016 313 

respectively and calculated the mean 
 
value during 2014-2016 for each city.  314 
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4.1 Comprehensive meteorological influences on PM2.5 concentrations in some 315 

regional representative cities 316 

When the   value for each meteorological factor was calculated, a wind rose, which 317 

presents the quantitative influences of all individual meteorological factors on PM2.5 318 

concentrations, can be produced for each city. It is not feasible to present all 188 wind 319 

roses simultaneously, due to severe overlapping effects. Thus, considering the 320 

social-economic factors, 37 regional representative cities (including all 31 provincial 321 

capital cities in mainland China), which are the largest and most important cities for 322 

specific regions, were selected to produce a wind rose map of meteorological influences 323 

on PM2.5 concentrations across China (Fig 2).  324 

 325 
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 328 

Fig 2. Wind rose map of influences of eight individual meteorological factors on PM2.5 329 

concentrations across mainland China (37 representative cities) during 2014-2016 330 

According to Fig 2, some spatial and temporal patterns of meteorological influences on 331 

PM2.5 concentrations at the national scale can be found as follows: 332 

1. Like seasonal variations of PM2.5 concentrations, the influences of individual 333 

meteorological factors on local PM2.5 concentrations vary significantly. For a specific city, 334 

the dominant meteorological driver for PM2.5 concentrations in one season may become 335 

insignificant in another season. E.g. in winter, one major meteorological influencing 336 

factor for Beijing is wind (The mean 
 
value during 2014-2016 was 0.57), which 337 

exerts little influence on PM2.5 concentrations in summer (The mean 
 
value during 338 

2014-2016 was 0.10). Furthermore, it is noted that seasonal variations of meteorological 339 

influences on PM2.5 concentrations apply to all these representative cities, as the shape 340 

and size of wind rose for each city change significantly across different seasons. Take 341 

several mega cities in different regions for instance. During 2014-2016, the three major 342 

meteorological influencing factors for PM2.5 concentrations in Beijing (North China 343 

plain), Shanghai (Yangtze River Basin), Wuhan (Central China Region) and Guangzhou 344 

(South China Region) were listed as Table 1. According to Table 1, notable seasonal 345 
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variations of meteorological influences on PM2.5 concentrations were found in these 346 

mega cities across China. 347 

Table 1 Major meteorological influencing factors for PM2.5 concentrations in four 348 

mega cities within different regions  349 

2. In spite of notable differences in the shape and size of wind roses, meteorological 350 

influences on PM2.5 concentrations cities are of some regional patterns. PM2.5 351 

concentrations in cities within the North China region are influenced by similar dominant 352 

meteorological factors, especially in winter, when PM2.5 concentrations in these cities are 353 

high. Take four major cities, Beijing, Tianjin, Taiyuan and Shijiangzhuang, in the North 354 

China Plain for example. For winter, SSD, evaporation, humidity and wind were the 355 

major meteorological factors for PM2.5 concentrations in the four cities and the 
 
value 356 

of these four factors was 0.50, 0.52, 0.76 and 0.57 for Beijing, 0.41, 0.44, 0.56 and 0.50 357 

for Tianjin, 0.44, 0.36, 0.61 and 0.41 for Taiyuan, and 0.62, 0.58, 0.56 and 0.60 for 358 

Shijiazhuang respectively, presenting a similar regional pattern. Meanwhile, 359 

meteorological influences on PM2.5 concentrations in cities within the Yangtze River 360 

City Season Three major meteorological factors 

Beijing 

Spring Humidity（0.48）    Wind    （0.37） Evaporation（0.31） 

Summer Humidity（0.39） Temperature（0.34）    SSD    （0.25） 

Autumn Humidity（0.56） Evaporation （0.51）    Wind   （0.41） 

Winter Humidity（0.76）    Wind    （0.57） Evaporation（0.52） 

Shanghai 

Spring  Temperature（0.264）  air pressure （0.260）  Wind  （0.25） 

Summer Temperature（0.40）     Wind    （0.38） Humidity（0.27） 

Autumn Temperature（0.39）     Wind    （0.28） Humidity（0.17） 

Winter Precipitation（0.36） Wind direction（0.25） Humidity（0.19） 

Wuhan 

Spring Precipitation（0.18）   Wind    （0.16） Temperature（0.09） 

Summer  Humidity  （0..47） Temperature（0.41）   Wind    （0.34） 

Autumn    Wind   （0.44） Precipitation（0.31） Temperature（0.26） 

Winter Precipitation（0.33） Temperature（0.19）   Wind    （0.15） 

Guangzhou 

Spring    Wind    （0.31） Precipitation（0.24） Air pressure（0.23） 

Summer Air pressure （0.51） Temperature（0.41）    Wind   （0.37） 

Autumn Temperature（0.47）     Wind   （0.36） Precipitation（0.29） 

Winter Temperature（0.52）     Wind   （0.48） Air pressure （0.33） 
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Basin, especially the dominant factors, were also of some regional similarities. Take four 361 

major cities in the Yangtze River Basin, Shanghai, Nanjing, Hangzhou and Nanchang for 362 

example. For summer, precipitation, humidity, temperature and wind were the major 363 

meteorological factors for PM2.5 concentrations in these four cities and  the 
 
value of 364 

these factors was 0.21, 0.27, 0.40 and 0.38 for Shanghai, 0.29, 0.41, 0.34 and 0.33 for 365 

Nanjing, 0.28, 0.27, 0.23 and 0.27 for Hangzhou, and 0.24, 0.33, 0.21 and 0.29 for 366 

Nanchang. Despite some differences in the 
 
values, similar dominant meteorological 367 

factors and the similar magnitude of meteorological influences demonstrated regional 368 

similarities of meteorological influences on PM2.5 concentrations in the Yangtze River 369 

Basin. As we can see, meteorological influences on PM2.5 concentrations in China are 370 

mainly controlled by geographical conditions (e.g. terrain and landscape patterns).  371 

3. For the heavily polluted North China region, the higher the local PM2.5 concentrations, 372 

the larger influence meteorological factors exerts on PM2.5 concentrations. PM2.5 373 

concentrations are usually the highest in winter, causing serious air pollution episodes 374 

across China, the North China region in particular. Meanwhile, PM2.5 concentrations in 375 

spring and summer are comparatively low. Accordingly, there are more influencing 376 

meteorological factors on PM2.5 concentrations for cities within this region and the   377 

value of these meteorological factors is notably larger in winter. Take the summer and 378 

winter major influencing meteorological factors for PM2.5 concentrations in four major 379 

cities in the North China region for instance ( as shown in Table 2). As explained, 380 

bidirectional interactions between meteorological factors and PM2.5 concentrations may 381 

lead to complicated mechanisms that further enhance local PM2.5 concentrations 382 

significantly. Therefore, strong meteorological influences on PM2.5 concentrations in 383 

winter are a major cause for the form and persistence of high PM2.5 concentrations within 384 

the North China region.  385 

386 
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Table 2 Summer and winter major influencing meteorological factors for PM2.5 387 

concentrations in four major cities in the North China region 388 

City Season Major influencing meteorological factors 

Beijing 

Summer 
humidity temperature SSD 

0.39 0.34 0.25 

Winter 
humidity wind evaporation SSD 

0.76 0.57 0.52 0.50 

Tianjin 

Summer 
precipitation air pressure temperature 

0.34 0.25 0.22 

Winter 
humidity wind evaporation SSD 

0.56 0.50 0.44 0.41 

Shijiazhuang 

Summer 
SSD humidity evaporation 

0.4 0.26 0.26 

Winter 
SSD wind evaporation humidity 

0.62 0.60 0.58 0.56 

Taiyuan 

Summer 
temperature air pressure precipitation 

0.32 0.23 0.20 

Winter 
humidity SSD wind 

0.61 0.44 0.41 

4.2 Spatial and temporal variations of the dominant meteorological influence on 389 

local PM2.5 concentrations across China 390 

Through statistical analysis, we selected the factor with the largest  value as the 391 

dominant meteorological factor for local PM2.5 concentrations. The spatial and temporal 392 

variations of the dominant meteorological influence on local PM2.5 concentrations across 393 

China are demonstrated as Fig 3. According to Fig 3, some spatio-temporal 394 

characteristics of meteorological influences on PM2.5 concentrations can be further 395 

concluded: 396 

1. The dominant meteorological factor for PM2.5 concentrations is closely related to 397 

geographical conditions. For instance, the factor of precipitation may exert a key 398 

influence on local PM2.5 concentrations in some coastal cities and cities within the 399 

Yangtze River Basin whilst this meteorological factor exerts limited influence on PM2.5 400 
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concentrations within some inland regions. Here we analyzed the 
 
value of 401 

precipitation in cities within the Yangtze River Basin and cities within the 402 

Beijing-Tianjin-Hebei region respectively. For winter, precipitation was the dominant 403 

factor for PM2.5 concentrations in Shanghai, Hangzhou and Nanchang within the Yangtze 404 

River Basin and the 
 
value of precipitation was 0.36, 0.29 and 0.31 respectively. 405 

Meanwhile, the 
 
value of precipitation in Beijing, Tianjin and Shijiazhuang within the 406 

Beijing-Tianjin-Hebei region was 0.08, 0.01 and 0.06 respectively.   407 

2. Some meteorological factors can be the dominant factor for cities within different 408 

regions whilst some (e.g. evaporation and SSD) are mainly the dominant meteorological 409 

factor for PM2.5 concentrations in cities within some specific regions. In other words, 410 

some factors can be regarded as regional and national meteorological influencing factors 411 

for PM2.5 concentrations, yet some meteorological factors are context-related influencing 412 

factors for local PM2.5 concentrations. Specifically, such factors as temperature, wind and 413 

humidity serve as the dominant meteorological factors in many regions, including 414 

Northeast, Northwest, coastal areas and inland areas; Meanwhile, such factors as SSD 415 

and wind direction serve as the dominant meteorological factors mainly in some inland 416 

regions. The prevalence of different meteorological factors across China can also be 417 

reflected according to the number of cities where this specific factor is the dominant 418 

factor for local PM2.5 concentrations. For winter, the number of cities with temperature, 419 

wind or humidity as the dominant factor was 56，48 and 44 respectively. Meanwhile, the 420 

number of cities with SSD or wind direction as the dominant factor was 3 and 1 421 

respectively.  422 

3. Similar to patterns revealed in Fig 2, the   value for the dominant meteorological 423 

factors is much larger in winter than that in summer. Furthermore, it is noted that the 424 

dominant meteorological factors demonstrate more regional similarity in winter. 425 

Specially, the dominant meteorological factors for PM2.5 concentrations in the heavily 426 

polluted North China region are more concentrated and homogeneously distributed in 427 

winter (mainly the wind and humidity factor) whilst a diversity of dominant 428 

meteorological factors (includes humidity, temperature, SSD and air pressure) for PM2.5 429 

concentrations is irregularly distributed within this region in summer. Take some major 430 

cities in North China region for instance. For winter, the dominant meteorological factors 431 

for  Beijing, Tianjin, Taiyuan, Zhangjiakou, Handan and Jining was humidity (0.76)，432 

humidity (0.56), humidity (0.61), wind (0.62), humidity (0.43) and humidity (0.52) 433 
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respectively. Meanwhile, for summer, the dominant meteorological factors for Beijing, 434 

Tianjin, Taiyuan, Zhangjiakou, Baoding, Handan and Jining was humidity (0.39), 435 

precipitation (0.28), temperature (0.23), temperature (0.47), air pressure (0.21) and SSD 436 

(0.18). According to this pattern, when a regional PM2.5-induced air pollution episode 437 

occurs in winter, the regional air quality is more likely to be simultaneously improved by 438 

the same meteorological factor. This is consistent with the common scene in winter that 439 

regional air pollution episodes in the Beijing-Tianjin-Hebei region can be considerably 440 

mitigated by strong northwesterly synoptic winds， which are produced by presence of 441 

high air pressure in northwest Beijing (NW-High) （Tie et al., 2015; Miao et al., 2015）. 442 

On the other hand, regional air pollution in summer can hardly be solved simultaneously 443 

through one specific meteorological factor. 444 

 445 
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 447 
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 448 

Fig 3. The dominant meteorological factor for local PM2.5 concentrations in 188 449 

monitoring cities across mainland China 450 

The size of symbols indicates the 


value of the meteorological factor on local PM2.5 concentrations.451 
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4.3 Comparative statistics of the influence of individual meteorological factors on 452 

local PM2.5 concentrations across China 453 

In addition to meteorological influences on PM2.5 concentrations for individual cities, 454 

we examined and compared the comprehensive influence of individual meteorological 455 

factors on PM2.5 concentrations at a national scale. The results are presented as Table 456 

3 and Fig 4. 457 

Table 3. The comparison of the influence of individual meteorological factors on 458 

PM2.5 concentrations in 188 cities across China (2014-2016) 459 

Season Factor TEM SSD PRE EVP PRS RHU WIN Dir_WIN 

Spring 

No. of cities1 76 1 13 3 13 17 64 1 

Mean 


value 0.254 0.102 0.143 0.108 0.177 0.161 0.222 0.094 

SD of 


value 0.106 0.071 0.088 0.081 0.123 0.105 0.102 0.077 

Max 


value 0.572 0.366 0.385 0.397 0.653 0.475 0.595 0.429 

Summer 

No. of cities 78 5 22 1 20 32 27 3 

Mean 


value 0.272 0.136 0.183 0.137 0.163 0.219 0.191 0.087 

SD of 


value 0.098 0.086 0.099 0.088 0.109 0.118 0.095 0.062 

Max 


value 0.604 0.433 0.536 0.399 0.518 0.562 0.453 0.311 

Autumn 

No. of cities 70 1 13 15 13 27 48 1 

Mean 


value 0.316 0.164 0.191 0.181 0.199 0.247 0.265 0.104 

SD of 


value 0.109 0.098 0.093 0.117 0.091 0.125 0.089 0.074 

Max 


value 0.702 0.479 0.430 0.514 0.524 0.662 0.488 0.331 

Winter 

No. of cities 56 3 27 5 4 48 44 1 

Mean 


value 0.306 0.183 0.166 0.190 0.180 0.304 0.299 0.119 

SD of 


value 0.094 0.129 0.115 0.130 0.086 0.161 0.136 0.092 

Max 


value 0.527 0.615 0.473 0.595 0.427 0.755 0.623 0.560 

1No. of cities: the number of cities with this factor as the dominant meteorological factor (its 


value 460 

is the largest amongst eight factors) on local PM2.5 concentrations.  461 
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 462 

Fig 4. Violin plots of the influence of eight different meteorological factors on 463 

local PM2.5 concentrations in 188 cities across China 464 

No. of cities: the number of cities with this factor as the dominant meteorological factor (its 465 


value is the largest amongst eight factors) on local PM2.5 concentrations. The shape of the 466 

violin bars indicated the frequency distribution of 


value for 188 cities.  467 

We compared the influence of individual meteorological factors on PM2.5 468 

concentrations from different perspectives.  469 

1. From a national perspective, temperature, humidity, and wind exert stronger 470 

influences on local PM2.5 concentrations than other factors. The annual mean  value 471 

for temperature, wind and humidity was 0.287, 0.244 and 0.233, compared with wind 472 

direction (0.101), SSD (0.146), evaporation (0.155), precipitation (0.171) and air 473 

pressure (0.180). Amongst the eight factors, temperature was found to be the most 474 

influential meteorological factor for general PM2.5 concentrations in China. In 475 

addition to the largest mean  value, temperature was the dominant meteorological 476 

factors for most cities in all seasons. Furthermore, the Coefficient of Variation (SD 477 

/mean100%) for temperature was much smaller than other factors, indicating the 478 

consistent influence of temperature on local PM2.5 concentrations across China.  479 

2. Although some meteorological factors exert a limited influence on PM2.5 480 

concentrations at a national scale, these factors may be a key meteorological factor for 481 

local PM2.5 concentrations. As shown in Table 1, the max  value for each 482 
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meteorological factor was large than 0.35 for all seasons (except for the wind 483 

direction factor in summer and autumn), indicating a very strong influence on local 484 

PM2.5 concentrations in some specific regions. As a result, when analyzing 485 

meteorological influences on local PM2.5 concentrations for a specific city, 486 

meteorological factors that have little influence on PM2.5 concentrations at a large 487 

scale should also be comprehensively considered.  488 

3. Some factors (e.g. precipitation in summer and winter) may be the dominant 489 

meteorological factors for a large number of cities, though the mean  value 490 

remained small. This may be attributed to the fact that these meteorological factors 491 

mainly exert influence on local PM2.5 concentrations in those cities (seasons) where 492 

(when) the general PM2.5 concentrations is not high. Taking the precipitation as an 493 

example. Luo et al. (2017) pointed out that there may be thresholds for the negative 494 

influences of precipitations on PM2.5 concentrations and Guo et al. (2016) found that 495 

the same amount of precipitation led to a weaker washing-off effect in areas with 496 

higher PM2.5 concentrations. Hence, precipitation mainly exerts a dominant influence 497 

on local PM2.5 concentrations in winter for Yangtze River Basin or coastal cities, 498 

where the amount of precipitation is large and the PM2.5 concentration is low, whilst 499 

precipitation exerts a limited role in northern China, where the amount of 500 

precipitation is small and the PM2.5 concentration is high. Therefore, as explained 501 

above, comprehensive meteorological influences on PM2.5 concentrations are limited 502 

considerably.  503 

5 Discussion 504 

Correlations between individual meteorological factors and PM2.5 concentrations have 505 

been analyzed in such mega cities as Nanjing ( Chen, T. et al., 2016; Shen and Li., 506 

2016;), Beijing (Huang et al., 2015; Yin et al., 2016), Wuhan ( Zhang et al., 2017), 507 

Hangzhou (Jian et al., 2012), Chengdu ( Zeng and Zhang, et al. 2017) and Hong Kong 508 

(Fung et al., 2014). These studies suggested that meteorological influences on PM2.5 509 

concentrations varied significantly across regions. The dominant meteorological 510 

factors for P2.5 concentrations demonstrated notable regional differences. For Nanjing 511 

(Chen, T. et al., 2016), a mega city in the Yangtze River, and Hong Kong (Fung et al., 512 

2014), a mega coastal city, precipitation exerted the strongest influence whilst wind 513 

speed exerted a weak influence on PM2.5 concentrations in winter. On the other hand, 514 
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for winter, wind speed was the dominant meteorological factor for PM2.5 515 

concentrations in Beijing (Huang et al., 2015.) , a mega city in North China, and 516 

precipitation played a weak role in affecting local PM2.5 concentrations . Compared 517 

with studies at a local or regional scale, this research conducted at the national scale 518 

provided a better understanding of spatial and temporal patterns of meteorological 519 

influences on PM2.,5 concentrations across China, for the following reasons. a. A 520 

national perspective. Previous studies conducted at a local scale mainly focused on a 521 

specific city (e.g. Beijing), and can hardly reveal spatio-temporal patterns of 522 

meteorological influences on PM2.5 concentrations at a large scale (e.g. the North 523 

China plain). This research, on the other hand, quantified the influence of 524 

meteorological factors on PM2.5 concentrations for 188 cities across China, and thus 525 

revealed some regional patterns of meteorological influences on PM2.5 concentrations 526 

in some typical regions (e.g. North China region or Yangtze River Basin). b. A unified 527 

research period and set of meteorological factors. Previous studies employed 528 

short-term observation data (e.g. one season or one year) in specific cities. Due to the 529 

discrepancy in research periods and sets of meteorological factors, the findings from 530 

different local-scale studies cannot be compared and comprehensively understood. 531 

This research employed daily PM2.5 and meteorological data of three consecutive 532 

years and a unified set of eight meteorological factors for all 188 monitoring cities 533 

and thus meteorological influences on PM2.5 concentrations across China can be 534 

effectively compared without significant influences from inter-annual variations. c. A 535 

robust causality analysis method. Correlations analysis, as introduced above, may lead 536 

to large bias in quantifying the meteorological influences on PM2.5 concentrations. 537 

Similarly, the correlation coefficient cannot be used as a reliable indicator to compare 538 

quantitative influences of individual meteorological factors on PM2.5 concentrations 539 

across different cities. This research employed a robust CCM method, which removes 540 

the influence of other factors, and effectively quantified the coupling between PM2.5 541 

concentrations and a set of meteorological factors. The  value of each 542 

meteorological factor on PM2.5 concentration can be compared between different 543 

cities. Based on national statistics across China, this research concluded that the 544 

influence of temperature, humidity and wind, especially temperature, on PM2.5 545 

concentrations was much larger than that of other meteorological factors, which could 546 

not be revealed by previous local and regional scale studies.   547 



26 

 

The findings from this research were consistent with and a major extension of those 548 

from previous studies by quantifying the influence of individual meteorological 549 

factors in a large number of cities across China using a more robust causality analysis 550 

method. Similar to previous studies, this study also revealed notable differences in 551 

meteorological influences on PM2.5 concentrations at the national scale, which was 552 

mainly attributed to different meteorological conditions and complicated mechanisms 553 

of PM2.5-meteorology interactions. Firstly, notable differences existed in 554 

meteorological conditions across China. For instance, in winter, the frequency and 555 

intensity of precipitation are much higher and stronger in coastal areas than those in 556 

the North China region, where the frequency of strong winds is high in winter. 557 

Therefore, precipitation exerts a large influence on PM2.5 concentrations in coastal 558 

regions whilst wind is the key influencing factor for PM2.5 concentrations in the North 559 

China region in winter. Secondly, in addition to the large variations in the values of 560 

correlation coefficients, the interaction mechanisms between individual 561 

meteorological factors and PM2.5 concentrations may also vary significantly across 562 

regions. For such meteorological influences as wind speed, its negative effect on 563 

PM2.5 concentrations was consistent in China (He et al., 2017). On the other hand, He 564 

et al. (2017) suggested that temperature and humidity were either positively or 565 

negatively correlated with PM2.5 concentrations in different regions of China. In terms 566 

of humidity, when the humidity is low, PM2.5 concentration increases with the increase 567 

of humidity due to hygroscopic increase and accumulation of PM2.5 (Fu et al., 2016). 568 

When the humidity continues to grow, the particles grow too heavy to stay in the air, 569 

leading to dry (particles drop to the ground) (Wang, J., & Ogawa, S. (2015)) and wet 570 

deposition (precipitation) (Li et al., 2015b), and the reduction of PM2.5 concentrations. 571 

Similarly, there may be thresholds for the negative influences of precipitations on 572 

PM2.5 concentrations (Luo et al., 2017). Heavy precipitation can have a strong 573 

washing-off effect on PM2.5 concentrations and notably reduce PM2.5 concentrations. 574 

Meanwhile, slight precipitation may not effectively remove the high-concentration 575 

PM2.5. Instead, the slight precipitation may induce enhanced relative humidity and 576 

thus lead to the increase of PM2.5 concentrations. Meanwhile, the washing-off effect 577 

from the same amount of precipitation on PM2.5 concentrations in Xi’an, a city with 578 

higher PM2.5 concentrations, was lower than that in Guangzhou (Guo et al., 2016), 579 

indicating local PM2.5 concentrations also exerted a key role in the negative effects of 580 
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precipitation. Meanwhile，temperature can either be negatively correlated with PM2.5 581 

concentrations by accelerating the flow circulation and promoting the dispersion of 582 

PM2.5 (Li et al., 2015b), or positively correlated with PM2.5 concentrations through 583 

inversion events (Jian et al., 2012). Given the complexity of interactions between 584 

meteorological factors and PM2.5, characteristics and variations of meteorological 585 

influences on PM2.5 concentrations should be further investigated for specific regions 586 

across China respectively based on long-term observation data.   587 

Due to highly complicated atmospheric environment and the difficulty in acquiring 588 

true data of exhaust emission, commonly used models for air quality prediction(e.g. 589 

CAMx, CMAQ and WRFCHEM) may lead to large biases and uncertainty when 590 

applied to China. On the other hand, statistical models can achieve satisfactory 591 

forecasting results based on massive historical data (Cheng et al., 2015). Compared 592 

with the static models, dynamic statistical models additionally consider the 593 

meteorological influences on PM2.5 concentrations and some meteorological factors 594 

that are of stable, representative and strong correlations with PM2.5 concentrations are 595 

selected for forecasting PM2.5 concentrations. Meanwhile, many recent studies (Cheng 596 

et al., 2017; Guo et al., 2017; Lu et al., 2017; Ni et al. 2017; etc) have recognized the 597 

meteorological influences on the evolution of PM2.5 concentrations and included some 598 

key meteorological factors for PM2.5 estimation. However, most PM2.5 estimation and 599 

forecasting models mainly employed correlation analysis, and the correlation 600 

coefficient between meteorological factors and PM2.5 concentrations is usually much 601 

larger than the    value and overestimates the influence of individual 602 

meteorological factors on PM2.5 concentrations. In this case, this research provides 603 

useful reference for improving existing statistical models. By incorporating the 604 

 value, instead of the correlation coefficient, of different factors into corresponding 605 

GAM (Generalized Additive Models) and adjusting parameters accordingly, we may 606 

significantly improve the reliability of future estimation and forecasting of PM2.5 607 

concentrations.  608 

Quantified causality of individual meteorological factors on PM2.5 concentrations 609 

provides useful decision support for evaluating relevant environmental projects. 610 

Specifically, a forthcoming Beijing wind-corridor project 611 

(http://www.bj.xinhuanet.com/bjyw/yqphb/2016-05/16/c_1118870801.htm) has 612 

http://www.bj.xinhuanet.com/bjyw/yqphb/2016-05/16/c_1118870801.htm
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become a hot social and scientific issue. Herein, our research suggests that wind is a 613 

dominant meteorological factor for winter PM2.5 concentrations in Beijing and can 614 

significantly influence PM2.5 concentrations through direct and indirect 615 

mechanisms( Chen,Z. et al., 2017). In consequence, the wind-corridor project may 616 

directly allow in more strong wind, which thus leads to a larger value of SSD and 617 

evaporation and a smaller value of humidity. The change of SSD, humidity and 618 

evaporation values can further induce the reduction of PM2.5 concentrations. From 619 

this perspective, the Beijing wind-corridor project has good potential to improve local 620 

and regional air quality. In addition, some scholars and decision makers have 621 

proposed other meteorological means for reducing PM2.5 concentrations. For instance, 622 

Yu (2014) suggested that water spraying from high buildings and water towers in 623 

urban areas was an efficient way to reduce PM2.5 concentrations rapidly by simulating 624 

precipitation. However, some limitations, such as the humidity control and potential 625 

icing risk, remained. In the near future, with growing attention on the improvement of 626 

air quality, more environmental projects should be properly designed and 627 

implemented. According to this research given the diversity of dominant 628 

meteorological factors on local PM2.5 concentrations in different regions and seasons, 629 

it is more efficient to design meteorological means accordingly. For the heavily 630 

polluted North China region, especially the Beijing-Tianjin-Hebei region, the 631 

northwesterly synoptic wind（Tie et al., 2015; Miao et al., 2015）is much stronger in 632 

winter than winds in summer and exerts a dominant influence on PM2.5 concentrations 633 

(Chen et al., 2017). Furthermore, in North China, the PM2.5 concentration is much 634 

more sensitive to the change of wind speed than that of other meteorological factors 635 

(Gao et al., 2016). Meanwhile, wind-speed induced climate change led to the change 636 

of PM2.5 concentrations by as much as 12.0 μgm-3, compared with the change of 637 

PM2.5 concentrations by up to 4.0 μgm-3 in south-eastern, northwestern and 638 

south-western China (Tai et al., 2010). Therefore, meteorological means for 639 

encouraging strong winds are more likely to reduce PM2.5 concentrations considerably 640 

in North China. Similarly, Luo et al. (2017) suggested that only precipitation with a 641 

certain magnitude can lead to the washing-off effect of PM2.5 concentrations whilst 642 

Guo et al. (2016) revealed that the variation of PM2.5 concentrations was more 643 

sensitive to the same amount of precipitation in areas with lower PM2.5 concentrations. 644 

Therefore, meteorological means for inducing precipitation are more likely to 645 
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improve air quality in coastal cities and cities within the Yangtze River basin, where 646 

there is a large amount of precipitation and relatively low PM2.5 concentrations.   647 

6 Conclusions  648 

Previous studies examined the correlation between individual meteorological 649 

influences and PM2.5 concentrations in some specific cities and the comparison 650 

between these studies indicated that meteorological influences on PM2.5 651 

concentrations varied significantly across cities and seasons. However, these scattered 652 

studies conducted at the local scale cannot reveal regional patterns of meteorological 653 

influences on PM2.5 concentrations. Furthermore, previous studies generally selected 654 

different research periods and meteorological factors, making the comparison of 655 

findings from different studies less robust. Thirdly, these studies employed the 656 

correlation analysis, which may be biased significantly due to the complicated 657 

interactions between individual meteorological factors. This research is a major 658 

extension of previous studies.  Based on a robust causality analysis method CCM, 659 

we quantified and compared the influence of eight meteorological factors on local 660 

PM2.5 concentrations for 188 monitoring cities across China using PM2.5 and 661 

meteorological observation data from March, 2014 to February, 2017. Similar to 662 

previous studies conducted at the local scale, this research further indicated that 663 

meteorological influences on PM2.5 concentrations were of notable seasonal and 664 

spatial variations at the national scale. Furthermore, this research revealed some 665 

regional patterns and comprehensive statistics of the influence of individual 666 

meteorological factors on PM2.5 concentrations, which cannot be understood through 667 

small-scale case studies. For the heavily polluted North China region, the higher 668 

PM2.5 concentrations, the stronger influence meteorological factors exert on local 669 

PM2.5 concentrations. The dominant meteorological factor for PM2.5 concentrations is 670 

closely related to geographical conditions. For heavily polluted winter, precipitation 671 

exerts a key influence on local PM2.5 concentrations in most coastal areas and the 672 

Yangtze River basin, whilst the dominant meteorological driver for PM2.5 673 

concentrations is wind in the North China regions. At the national scale, the influence 674 

of temperature, humidity and wind on local PM2.5 concentrations is much larger than 675 

that of other factors, and temperature exerts the strongest and most stable influences 676 

on national PM2.5 concentrations in all seasons. The influence of individual 677 
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meteorological factors on PM2.5 concentrations extracted in this research provides 678 

more reliable reference for better modelling and forecasting local and regional PM2.5 679 

concentrations. Given the significant variations of meteorological influences on PM2.5 680 

concentrations across China, environmental projects aiming for improving local air 681 

quality should be designed and implemented accordingly.  682 
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