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mobile ground observations

General Comments

This paper reports emission ratios for Siberian forest fires measured from a mobile

ground based platform. The measurements were obtained from a laboratory car on

an electric powered train travelling the Trans-Siberian Railway in October 2005 and

August 2007. In each year the train passed through smoke plumes from nearby forest

fires. Each smoke plume crossing event was iA;200 km in length and 7A¢ 4 hours in
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duration. Instrumentation on the lab car measured CO2, CO, CH4, NMHC, NO, NO2,
PM3, and BC. The study provides emission ratios which are an important addition to
the limited body of knowledge regarding emissions from boreal forest fires in northern
Eurasia. Given the global importance of northern Eurasia as a source of biomass
burning emissions and sensitivity the sensitivity of the region to climate and associated
likelihood of increased fire in the feature, this study presents a potentially important
contribution to the biomass burning science literature. However, besides serval specific
comments, | have found three issues that must be addressed prior to publication:

Age and source of smoke

This paper reports observations of normalized excess mixing ratios (NEMR) which
they classify as emission ratios (ER) based on the assertion that the smoke plumes
sampled were less than 24 hours old. A NEMR is only an ER if the smoke has not
undergone significant chemical transformation. ER may be used to derive emission
factors (EF) for estimating mass emissions when combined with estimated of fuel mass
consumed. Often 24 hours is used as an arbitrary threshold for classifying NEMR as
ER (see below). However, the authors have not provided evidence demonstrating that
the plumes sampled were less than 24 hours old. Figure 2 maps back trajectories,
plume transects, and CO emissions totaled over a two month period. Figure 2 provides
no insight into where fires were active during the day of sampling or the preceding few
days which may have contributed to the emissions measured. The authors need to
provide a better demonstration of the rough plume age. For example map MODIS
active fire detections for the day of and preceding few days of the plume samples. Use
larger figures with focused on the area of interest with back trajectories labeled for
time. | suggest something similar to the presentation in the supplementary material
of (Collier et al., 2016). With only two samples periods (2 plumes) this should not
be difficult to do. In its current state, the paper doesn’t demonstrate the approximate
plume age or reasonably identify the source regions; therefore the assertion that the
smoke samples may be used as ER is cannot be accepted.
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Normalized excess mixing ratios, emission ratios, and uncertainties

The Methods section needs a more complete description of emission measurements
along the line alluded to at P12 L33-P13, L2. The authors need to distinguish between
excess mixing ratios, normalized excess mixing ratios, and the conditions under which
a normalized excess mixing ratio may be considered an emission ratio (ER). A few
points (Akagi et al., 2011; Yokelson et al., 2013): The excess mixing ratio of species
Xin a plume is dX = dXplume — dXbackground. The normalized excess mixing ratio
(NEMR) is dX/dY, where Y is a long-lived reference species co-emitted with X, CO or
CO2, to normalize for dilution (Equation 1 in manuscript). If “fresh emissions” are mea-
sured, then the NEMR is an “emission ratio” (ER) which can be used to derive emission
factors (EF) which may be used to estimate emissions per unit mass of fuel consumed.
To be characterized as fresh emissions there must be no significant photochemical
loss or other removal or production of either X or Y (Yokelson et al., 2013). Assigning a
simple age since emission as a threshold for when a NEMR may be considered an ER
that can be used to derive EF involves much uncertainty. The destruction or creation
of an emitted species X depends on a host of factors including the chemical reactivity,
volatility, and photolability of X, the composition of the emissions, the plume dilution
rate and dispersion conditions, composition of the background air that mixes with the
plume, and solar insolation.

Additionally, it should be noted for readers that field measurements from aircraft plat-
forms have observed changes in smoke plume chemical composition within 0.5 to 5
hours after emissions (Akagi et al., 2013, 2012; Liu et al., 2016; May et al., 2015)
| do not argue that smoke which is one day old cannot be used to report ER. The
“one day” threshold, while somewhat arbitrary, has been widely used (Hornbrook et al.,
2011; O’'Shea et al., 2013; Simpson et al., 2011). However, it is important that readers
that when smoke is not sampled at the source there are significant uncertainties when
using these smoke samples to assign ER and/or EF.

Treatment of observations
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P10, L3-7: “The observed strong scattering of some data subsets is clearly attributable
to highly complex measurement environment and the supposed strong spatial hetero-
geneity of the emission sources contributed to the smoke plumes. Consequently, we
exclude from the analyzes the measurements producing extremely high or low dY/dX
values to make our final estimates more robust with respect to various disturbing fac-
tors.”

This is not an appropriate manner to handle the data. One cannot simply toss data
points because they introduce scatter and reduce the correlation coefficient and in-
crease the uncertainty of the slope in the assumed relationship. The authors should
have an objective criteria for identifying data segments that are treated as the biomass
smoke plume. Rejection of observations taken within the biomass plume should only
be rejected using a clear, objective criteria that is based on sound reasoning — e.g. a
significant influence of a local anthropogenic, instrument malfunction, or failed calibra-
tion.

Specific Comments

P3, L23-24: “Both the plumes were observed in Transbaikalia — a mountainous area
in the south Siberia east to the Lake Baikal known for its severe wildfire activity during
warm seasons which start early in spring due to exceptionally dry weather conditions”
This sentence is awkward and | do not understand the last portion.

Measurements and instrumentation

Grimm calibration PM3 was measured by light scattering which depends in part on
the particle size distribution, chemical composition, and morphology. Please clarify if
the PM3 mass density reported is based on the instrument’s factory calibration or if it
was calibrated for biomass burning aerosols(Aurell and Gullett, 2013; Yokelson et al.,
2007) and (Nance et al., 1993). If the instrument’s factory calibration was used do you
anticipate any systemic bias for biomass smoke aerosols?

C4



NMHC detection of OVOC In biomass smoke a significant fraction of VOC are
oxygenated-VOC (OVOC) (Akagi et al., 2011; Gilman et al., 2015). Please comment
on the sensitivity of the study’s NMHC detection method to OVOC, in particular the
possible under-sampling of these compounds, e.g. Trabue et al., 2013.

Results and discussion Please describe how the smoke plume boundaries were iden-
tified /selected. Were they selected based on PM3 level, coincident increases in PM3
and CO, or some other criteria?

How did the authors assign observations to the different plume segments? Do the
plume segments, e.g. F1-1 and F1-2, correspond to different stretches of the sample
path? Please clarify. The different plume segments need to be identified on Figures 3
& 4.

P9, L9-11: Simpson et al. (2011) data show dNO2/dNOx ~70%.

P9, L13-17 and Figs. 3 & 4 Do the “train stops” regions highlighted at the top of the
plots correspond to regions excluded from the analysis?

P9, L15-17: Please explain how/why these criteria for identifying anthropogenic con-
tamination were selected.

Figure 3 & 4. Do the dashed background lines correspond to the plume sample period?
Please clarify. Figures 3 & 4 should be plotted with local time or note the offset in the
caption.

P9, L19: | assume “500 to 800 m a.g.l.” should be “500 to 800 m a.s.l” i.e. meters
above sea-level.

Tables 5 & 6 should be merged.

P10, L1-3: NOx and BC are associated with flaming combustion and may correlate
better with CO2. Did the authors check for correlation vs. CO2 and if so how does it
compare with that vs. CO?
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P10, L3-7: “The observed strong scattering of some data subsets is clearly attributable
to highly complex measurement environment and the supposed strong spatial hetero-
geneity of the emission sources contributed to the smoke plumes. Consequently, we
exclude from the analyzes the measurements producing extremely high or low dY/dX
values to make our final estimates more robust with respect to various disturbing fac-
tors.”

This is not an appropriate manner to handle the data. One cannot simply toss data
points because they introduce scatter and reduce the correlation coefficient and in-
crease the uncertainty of the slope in the assumed relationship. The authors should
have an objective criteria for identifying data segments that are treated as the biomass
smoke plume. Rejection of observations taken within the biomass plume should only
be rejected using a clear, objective criteria that is based on sound reasoning — e.g. a
significant influence of a local anthropogenic, instrument malfunction, or failed calibra-
tion.

Also, it is unclear what is meant by: “...more robust with respect to various disturbing
factors”

P10, L8-16: | suspect a portion of the plume F2-2 was influenced by a biogenic CO2
source. Examination of Fig 6d and Fig 4a leads me to believe that F2-2 corresponds
to the second portion of the plume around 3:30 to 5:30 UTC, which exhibits to broad
peaks in CO2 between 4:00 and 5:30 UTC for which there is not coinciding response
in the CO. Additionally, the NOx does not show not increase during these broad CO2
peaks (Figure 4c). Since NOx is associated with flaming combustion one would ex-
pect it to correlate with CO2. Since it does not, this is further evidence that the CO2
mixing ratio sampled during this plume stretch is noticeably influenced by a non-fire
source. Also, the dNOx/dCO ratio for F2-1 and F2-2 are the same within uncertain-
ties (2.8+£0.2 versus 3.1+0.4). If the source of plume segments F2-1 and F2-2 was
really a fires with MCE of 0.91 and 0.97, respectively, one would expect a difference in
dNOx/dCO. | strongly disagree with the authors’ interpretation of Figure 7b. It appears
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that dBC/dPMS are very similar for F2-1 and F2-2. What are the plume segment aver-
age values for these ratios? | find it difficult to believe they are significantly different. In
fact, | interpret Fig 7b as evidence that segments F2-1 and F2-2 originated from fires
with very similar MCE. The authors should consider the CO2 during this stretch to be
highly suspect and not report dCO/dCO2 or MCE for this segment.

P10, L32 — P11, L2: Based on my comments, | do not believe F2-2 should be con-
sidered flaming. | would limit comparison to F1-2 and F2-1, since these have valid
MCE.

P11, L14-16: The authors have not demonstrated the sampled plumes are likely less
than 1 day old (see general comments).

P13, Ln 27-29: | believe these were not included in Akagi et al. (2011) as they did not
measure “fresh smoke” samples or the smoke age was uncertain.

P16, Ln32-33 While the authors report the train operator observed some fire activity,
they are clear in stating that the plumes sampled likely resulted from multiple fires, all of
which were not observed. Therefore, the authors cannot relate their measured MCE to
any specific observed combustion type. | agree that visual observations of fire behavior
tend to be a poor metric for classifying combustion type and MCE, especially since both
flaming and smoldering typically occur simultaneously for naturally burning forest fires.
However, given that EF for many species are correlated with MCE, it does have utility
for extrapolating measured EF to other fire types with different MCE regimes.

Comparison with other published results The discussion and figures are a bit confusing.
The authors seem to include studies where the plumes sampled were older than 1
day and therefore are not emission ratios and not appropriate for comparison with the
current work. | strongly recommend the authors limit the comparison to studies where
the plume samples were <= 1 day old and result from boreal fires.

NMHC comparison and Figure 8b: The NMHC EF based on Laursen et al. (1992) and
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Urbanski et al. (2009) are the sum of only a handful of compounds and not compre-
hensive VOC measurement like that constructed in the current study. This should be
clarified in the text.

Technical Corrections The authors should define chemical formulas when first intro-
duced. P1, L16: Insert “the” between (btw) “and” and “boreal” P1, L16: change “be-
came” to “become” P1, L18: insert “the” btw “including” and “global” P2, L3: Insert
“the” btw “In” and “future” P2, L14: Change “OH-" to “OH” it’s a radical not an ion. No
charge. P2, L17: change “is” to “are” P2, L19: change “on the basis” to “by” P2, L21:
delete “,Canada, and Alaska as a ....” P3, L1: insert “of’ btw “all” and “these” P3, L17:
change “substantia amount” to “many” P3, L32: insert “that” before “originated”

There are many similar errors in English usage throughout the remainder of the
manuscript that need correction.

Figure 3a — The CO and CO2 background lines have wrong colors
Table 6 change “PM1” to “PM3”

Figures 8 & 9: The plotted symbols do not all match the legend, Vasileva et al., 2017
and Pirjola et al., 2015 are different.
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