

1    **Sources of non-fossil fuel emissions in carbonaceous aerosols during early winter in Chinese  
2    cities**

3    Di Liu<sup>1</sup>, Jun Li<sup>1\*</sup>, Zhineng Cheng<sup>1</sup>, Guangcai Zhong<sup>1</sup>, Sanyuan Zhu<sup>1</sup>, Ping Ding<sup>2</sup>, Chengde Shen<sup>2</sup>,  
4    Chongguo Tian<sup>3</sup>, Yingjun Chen<sup>4</sup>, Guorui Zhi<sup>5</sup>, Gan Zhang<sup>1</sup>

5

6    <sup>1</sup>State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese  
7    Academy of Sciences, Guangzhou, 510640, China

8    <sup>2</sup>State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese  
9    Academy of Sciences, Guangzhou, 510640, China

10    <sup>3</sup>Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute  
11    of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

12    <sup>4</sup>State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Cities'  
13    Mitigation and Adaptation to Climate Change, College of Environmental Science and Engineering,  
14    Tongji University, Shanghai 200092, China

15    <sup>5</sup>State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research  
16    Academy of Environmental Sciences, Beijing 100012, China

17    \*To whom correspondence may be addressed:

18    Dr. Jun Li; Email: junli@gig.ac.cn; Tel: +86-20-85291508; Fax: +86-20-85290706

19

20    **Abstract**

21    China experiences frequent and severe haze outbreaks from the beginning of winter.

22    Carbonaceous aerosols are regarded as an essential factor in controlling the formation and  
23    evolution of haze episodes. To elucidate the carbon sources of air pollution, source apportionment

24    was conducted using radiocarbon (<sup>14</sup>C) and unique molecular organic tracers. Daily 24-hour PM<sub>2.5</sub>

25    samples were collected continuously from October 2013 to November 2013 in 10 Chinese cities.

26    The <sup>14</sup>C results indicated that non-fossil fuel (NF) emissions were predominant in total carbon (TC;  
27    average = 65 ± 7%). Approximately half of the EC was derived primarily from biomass burning  
28    (BB) (average = 46 ± 11%), while over half of the OC fraction comprised NF (average = 68 ± 7%).

29    On average, the largest contributor to TC was NF-derived secondary OC (SOC<sub>nf</sub>), which  
30    accounted for 46 ± 7% of TC, followed by SOC derived from fossil fuels (FF) (SOC<sub>f</sub>; 16 ± 3%),

31 BB-derived primary OC ( $POC_{bb}$ ;  $13 \pm 5\%$ ), POC derived from FF ( $POC_f$ ;  $12 \pm 3\%$ ), EC derived  
32 from FF ( $EC_f$ ;  $7 \pm 2\%$ ) and EC derived from BB ( $EC_{bb}$ ;  $6 \pm 2\%$ ). The regional background  
33 carbonaceous aerosol composition was characterized by NF sources; POCs played a major role in  
34 northern China, while SOCs contributed more in other regions. However, during haze episodes, but  
35 there were no dramatic changes in the carbon source or composition in the cities under study, but  
36 the contribution of POC from both FF and NF increased significantly.

37

### 38 **1. Introduction**

39 Recently, a wide range of fine particle ( $PM_{2.5}$ ) pollution has affected northern, central and  
40 southern China, particularly on haze days, which has had significant effects on air quality,  
41 atmospheric visibility and public health, and caused extensive public and scientific concern (Liu et  
42 al., 2013b; Wang et al., 2014). Haze events in Chinese urban areas, especially in megacities, have  
43 become a common phenomenon, appearing in every season, because of large and intensive  
44 pollutant emissions and unfavorable meteorological conditions (He et al., 2014; Liu et al., 2013c).

45 Generally, heavy and serious haze pollution outbreaks start at the beginning of winter.

46 Carbonaceous aerosols are the important component of  $PM_{2.5}$  ( $\sim 20\text{--}80\%$ ) (Rogge et al.,  
47 1993; He et al., 2004; Dan et al., 2004; Kanakidou et al., 2005) and are regarded as essential for  
48 controlling the formation and evolution of haze episodes. Relatively high concentrations of  
49 carbonaceous aerosols have been observed during typical haze days in northern, southern and  
50 central China (Zhao et al., 2013; Deng et al., 2008; Zhang et al., 2014c). Generally, carbonaceous  
51 aerosols (total carbon, TC) can be divided into elemental carbon (EC) and organic carbon (OC)  
52 according to their different physical and chemical properties (Krivácsy et al., 2001; Kleefeld et al.,  
53 2002). EC is formed either from biomass burning (BB; e.g., wood fires, heating) or fossil fuel

54 combustion (FF; e.g., vehicle or industry emissions such as coal combustion), and can be used as a  
55 tracer for primary combustion-generated OC because primary OC and EC are mostly emitted from  
56 the same sources (Turpin and Huntzicker, 1995;Strader et al., 1999). OC can be directly derived  
57 from primary emissions (primary OC; POC), or formed through oxidation of reactive organic  
58 gases followed by gas-to-particle conversion in the atmosphere (secondary OC; SOC) (Choi et al.,  
59 2012;Subramanian et al., 2007). Moreover, further subcategories of OC exist, including  
60 water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WINSOC), which are  
61 distinguished on the basis of water-solubility; these may be essential for assessing the different  
62 sources of OC emissions during haze episodes, since WSOC is a proxy for SOC and BB OC,  
63 while a large fraction of WINSOC is from POC (Weber et al., 2007b;Docherty et al., 2008;Mayol-  
64 Bracero et al., 2002;Weber et al., 2007a;Huang et al., 2014).

65 Several methods have been introduced to identify and quantify OC emission sources, such as  
66 the use of organic molecular tracers (Simoneit et al., 1999), receptor models (PMF, CMB)(Singh  
67 et al., 2017;Bove et al., 2014;Marcazzan et al., 2003), and dispersion models (Colvile et al., 2003);  
68 however, their reliability is limited by their low atmospheric lifetimes, in turn due to chemical  
69 reactivity and highly variable emission factors (Fine et al., 2001, 2002, 2004;Gao et al.,  
70 2003;Hedberg et al., 2006;Robinson et al., 2006). Recently, radiocarbon ( $^{14}\text{C}$ ) analysis has been  
71 used as a powerful tool for facilitating the direct differentiation of non-fossil fuel (NF) carbon  
72 sources from fossil fuel (FF) sources, because  $^{14}\text{C}$  is completely absent from FF carbon (e.g.,  
73 diesel and gasoline exhaust, coal combustion), whereas NF carbon (e.g., biomass burning, cooking  
74 and biogenic emissions) shows a high contemporary  $^{14}\text{C}$  level (Szidat et al., 2009). Hence,  $^{14}\text{C}$   
75 measurements can provide information about the contributions of FF, BB and biogenic emissions

76 to carbonaceous aerosols. Numerous studies have been performed at urban sites and background  
77 sites to assess carbonaceous aerosol sources. For example, contemporary carbon was the dominant  
78 pollutant in carbonaceous aerosols at a background sites such as Ningbo and Hainan stations (Liu  
79 et al., 2013a;Zhang et al., 2014c). In urban, the relative carbon contributions have shown a  
80 significant seasonal difference (Yang et al., 2005;Chen et al., 2013;Liu et al., 2013b;Zhang et al.,  
81 2014a;Liu et al., 2014a;Zhang et al., 2017). A combination of  $^{14}\text{C}$  analysis and organic tracer  
82 determination allows for more detailed source apportionment of carbonaceous aerosols (Gelencsér  
83 et al., 2007;Ding et al., 2008;Lee et al., 2010;Yttri et al., 2011;Zong et al., 2016;Liu et al.,  
84 2015;Zhang et al., 2014b).

85 In this study, sampling was conducted in 10 typical Chinese cities during early winter when  
86 heavy haze pollution frequently occurs in this season. Carbonaceous aerosols, including different  
87 carbon fractions such as WSOC, WINSOC and EC, along with water-soluble inorganic ions and  
88 organic tracers (i.e. anhydrosugars) were analyzed in  $\text{PM}_{2.5}$  samples. In particular, anhydrosugars  
89 such as levoglucosan are used as a molecular marker to indicate biomass-burning emissions. The  
90 combination of  $^{14}\text{C}$  analysis and the concentration of levoglucosan has offered new insights into  
91 the detailed sources of carbonaceous aerosols. So, source apportionment of carbonaceous aerosols  
92 was performed using a source apportionment model based on the  $^{14}\text{C}$  results and measured  
93 chemicals.

94 **2. Materials and Methods**

95 **2.1 Aerosol sampling**

96 Daily 24-hour  $\text{PM}_{2.5}$  samples were collected continuously on the rooftops of institutes in 10  
97 Chinese cities (Figure 1) from October 2013 to November 2013. In total, 292 aerosol samples,

98 including 10 field blanks, were collected on pre-heated (450°C for 5 h) quartz fiber filters (8 × 10  
99 inches; Whatman, UK) using a high volume sampler with a flow rate of 0.3 m<sup>3</sup> min<sup>-1</sup>. The filters  
100 were then wrapped in aluminum foil, packed into air-tight plastic bags, and stored at -20°C in a  
101 refrigerator until analysis. PM<sub>2.5</sub> mass concentrations were determined gravimetrically by state  
102 regulatory agencies. All samples were analyzed for OC and EC, and 20 samples, including two  
103 filters based on the PM<sub>2.5</sub> concentrations at each site, were selected for further chemical analysis.  
104 Details of the sampling information and meteorological parameters used during sampling are  
105 shown in the Supporting Information (SI).

106 **2.2 Chemical analysis**

107 OC and EC were obtained with an off-line carbon analyzer (Sunset Laboratory, Inc., USA) using  
108 the thermo-optical transmittance method (NIOSH 870). Water-soluble inorganic ions (Na<sup>+</sup>, Cl<sup>-</sup>,  
109 Ca<sup>2+</sup>, Mg<sup>2+</sup>, K<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, SO<sub>4</sub><sup>2-</sup> and NO<sub>3</sub><sup>-</sup>) were analyzed with an ion chromatographer (83 Basic IC  
110 Plus, Metrohm, Switzerland). Anhydrosugars (levoglucosan, galactosan and mannosan) were  
111 analyzed by gas chromatography-mass spectroscopy (GC-MS) (7890-5975; Agilent) using a  
112 capillary column (DB-5MS; 30m, 0.25 mm, 0.25μm). Analysis methods related to OC and EC,  
113 water-soluble inorganic ions (Wang et al., 2012) and anhydrosugars (Liu et al., 2014a; Liu et al.,  
114 2014b) were presented elsewhere and a detailed analytical procedure and method are available in  
115 the SI.

116 **2.3 Separation of carbon species**

117 A punched section of filtrate was cut and sandwiched in a filtration unit, then extracted with 100  
118 mL ultra-pure water (18.2 MΩ). WSOC species were quantified using a total organic carbon (TOC)  
119 analyzer (TOC-VCPh; Shimadzu, Japan). The punched filtrate was dried in a desiccator, wrapped

120 in aluminum foil and then stored in a refrigerator. WINSOC and EC were obtained from the  
121 water-filtered sample with an off-line carbon analyzer (Sunset Laboratory, Inc.) using the  
122 thermo-optical transmittance method (NIOSH 870).

123 **2.4 Radiocarbon measurements**

124 Isolation procedures for the  $^{14}\text{C}$  measurements of WSOC, WINSOC and EC have been  
125 described previously (Liu et al., 2016b; Liu et al., 2013b). Two filters, based on the  $\text{PM}_{2.5}$   
126 concentrations at each site, were used for  $^{14}\text{C}$  determination of WSOC, WINSOC and EC, to  
127 distinguish between FF and NF emissions. To obtain the WSOC, WINSOC and EC fractions from  
128 a single punch filter, a circular section of the punch filter was clamped in place between a filter  
129 support and a funnel and then 60 ml ultra-pure water was slowly passed through the punch filter  
130 without a pump, allowing the WSOC to be extracted delicately. WSOC was quantified as the total  
131 dissolved organic carbon in solution using a total organic carbon (TOC) analyzer (Shimadzu  
132 TOC\_VCPH, Japan) following the nonpurgeable organic carbon protocol. WSOC solution was  
133 freeze-dried to dryness at -40 °C. The WSOC residue was re-dissolved with ~500  $\mu\text{l}$  of ultra-pure  
134 water and then transferred to a pre-combusted quartz tube, which was then placed in the freeze  
135 dryer. After that, the quartz tube was combusted at 850 °C. The remaining carbon on the filter was  
136 identified as WINSOC or EC by an OC/EC analyzer (Sunset, U.S.). After WSOC pretreatment and  
137 freeze-dried, OC is oxidized to  $\text{CO}_2$  under a stream of pre-cleaned oxygen pure analytical grade  
138  $\text{O}_2$  (99.999%, 30 ml  $\text{min}^{-1}$ ) during the pre-combustion step at 340°C for 15 min. Before the OC is  
139 oxidized, the sample is first positioned in the 650 °C oven for about 45 s flash heating. This flash  
140 heating has the advantage of minimizing pre-combustion charring, since it reduces pyrolysis of  
141 OC. After the OC separation, the filters were removed from the system, placed into a muffle

142 furnace at 375°C, and combusted for 4 h. The filters were then quickly introduced back into the  
143 system and oxidized under a stream of pure oxygen at 650°C for 10 min to analyze the EC  
144 fraction. Finally, the corresponding evolved CO<sub>2</sub> (WSOC, WINSOC, and EC) was cryo-trapped,  
145 quantified manometrically, sealed in a quartz tube and reduced to graphite at 600 °C using zinc  
146 with an iron (200 mg, Alfa Aesar, 1.5-3 mm, 99.99%) catalyst for accelerator mass spectrometry  
147 (AMS) target preparation. Approximately 200 µg of carbon was prepared for each carbon fraction.  
148 All <sup>14</sup>C values were reported as the fraction of modern carbon ( $f_m$ ) after correcting for  
149 fractionation with  $\delta^{13}\text{C}$ . The degree of uncertainty in the <sup>14</sup>C measurements was in the range of  
150 0.2–0.6%. In this study,  $f_m$  was converted to the fraction of contemporary carbon ( $f_c$ ), to eliminate  
151 the effects of nuclear bomb tests through application of conversion factors of  $1.10 \pm 0.05$  for EC  
152 and  $1.06 \pm 0.05$  for 2013 OC data. Here, the  $f_m$  values of OC (OC = WSOC + WINSOC) and TC  
153 (TC = WSOC + WINSOC + EC) were calculated by isotopic mass balance. The uncertainties of  $f_m$   
154 (and  $f_m$ ) in WSOC, WINSOC, OC and EC were up to 20% ,20% ,15% and 15%, respectively. The  
155 concentration in the field blank was negligible ( $0.37 \pm 0.05$  µg cm<sup>-2</sup>; less than 5% carbon) and no  
156 field blank subtraction was made for <sup>14</sup>C determination. The system blank F<sup>14</sup>C was  
157 0.0036(SD=0.0001), which translated to a <sup>14</sup>C age of around 45,000 years BP.

158 **3. Results and Discussion**

159 **3.1 PM<sub>2.5</sub>, OC and EC concentrations and spatial distribution**

160 PM<sub>2.5</sub> levels ranged from 21.9 to 482 µg m<sup>-3</sup>, with an average level of  $178 \pm 103$  µg m<sup>-3</sup>. A total of  
161 98% and 81% of PM<sub>2.5</sub> exceeded the First Grade National Standard (35 µg m<sup>-3</sup>) and Second Grade  
162 National Standard (75 µg m<sup>-3</sup>) of China, respectively, indicating relatively poor air quality during  
163 sampling days. The OC and EC levels ranged from 0.99 to 75.9 µg m<sup>-3</sup> (average =  $22.8 \pm 15.3$  µg

164  $\text{m}^{-3}$ ) and 0.07 to 19.3  $\mu\text{g m}^{-3}$  (average =  $3.66 \pm 3.28 \mu\text{g m}^{-3}$ ), respectively; thus, OC and EC were  
165 major components of  $\text{PM}_{2.5}$ , accounting for  $13 \pm 8\%$  and  $2 \pm 1\%$  of  $\text{PM}_{2.5}$ , respectively. The OC  
166 and EC levels in this study were generally higher than those recorded previously in more  
167 developed cities (e.g., New York, Los Angeles, Erfurt, Kosan) (Kam et al., 2012; Kim et al.,  
168 2000; Gnauk et al., 2005; Rattigan et al., 2010), indicating severe carbonaceous pollution and  
169 emphasizing the importance of restricting carbonaceous aerosols in China.  
  
170 Northern China has high  $\text{PM}_{2.5}$  concentrations. As shown in Table 1, the average  $\text{PM}_{2.5}$   
171 concentrations in Beijing ( $190 \pm 79 \mu\text{g m}^{-3}$ ), Xinxiang ( $245 \pm 65 \mu\text{g m}^{-3}$ ), Taiyuan ( $285 \pm 84 \mu\text{g}$   
172  $\text{m}^{-3}$ ) and Lanzhou ( $212 \pm 112 \mu\text{g m}^{-3}$ ) were significantly higher than those in central and southern  
173 China (from  $85 \mu\text{g m}^{-3}$  in Guangzhou to  $123 \mu\text{g m}^{-3}$  in Wuhan). Shanghai, in the eastern coastal  
174 region, had the lowest average  $\text{PM}_{2.5}$  concentration ( $67 \pm 43 \mu\text{g m}^{-3}$ ). The ratio of total organic  
175 matter (TOM;  $1.6 \times \text{OC} + \text{EC}$ ) to total fine particle mass ranged from 17.4% to 32.6%, except in  
176 Guiyang. Cities in central and southern China, such as Chengdu, Wuhan, Nanjing, and Guangzhou,  
177 had a higher ratio of TOM to  $\text{PM}_{2.5}$  than other cities. Moreover, the OC/EC ratios in those cities  
178 were also higher, with values ranging between 8.1 and 12. The spatial distribution pattern closely  
179 reflected energy consumption and regional climate differences. In particular, Guiyang, which is a  
180 developing city located on the Western plateau, had a high level of  $\text{PM}_{2.5}$  ( $227 \pm 77 \mu\text{g m}^{-3}$ ),  
181 comparable to that in northern China, but also had the lowest levels of OC and EC. Moreover, the  
182 TOM to  $\text{PM}_{2.5}$  ratio was only about 6.0%. This indicates that there are different chemical sources  
183 in this developing city compared to megacities in China.

184 **3.2 Radiocarbon results: fraction of modern carbon ( $f_m$ )**

185 Table 2 shows the proportion (%) of NF sources in various carbon fractions. Overall, NF

186 emissions represented a more significant proportion of the TC (average =  $65 \pm 7\%$ ; range:  
187 50–79%), at all sites, than FF sources, which underscores the importance of NF sources to  
188 carbonaceous aerosols during early winter in China.

189 EC is only formed by primary emissions, which are inert in ambient air and originate either  
190 from BB or FF combustion. In this study, about half of the EC was derived from BB in the 10  
191 urban cities (average  $46 \pm 11\%$ ; range: 24–71%), which represents a slightly higher proportion  
192 than that for the same cities in winter and spring, but is similar to previous studies performed in  
193 cities in other countries (Szidat et al., 2009; Bernardoni et al., 2013; Liu et al., 2016a). However,  
194 this result differs from those obtained in remote regions dominated by BB (Barrett et al.,  
195 2015; Zhang et al., 2014a). Compared with other studies in China, the measured biomass burning  
196 contributions to EC in Beijing are relatively higher than those in the same city during winter  
197 (Zhang et al., 2014b; Zhang et al., 2015b). This is due to the fact that different approach we used  
198 for OC/EC separation, and sample selection in this study (selected two filter samples based on  
199 relatively lower and higher PM2.5 concentration for each site) because of limitations for  $^{14}\text{C}$   
200 analysis (i.e. the bulk samples required and the high cost for  $^{14}\text{C}$  measurement). However, the  
201 result is similar with those using the same approach (Liu et al., 2016c; Zong et al., 2016). Since  
202 limitations for A larger contribution of BB to EC was found in central and western China (i.e.,  
203 Beijing, Lanzhou, Chengdu and Guiyang) (49~63%), where Guiyang had the largest proportion of  
204 BB in EC ( $63 \pm 12\%$ ), followed by Beijing ( $50 \pm 2.0\%$ ), Chengdu ( $50 \pm 1.8\%$ ), Wuhan ( $48 \pm 10\%$ )  
205 and Nanjing ( $47 \pm 5\%$ ); this shows that there are large amounts of BB emissions (e.g., from  
206 biofuel burning and outdoor fires) in western and central China during early winter. This  
207 phenomenon was also found in central China during the severe haze episode that occurred over

208 China in January 2013, which suggests that these massive BB emissions were generated indoors  
209 (i.e., from domestic heating and cooking) and thus could not be detected by MODIS [Liu *et al.*,  
210 2016b]. Guangzhou had the lowest proportion of BB in EC ( $32 \pm 12\%$ ), suggesting that FF  
211 emissions (coal combustion and vehicle emissions) dominated in the Pearl Delta region. Similar to  
212 Guangzhou, Taiyuan and Xinxiang had lower proportions of BB in EC, of  $36 \pm 11\%$  and  $37 \pm$   
213  $1.7\%$ , respectively. High proportions of BB in EC are due to extremely high levels of BB tracers  
214 (levoglucosan). In this study, levoglucosan concentrations were in the range 161 to 672 ng m<sup>-3</sup>  
215 ( $377 \pm 153$  ng m<sup>-3</sup>), and were significantly correlated with EC concentrations in BB ( $r = 0.708$ ,  
216  $p=0.000$ ).

217 Over half of the OC fraction was from NF sources at all sites (range: 54–82%), with an  
218 average NF source contribution of  $68 \pm 7\%$ , comparable to previous study reported in four  
219 Chinese cities during 2013 winter (Xi'an, Beijing, Shanghai and Guangzhou were 63%, 42%, 51%  
220 and 65%, respectively)(Zhang *et al.* 2015a). Generally, the  $f_m$  spatial distribution of OC is similar  
221 to that of EC, with NF sources contributing more in central China. Here, OC was divided into  
222 WSOC and WINSOC, which has been separated with respect to fossil and NF sources. A large  
223 contribution of NF sources to WINSOC ( $64 \pm 7\%$ ) was observed in this study, comparable to  
224 previous studies performed in urban areas of Europe, e.g., Gothenburg ( $55 \pm 8\%$ ) and Zurich ( $70 \pm$   
225 7%) (Szidat *et al.*, 2009;Zhang *et al.*, 2013). Moreover, the  $f_m$  values for WSOC ( $70 \pm 8\%$ ) were  
226 slightly higher than those for WINSOC, which showed values comparable to those observed in  
227 European and American cities (~70–85%) (Weber *et al.*, 2007a;Szidat *et al.*, 2009;Zhang *et al.*,  
228 2013). A higher  $f_m$  value indicated that, for WSOC, the contribution of NF emission sources was  
229 greater. WSOC is regarded as a mixture of SOC and BB-derived POC, whereas WINSOC is

230 mainly composed of POC from FF combustion, BB and biogenic sources. In this study, the ratio  
231 of WSOC to OC increased significantly with an increase in the proportion of NF sources in OC ( $r$   
232  $= 0.531, p=0.016$ ); this implies that POC from BB is more water-soluble, or that more NF-derived  
233 VOCs were involved in SOC formation.

234 **3.3 Source apportionment of different carbon fractions**

235 A source apportionment model for carbonaceous aerosols, including primary and secondary  
236 sources, was applied in this study using measured carbon fractions, anhydrosugars, and  $^{14}\text{C}$   
237 isotopic signals. Detailed information on this model has been provided previously (Liu et al.,  
238 2014a;Liu et al., 2016a).

239 Briefly, EC from FF combustion ( $\text{EC}_f$ ) and BB-derived EC ( $\text{EC}_{bb}$ ) can be estimated using the  
240 following respective equations:

241 
$$\text{EC}_f = \text{EC} \times (1-f_c) \quad [1]$$

242 
$$\text{EC}_{bb} = \text{EC} \times f_c \quad [2]$$

243 Similar to EC, OC can be divided into FF OC ( $\text{OC}_f$ ) and NF OC ( $\text{OC}_{nf}$ ) based on  $^{14}\text{C}$   
244 concentrations.  $\text{OC}_{nf}$  consists of BB-derived primary OC ( $\text{POC}_{bb}$ ), NF-derived SOC ( $\text{SOC}_{nf}$ ) and  
245 biological primary carbon (BPC), such as spore and plant debris. BPC particles exist mainly in  
246 coarse fractions ( $> 2.5 \mu\text{m}$ ) and only account for  $\sim 1\%$  of OC in  $\text{PM}_{2.5}$  [Guo et al., 2012]. Thus, this  
247 carbon fraction was ignored in the present study.  $\text{POC}_{bb}$  can be semi-quantitatively estimated from  
248 Lev concentrations, due to its unique characteristic of originating from BB, as follows:

249 
$$\text{POC}_{bb} = \text{Lev} \times (\text{OC}/\text{Lev})_{bb} \quad [3]$$

250 According to the levoglucosan/mannosan (Lev/Man;  $17.4 \pm 5.9$ ) and mannosan/galactosan  
251 (Man/Gal;  $2.1 \pm 0.3$ ) ratios obtained in this study,  $7.76 \pm 1.47$  was adopted as the  $(\text{OC}/\text{Lev})_{bb}$

252 value [Liu et al., 2014].

253 Thus, the  $SOC_{nf}$  fraction can be estimated through subtraction:

254  $SOC_{nf} = OC_{nf} - POC_{bb}$  [4]

255 FF-derived POC and SOC can be estimated by the following respective equations:

256  $POC_f = WINSOC \times (1-f_c)$  [5]

257  $SOC_f = WSOC \times (1-f_c)$  [6]

258 Figure 2 shows the proportions of different carbon fractions, including  $EC_f$ ,  $EC_{bb}$ ,  $POC_{bb}$ ,  $POC_f$ ,  
259  $SOC_{nf}$  and  $SOC_f$ , in total carbon (TC) for the 10 urban cites during the sampling period. On  
260 average, the largest contributor to TC was  $SOC_{nf}$ , accounting for  $46 \pm 7\%$  of TC, followed by  
261  $SOC_f$  ( $16 \pm 3\%$ ),  $POC_{bb}$  ( $13 \pm 5\%$ ),  $POC_f$  ( $12 \pm 3\%$ ),  $EC_f$  ( $7 \pm 2\%$ ) and  $EC_{bb}$  ( $6 \pm 2\%$ ). The  
262 proportion of primary sources ( $POC_{nf} + POC_f + EC_{nf} + EC_f$ ) (average =  $38 \pm 9\%$ ; range: 25–56%)  
263 was lower than that of secondary sources ( $SOC_{nf} + SOC_f$ ) (average =  $62 \pm 9\%$ ; range: 35–83%),  
264 which underlines the importance of SOC in carbonaceous pollution.

265 It should be noted that the model uncertainties in these contributions depended mainly on  
266 correction factors, such as the  $(POC/Lev)_{bb}$  emission ratios for wood burning, and on conversion  
267 factors used for determining the  $f_c$  in  $^{14}C$  analysis. Typical relative uncertainties were recently  
268 estimated, using a similar modelling approach, at 20–25 % for  $SOC_{nf}$ ,  $SOC_f$ ,  $POC_{bb}$ , and  $POC_f$ ,  
269 and ~13% for  $EC_f$ , and  $EC_{bb}$  (Zhang et al., 2015a). A large fraction WINSOC can be from  
270 secondary organic aerosol as well. Hence  $POC_f$  is an upper limit of  $POC_f$ .  $SOC_f$  may be  
271 overestimated if a small fraction (e.g. <20%) WSOC is not secondary, so  $SOC_f$  may be an upper  
272 limit. Meanwhile,  $SOC_{nf}$  may also include other non-fossil sources such as cooking and biogenic  
273 emissions, however, they should be limited during wintertime (e.g., <20%). Therefore, our

274 estimates of SOC many generally represent an upper limit but this will not change our conclusion  
275 towards to the spatial distribution of SOC in China.

276 POC and EC aerosols are independent from atmospheric gas reaction conditions and thus  
277 directly reflect the characteristics of local emission sources. The total proportions of EC<sub>f</sub> and POC<sub>f</sub>  
278 ranged from 10–38%, with an average of  $19 \pm 9\%$  for all sites. The total proportions of EC<sub>f</sub> and  
279 POC<sub>f</sub> in northern and southern China were greater than in western central and eastern coastal  
280 China, indicating a higher impact of FF on local air pollution in both regions. The ratios of POC<sub>f</sub>  
281 to EC<sub>f</sub> (0.66–3.32) were within the emission ratios between coal combustion (2.7–6.1) (Zhang et  
282 al., 2008) and traffic exhausts fumes (0.5–1.3) (Zhou et al., 2014;He et al., 2008), indicating that  
283 coal combustion and traffic exhaust fumes were the major primary sources at all sites. Beijing (2.6)  
284 and Xinxiang (3.3) were mainly dominated by coal combustion emissions. The total proportions  
285 of EC<sub>bb</sub> and POC<sub>bb</sub> ranged from 12–36%, with an average of  $19 \pm 8\%$ . West central cities, such as  
286 Lanzhou, Chengdu, Guiyang, Nanjing and Wuhan, had large proportions of EC<sub>bb</sub> and POC<sub>bb</sub>  
287 (average =  $23 \pm 7\%$ ; range: 14–36%), which confirms the greater impact of BB on local air  
288 pollution in West central China; this should be considered when setting future limits for polluting  
289 corporations.

290 Total SOC in OC ranged from 42–84% (average =  $72 \pm 10\%$ ) among the sites tested in this study,  
291 which is similar to recent studies, conducted in the haze period in China of January 2013, which  
292 used high-resolution aerosol mass spectrometry; i.e., 41–59% [Sun et al., 2014] and 44–71%  
293 [Huang et al., 2014] obtained from online and offline measurements, respectively. There was no  
294 significant difference in the SOC/OC ratio among the different regions in China studied herein,  
295 except for Guiyang, which had a somewhat lower SOC/OC ratio. Moreover, SOC was comprised

296 predominantly of NF sources at all sites (67–89%), except at Guiyang with values of 42–53%,  
297 which are similar to areas in developed countries with good air quality, such as Puy de Dôme,  
298 France (86–88%) and Schauinsland, Germany (84–93%) [Gelencsér et al., 2007]. However, our  
299 values were higher than those of previous studies conducted in China during other winter and  
300 spring seasons, indicating the importance of NF to SOC in China during early winter.

301 **3.4 Comparison of chemicals between samples by PM<sub>2.5</sub> concentration**

302 Two samples, one each with a low and high PM<sub>2.5</sub> concentration, were obtained from all 10 study  
303 sites (Figure S1) for <sup>14</sup>C and inorganic ions analysis, to investigate the composition of  
304 carbonaceous aerosols and evaluate the importance of FF and NF carbon in haze formation across  
305 China in early winter. During sampling, the air masses generally moved in a northwesterly to  
306 northeasterly direction to reach the site. The 5-day back trajectory analysis revealed relatively  
307 lower concentrations of PM<sub>2.5</sub> when the wind speed was higher, and relatively higher PM<sub>2.5</sub> levels  
308 when the wind speed was lower and more stable; synoptic conditions apparently promoted the  
309 accumulation of particles (Figure 3).

310 Theoretically, the aerosol composition at higher wind speeds should reflect regional background  
311 aerosol characteristics. Figure 3 shows the PM<sub>2.5</sub> chemical compositions of the stage for lower  
312 PM<sub>2.5</sub> concentration during sampling period. Here, due to the different conversion factors used to  
313 transform WINSOC to WINSOM (1.3), and WSOC to WSOM (2.1), OM calculations were based  
314 on the relative contributions of WSOC and WINSOC to OC. TOM is the sum of EC, WINSOM  
315 and WSOM. Generally, TOM contributions to PM<sub>2.5</sub> ranged from 21–38%, except in Guiyang  
316 where a value of 8% was observed. Moreover, OM was comprised mainly of NF emissions. In  
317 cities in northern China (Beijing, Xinxiang and Taiyuan), the contribution of WINSOM (both FF

318 and NF) was greater, indicating that POC played a major role in regional air quality during this  
319 season. Simultaneously, the lower  $\text{NO}_3^-/\text{SO}_4^{2-}$  ratios also implied that POC from FFs might be  
320 derived predominantly from coal combustion. The 5-day back trajectory analysis showed that the  
321 air mass came from northern China, including regions such as Inner Mongolia and Hebei province,  
322 where the ambient temperature is always below 10°C during this season. It is very common for  
323 local rural residents to burn coal or biomass fuel to generate heat for their households. Therefore,  
324 coal and biomass fuel combustion in northern China might be the major contributor to regional  
325 carbonaceous aerosols in northern China during this season. In other cities, WSOM levels in both  
326 FF and NF were much higher than those in WINSOM, showing the importance of SOC across  
327 China. However,  $\text{NO}_3^-/\text{SO}_4^{2-}$  ratios in Shanghai, Nanjing and Wuhan were much higher than in  
328 other areas. The back trajectory results showed that the air mass came from northern China or the  
329 Yangtze River Delta, implying that traffic exhaust emissions in those regions was more important  
330 for carbonaceous aerosol composition.

331 The chemical compositions of the higher  $\text{PM}_{2.5}$  samples obtained in each city are shown in  
332 Figure 3. There were no dramatic changes in the carbon source or composition in any of the cities;  
333 however, the contribution of EC and WINSOM to both fossil and NF fuels increased significantly,  
334 along with the  $\text{NO}_3^-/\text{SO}_4^{2-}$  ratios, indicating the importance of POC from local regions. The back  
335 trajectory results showed that wind speeds were moderate and stable, and that synoptic conditions  
336 apparently promoted the accumulation of particles derived either from local or regional sources.

337 **4. Conclusion**

338  $\text{PM}_{2.5}$  samples were collected continuously from 10 Chinese urban cities during early winter  
339 2013.  $\text{PM}_{2.5}$ , OC and EC levels were highest in northern China, with maximum concentrations of

340 482  $\mu\text{g m}^{-3}$ (Taiyuan, n=31), 75.9  $\mu\text{g m}^{-3}$ (Taiyuan, n=31) and 19.3  $\mu\text{g m}^{-3}$ (Beijing, n=31),  
341 respectively. The  $^{14}\text{C}$  results, for the lower and higher  $\text{PM}_{2.5}$  concentration sample pairs obtained  
342 in each city, indicated that, overall, NF emissions constituted a significant proportion of TC  
343 (average =  $65 \pm 7\%$ ) at all sites, i.e., higher than FF sources. Furthermore, about half of the EC  
344 was derived primarily from BB (average =  $46 \pm 11\%$ ), and over half of the OC fraction came from  
345 NF sources (average =  $68 \pm 7\%$ ). Source apportionment analysis was done using  $^{14}\text{C}$  and unique  
346 molecular organic tracers. On average, the largest contributor to TC was  $\text{SOC}_{\text{nf}}$ , accounting for 46  
347  $\pm 7\%$  of TC, followed by  $\text{SOC}_{\text{f}}$  ( $16 \pm 3\%$ ),  $\text{POC}_{\text{bb}}$  ( $13 \pm 5\%$ ),  $\text{POC}_{\text{f}}$  ( $12 \pm 3\%$ ),  $\text{EC}_{\text{f}}$  ( $7 \pm 2\%$ ) and  
348  $\text{EC}_{\text{bb}}$  ( $6 \pm 2\%$ ). When relatively lower  $\text{PM}_{2.5}$  concentrations were observed, OM was dominant in  
349 carbonaceous aerosols, mainly from NF. POC played a major role in regional air quality in the  
350 cities in northern China, while SOC contributed more in cities in other regions of China, such as  
351 Nanjing and Wuhan. During haze days, there were no dramatic changes in carbon sources or  
352 carbon compositions in the sampled cities, but the contributions of POC were relatively higher  
353 than the non-haze days.

354

### 355 Acknowledgements

356 This study was supported by the Guangzhou Science and Technology Plan Projects (No.  
357 201504010002), the Natural Science Foundation of China (NSFC; Nos. 41430645, 41473101,  
358 41503092 and 41373131), and the “Strategic Priority Research Program (B)” of the Chinese  
359 Academy of Sciences (Grant No. XDB05040503). All data in this manuscript are freely available  
360 on request through the corresponding author ([junli@gig.ac.cn](mailto:junli@gig.ac.cn)). This is a contribution of GIGCAS.

361

362      **Reference**

363      Barrett, T. E., Robinson, E. M., Usenko, S., and Sheesley, R. J.: Source Contributions to Wintertime  
364      Elemental and Organic Carbon in the Western Arctic Based on Radiocarbon and Tracer  
365      Apportionment, *Environmental Science & Technology*, 49, 11631-11639, 10.1021/acs.est.5b03081,  
366      2015.

367      Bernardoni, V., Calzolai, G., Chiari, M., Fedi, M., Lucarelli, F., Nava, S., Piazzalunga, A., Riccobono, F.,  
368      Taccetti, F., Valli, G., and Vecchi, R.: Radiocarbon analysis on organic and elemental carbon in aerosol  
369      samples and source apportionment at an urban site in Northern Italy, *Journal of Aerosol Science*, 56,  
370      88-99, <http://dx.doi.org/10.1016/j.jaerosci.2012.06.001>, 2013.

371      Bove, M. C., Brotto, P., Cassola, F., Cuccia, E., Massabò, D., Mazzino, A., Piazzalunga, A., and Prati, P.:  
372      An integrated PM2.5 source apportionment study: Positive Matrix Factorisation vs. the chemical  
373      transport model CAMx, *Atmospheric Environment*, 94, 274-286,  
374      <http://dx.doi.org/10.1016/j.atmosenv.2014.05.039>, 2014.

375      Chen, B., Andersson, A., Lee, M., Kirillova, E. N., Xiao, Q., Kruså, M., Shi, M., Hu, K., Lu, Z., Streets, D. G.,  
376      Du, K., and Gustafsson, Ö.: Source Forensics of Black Carbon Aerosols from China, *Environmental  
377      Science & Technology*, 47, 9102-9108, 10.1021/es401599r, 2013.

378      Choi, J.-K., Heo, J.-B., Ban, S.-J., Yi, S.-M., and Zoh, K.-D.: Chemical characteristics of PM2.5 aerosol in  
379      Incheon, Korea, *Atmospheric Environment*, 60, 583-592,  
380      <http://dx.doi.org/10.1016/j.atmosenv.2012.06.078>, 2012.

381      Colvile, R. N., Gómez-Perales, J. E., and Nieuwenhuijsen, M. J.: Use of dispersion modelling to assess  
382      road-user exposure to PM2.5 and its source apportionment, *Atmospheric Environment*, 37,  
383      2773-2782, [http://dx.doi.org/10.1016/S1352-2310\(03\)00217-6](http://dx.doi.org/10.1016/S1352-2310(03)00217-6), 2003.

384      Dan, M., Zhuang, G., Li, X., Tao, H., and Zhuang, Y.: The characteristics of carbonaceous species and  
385      their sources in PM2.5 in Beijing, *Atmospheric Environment*, 38, 3443-3452,  
386      <http://dx.doi.org/10.1016/j.atmosenv.2004.02.052>, 2004.

387      Deng, X., Tie, X., Wu, D., Zhou, X., Bi, X., Tan, H., Li, F., and Jiang, C.: Long-term trend of visibility and  
388      its characterizations in the Pearl River Delta (PRD) region, China, *Atmospheric Environment*, 42,  
389      1424-1435, 2008.

390      Ding, X., Zheng, M., Edgerton, E. S., Jansen, J. J., and Wang, X.: Contemporary or Fossil Origin: Split of  
391      Estimated Secondary Organic Carbon in the Southeastern United States, *Environmental Science &  
392      Technology*, 42, 9122-9128, 10.1021/es802115t, 2008.

393      Docherty, K. S., Stone, E. A., Ulbrich, I. M., DeCarlo, P. F., Snyder, D. C., Schauer, J. J., Peltier, R. E.,  
394      Weber, R. J., Murphy, S. M., Seinfeld, J. H., Grover, B. D., Eatough, D. J., and Jimenez, J. L.:  
395      Apportionment of Primary and Secondary Organic Aerosols in Southern California during the 2005  
396      Study of Organic Aerosols in Riverside (SOAR-1), *Environmental Science & Technology*, 42, 7655-7662,  
397      10.1021/es8008166, 2008.

398      Fine, P. M., Cass, G. R., and Simoneit, B. R.: Chemical characterization of fine particle emissions from  
399      fireplace combustion of woods grown in the northeastern United States, *Environmental Science &  
400      Technology*, 35, 2665-2675, 2001.

401      Fine, P. M., Cass, G. R., and Simoneit, B. R.: Chemical characterization of fine particle emissions from  
402      the fireplace combustion of woods grown in the southern United States, *Environmental Science &  
403      Technology*, 36, 1442-1451, 2002.

404      Fine, P. M., Cass, G. R., and Simoneit, B. R.: Chemical characterization of fine particle emissions from

405 the fireplace combustion of wood types grown in the Midwestern and Western United States,  
406 Environmental Engineering Science, 21, 387-409, 2004.

407 Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I., and Sadilek, M.: Water - soluble  
408 organic components in aerosols associated with savanna fires in southern Africa: Identification,  
409 evolution, and distribution, Journal of Geophysical Research: Atmospheres (1984–2012), 108, 2003.

410 Gelencsér, A., May, B., Simpson, D., Sánchez-Ochoa, A., Kasper-Giebl, A., Puxbaum, H., Caseiro, A., Pio,  
411 C., and Legrand, M.: Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary,  
412 natural/anthropogenic, and fossil/biogenic origin, Journal of Geophysical Research: Atmospheres, 112,  
413 n/a-n/a, 10.1029/2006jd008094, 2007.

414 Gnauk, T., Brüggemann, E., Müller, K., Chemnitzer, R., Rüd, C., Galgon, D., Wiedensohler, A., Acker, K.,  
415 Auel, R., Wiprecht, W., Möller, D., Jaeschke, W., and Herrmann, H.: Aerosol characterisation at the  
416 FEBUKO upwind station Goldlauter (I): Particle mass, main ionic components, OCEC, and mass closure,  
417 Atmospheric Environment, 39, 4209-4218, <http://dx.doi.org/10.1016/j.atmosenv.2005.02.007>, 2005.

418 He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang, H., and Hao, J.: Mineral dust  
419 and NOx promote the conversion of SO<sub>2</sub> to sulfate in heavy pollution days, Scientific reports, 4, 2014.

420 He, L.-Y., Hu, M., Zhang, Y.-H., Huang, X.-F., and Yao, T.-T.: Fine Particle Emissions from On-Road  
421 Vehicles in the Zhujiang Tunnel, China, Environmental Science & Technology, 42, 4461-4466,  
422 10.1021/es7022658, 2008.

423 He, Z., Kim, Y. J., Ogunjobi, K. O., Kim, J. E., and Ryu, S. Y.: Carbonaceous aerosol characteristics of  
424 PM2.5 particles in Northeastern Asia in summer 2002, Atmospheric Environment, 38, 1795-1800,  
425 <http://dx.doi.org/10.1016/j.atmosenv.2003.12.023>, 2004.

426 Hedberg, E., Johansson, C., Johansson, L., Swietlicki, E., and Brorström-Lundén, E.: Is levoglucosan a  
427 suitable quantitative tracer for wood burning? Comparison with receptor modeling on trace elements  
428 in Lycksele, Sweden, Journal of the Air & Waste Management Association, 56, 1669-1678, 2006.

429 Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S.  
430 M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A.,  
431 Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger,  
432 U., Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution  
433 during haze events in China, Nature, 10.1038/nature13774, 2014.

434 Kam, W., Liacos, J. W., Schauer, J. J., Delfino, R. J., and Sioutas, C.: Size-segregated composition of  
435 particulate matter (PM) in major roadways and surface streets, Atmospheric Environment, 55, 90-97,  
436 <http://dx.doi.org/10.1016/j.atmosenv.2012.03.028>, 2012.

437 Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen,  
438 R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J.,  
439 Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and  
440 Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053-1123,  
441 10.5194/acp-5-1053-2005, 2005.

442 Kim, Y. P., Moon, K. C., and Hoon Lee, J.: Organic and elemental carbon in fine particles at Kosan,  
443 Korea, Atmospheric Environment, 34, 3309-3317, [http://dx.doi.org/10.1016/S1352-2310\(99\)00445-8](http://dx.doi.org/10.1016/S1352-2310(99)00445-8),  
444 2000.

445 Kleefeld, S., Hoffer, A., Krivácsy, Z., and Jennings, S. G.: Importance of organic and black carbon in  
446 atmospheric aerosols at Mace Head, on the West Coast of Ireland (53° 19' N, 9° 54' W),  
447 Atmospheric Environment, 36, 4479-4490, [http://dx.doi.org/10.1016/S1352-2310\(02\)00346-1](http://dx.doi.org/10.1016/S1352-2310(02)00346-1), 2002.

448 Krivácsy, Z., Hoffer, A., Sárvári, Z., Temesi, D., Baltensperger, U., Nyeki, S., Weingartner, E., Kleefeld, S.,

449 and Jennings, S. G.: Role of organic and black carbon in the chemical composition of atmospheric  
450 aerosol at European background sites, *Atmospheric Environment*, 35, 6231-6244,  
451 [http://dx.doi.org/10.1016/S1352-2310\(01\)00467-8](http://dx.doi.org/10.1016/S1352-2310(01)00467-8), 2001.

452 Lee, S., Wang, Y., and Russell, A. G.: Assessment of secondary organic carbon in the southeastern  
453 United States: A review, *Journal of the Air & Waste Management Association*, 60, 1282-1292, 2010.

454 Liu, D., Li, J., Zhang, Y., Xu, Y., Liu, X., Ding, P., Shen, C., Chen, Y., Tian, C., and Zhang, G.: The use of  
455 levoglucosan and radiocarbon for source apportionment of PM(2.5) carbonaceous aerosols at a  
456 background site in East China, *Environmental Science & Technology*, 47, 10454-10461, 2013a.

457 Liu, D., Li, J., Zhang, Y. L., Xu, Y., Liu, X., Ding, P., Shen, C. D., Chen, Y. J., Tian, C. G., and Zhang, G.: The  
458 Use of Levoglucosan and Radiocarbon for Source Apportionment of PM2.5 Carbonaceous Aerosols at  
459 a Background Site in East China, *Environmental Science & Technology*, 47, 10454-10461,  
460 10.1021/es401250k, 2013b.

461 Liu, J., Li, J., Zhang, Y., Liu, D., Ding, P., Shen, C., Shen, K., He, Q., Ding, X., Wang, X., Chen, D., Szidat, S.,  
462 and Zhang, G.: Source Apportionment Using Radiocarbon and Organic Tracers for PM2.5  
463 Carbonaceous Aerosols in Guangzhou, South China: Contrasting Local- and Regional-Scale Haze Events,  
464 *Environmental Science & Technology*, 48, 12002-12011, 10.1021/es503102w, 2014a.

465 Liu, J., Xu, Y., Li, J., Liu, D., Tian, C., Chaemfa, C., and Zhang, G.: The distribution and origin of PAHs  
466 over the Asian marginal seas, the Indian, and the Pacific Oceans: Implications for outflows from Asia  
467 and Africa, *Journal of Geophysical Research: Atmospheres*, 119, 1949-1961, 10.1002/2013jd020361,  
468 2014b.

469 Liu, J., Li, J., Liu, D., Ding, P., Shen, C., Mo, Y., Wang, X., Luo, C., Cheng, Z., and Szidat, S.: Source  
470 apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process  
471 in China based on radiocarbon and organic molecular tracers, *Atmospheric Chemistry & Physics  
472 Discussions*, 16, 34949-34979, 2015.

473 Liu, J., Li, J., Liu, D., Ding, P., Shen, C., Mo, Y., Wang, X., Luo, C., Cheng, Z., Szidat, S., Zhang, Y., Chen, Y.,  
474 and Zhang, G.: Source apportionment and dynamic changes of carbonaceous aerosols during the haze  
475 bloom-decay process in China based on radiocarbon and organic molecular tracers, *Atmospheric  
476 Chemistry and Physics*, 16, 2985-2996, 10.5194/acp-16-2985-2016, 2016a.

477 Liu, J., Li, J., Liu, D., Ding, P., Shen, C., Mo, Y., Wang, X., Luo, C., Cheng, Z., Szidat, S., Zhang, Y., Chen, Y.,  
478 and Zhang, G.: Source apportionment and dynamic changes of carbonaceous aerosols during the haze  
479 bloom-decay process in China based on radiocarbon and organic molecular tracers, *Atmos. Chem.  
480 Phys.*, 16, 2985-2996, 10.5194/acp-16-2985-2016, 2016b.

481 Liu, J., Mo, Y., Li, J., Liu, D., Shen, C., Ding, P., Jiang, H., Cheng, Z., Zhang, X., Tian, C., Chen, Y., and  
482 Zhang, G.: Radiocarbon-derived source apportionment of fine carbonaceous aerosols before, during,  
483 and after the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China, *Journal of  
484 Geophysical Research: Atmospheres*, 121, 4177-4187, 10.1002/2016jd024865, 2016c.

485 Liu, X., Li, J., Qu, Y., Han, T., Hou, L., Gu, J., Chen, C., Yang, Y., Liu, X., and Yang, T.: Formation and  
486 evolution mechanism of regional haze: a case study in the megacity Beijing, China, *Atmospheric  
487 Chemistry and Physics*, 13, 4501-4514, 2013c.

488 Marcazzan, G. M., Ceriani, M., Valli, G., and Vecchi, R.: Source apportionment of PM10 and PM2.5 in  
489 Milan (Italy) using receptor modelling, *Science of The Total Environment*, 317, 137-147,  
490 [http://dx.doi.org/10.1016/S0048-9697\(03\)00368-1](http://dx.doi.org/10.1016/S0048-9697(03)00368-1), 2003.

491 Mayol - Bracero, O., Guyon, P., Graham, B., Roberts, G., Andreae, M., Decesari, S., Facchini, M., Fuzzi,  
492 S., and Artaxo, P.: Water - soluble organic compounds in biomass burning aerosols over amazonia 2.

493 Apportionment of the chemical composition and importance of the polyacidic fraction, *Journal of*  
494 *Geophysical Research: Atmospheres* (1984–2012), 107, LBA 59-51-LBA 59-15, 2002.

495 Rattigan, O. V., Dirk Felton, H., Bae, M.-S., Schwab, J. J., and Demerjian, K. L.: Multi-year hourly PM2.5  
496 carbon measurements in New York: Diurnal, day of week and seasonal patterns, *Atmospheric*  
497 *Environment*, 44, 2043-2053, <http://dx.doi.org/10.1016/j.atmosenv.2010.01.019>, 2010.

498 Robinson, A. L., Donahue, N. M., and Rogge, W. F.: Photochemical oxidation and changes in molecular  
499 composition of organic aerosol in the regional context, *Journal of Geophysical Research: Atmospheres*  
500 (1984–2012), 111, 2006.

501 Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., and Simoneit, B. R. T.: Quantification of  
502 urban organic aerosols at a molecular level: Identification, abundance and seasonal variation,  
503 *Atmospheric Environment*. Part A. General Topics, 27, 1309-1330,  
504 [http://dx.doi.org/10.1016/0960-1686\(93\)90257-Y](http://dx.doi.org/10.1016/0960-1686(93)90257-Y), 1993.

505 Simoneit, B. R., Schauer, J. J., Nolte, C., Oros, D. R., Elias, V. O., Fraser, M., Rogge, W., and Cass, G. R.:  
506 Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, *Atmospheric*  
507 *Environment*, 33, 173-182, 1999.

508 Singh, N., Murari, V., Kumar, M., Barman, S. C., and Banerjee, T.: Fine particulates over South Asia:  
509 Review and meta-analysis of PM2.5 source apportionment through receptor model, *Environmental*  
510 *Pollution*, 223, 121-136, <https://doi.org/10.1016/j.envpol.2016.12.071>, 2017.

511 Strader, R., Lurmann, F., and Pandis, S. N.: Evaluation of secondary organic aerosol formation in  
512 winter, *Atmospheric Environment*, 33, 4849-4863, [http://dx.doi.org/10.1016/S1352-2310\(99\)00310-6](http://dx.doi.org/10.1016/S1352-2310(99)00310-6),  
513 1999.

514 Subramanian, R., Donahue, N. M., Bernardo-Bricker, A., Rogge, W. F., and Robinson, A. L.: Insights into  
515 the primary–secondary and regional–local contributions to organic aerosol and PM2.5 mass in  
516 Pittsburgh, Pennsylvania, *Atmospheric Environment*, 41, 7414-7433,  
517 <http://dx.doi.org/10.1016/j.atmosenv.2007.05.058>, 2007.

518 Szidat, S., Ruff, M., Perron, N., Wacker, L., Synal, H. A., Hallquist, M., Shannigrahi, A. S., Yttri, K. E., Dye,  
519 C., and Simpson, D.: Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in  
520 Göteborg, Sweden, *Atmos. Chem. Phys.*, 9, 1521-1535, 10.5194/acp-9-1521-2009, 2009.

521 Turpin, B. J., and Huntzicker, J. J.: Identification of secondary organic aerosol episodes and  
522 quantitation of primary and secondary organic aerosol concentrations during SCAQS, *Atmospheric*  
523 *Environment*, 29, 3527-3544, [http://dx.doi.org/10.1016/1352-2310\(94\)00276-Q](http://dx.doi.org/10.1016/1352-2310(94)00276-Q), 1995.

524 Wang, X., Ding, X., Fu, X., He, Q., Wang, S., Bernard, F., Zhao, X., and Wu, D.: Aerosol scattering  
525 coefficients and major chemical compositions of fine particles observed at a rural site in the central  
526 Pearl River Delta, South China, *Journal of Environmental Sciences*, 24, 72-77,  
527 [http://dx.doi.org/10.1016/S1001-0742\(11\)60730-4](http://dx.doi.org/10.1016/S1001-0742(11)60730-4), 2012.

528 Wang, Y., Wang, M., Zhang, R., Ghan, S. J., Lin, Y., Hu, J., Pan, B., Levy, M., Jiang, J. H., and Molina, M.  
529 J.: Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global  
530 climate model, *Proceedings of the National Academy of Sciences*, 111, 6894-6899,  
531 10.1073/pnas.1403364111, 2014.

532 Weber, R. J., Sullivan, A. P., Peltier, R. E., Russell, A., Yan, B., Zheng, M., De Gouw, J., Warneke, C.,  
533 Brock, C., and Holloway, J. S.: A study of secondary organic aerosol formation in the anthropogenic –  
534 influenced southeastern United States, *Journal of Geophysical Research: Atmospheres* (1984–2012),  
535 112, 2007a.

536 Weber, R. J., Sullivan, A. P., Peltier, R. E., Russell, A., Yan, B., Zheng, M., de Gouw, J., Warneke, C.,

537 Brock, C., Holloway, J. S., Atlas, E. L., and Edgerton, E.: A study of secondary organic aerosol formation  
538 in the anthropogenic-influenced southeastern United States, *Journal of Geophysical Research: Atmospheres*, 112, n/a-n/a, 10.1029/2007jd008408, 2007b.

540 Yang, F., He, K., Ye, B., Chen, X., Cha, L., Cadle, S. H., Chan, T., and Mulawa, P. A.: One-year record of  
541 organic and elemental carbon in fine particles in downtown Beijing and Shanghai, *Atmos. Chem. Phys.*,  
542 5, 1449-1457, 10.5194/acp-5-1449-2005, 2005.

543 Yttri, K. E., Simpson, D., Stenström, K., Puxbaum, H., and Svendby, T.: Source apportionment of the  
544 carbonaceous aerosol in Norway – quantitative estimates based on  $^{14}\text{C}$ , thermal-optical and  
545 organic tracer analysis, *Atmos. Chem. Phys.*, 11, 9375-9394, 10.5194/acp-11-9375-2011, 2011.

546 Zhang, Y.-L., Li, J., Zhang, G., Zotter, P., Huang, R.-J., Tang, J.-H., Wacker, L., Prévôt, A. S. H., and Szidat,  
547 S.: Radiocarbon-Based Source Apportionment of Carbonaceous Aerosols at a Regional Background  
548 Site on Hainan Island, South China, *Environmental Science & Technology*, 48, 2651-2659,  
549 10.1021/es4050852, 2014a.

550 Zhang, Y., Schauer, J. J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y., and Shao, M.: Characteristics of Particulate  
551 Carbon Emissions from Real-World Chinese Coal Combustion, *Environmental Science & Technology*,  
552 42, 5068-5073, 10.1021/es7022576, 2008.

553 Zhang, Y., Zotter, P., Perron, N., Prévôt, A., Wacker, L., and Szidat, S.: Fossil and non-fossil sources of  
554 different carbonaceous fractions in fine and coarse particles by radiocarbon measurement,  
555 *Radiocarbon*, 55, 1510-1520, 2013.

556 Zhang, Y., Ren, H., Sun, Y., Cao, F., Chang, Y., Liu, S., Lee, X., Agrios, K., Kawamura, K., Liu, D., Ren, L.,  
557 Du, W., Wang, Z., Prévôt, A. S. H., Szidat, S., and Fu, P.: High Contribution of Nonfossil Sources to  
558 Submicrometer Organic Aerosols in Beijing, China, *Environmental Science & Technology*,  
559 10.1021/acs.est.7b01517, 2017.

560 Zhang, Y. L., Huang, R. J., El Haddad, I., Ho, K. F., Cao, J. J., Han, Y., Zotter, P., Bozzetti, C., Daellenbach,  
561 K. R., and Canonaco, F.: Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese  
562 cities during the extreme winter haze episode of 2013, *Atmospheric Chemistry & Physics*, 15,  
563 1299-1312, 2014b.

564 Zhang, Y. L., Li, J., Zhang, G., Zotter, P., Huang, R. J., Tang, J. H., Wacker, L., Prévôt, A. S., and Szidat, S.:  
565 Radiocarbon-Based Source Apportionment of Carbonaceous Aerosols at a Regional Background Site  
566 on Hainan Island, South China, *Environmental Science & Technology*, 48, 2651-2659, 2014c.

567 Zhang, Y. L., Huang, R. J., El Haddad, I., Ho, K. F., Cao, J. J., Han, Y., Zotter, P., Bozzetti, C., Daellenbach,  
568 K. R., Canonaco, F., Slowik, J. G., Salazar, G., Schwikowski, M., Schnelle-Kreis, J., Abbaszade, G.,  
569 Zimmermann, R., Baltensperger, U., Prévôt, A. S. H., and Szidat, S.: Fossil vs. non-fossil sources of fine  
570 carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013, *Atmos.  
571 Chem. Phys.*, 15, 1299-1312, 10.5194/acp-15-1299-2015, 2015a.

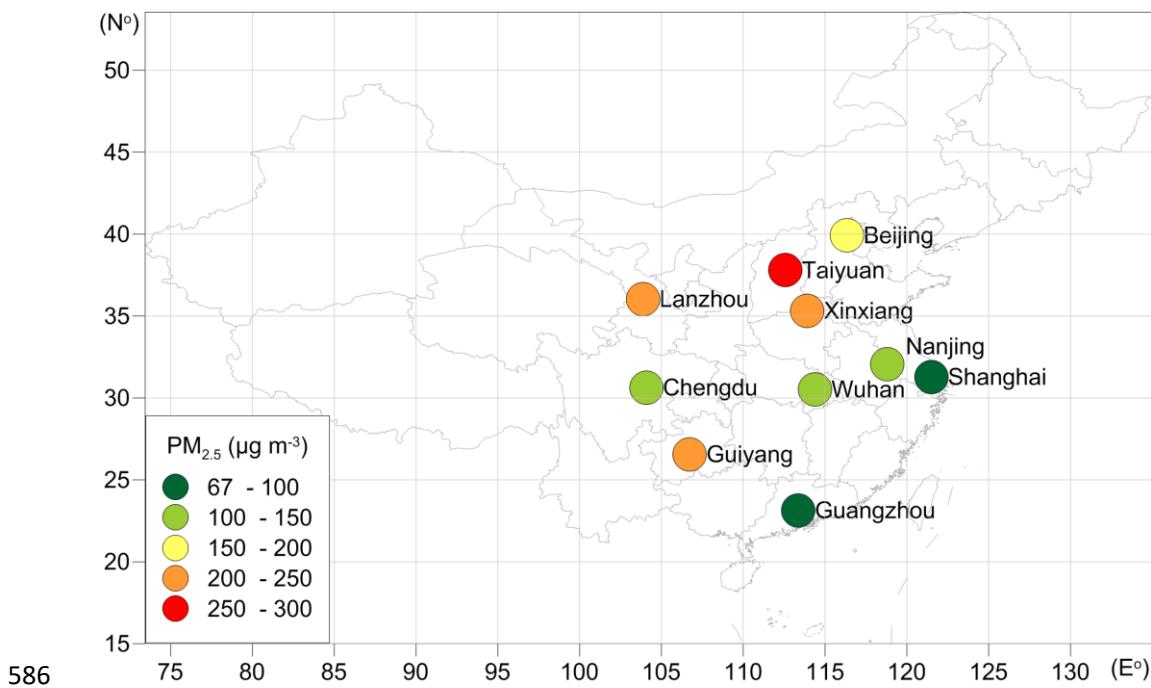
572 Zhang, Y. L., Schnelle-Kreis, J., Abbaszade, G., Zimmermann, R., Zotter, P., Shen, R. R., Schafer, K., Shao,  
573 L., Prevot, A. S., and Szidat, S.: Source Apportionment of Elemental Carbon in Beijing, China: Insights  
574 from Radiocarbon and Organic Marker Measurements, *Environ. Sci. Technol.*, 49, 8408-8415,  
575 10.1021/acs.est.5b01944, 2015b.

576 Zhao, X., Zhao, P., Xu, J., Meng, W., Pu, W., Dong, F., He, D., and Shi, Q.: Analysis of a winter regional  
577 haze event and its formation mechanism in the North China Plain, *ATMOSPHERIC CHEMISTRY AND  
578 PHYSICS*, 13, 5685-5696, 2013.

579 Zhou, R., Wang, S., Shi, C., Wang, W., Zhao, H., Liu, R., Chen, L., and Zhou, B.: Study on the Traffic Air  
580 Pollution inside and outside a Road Tunnel in Shanghai, China, *Plos One*, 9, e112195-e112195, 2014.

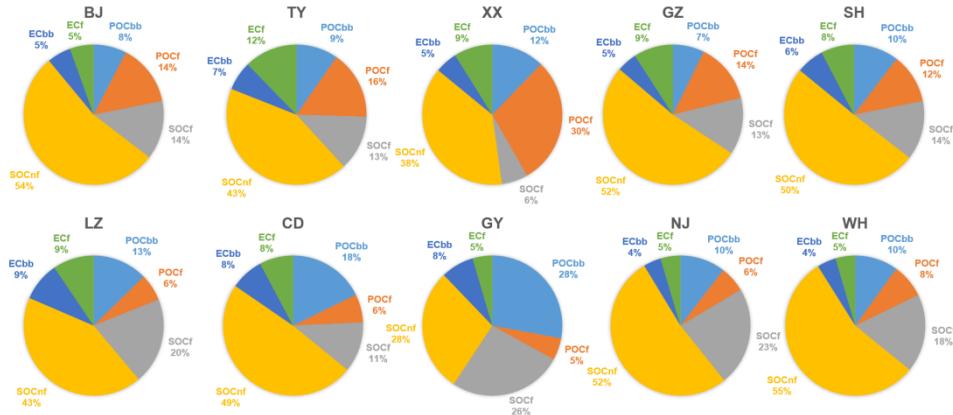
581 Zong, Z., Wang, X., Tian, C., Chen, Y., Qu, L., Ji, L., Zhi, G., Li, J., and Zhang, G.: Source apportionment of  
582 PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis:  
583 insight into the contribution of biomass burning, *Atmospheric Chemistry & Physics*, 16, 11249-11265,  
584 2016.

585

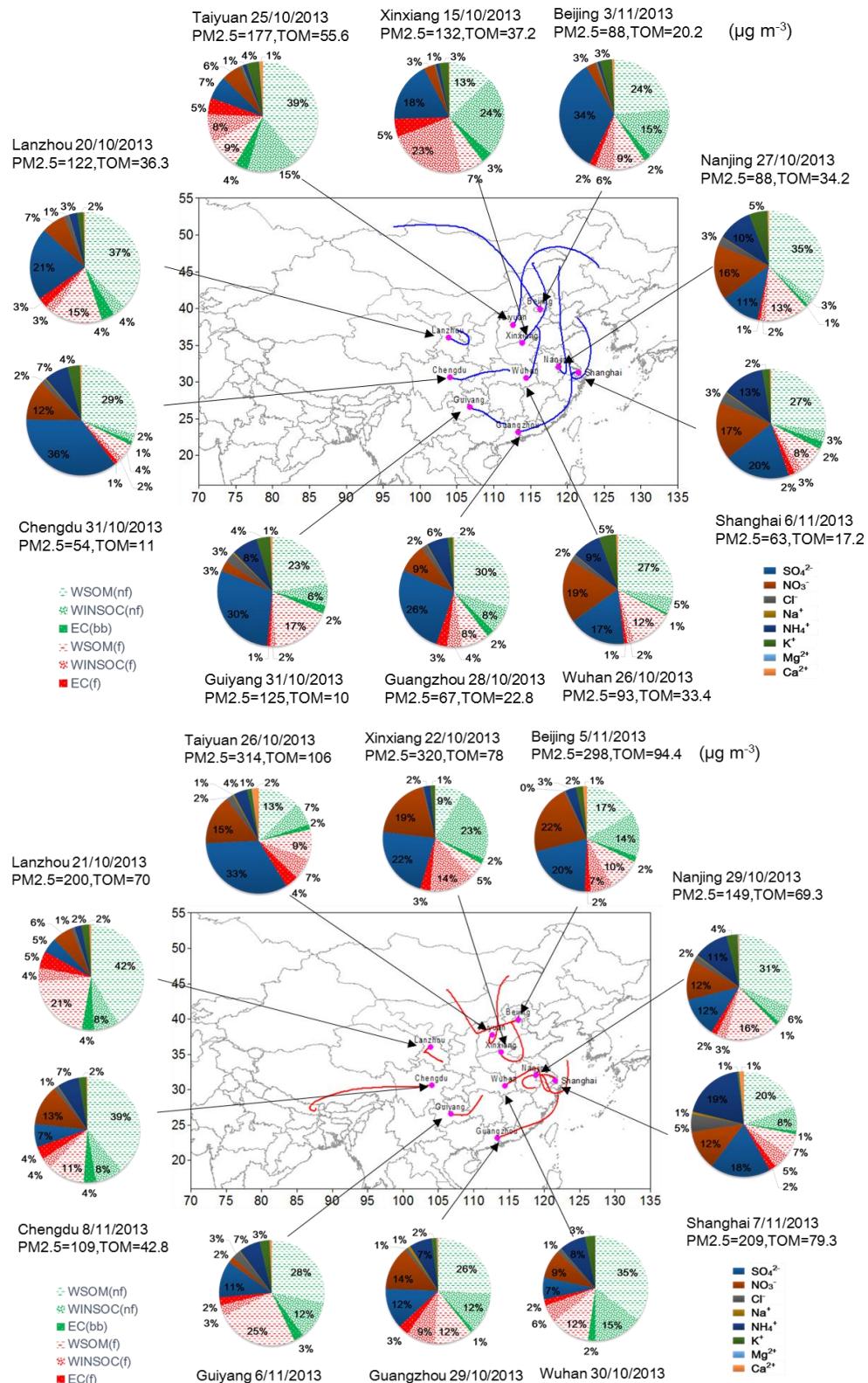

Table 1 The  $\text{PM}_{2.5}$ , OC and EC data used in this study (average  $\pm$  standard deviation;  $\mu\text{g m}^{-3}$ )

| Sites     | N  | $\text{PM}_{2.5}$ | OC              | EC             | OM/ $\text{PM}_{2.5}$ (%) | OC/EC         |
|-----------|----|-------------------|-----------------|----------------|---------------------------|---------------|
| Beijing   | 31 | 189 $\pm$ 79      | 26.5 $\pm$ 12.5 | 3.6 $\pm$ 1.8  | 24 $\pm$ 4.6              | 7.7 $\pm$ 1.8 |
| Xinxiang  | 31 | 245 $\pm$ 65      | 29.3 $\pm$ 11.7 | 4.8 $\pm$ 2.2  | 21 $\pm$ 4.9              | 6.5 $\pm$ 1.9 |
| Taiyuan   | 31 | 285 $\pm$ 84      | 37.3 $\pm$ 15.5 | 7.8 $\pm$ 2.8  | 23 $\pm$ 4.4              | 4.9 $\pm$ 1.5 |
| Lanzhou   | 31 | 212 $\pm$ 112     | 21.4 $\pm$ 9.1  | 5.0 $\pm$ 2.7  | 19 $\pm$ 3.9              | 4.8 $\pm$ 1.2 |
| Guiyang   | 30 | 227 $\pm$ 77      | 7.5 $\pm$ 4.4   | 0.76 $\pm$ 0.5 | 6.0 $\pm$ 3.4             | 11 $\pm$ 4.4  |
| Chengdu   | 26 | 105 $\pm$ 39      | 17.7 $\pm$ 8.1  | 1.8 $\pm$ 0.8  | 28 $\pm$ 4.8              | 10 $\pm$ 3.0  |
| Wuhan     | 22 | 123 $\pm$ 49      | 17.5 $\pm$ 8.3  | 2.0 $\pm$ 1.2  | 24 $\pm$ 8.5              | 9.6 $\pm$ 2.7 |
| Guangzhou | 28 | 85 $\pm$ 32       | 17.4 $\pm$ 9.9  | 2.3 $\pm$ 1.8  | 33 $\pm$ 11               | 8.1 $\pm$ 2.4 |
| Nanjing   | 19 | 111 $\pm$ 50      | 18.8 $\pm$ 8.7  | 1.6 $\pm$ 0.6  | 28 $\pm$ 9.3              | 12 $\pm$ 3.8  |
| Shanghai  | 27 | 68 $\pm$ 43       | 7.2 $\pm$ 9.0   | 1.0 $\pm$ 0.9  | 17 $\pm$ 8.5              | 7.4 $\pm$ 3.0 |

Table 2 Proportion of modern carbon in WSOC, WINSOC, OC, EC, TC, and anhydrosugar, and ratio data for 10 urban cities in China for the period October 2013 to November 2013


|     | Start date | PM <sub>2.5</sub> | WSOC | WINSOC | EC   | f <sub>m</sub> (WSOC) | f <sub>m</sub> (WINSOC) | f <sub>m</sub> (OC) | f <sub>m</sub> (EC) | f <sub>m</sub> (TC) | Lev | Lev/OC | Gal  | Man  |
|-----|------------|-------------------|------|--------|------|-----------------------|-------------------------|---------------------|---------------------|---------------------|-----|--------|------|------|
| BJ1 | 11/3/2013  | 88                | 5.49 | 5.62   | 1.4  | 0.72                  | 0.73                    | 0.72                | 0.51                | 0.70                | 176 | 15.9   | 31.7 | 65.1 |
| BJ2 | 11/5/2013  | 298               | 23.7 | 29.2   | 6.47 | 0.63                  | 0.67                    | 0.65                | 0.49                | 0.63                | 398 | 7.50   | 38.6 | 79.3 |
| XX1 | 10/15/2013 | 132               | 4.71 | 17.7   | 4.30 | 0.65                  | 0.51                    | 0.54                | 0.38                | 0.51                | 553 | 24.7   | 29.3 | 52.1 |
| XX2 | 10/22/2013 | 320               | 9.29 | 39.8   | 6.73 | 0.64                  | 0.63                    | 0.63                | 0.35                | 0.60                | 601 | 12.3   | 31.8 | 60.8 |
| TY1 | 10/25/2013 | 177               | 15.9 | 12.5   | 5.90 | 0.81                  | 0.66                    | 0.74                | 0.44                | 0.69                | 518 | 18.2   | 28.4 | 56.4 |
| TY2 | 10/26/2013 | 314               | 26.9 | 26.9   | 14.2 | 0.58                  | 0.52                    | 0.55                | 0.28                | 0.50                | 672 | 12.5   | 36.3 | 86.4 |
| LZ1 | 10/20/2013 | 123               | 13.8 | 2.81   | 3.74 | 0.72                  | 0.58                    | 0.70                | 0.56                | 0.67                | 442 | 26.7   | 22.6 | 53.8 |
| LZ2 | 10/23/2013 | 199               | 25.1 | 7.64   | 7.51 | 0.67                  | 0.65                    | 0.66                | 0.42                | 0.62                | 439 | 13.4   | 21.4 | 51.5 |
| GY1 | 10/31/2013 | 125               | 3.74 | 1.18   | 0.64 | 0.57                  | 0.81                    | 0.63                | 0.71                | 0.64                | 247 | 50.1   | 16.4 | 35.5 |
| GY2 | 11/6/2013  | 287               | 9.41 | 4.36   | 2.04 | 0.52                  | 0.78                    | 0.61                | 0.55                | 0.60                | 436 | 31.7   | 24.7 | 64.6 |
| CD1 | 10/31/2013 | 53.8              | 4.40 | 0.86   | 0.63 | 0.87                  | 0.55                    | 0.82                | 0.51                | 0.79                | 198 | 37.6   | 13.2 | 21.2 |
| CD2 | 11/8/2013  | 109               | 14.7 | 5.59   | 4.77 | 0.78                  | 0.71                    | 0.76                | 0.49                | 0.71                | 368 | 18.2   | 27.9 | 46.6 |
| WH1 | 10/26/2013 | 73.2              | 13.0 | 3.59   | 1.40 | 0.69                  | 0.71                    | 0.69                | 0.42                | 0.67                | 344 | 20.7   | 15.1 | 32.0 |
| WH2 | 10/30/2013 | 182               | 25.9 | 18.1   | 4.94 | 0.75                  | 0.73                    | 0.74                | 0.54                | 0.72                | 324 | 7.37   | 16.3 | 30.1 |
| NJ1 | 10/27/2013 | 88.2              | 14.3 | 2.04   | 1.48 | 0.73                  | 0.62                    | 0.72                | 0.51                | 0.70                | 235 | 14.4   | 11.9 | 23.7 |
| NJ2 | 10/29/2013 | 149               | 26.5 | 7.91   | 3.42 | 0.65                  | 0.63                    | 0.64                | 0.43                | 0.63                | 520 | 15.1   | 18.6 | 30.9 |
| GZ1 | 10/28/2013 | 67.2              | 7.40 | 3.89   | 2.20 | 0.79                  | 0.64                    | 0.74                | 0.41                | 0.68                | 161 | 14.3   | 10.5 | 25.3 |
| GZ2 | 10/29/2013 | 149               | 23.1 | 20.7   | 5.55 | 0.69                  | 0.58                    | 0.64                | 0.24                | 0.59                | 279 | 6.37   | 13.7 | 35.6 |
| SH1 | 10/20/2013 | 63.2              | 6.39 | 1.70   | 1.58 | 0.78                  | 0.57                    | 0.73                | 0.56                | 0.71                | 165 | 20.4   | 9.77 | 19.7 |
| SH2 | 10/23/2013 | 209               | 23.8 | 18.2   | 5.72 | 0.75                  | 0.60                    | 0.68                | 0.33                | 0.67                | 468 | 11.1   | 18.8 | 37.2 |

Note: all fractions are in  $\mu\text{g m}^{-3}$ , except for levoglucosan (Lev), galactosan (Gal) and mannosan (Man) (all  $\text{ng m}^{-3}$ ).




586 Figure 1. Geographic locations of the 10 Chinese sampling sites. The averages of monitored PM<sub>2.5</sub>  
 587 concentrations (daily resolution, n = 31 for each site) during sampling campaign are shown in  
 588 color plots.  
 589

590  
 591



592 Figure 2. The proportions of different carbon fractions, including elemental carbon derived from  
 593 fossil fuels (EC<sub>f</sub>), EC derived from burning biomass (EC<sub>bb</sub>), BB-derived primary organic carbon  
 594 (POC<sub>bb</sub>), POC derived from FF (POC<sub>f</sub>), non-FF secondary OC (SOC<sub>nf</sub>) and SOC derived from FF  
 595 (SOC<sub>f</sub>) in total carbon (TC) for 10 urban cities during the sampling period.  
 596  
 597



602 Figure 3. The chemical compositions of fine particles ( $\text{PM}_{2.5}$ ) under non-haze (top) and haze  
603 (bottom) conditions during the sampling period.

605 The English in this document has been checked by at least two professional editors,  
606 both native speakers of English. For a certificate, please see:  
607  
608 <http://www.textcheck.com/certificate/foV8Qb>  
609