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Abstract

Probability distribution functions (PDFs) of model inputs that affect the transport and dispersion of a trace gas released
from a coastal California nuclear power plant are quantified using ensemble simulations, machine learning algorithms,
and Bayesian inversion. The PDFs are constrained by observations of tracer concentrations and account for uncertainty
in meteorology, transport, diffusion, and emissions. Meteorological uncertainty is calculated using an ensemble of
simulations of the Weather Research and Forecasting (WRF) model that samples five categories of model inputs
(initialization time, boundary layer physics, land surface model, nudging options, and reanalysis data). The WRF
output is used to drive tens of thousands of FLEXPART dispersion simulations that sample a uniform distribution of
six emissions inputs. Machine learning algorithms are trained on the ensemble data, and used to quantify the sources
of ensemble variability and to infer, via inverse modeling, the values of the 11 model inputs most consistent with tracer
measurements. We find a substantial ensemble spread in tracer concentrations (factors of 10 to 103), most of which
is due to changing emissions inputs (about 80%), though the cumulative effects of meteorological variations are not
negligible. The performance of the inverse method is verified using synthetic observations generated from arbitrarily
selected simulations. When applied to measurements from a controlled tracer release experiment, the inverse method
satisfactorily determines the location, start time, duration and amount. In a 2 km × 2 km area of possible locations, the
actual location is determined to within 200 meters. The start time is determined to within 5 minutes out of 2 hours, and
the duration to within 50 minutes out of 4 hours. Over a range of release amounts of 10 kg to 1000 kg, the estimated
amount exceeds the actual amount of 146 kg by only 32 kg. The inversion also estimates probabilities of different
WRF configurations. To best match the tracer observations, the highest probability cases in WRF are associated with
using a late initialization time and specific reanalysis data products.

Keywords: meteorological and dispersion uncertainty, nuclear power plant emissions, source estimation, Bayesian
inversion, machine learning

1. Introduction

Although the probability of a nuclear power plant
accident is low, the risks associated with accidental
releases of radioactive materials from nuclear power
plants are expected to remain elevated worldwide5

through the coming decades (Christoudias et al., 2014).
In the unlikely event of an accident, government agen-
cies and plant owners must take actions to protect peo-
ple and the environment from exposure to radioactive
contamination. Because the atmosphere can spread the10

contaminants beyond the boundaries of a power plant
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within minutes to hours, reliable and timely protective
action recommendations based on numerical modeling
of actual releases are essential.

A variety of atmospheric models have been devel-15

oped for simulating the transport and dispersion of re-
leases from nuclear power plants, starting from the ac-
cidents at Three Mile Island in 1979 and Chernobyl
in 1986 (e.g., Wahlen et al., 1980; Albergel et al.,
1988; Gudiksen et al., 1989). These models range from20

simple straight-line Gaussian plumes that are applica-
ble at short ranges when the turbulence in the atmo-
sphere is stationary and homogeneous (Seinfeld and
Pandis, 2006), to more sophisticated models based on
Lagrangian particles and/or Eulerian transport when the25

atmospheric flow is unsteady and occurs in areas with
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complex terrain (e.g., Pöllänen et al., 1997; Lauritzen
and Mikkelsen, 1999; Nasstrom et al., 2007; Suh et al.,
2009; Brioude et al., 2013a).

Atmospheric models used for nuclear power plant ap-30

plications also use emissions modules to estimate the
release rates of radionuclides based on specific reactor
conditions (Athey et al., 1999). While these modules are
useful for providing approximate ranges of emissions
and their associated consequences, the detailed reactor35

conditions during an accident may not be well known
and can contribute significant uncertainty to transport
and dispersion predictions. The amount of radionu-
clides released to the atmosphere during the Fukushima
Daiichi accident in 2011, for example, still remains40

highly uncertain because electrical power was lost and
the reactors were monitored only indirectly (e.g., Chino
et al., 2011; Terada et al., 2012; Stohl et al., 2012; Katata
et al., 2015).

Inverse modeling can provide a safe way to infer45

information about radioactive emissions from nuclear
power plants, and can also help estimate uncertainty in
the meteorological fields used to transport the radioac-
tive materials. Emissions and winds are constrained
in an inverse method by minimizing differences be-50

tween dispersion model predictions and observations
of materials transported and deposited downwind from
the source location (e.g., Davoine and Bocquet, 2007;
Zheng and Chen, 2011). Building upon our previ-
ous work using Bayesian inverse modeling to estimate55

regional-scale greenhouse gas emissions (Lucas et al.,
2015) and meteorological uncertainty in an urban-scale
dispersion experiment (Lucas et al., 2016), we devel-
oped an ensemble-based inverse modeling system for
analyzing nuclear power plant dispersion events. A dia-60

gram of the system is presented in Fig. (1) and summa-
rized below.

Starting from the left hand side of the diagram in
Fig. (1), an ensemble of plausible meteorological fields
is generated using the Weather Research & Forecasting65

(WRF) model (Skamarock et al., 2008; Skamarock and
Klemp, 2007). Ensemble members in WRF are cre-
ated using different reanalysis datasets, physics pack-
ages, and configuration options, which are represented
as categorical random variables. Sect. 2.1 provides fur-70

ther details of the WRF ensemble setup and design. The
output of the WRF ensemble is then used to drive an
ensemble of FLEXPART dispersion plumes (Brioude
et al., 2013b), which also considers variations in the lo-
cation, timing, and magnitude of emissions using con-75

tinuous random variables. Further details of the FLEX-
PART calculations are given in Sect. 2.2.

The WRF-FLEXPART ensemble provides a set of

plume predictions that are compared with field mea-
surements (right hand side of Fig. 1). The differences80

between the simulations and field data are minimized
through Monte Carlo sampling loops that jointly vary
the inputs to WRF and emissions in FLEXPART (red
dashed lines in the diagram). Because a single iteration
through the sampling loops is computationally expen-85

sive and millions of iterations may be needed, we use
machine learning to accelerate the optimization. More-
over, by sampling the WRF and FLEXPART inputs with
a probability distribution function, Bayesian analysis is
used to estimate uncertainty in the model inputs and90

outputs. Details of the machine learning and inversions
methods are provided in Sects. 3.1 and 3.2.

Measurements from a tracer release experiment con-
ducted (Thuillier, 1992) in September 1986 at the Di-
ablo Canyon nuclear power plant are used to test and95

verify the atmospheric models and inversion system in
Fig. (1). Diablo Canyon is located along the rugged
coast of California (see Fig. 2), so the study provides
a critical test of simulating transport and dispersion in
complex terrain. The study also provides an important100

verification test of the inversion algorithm, because the
tracer emissions are assumed to be unknown and in-
ferred in the inversion. Information about the Diablo
Canyon study is given in Sect. 4.

To our knowledge, this work represents the first joint105

inversion capability applied to FLEXPART dispersion
simulations that provides probability distribution func-
tions of categorical inputs in WRF and continuous in-
puts in FLEXPART, and has been verified with tracer
release data. This capability can be useful for other ap-110

plications beyond releases from nuclear power plants,
including compliance monitoring of the nuclear test ban
treaty (Issartel and Baverel, 2003) and inverse modeling
of emissions from large-scale industrial accidents and
volcanic plumes (e.g., Heng et al., 2016).115

2. Ensemble atmospheric modeling

2.1. Weather Research & Forecasting Model

The non-hydrostatic, fully compressible Weather Re-
search and Forecasting (WRF) atmospheric model (Ska-
marock et al., 2008; Skamarock and Klemp, 2007) is120

used to generate meteorological fields for the atmo-
spheric transport and diffusion simulations. Version
3.6.0 of the advance research WRF (ARW) core is
used for the simulations presented in this paper. WRF
was developed through collaboration among govern-125

ment, research, and academic organizations to facilitate
the transfer of state-of-the-science atmospheric research
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findings to an operational modeling capability. The Na-
tional Center for Atmospheric Research currently main-
tains the open source WRF model code, which is pub-130

licly available for user download. WRF is widely used
by numerous groups for both atmospheric research and
real-time operational commercial applications, such as
renewable generation and utility grid demand forecast-
ing.135

2.1.1. WRF Domain
High resolution winds are needed to simulate the dis-

persion for the Diablo Canyon tracer release test prob-
lem (see Fig. 2 and Sect. 4). Through efficient numerical
model nesting and the parallelization of source code for140

high performance computers, WRF can be used to sim-
ulate a large range in scales of motion from thousands
of kilometers down to tens of meters (Lundquist et al.,
2010).

Using this nesting capability, five WRF model do-145

mains are used to downscale and generate high-
resolution meteorological fields over the Diablo Canyon
region. The WRF domain configuration and geographic
coverage are shown in Fig. 3. A large portion of
the Western United States is covered by the outermost150

model domain (labeled D1) at 24.3 km horizontal grid
spacing. The large outer model domain was required
for downscaling purposes given the coarse resolution of
some of the reanalysis data sets used to initialize WRF
for this study.155

By downscaling, a horizontal grid spacing of 300 m
is achieved in the innermost WRF model domain (D5 in
Fig. 3). The fine-scale grid spacing of D5 is necessary to
generate representative meteorological conditions since
the Diablo Canyon nuclear power plant is located on160

the coast near narrow valleys and other topographic fea-
tures that result in complex terrain induced flow. Some
of the sensors shown in Fig. 3 are located in places re-
quiring even finer resolution (e.g., the line of sensors
that stretch to the northwest of site 413), but the physics165

parameterizations in WRF are not designed for such
small scales. The 300-m grid spacing in D5 is there-
fore a trade-off between resolution and model physics.
High-resolution terrain and land use fields were gener-
ated for D5 by downloading National Elevation Dataset170

and National Land Cover Database at 1-arc second (ap-
prox. 30 m) data from the United States Geological Sur-
vey Multi-Resolution Land Characteristics data server
(Homer et al., 2015).

2.1.2. WRF Ensemble175

Several features also make WRF ideal for creating
an ensemble of plausible atmospheric conditions for un-

certainty assessments. Ensemble modeling approaches
have been shown to be effective at quantifying physi-
cally plausible states of the atmosphere in a probabilis-180

tic manner (e.g., Mullen and Baumhefner, 1994; Sten-
srud et al., 2000; Berner et al., 2011). The WRF mod-
eling system contains numerous physics schemes that
parameterize subgrid-scale processes, such as the sur-
face energy exchange, cloud microphysics, and turbu-185

lent mixing in the planetary boundary layer. By run-
ning WRF with combinations of physics options, an en-
semble is generated that captures meteorological uncer-
tainty due to subgrid-scale parameterization error. In
addition, WRF can be initialized and run using a vari-190

ety of publicly available reanalysis data sets to quan-
tify meteorological uncertainty resulting from errors in
initial / lateral boundary conditions. Meteorological
data from gridded analysis data sets and observations
can also be integrated into WRF simulations to improve195

model accuracy by using four dimensional data assim-
ilation (FDDA) options for analysis (Stauffer and Sea-
man, 1994) and observational (Liu et al., 2005, 2009)
nudging. The goal of the analysis FDDA option is to
nudge large-scale motion towards an observed state us-200

ing relaxation terms, while the observational nudging
impacts the prediction of local-scale atmospheric phe-
nomenon.

Table 1 summarizes the five major variables that were
selected for the WRF ensemble. Reference “base” val-205

ues for each variable are also listed in the table. The
base values were selected using expert judgment and
represent a prior WRF configuration expected to per-
form well. For the purposes of the Monte Carlo sam-
pling and analysis (Fig. 1), the WRF variables are210

treated as categorical random variables. By taking
all of the combinations among the five variables in
the table, we constructed a WRF ensemble containing
162 members. The major categories in the table in-
clude model initialization time, source of input reanal-215

ysis data, FDDA nudging weighting factors, planetary
boundary layer (PBL) physics, and land surface model
(LSM) physics. The ensemble categories and their vari-
ations were selected based on previous WRF user expe-
rience and a literature review of sources of uncertainty220

that are likely to impact meteorological fields impor-
tant to the specific tracer release experiment described
in Sect. 4. Variations in PBL and LSM physics, for ex-
ample, have been shown to affect near surface stabil-
ity and wind fields (Lee et al., 2012), which can have a225

large impact on plume transport modeling. Other cate-
gories related to changes in microphysics and cumulus
physics are not considered in this report because pre-
cipitation and cloud cover were not present during the
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specific tracer release experiment. Future studies can230

easily incorporate these factors, and others, by includ-
ing additional categories for Monte Carlo sampling.

Several variations are included in the weather ensem-
ble to account for uncertainty related to model initializa-
tion and meteorological reanalysis inputs. WRF simu-235

lations were started at either 15 hours or 9 hours before
the beginning of the tracer release (i.e., at 00:00 UTC
or 06:00 UTC on 4 September 1986) to investigate the
sensitivity of model solutions to initialization start time
and model spin up duration. All of the WRF simula-240

tions ended at 13 hours after the end of the tracer release
(i.e., at 12:00 UTC on 5 September 1986). The three re-
analysis variations included are the North American Re-
gional Reanalysis (NARR) data (Mesinger et al., 2006),
European Centre for Medium-Range Weather Forecasts245

(ECMWF) data (Hersbach et al., 2015), and Climate
Forecast System Reanalysis (CFSR) fields (Saha et al.,
2010). NARR reanalysis meteorological data are avail-
able every 3 hours on 30 vertical levels with a horizontal
grid spacing of 32 km. Both ECMWF and CFSR reanal-250

ysis fields are available every 6 hours on 38 vertical lev-
els. However, CFSR reanalysis fields have a horizontal
grid spacing of roughly 60 km versus roughly 125 km
for ECMWF data.

The FDDA weighting of meteorological data fields255

during the WRF ensemble simulations was varied to
account for uncertainty associated with the assimila-
tion of gridded reanalysis fields and irregularly spaced
weather observations. Weather simulations were per-
formed with WRF FDDA options for analysis and ob-260

servational nudging options either turned off, using de-
fault weighting factors as suggested by WRF guidance,
or a high option with the weighting factors one order
of magnitude higher than the default values. Addition-
ally, FDDA analysis nudging was used only on the two265

outer course-resolution model domains, while FDDA
observational nudging was used only on the two in-
nermost model domains (see WRF domains in Fig. 3).
FDDA observation nudging included surface METAR
measurements and multi-level data from the backup and270

primary meteorological towers at Diablo Canyon (see
Sect. 4).

Three PBL models and three LSM schemes were
used to construct the WRF ensemble to account for
uncertainty associated with turbulent mixing and sur-275

face momentum, moisture, and thermodynamic fluxes.
The PBL models included the Yonsei University (YSU)
scheme (Hong et al., 2006), the Mellor-Yamada-Janjic
(MYJ) scheme (Janjić, 1994), and the Mellor-Yamada-
Nakanishi and Niino (MYNN) scheme (Nakanishi and280

Niino, 2006). Among the PBL models, the biggest dif-

ference is that the YSU scheme uses a countergradi-
ent flux (non-local) method to develop parabolic mix-
ing profiles in the boundary layer, while the MYJ and
MYNN schemes use different numerical approaches to285

solve for local turbulent kinetic energy (TKE) based
vertical mixing in the PBL and free atmosphere. The
LSM physics options include Thermal Diffusion (Duh-
dia, 1996), NOAH (Ek et al., 2003), and RUC (Ben-
jamin et al., 2004) models. Soil moisture and explicit290

vegetation canopy physics are not included in the Ther-
mal Diffusion model, while the NOAH and RUC mod-
els parameterize vegetation canopy effects to differing
degrees and both provide soil moisture gradients.

2.2. FLEXPART295

The FLEXPART Lagrangian dispersion particle
model (Stohl et al., 1998, 2005; Stohl and Thomson,
1999) was used to simulate the atmospheric transport
and mixing of the tracer gas released from the Diablo
Canyon nuclear power plant. Field experiments have300

been used to validate the performance of FLEXPART
(Stohl et al., 1998; Forster et al., 2007). FLEXPART has
also been used in a wide variety of dispersion applica-
tions, including the transport of air pollutants (An et al.,
2014; Avey et al., 2007), of radiological releases from305

nuclear power plants and radioisotope production facil-
ities (Andreev et al., 1998; Wotawa et al., 2010; Stohl
et al., 2012), of volcanic plumes (Stohl et al., 2011),
and of noble gases produced from nuclear weapons tests
(Becker et al., 2010).310

We used FLEXPART-WRF version 3.1 (Brioude
et al., 2013b), which was developed to use meteo-
rological data generated by the WRF model to drive
atmospheric transport and diffusion processes. The
FLEXPART-WRF code is open source and available for315

download (https://www.flexpart.eu/). Mean particle tra-
jectories and tracer concentrations were calculated us-
ing the three dimensional wind components from WRF
(u, v, and w) over the 50 km by 50 km domain shown in
Fig. 3 (dashed rectangular area). The FLEXPART-WRF320

grid used 401 cells in each of the horizontal directions
and 11 vertical levels from the surface to 3 km, with 6
levels contained in the lowest 500 m. Tracer concentra-
tions were derived using one million particles released
from a randomly selected point source location at ran-325

dom release times, as detailed in the next section. Wind
fluctuations (σv and σw) were calculated using parame-
terizations (Hanna, 1982; Ryall and Maryon, 1998) and
WRF micrometeorological output variables (friction ve-
locity, surface sensible heat flux, planetary boundary330

layer height, and Monin Obukhov length scale). La-
grangian particles were evolved using a sampling rate
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and synchronization interval of 20 seconds, and the
simulations utilized a subgrid terrain parameterization.
FLEXPART-WRF can also simulate wet and dry de-335

position removal processes (Wesely and Hicks, 1977;
McMahon and Denison, 1979; Slinn, 1982; Hertel et al.,
1995), though these processes were not needed for the
passive gas tracer release at Diablo Canyon.

2.2.1. FLEXPART Ensemble340

In addition to the wind field variations generated by
the WRF ensemble, the inverse modeling system in
Fig. 1 also applies a Monte Carlo sampling loop to emis-
sions variables in FLEXPART. The goal of this part of
the inversion is to determine the location, timing, and345

magnitude of the tracer release emissions by minimiz-
ing the differences between FLEXPART predictions and
field measurements.

The location, timing, and magnitude of the Diablo
Canyon release are inferred by sampling the six emis-350

sions inputs shown in Table 2. Each input is represented
by a continuous random variable that can take any value
in the inversion range, including the minimum and max-
imum values. The ranges bound the actual values used
for the Diablo Canyon tracer release experiment, which355

are also listed in the table. The release latitude and lon-
gitude are sampled over a roughly 2 km × 2 km bound-
ing box centered on the actual location. To represent a
surface release, the height of the release is varied be-
tween 1 and 10 meters above ground, with the actual360

height at 2 m above the surface. Potential release start
times within a two hour period centered around the ac-
tual start time (08:00 local time) are considered. Simi-
larly, possible release durations lasting between 6 to 10
hours are tested, with the actual release occurring for 8365

hours. Lastly, the inversion algorithm considered any
amount between 10 and 1000 kg for the the trace gas
released, with the true value at 146 kg.

The FLEXPART ensemble contains 40,000 disper-
sion simulations that were run and analyzed for the Di-370

ablo Canyon release. These ensemble simulations were
generated by randomly sampling both the WRF ensem-
ble and the FLEXPART emissions variables. Random
samples were drawn using a Latin hypercube design
(Helton and Davis, 2003) assuming an 11-dimensional375

uniform probability distribution. Latin hypercube is a
space-filling variation of Monte Carlo that partitions the
sampling space into ND bins of equal probability for D
dimensions and N sample points. The points are spread
across this space by avoiding duplicate bin indices380

within each dimension. Additional discussion of Latin
hypercube sampling for ensemble modeling is given in
Lucas et al. (2013). To run, schedule, and manage the

large FLEXPART ensemble, we utilized the Lawrence
Livermore National Laboratory’s UQ Pipeline software385

package (see Lucas et al., 2013). Further details on the
statistical aspects of the ensemble modeling are given
below in Sect. 3.

3. Statistical analysis of ensembles

3.1. Machine learning390

Machine learning is used to train statistical regression
functions to approximate the input-output relationships
in the WRF-FLEXPART ensemble. Once trained, the
machine learning functions can be evaluated very ef-
ficiently at new input values and used for uncertainty395

propagation, parameter estimation, Bayesian inference,
and other types of statistical analysis. These functions
are used for two primary purposes in our work. They are
used to identify and rank the effects of input features in
WRF and FLEXPART on the tracer responses (i.e., a400

form of sensitivity analysis) and to determine the val-
ues of the inputs that yield responses that are similar to
tracer observations (i.e., optimization and inverse mod-
eling). These applications are described in more detail
below.405

The WRF-FLEXPART ensemble is mathematically
expressed as

y = F(xWRF, xFLX), (1)

where y is a vector containing information about the
output or response of the simulations in the ensem-
ble, xWRF and xFLX are vectors containing the corre-
sponding categorical and continuous inputs to WRF and
FLEXPART, respectively, and the function F represents
the WRF and FLEXPART physical models. The re-
sponse vector y is taken as either the tracer concentra-
tion at a specified location and time or a measure of
the goodness-of-fit between the ensemble simulations
and measurements. Complex spatiotemporal dispersion
patterns are not contained in y, although new statisti-
cal methods are being developed to capture these ef-
fects (Francom et al., 2016). Machine learning is used
to approximate Eq. (1) by training on the ensemble data,
which results in

ŷ = F(xWRF, xFLX) + εy, (2)

where ŷ is an approximation of y and εy is the approx-
imation error. The value of εy is small for our analysis
and is neglected for the remaining discussion (i.e., dif-
ferences between y and ŷ are less than 10% on average,
not shown). For notational convenience, the inputs xWRF410

and xFLX are also combined into a single input vector x
in subsequent discussion.
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We use a method called gradient boosting (GB) that
fits statistical regressions to Eq. (1) using sums of deci-
sion trees following the basic notion that an individual415

decision tree by itself is a weak learner, but a combina-
tion of trees is a strong learner capable of fitting com-
plex systems. The GB algorithm is briefly outlined be-
low, and further details are available (e.g., Hastie et al.,
2009). We use the GB version available in the Scikit-420

learn package (Pedregosa et al., 2011). GB models have
been applied to studies of air quality (Carslaw and Tay-
lor, 2009; Sayegh et al., 2016) and terrestrial ecosystems
(Moisen et al., 2006; Dube et al., 2015). GB is also
closely related to random forests, which we have pre-425

viously used to analyze ensembles of a global climate
model (Boyle et al., 2015).

As noted, a GB model is a sum of decision trees of
the form

F(x) =

M∑
m=1

Tm(x; θ), (3)

where Tm(x; θ) is the tree at stage m and θ is a set of tree
fitting parameters (e.g., depth of the trees). An individ-
ual tree is described by

T (x; θ) =

J∑
j=1

γ jI(x ∈ R j), (4)

which partitions the input space x into J disjoint regions
and assigns a value of γ j to region R j via the indicator
function I. Starting from an initial model that fits the
mean of the response, F0, the regression model is built-
up additively using a boosting technique that fits trees to
the residuals between the current and previous stages,

Fm(x) = Fm−1(x) + Tm(x), (5)

where the tree output values, γ jm, are defined implic-
itly. This expression is solved by numerically estimat-
ing gradients of a loss function (e.g. least squares) and430

using steepest descent optimization. A stochastic vari-
ation of GB is used that considers a random subset of
training data during each stage, which has been shown
to improve the accuracy of the fits.

Although other statistical regression methods could435

be used, GB offers two clear advantages for fitting the
WRF-FLEXPART ensemble. First, as shown in Eq. (2),
GB naturally handles heterogeneous inputs (i.e., xWRF
and xFLX). This makes it convenient for analyzing the
combined effects of WRF inputs that vary as categories440

or discrete variables and FLEXPART variations that
vary continuously. In addition, GB has a built-in tech-
nique for determining the influence of the inputs on the

outputs during training using an established procedure
called feature importance (e.g., see Hastie et al., 2009).445

The algorithm estimates a score for each input based on
its position in each decision tree. A given decision tree
is built from top-to-bottom by splitting the training data
along input directions that explain most of the variance
in the output. Inputs that affect the output strongly ap-450

pear closer to the top of a decision tree and have higher
feature scores. Our ensemble is generated by varying
inputs in WRF and FLEXPART, so the feature scores
quantify the fraction of the ensemble variance explained
by these inputs. In this way, the feature scores are analo-455

gous to sensitivity coefficients used to learn about which
inputs are most important in the WRF-FLEXPART en-
semble.

3.2. Bayesian inverse modeling

The goal of the inverse modeling is to determine the460

values of the inputs to WRF and FLEXPART that pro-
vide output concentrations that best match the tracer
measurements. The inversion uses an extension of our
approximate Bayesian computation algorithm described
in Lucas et al. (2016). The algorithm has been updated465

to enable joint inversions of categorical inputs in WRF
and continuous inputs in FLEXPART, and to allow more
flexibility in the calculation of the model-observation
likelihood distance weights. In particular, the likelihood
weights now utilize predictions from the GB regressions470

and consider more than one distance metric. Further in-
formation about the scheme is provided below and is
illustrated in Fig. 4.

The inverse method applies Bayes’ rule,

P(x|y) ∝ P(y|x)P(x), (6)

to estimate P(x|y), which is the conditional probabil-
ity density function (i.e., the posterior distribution) of475

the WRF and FLEXPART inputs, x, given simulations
and measurements of tracer concentrations, y. The prior
probability distribution of model inputs, P(x), is an 11-
dimensional uniform probability distribution over the
WRF and FLEXPART random variables listed in Ta-480

bles 1 and 2. As illustrated on the left hand side of
Fig. 4, the prior distribution uses uniform categorical
random variables for the WRF inputs and uniform con-
tinuous random variables for the FLEXPART inputs.
Samples are drawn from the prior distribution using a485

Latin hypercube method (Helton and Davis, 2003).
The remaining term in Eq. (6) is the likelihood func-

tion, L = P(y|x), which quantifies the level of agree-
ment between the simulated and measured tracer con-
centrations for a given draw from the prior distribution.490
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Relatively high and low likelihood values correspond,
respectively, to simulations that agree well and poorly
with measurements. The values of model inputs that
maximize the likelihood function yield peaks in the pos-
terior distribution because of our uniform prior distribu-495

tion. Moreover, variations in non-sensitive model in-
puts will not dramatically change the likelihood values,
resulting in posterior distributions that are nearly “flat”
and uniform, as in the prior distribution.

Following our previous work (Lucas et al., 2016), we500

compute the mean-squared-error (mse) between simu-
lations and measurements as one metric for calculat-
ing high and low likelihoods. Furthermore, we include
the correlation (corr) between observations and simula-
tions as another metric to determine high and low like-505

lihood values. The corr metric is included because it
is sensitive to different aspects of model and observa-
tion differences than the mse. The mse varies with the
magnitude of the differences between observations and
simulations, and is expected to be mainly sensitive to510

changes in the source amount. The temporal correla-
tion, on the other hand, is expected to be sensitive to
changes in the arrival time and duration of the plume
at the measurement locations. By combining the two
metrics, mse and corr, into a single likelihood weight,515

we aim to constrain a larger number of input parameters
than we could using either metric alone.

To account for the two metrics in the likelihood func-
tion, we use an expression of the form

log L = −0.5
[
ys(x) − yt

]T
Σ−1 [

ys(x) − yt
]
, (7)

where ys is a column vector of the metrics for a simula-
tion at input x,

ys(x) =

(
mse
corr

)
, (8)

yt is the corresponding column vector of the metric “tar-
gets”, and Σ is the 2×2 covariance matrix of model and
observation errors. The highest likelihood values occur520

at the inputs that jointly minimize the mse and maxi-
mize the corr. Ideally, with perfect model and data, the
targets for mse and corr would be 0 and 1, respectively.
In practice, however, models are imperfect and data is
noisy, so it is usually not possible to find simulations525

that match the data perfectly. To avoid extrapolation, we
define the targets in yt using a small number of the best
fitting simulations within the ensemble, and then esti-
mate the covariance matrix Σ using a bootstrap resam-
pling procedure (Wilks, 2011). Further details of the tar-530

get and covariance estimation are provided in Sect. 5.4.
Before computing the mse and corr in Eq. (8), the

tracer concentrations are transformed using a Box-Cox

power transformation with an exponent of −0.25 (see
Wilks, 2011). This transformation generalizes the log-535

arithmic transform and is used because the tracer con-
centrations vary over many orders of magnitude. With-
out it, the likelihood metrics would be skewed toward
higher tracer concentrations near the release location.
The Box-Cox transformation also symmetrizes the dis-540

tribution of differences in Eq. (7) by removing long tails.
The Bayesian inversion is performed using GB re-

gressions, instead of actual model simulations, to pre-
dict ys(x) for 2 million new Latin hypercube input val-
ues. Two million points are needed to better cover the545

large sampling volume of the 11-dimensional prior dis-
tribution because the sampling volume varies exponen-
tially with the number of dimensions. For instance, par-
titioning the ranges of only the 6 FLEXPART inputs into
10 bins each results in a volume with 106 bins. Running550

and analyzing the output of 106 FLEXPART simulations
is computationally infeasible, so we use the ensemble
of 104 simulations (Sect. 2) as a training dataset to build
the GB regressions, and then use the regressions as sur-
rogates for the actual models in the inversion because555

they can be evaluated very efficiently.
To verify the Bayesian inversion scheme, we per-

formed a series of “synthetic data” tests using model-
generated inputs and outputs. These tests are important
because inverse problems often have multiple solutions560

and may be poorly constrained (i.e., ill-posed and ill-
conditioned). Sect. 5.5 highlights the results of a syn-
thetic data inversion test.

4. Diablo Canyon tracer release experiment

Field measurements from the Diablo Canyon nuclear565

power plant tracer release experiment (Thuillier, 1992)
are compared to the ensemble simulations and used to
test the Bayesian inversion algorithm. The Pacific Gas
and Electric Company (PG&E) owns and operates Di-
ablo Canyon and conducted the tracer experiment in570

1986 to evaluate and improve PG&E’s dispersion mod-
eling capabilities in case of an accidental release. Fig-
ures 2 and 3 show the geographical setting around Dia-
blo Canyon, which is located on the California coast in
complex terrain near San Luis Obispo. The plant sits on575

a shelf about 26 m above sea level and is surrounded by
hills with peaks about 500 m above sea level and many
canyons. The hills block onshore, westerly flow, which
creates challenges in simulating the effects of plumes
released from Diablo Canyon on the population centers580

of San Luis Obispo and Pismo Beach.
PG&E conducted eight tracer release tests between

August 31 and September 17, 1986. Although the large-
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scale wind patterns for the eight tests showed relatively
similar onshore flow from the northwest, the third tracer585

test on September 4 experienced a strong sea-breeze that
presents a challenge for dispersion modeling. We there-
fore use the third tracer release for our inversion test-
ing. Starting at 8 AM Pacific Daylight Time (PDT)
on September 4 (15:00 UTC), 146 kg of the passive590

tracer sulfur hexafluoride (SF6) was released 2-m above
ground from Diablo Canyon steadily over an 8-hour pe-
riod (8 AM to 4 PM PDT). The concentration of SF6
was measured at the network of 150 tracer air sampling
locations shown in Fig. 3 (black dots).595

The measurement network was designed to monitor
the expected tracer transport paths near terrain gaps, the
entrances and exits to the inland valley, and the coastal
boundary. An arc of 24 sampling sites was positioned
very close to the nuclear power plant release point, at a600

radial distance of 840 m (black dots surrounding Diablo
Canyon in Fig. 3). This arc was designed to detect the
initial direction of transport of released plumes and to
provide details of dispersion at the nominal plant bound-
ary. A second, linear array of 8 samplers was placed605

about 7 km southeast of the plant to detect transport and
indicate dispersion characteristics along the anticipated
principal coastal transport path for plumes released at
Diablo Canyon (i.e., see site 330 in Fig. 3). Tracer sam-
pling was done automatically by sequential pumps fill-610

ing polyvinyl fluoride bags. An integrated sample was
taken over each hour at each sampling site from 7 AM
to 7 PM PDT. This allowed for one-hour samples prior
to the tracer release for the purpose of estimating tracer
background levels, and three one-hour samples after the615

cessation of release for the purpose of following the
tracer as it traveled through the domain.

Figure 5 shows the SF6 measurements used for the
inversion. Of the 150 locations in the Diablo Canyon
tracer release measurement network, 137 stations are620

contained in the FLEXPART domain represented by
dashed rectangle in Fig. 3. The left hand side of Fig. 5
shows the pre-release SF6 concentrations measured at
these 137 stations labeled by their site identification
numbers. The pre-release concentrations are used to625

gauge background values of SF6. As shown, there are
a handful of site 3XX stations that have highly elevated
values of SF6 (above 100 ng m−3). These values are well
above background tropospheric SF6 levels (Rigby et al.,
2010) and are due to local pollution. These are sites630

312–323 and are contained within the southern portion
of the 840 m arc of stations surrounding Diablo Canyon.
The source of the pollution is likely due to fugitive emis-
sions from a power switchyard located within the Dia-
blo Canyon premises. Rather than attempt to account635

for the extra source from the fugitive emissions, we in-
stead exclude sites 312–323 from our analysis. After
removing these sites, a dataset with 1,148 one-hour av-
erages of the SF6 concentration measured at 125 stations
is used for the inversion (352 points are missing in the640

raw data). The resulting distribution of SF6 concentra-
tions is shown on the right hand side of Fig. 5.

5. Results

5.1. WRF ensemble with actual tracer release

Before presenting results from the large Latin hyper-645

cube ensemble, we first show dispersion results using
the actual tracer release parameters with the 162 wind
fields from the WRF ensemble. Figure 6 shows exam-
ples of simulated 30-minute average dispersion plumes
for two of these cases. These simulations use identi-650

cal input settings and parameters in WRF and FLEX-
PART, except for the reanalysis fields. The plumes on
the left use NARR and those on the right use ECMWF.
The remaining WRF settings follow the base case val-
ues listed in Table 1, while the FLEXPART simulations655

use the actual values of the source release parameters
listed in Table 2. These plumes therefore represent our
best prior knowledge in a forward modeling sense, and
provide tracer concentrations that we would expect to
compare reasonably well to measurements without in-660

verse modeling.
The upper portion of the figure shows the plumes us-

ing NARR and ECMWF five hours after the release.
At this stage of the simulations, there is a large spatial
difference between the plumes. The dispersion using665

NARR is directed eastward, is spatially more confined,
and does not extend downwind of Pismo Beach, as com-
pared to the southeast directed ECMWF plume. The
ECMWF plume covers a much wider region, though
most of the extended area is over the ocean. Be-670

cause there are not many measurement sensors over the
ocean, we expect there to be smaller differences be-
tween NARR and ECMWF in the inversion algorithm
than the plumes in upper part of Fig. 6 suggest.

Nine hours after the release, as shown in the lower675

part of the figure, the plumes using NARR and ECMWF
begin to resemble each other. Both are directed to the
southeast, and both have about the same spatial ex-
tent. The higher concentration area of the plumes us-
ing ECMWF are a little more dispersed near the release680

location (see red contour), but otherwise the differences
between the two reanalysis cases are minor.

To see the variability associated with the full WRF
ensemble with the actual tracer release, Fig. 7 shows
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the distribution of time series of SF6 at the four repre-685

sentative locations (sites 325, 330, 338, and 413). The
time series at each site displays the reference WRF-
FLEXPART base simulation (black line), the tracer
measurements (red squares), and different quantiles of
the SF6 distribution, including the median (solid blue690

line) and 5-95% range (light blue shading).
Starting with the distribution at Site 325, which is

closest to the release point, the simulated SF6 concentra-
tions are negligible until about 9 AM, when the plume
begins to pass over the location. The concentrations stay695

elevated for about 8 hours and then drop off as the trail-
ing edge of the plume moves over the site. The dis-
tributions at the other sites show similar behavior, ex-
cept that the arrival times of the plume are delayed and
the peak concentrations are reduced relative to their dis-700

tance from the release point.
Figure 7 shows that the WRF-only variations lead to

fairly wide SF6 distributions that span one to two orders
of magnitude based on the 5-95% quantile range. Other
than the initial 2–3 hours when background SF6 was705

present, the figure also shows that the Diablo Canyon
measurements generally fall within the distributions.
Moreover, the median of the ensemble (blue line) seems
to match the observations better than the WRF reference
base case (black line).710

To further examine the WRF variations, we com-
pute the observational metrics mse and corr described
in Eq. 8 for each of the 162 cases. The resulting val-
ues are displayed in Fig. 8. The best fitting WRF cases
have relatively low mse and high corr and are located715

in the upper left portion of the figure. There appears
to be a linear relationship between the metrics. WRF
cases with low mse values also have high corr, and vice
versa. Sect. 5.4 shows, however, that this relationship
is not generally preserved when source parameter vari-720

ations are included in the ensemble.
To determine the primary causes of variation in

Fig. 8, the values are color-coded by reanalysis data and
use different symbols for early and late time initializa-
tions (circles and squares for 9 and 15 hours before the725

release, respectively). Stratifying the metrics in this way
shows that most of the variability is due to differences
in reanalysis data. The simulations using NARR and
ECMWF reanlaysis tend to fit the Diablo Canyon mea-
surements better than CFSR. Moreover, the runs using730

NARR have a wider range and exhibit more variability
than those using ECMWF. The initialization time also
has a noticeable impact. Runs initialized 9 hours be-
fore the release (circles) have better scores than those
initialized earlier (squares). Labeling the points in the735

figure by other WRF inputs (e.g., nudging options or

PBL height) does not clearly separate the data, which
suggests that additional factors are less important in op-
timizing the fit to the observations. Additional analysis
of the effects of the WRF variations are described in the740

following sections (Sects. 5.3 and 5.6).

5.2. Prior probability distribution of SF6

The results presented in this section and in the rest
of the manuscript are based only on the 40,000 member
Latin hypercube ensemble. We exclude the 162 cases745

using the known release parameters that were analyzed
previously in Sect. 5.1. By removing these cases from
our training data, we rigorously test our Bayesian in-
verse method by assuming no prior knowledge about
the release.750

Distributions of the time series of SF6 concentra-
tions for the Latin hypercube ensemble are displayed
in Fig. 9. These time series are at the same four rep-
resentative locations as shown in Fig. 7. The dis-
tributions provide an estimate of the prior probabil-755

ity because they sample the uniform random variables
in WRF and FLEXPART without considering obser-
vational constraints. The prior distributions have the
same general features as the WRF-only variations in
Fig. 7, but they are significantly wider. Referring to760

the inter-quartile range (blue dashed lines) at Site 325,
for instance, the prior distribution is about two orders
of magnitude larger than the corresponding distribution
in Fig. 7. Similar differences between the distributions
also occur at the other locations.765

Comparing Figs. 7 and 9 shows that the FLEXPART
source term variations account for most of the variabil-
ity in the prior distribution, though it is not possible
to determine which specific inputs are most influential
from these figures. We therefore use gradient boosting770

regression in the next section to quantify the individual
sources of variability in the prior distribution.

5.3. Feature scores of SF6

The SF6 concentrations in the prior probability distri-
bution in Fig. 9 vary by three orders of magnitude due to775

variations in the inputs to WRF and FLEXPART. Gra-
dient boosting tree regressions are used to estimate the
input feature scores, where the score for a given input is
analogous to the sensitivity index quantifying the frac-
tion of the variance caused by changes in that input. The780

feature scores are extracted from fitting individual GB
regressions to the Latin hypercube ensemble at each site
and for 30-minute concentration average periods. We
only fit GB regressions during the periods when there
is significant plume ensemble variability present at all785
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of the locations simultaneously, which occurs between
12:00 and 20:00 PM local time.

Figure 10 displays the resulting time series of the GB-
based feature scores at the four representative sites. The
stacked color-coded bands show the fraction of ensem-790

ble variance in the prior distribution explained by the 11
inputs, with the scores for the FLEXPART inputs at the
bottom and the WRF inputs at the top of each stack. The
patterns are generally similar at different locations and
times, which indicates that there is not a strong spatial795

or temporal component to the feature scores or model
sensitivities. The patterns also show that the FLEX-
PART and WRF inputs cumulatively account for about
80% and 20%, respectively, of the ensemble variance
in Fig. 9. On the FLEXPART input side, the latitude800

and longitude of the release and the source amount are
the most important features explaining the variance of
the prior probability distribution. Among the WRF in-
puts, the feature scores associated with different reanal-
ysis fields are slightly higher than the scores of the other805

WRF features.
Overall, the feature scores suggest that the prior un-

certainty in the source term inputs are more critical than
the prior uncertainty in the meteorological inputs for
this particular tracer release experiment. Although the810

WRF inputs are not the dominant source of variabil-
ity, the combined effects of the sources of meteorolog-
ical uncertainty still cannot be neglected. It is also im-
portant to note that, for tracer release simulations con-
ducted under different meteorological conditions, at dif-815

ferent space and time scales, or that consider additional
sources of uncertainty or observational constraints (i.e.,
posterior uncertainty), the input sensitivities will likely
differ from those estimated here. Moreover, the contri-
bution of meteorological uncertainty is expected to be820

larger for forecast problems that are not constrained by
reanalysis data.

In addition to being useful for understanding the
drivers of variance in the prior probability distribution,
the feature scores are also useful for interpreting the re-825

sults of the Bayesian inversion in the following sections.
Inputs with relatively high feature scores are often easier
to constrain with observations. On this basis, therefore,
we expect the posterior probability distributions for the
FLEXPART longitude, latitude, and source amount in-830

puts to be relatively narrower than the other FLEXPART
terms because they have the highest feature scores.

5.4. Likelihood distance metrics
Figure 11 compares the 1,148 hourly-average SF6

concentration measurements to two simulations in the835

40,000 member ensemble. These simulations represent

high and low likelihood cases (ensemble runs 32,955
7,894, respectively). The indices of the data points in
the figure are arranged first by measurement site num-
ber, and then by measurement time within a given site.840

Low measured concentrations occur at low indices (less
than about 500) and correspond to sites located upwind
of the release that measured only background SF6. The
highest measured concentrations occur at intermediate
indices (between 500 and 700) which are sites located845

just downwind of the release. As shown in the figure,
the high likelihood simulation agrees well with the mea-
surements. It captures the location, timing, and magni-
tude of the actual release, resulting in a relatively low
mse and high corr. Not surprisingly, the FLEXPART850

inputs for the high likelihood case are similar to the
known release values (see Table 2 and Fig. 11). The low
likelihood simulation, in contrast, differs significantly
from the measurements. It misses the plume at im-
portant downwind locations and predicts relatively high855

SF6 concentrations at places where low concentrations
were measured. The poor fit results in a relatively high
mse and low corr. The low likelihood case used much
less SF6 than the actual amount and emitted it out over
the ocean about 1.6 km to the southwest of the actual860

release location.
Figure 12 displays the mse and corr for all of the

FLEXPART ensemble simulations. The blue and red
dots show the values for the 40,000 simulations, while
the yellow dots show the values for the 162 reference865

simulations using the known source inputs previously
described and shown in Sect. 5.1 and Fig. 8. The simu-
lations that provide a reasonable fit to the measurements
have low values of mse and high values of corr and are
located in the upper left quadrant of the figure, while870

those that disagree with the measurements are located in
the lower right portion of the figure. The 50 best match-
ing simulations are displayed using red dots in the upper
left. As noted earlier, the best values of corr and mse in
the figure are far from the perfect values of 1 and 0, re-875

spectively, because the WRF and FLEXPART models
are imperfect and the measurements are noisy.

The points in the figure are used to estimate the terms
in the likelihood function in Eq. (7) by the following
procedure. First, the data points are used to form a train-880

ing dataset to fit GB regressions to predict the mse and
corr at new simulation input values that are not part of
the ensemble. The resulting GB models fit the data very
well (not shown), having coefficients of determination
between actual and predicted values of R2 = 93% and885

98% for mse and corr, respectively. New Latin hyper-
cube samples are then drawn and evaluated in the GB
models to form the simulation vectors ys(x) in Eq. (7).
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The remaining terms, the target vector yt and covariance
matrix Σ, are estimated from the best fitting simulations890

in the figure (i.e., the red dots) by applying a bootstrap
technique that resamples the tracer measurements with
replacement (Wilks, 2011). We loop through the set of
best fitting simulations 500 times, and each time use a
random subset of the measurements (50%) to recompute895

mse and corr. The target vector and covariance matrix
are then estimated by fitting a multivariate Gaussian dis-
tribution to the bootstrapped points, yielding the mean
and standard deviation ellipses shown in the figure. The
distribution is used in the inversion to calculate the pos-900

terior probability distributions of the model input values
(Sect. 5.6) and tracer concentrations (Sect. 5.6).

5.5. Inversion with synthetic data

Before performing an inversion with the Diablo
Canyon tracer data, we first apply the algorithm to “syn-905

thetic” data with known inputs and outputs as a verifi-
cation test. Synthetic data is generated by adding noise
to the output concentrations from a randomly selected
ensemble member. The posterior probability distribu-
tion of parameter values is computed using the previ-910

ously described methods (i.e., fitting GB regressions to
the mse and corr and estimating the covariance matrix
as in Sect. 5.4). We draw 2 million new Latin hyper-
cube points from the prior distribution to better cover
the 11-dimensional input space, evaluate these points915

in the likelihood function, and compare the maximum
likelihood locations to the known input values.

Figure 13 shows an example of a synthetic data inver-
sion test using an arbitrarily selected Latin hypercube
run. Other simulations have also been tested, but the re-920

sults are not displayed here. The figure shows the poste-
rior distribution of model parameter values. The FLEX-
PART parameters are displayed in the left hand portion
of the figure using continuous distributions, while the
WRF parameters are shown on the right using categor-925

ical distributions. The plots along the diagonal show
univariate marginal distributions for the labeled param-
eters with the vertical axis indicating the normalized
probability density. The off-diagonal plots show bivari-
ate marginal distributions for the pair of parameters in930

the corresponding row and column with the red colors
showing regions of high probability density. The known
input values are denoted by the black vertical lines and
circles.

For this particular test, the synthetic source was lo-935

cated about 850 meters to the northeast of the Dia-
blo Canyon release that is analyzed in the next sec-
tion. The WRF simulation for the synthetic test used

the 06:00 UTC initialization time, the NARR reanaly-
sis data, the MYNN TKE PBL scheme, the RUC land940

surface model, and no data assimilation nudging. The
Bayesian inversion algorithm successfully determines
these inputs, because the areas of highest posterior prob-
ability density coincide with the known values (i.e., the
tallest bars and red areas overlap with the black lines945

and circles). All of the WRF inputs, except the land
surface model type, exhibit large differences across the
posterior categories, which indicates that the inputs are
well constrained by the data and metrics. In particular,
there is little to no posterior weight associated with the950

other initialization time and reanalysis fields. The rel-
atively small differences across the LSM categories are
thought to occur because the plume is predominantly
transported over the ocean and sampled near the coast
(see Figs. 3 and 6), and therefore the mse and corr955

metrics are not sensitive to changes in the land surface
model.

Table 3 compares the positions of the peak values in
the posterior distribution for the FLEXPART dispersion
inputs to the actual input values. The maximum likeli-960

hood values agree exceedingly well with the actual input
values. Except for the release altitude, the algorithm in-
fers the location, amount, and timing of the source. As
determined from the widths of the posteriors, the release
latitude and longitude are the best constrained FLEX-965

PART inputs, followed by the source amount and du-
ration. The inferred location lies only about 50 meters
away from the actual value. The posterior distribution
for the release altitude is relatively unchanged from the
flat prior distribution, which is not surprising because970

FLEXPART is insensitive to the relatively small varia-
tions of the release altitude (0 to 10 meters). As pre-
viously noted, there is a reasonable correspondence be-
tween the widths of the FLEXPART posterior widths in
Fig. 13 and the size of the feature scores in Fig. 10.975

These results, along with other synthetic data tests
that are not shown, provide confidence that the inversion
algorithm appears to be functioning adequately. The al-
gorithm returns values for the WRF and FLEXPART in-
puts that are close to the actual values for most of the980

parameters. For the release height, we are also satis-
fied with the non-informative values provided by the al-
gorithm because we expected a relatively flat posterior
distribution. In future work, we will broaden the range
of release heights to test the algorithm for elevated and985

surface releases.

5.6. Inversion with Diablo Canyon tracer data
For the inversion using the SF6 measurements, we

draw another 2 million Latin hypercube points from
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the prior distribution for WRF and FLEXPART, eval-990

uate the points in the GB fits for mse and corr, and then
compute the likelihood weights relative to the target and
covariance displayed in Fig. 12. The resulting poste-
rior distribution of WRF and FLEXPART parameters is
shown in Fig. 14.995

As is the case with the synthetic inversion tests,
the actual values for the location, start, duration, and
amount of the SF6 release are known for this tracer ex-
periment. The inversion, however, assumes that the re-
lease parameters are unknown and uses the measure-1000

ments to infer their values. The inversion results are
compared to the actual values in Table 3 and Fig. 14.
As shown, the data and algorithm are sufficient to de-
termine most of the FLEXPART source term parame-
ters, because the maximum likelihood values of the pa-1005

rameters closely match the known experimental values.
The close agreement between the two implies that the
WRF and FLEXPART models do not have any severe
deficiencies that prevent them from accurately simulat-
ing tracer transport for this experiment. The synthetic1010

data inversion tests from the previous section would not
expose model deficiencies because the same deficiency
would be present in both the simulations and target, and
hence would be subtracted out of the analysis.

Referring to Fig. 14, we see that the marginal distri-1015

butions for the latitude, longitude, and amount of the
release have the sharpest peaks and are therefore the
most constrained by the measurements. The source start
and duration are also moderately constrained, though
the distribution for release height is unconstrained and1020

remains essentially flat. The posterior distribution also
suggests that the release duration lasts longer than the 8
hour period used in the experiment. To some extent,
the one-hour average observations used in the inver-
sion limit the constraints on the start time and duration.1025

Moreover, it is difficult to simulate rapid changes asso-
ciated with the leading and trailing edges of the plume,
and so the model and methods may be smoothing out
these features and causing the overestimation of the du-
ration. Other likelihood metrics besides mse and corr1030

may help alleviate this issue.
The posterior distribution also shows a strong co-

variance relationship between the release latitude and
longitude (see bivariate distribution in the upper left of
Fig. 14). An area of relatively high probability stretches1035

from northwest of the actual release location to the
southeast. The shape of this covariance stems from the
large-scale flow pattern and nearby measurement loca-
tions. The general direction of the flow for the release
period is from the northwest to the southeast, and the re-1040

lease point is situated within a fairly close arc of sensors

(see Fig. 3). As long as the release stays within this arc,
moving the release location slightly upwind or down-
wind will not greatly affect the simulated concentrations
at the sensor locations. If the release location is moved1045

orthogonal to the flow or outside of the arc, however,
FLEXPART will simulate SF6 at sensors where none
was measured, and vice versa.

The WRF configurations in the posterior distribution
are displayed on the right hand side of Fig. 14. Un-1050

like the known FLEXPART inputs described above or
the known inputs in the synthetic data experiments, the
actual values of the meteorology are not known here
(i.e., there are no black lines or circles for WRF). The
configurations that minimize the mse and maximize the1055

corr with the SF6 measurements are represented by the
tallest bars in the univariate distributions along the di-
agonal and by the red-colored squares or bands in the
off-diagonal bivariate distributions.

As shown in the figure, the maximum likelihood con-1060

figuration consists of the 06:00 UTC initialization time,
the ECMWF reanalysis fields, the YSU PBL scheme,
the RUC land surface model, and no data assimilation
nudging. Some of these configuration settings may,
at first, seem surprising. For example, the NARR re-1065

analysis fields have a higher spatial resolution than the
ECMWF fields and therefore may be expected to per-
form better. Likewise, the option to run without data as-
similation seems to outperform the options with assimi-
lation. Referring to the figure for these cases, the poste-1070

rior distribution still has significant probability density
for both the NARR and low nudging options. Compared
to the posterior distribution in the synthetic data inver-
sion, the WRF inputs are not as strongly constrained
using the tracer data, especially the inputs for the land1075

surface model and nudging. Only two of the WRF in-
puts have settings with negligible probability, the ear-
lier initialization time and CFSR reanalysis data. The
alternate PBL schemes also have relatively low proba-
bility. We therefore conclude that the winds generated1080

using the 06:00 UTC initialization time, the NARR or
ECMWF reanalysis fields, and the YSU PBL scheme
will optimize our likelihood metrics, and that there is
not a preferred land surface model or nudging option.

5.7. Posterior probability distribution of SF61085

The ensemble time series in Fig. 9 are based on sam-
pling the prior distribution of input parameters, which
results in a substantial spread of SF6 concentrations over
two to three orders of magnitude. Most of these en-
semble members do not agree well with the tracer mea-1090

surements, so we estimate the posterior distribution of
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SF6 concentrations by applying the likelihood weights
of Sect. 5.4 and 5.6 to the ensemble time series in Fig. 9.

Figure 15 displays the posterior distribution of the
time series of SF6 concentrations. As before, the time1095

series show the tracer measurements (red squares) and
quantiles of the posterior distribution, including the me-
dian (solid blue line), first and third quartiles (dashed
blue lines), and 5-95% range (light blue area). The gen-
eral features of the posterior distribution are similar to1100

the prior distribution, except that the ensemble spread
has been greatly reduced and the quantiles have shifted
to higher values.

Other than at site 325, where a large spread remains,
the 5-95% range covers about one order of magnitude,1105

or a reduction of two orders of magnitude. Even with
the reduced range, most of the measurements still fall
within the light blue area. We do not expect all of the
measurements to lie in the 5-95% range because the
likelihood metrics consider the aggregation of all of the1110

sites and times. In order to achieve an overall higher
likelihood, individual measurement points may be far-
ther away from the median in the posterior distribution
than they were in the prior.

In addition to the reduction in the variance, Fig. 151115

also shows that the median and other quantiles of
the posterior distribution shift to higher concentrations.
This shift occurs because the source term parameter
variations in the prior distribution lead to many simula-
tions having SF6 concentrations that are too low relative1120

to the measurements. The likelihood weights discount
these simulations,

6. Conclusions

We have developed an ensemble-based Bayesian in-
verse modeling system that can determine information1125

about an atmospheric release from a nuclear power plant
using measurements collected a relatively safe distance
downwind from the plant. The system uses an ensem-
ble of WRF simulations to capture uncertainty in me-
teorological fields and an ensemble of FLEXPART dis-1130

persion simulations to vary factors related to emissions.
Machine learning algorithms are trained on the input-
output relationships in the meteorological and disper-
sion ensemble, resulting in statistical surrogate models
that mimic the behavior of the actual WRF and FLEX-1135

PART models, but that can be evaluated very rapidly at
millions of new input value combinations.

Using our system, we can determine the input factors
that are most important for understanding and reduc-
ing uncertainty in the ensemble (i.e., sensitivity analy-1140

sis) and can estimate the values of the model inputs that

provide likely matches between model output and field
measurements (i.e., inverse modeling). Bayes’ rule is
used for the inversion, which provides probability dis-
tribution functions of model inputs and outputs con-1145

strained by observations and that serve as a quantitative
assessment of model performance. The inversion is de-
signed to estimate the location, timing, and amount of
material released to the atmosphere, and to determine
the best categories of settings for running a meteorolog-1150

ical model. The inversion system should be able to han-
dle, without difficulty, additional factors related to the
transport and dispersion of potential materials released
during a nuclear power plant accident (e.g., wet and dry
deposition of soluble radioactive products).1155

Our ensemble system is tested against a tracer release
experiment conducted near the Diablo Canyon nuclear
power plant located in the rugged terrain of coastal Cal-
ifornia (Thuillier, 1992). An ensemble of 40,000 disper-
sion simulations is created using a Monte Carlo method1160

to sample uncertainty in 6 source term parameters in
FLEXPART and 5 meteorological categories distributed
among 162 unique configurations in WRF. The variance
of the resulting unconstrained tracer concentration en-
semble is substantial (i.e., the prior distribution), cov-1165

ering a 5% to 95% concentration probability range of
about four orders of magnitude. About 80% of the un-
constrained prior variance is due to source term parame-
ter variations, with about half the overall variance com-
ing from just three input parameters (release amount,1170

latitude, and longitude). Although the meteorological
inputs are not dominant sources of ensemble variabil-
ity, they cumulatively account for 20% of the variance
in the prior distribution and are important because their
uncertainty is not easily reduced.1175

By calculating the mean squared error and correla-
tion between the tracer measurements and the surro-
gate model predictions, the Bayesian inversion algo-
rithm produces a posterior distribution of model inputs
and outputs for the tracer release experiment. Even1180

though the source term parameters are initially unknown
in the inversion (i.e., we used a non-informative prior),
the most likely posterior values of the FLEXPART in-
puts closely estimate the actual values used in the tracer
release experiment, which demonstrates a successful in-1185

version. Table 3 summarizes the results of the tracer
release source inversion. As shown, the most likely val-
ues of inversion algorithm are within about 200 meters
of the release location, within 5 minutes and 50 min-
utes of the starting time and duration, respectively, and1190

within 22% of the actual release amount. Furthermore,
the posterior values of the WRF inputs show a pref-
erence for particular configurations involving the later
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initialization time, YSU PBL scheme, and NARR and
ECMWF reanalysis fields. Compared to the large con-1195

centration spread in the prior distribution, the posterior
variance of tracer concentrations is greatly reduced and
better tracks the measurements, thus indicating a good
correspondence between the posterior inputs and out-
puts.1200

It is important to keep in mind that the ensemble and
inversion methods can be applied to problems other than
nuclear power plant releases. While the location of a nu-
clear power plant release is generally restricted to reac-
tor buildings or other nearby facilities, the inversion al-1205

gorithm can also determine an arbitrary release location
from within a large area (e.g., 100’s of km2) if suitable
observations are available.

The number of measurements can also affect the qual-
ity of the inversion. The Diablo Canyon field exper-1210

iment had a large number of sensors to measure SF6,
and we used 1,148 data points to constrain 11 model pa-
rameters. Fewer measurements would be available for
most real-world events, and so in future work we plan
to quantify the impacts of measurement density on the1215

inversion. In preliminary analysis for Diablo Canyon,
we found that using only about 200 randomly selected
measurement points still resulted in GB regressions ac-
curate enough for estimating influential source parame-
ters. Because some measurements are more important1220

than others, we can also utilize network optimization
techniques (e.g., Lucas et al., 2015) to further reduce
the number of measurements, as needed to apply our
method to compliance monitoring of the nuclear test
ban treaty (Issartel and Baverel, 2003), emissions from1225

large-scale industrial accidents (e.g., Heng et al., 2016),
and other real-world applications.
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Table 1: Categorical Random Variables for WRF Ensemble.

Categorical Variable Description Category Label

1. WRF initim Initialization time 1986-09-04-06 0∗

1986-09-04-00 1
2. WRF reanalysis Reanalysis data NARR 0∗

ECMWF 1
CFSR 2

3. WRF nudge Nudging Off 0
Low 1∗

High 2
4. WRF pbl Boundary layer physics YSU 0

MYJ TKE 1∗

MYNN TKE 2
5. WRF lsm Land surface model Thermal diffusion 0

Noah 1∗

RUC 2
∗ denotes a WRF setting used for the reference base simulation.

Table 2: Continuous Random Variables for FLEXPART Tracer Ensemble.

Continuous Variable Description Actual Value Inversion Range

1. FLX loc lat Release latitude 35.2111◦N [35.1977, 35.2250]
2. FLX loc lon Release longitude 120.8543◦W [120.8708, 120.8384]
3. FLX zlev bot Release altitude 2 meters [1, 10]
4. FLX source start Release start 08:00 local time [07:00, 09:00]
5. FLX source duration Release duration 8 hours [6, 10]
6. FLX source amount Release magnitude 146.016 kg [10, 1000]

Table 3: Inversion Estimates Versus Actual Source Parameters.

Source Term Synthetic Diablo Canyon
Estimated Actual Estimated Actual

Latitude 35.2170◦N 35.2165◦N 35.2125◦N 35.2111◦N
Longitude 120.8478◦W 120.8475◦W 120.8560◦W 120.8543◦W
Start time 08:35 08:43 08:05 08:00
Duration 9.17 hours 8.75 hours 8.83 hours 8 hours
Amount 121.153 kg 95.54 kg 177.830 kg 146.016 kg
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Figure 1: An overview of our ensemble weather and dispersion system for inverse modeling and uncertainty appli-
cations. The system uses WRF to calculate wind fields, and FLEXPART to transport materials in the atmosphere.
Information about atmospheric releases is inferred by minimizing differences between plume predictions and field
observations through Monte Carlo sampling loops (red dashed arrows). The loops sample different reanalysis datasets
and model configurations in WRF and source term inputs in FLEXPART.
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Figure 2: Maps showing the geographical location of the Diablo Canyon nuclear power plant on the coast of central
California, near San Luis Obispo and Pismo Beach.
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Figure 3: The upper panel shows the five nested domains used in WRF for simulating meteorological conditions for
the Diablo Canyon nuclear power plant tracer release experiment (D1 to D5). The lower panel highlights the inner
WRF domain (D5), the FLEXPART domain (dashed rectangle; longitudes of 120.954◦W to 120.343◦W, latitudes of
34.948◦N to 35.389◦N), the tracer release location (Diablo Canyon, red dot), and the measurement network (black
dots) used for the tracer inversion. Four representative measurement sites (325, 330, 338, and 413) are highlighted
(red dots). The colors on the maps denote the elevation above sea level. Different color scales are used for lower (0 to
1,000 m) and upper panels (0 to 3,000 m).
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Figure 4: Bayesian inversion method for constraining the WRF and FLEXPART inputs. Samples are drawn from the
uniform prior distribution on the left, and then evaluated in WRF-FLEXPART and compared to measurements. Gra-
dient boosting regression trees are fit to model-measurement differences and used to infer the posterior distributions
of the inputs.
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Figure 5: One-hour average SF6 concentrations measured at the Diablo Canyon measurement sites during the tracer
release test on the September 4, 1986. Pre-release concentrations (left hand side) show the effects of fugitive emis-
sions at a subset of the site 300 locations (levels above 100 ng m−3). Histogram of SF6 concentrations from 1,148
measurements (right hand side) are used by the inversion algorithm to compute likelihood weights.
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Figure 6: 30-minute average plumes of SF6 simulated using FLEXPART with the actual release parameters (see
Table 2). The plumes in the upper and lower panels are five and nine hours after the release, respectively, while those
on the left and right use NARR and ECMWF reanalysis fields, respectively. The color scale shows the logarithm of
the SF6 concentrations between 100 ng m−3 and 105 ng m−3.
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Figure 7: Time series of the distribution of SF6 simulated using the actual Diablo Canyon release values and the
162 wind fields from the WRF ensemble. The time series are shown at four representative measurement locations
(see Fig. 3). Different quantiles of the distribution are displayed (blue lines and area), as are the reference WRF-
FLEXPART base case (black line), and the Diablo Canyon measurements (red squares). Local times correspond to
the end of the one-hour average intervals. Note the different scales on the vertical axes.
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Figure 8: Correlation and mean-squared-error between the simulations and measurements of SF6 for the cases using
the actual Diablo Canyon release values and the 162 wind fields from the WRF ensemble. Colors and symbols are
used to denote different reanalysis datasets and initialization times, respectively.
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Figure 9: Time series of the prior probability distribution of SF6 from the Latin hypercube ensemble of FLEXPART
simulations at four representative measurement locations (see Fig. 3). Different quantiles of the probability distribution
are displayed (blue lines and area), as are the base WRF-FLEXPART case using default and actual input values (black
line), and the Diablo Canyon measurements (red squares). Local times correspond to the end of the one-hour average
intervals. Note the different scales on the vertical axes.
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Figure 10: Time series of the SF6 feature scores at the four representative measurement sites. Each colored band
represents the fraction of the variance in the Latin hypercube ensemble (i.e., the prior distribution) caused by the
parameters labeled on the right hand side. The WRF parameters are the upper five bands, while the FLEXPART
parameters are the lower six bands.
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Figure 11: Diablo Canyon SF6 measurements (top row) are compared to representative high and low likelihood
simulations from the Latin hypercube ensemble (middle and bottom rows, respectively). Data points are arranged by
observation site number and time of measurement. The simulation release parameters and their mse and corr values
are listed on the left.
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Figure 12: Correlation and mean-squared-error between the simulations and measurements of SF6 for the 40,000
members of the WRF-FLEXPART ensemble (small blue dots). The upper left portion of the figure shows the 50
best fitting simulations (red dots), and the estimated target and covariance (1-to-3 standard deviation contours) in the
likelihood function. The yellow dots show the mse and corr for the 162 reference simulations using actual release
values (see Sect. 5.1 and Fig. 8).
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Figure 13: The marginal posterior distribution of WRF and FLEXPART parameters for the synthetic data inversion.
Diagonal components show univariate continuous distributions for FLEXPART (top left) and univariate categorical
distributions for WRF (bottom right). Off-diagonal components show bivariate distributions for the pair of parameters
in the corresponding row and column. Probability density is normalized, with red colors denoting regions of high
probability in the bivariate distributions. Known input values are shown by the black lines and circles in the diagonal
and off-diagonal components, respectively. The FLEXPART parameter values have been scaled to [0,1] using the
inversion ranges in Table 2 (log-scaling is used for the amount).
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Figure 14: The marginal posterior distribution of WRF and FLEXPART parameters for the Diablo Canyon tracer data
inversion. Actual source term input values used in the tracer release experiment are denoted by the black lines and
circles. Refer to the caption in Fig. 13 for further information.
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Figure 15: Time series of the posterior probability distribution of SF6 at four representative measurement locations.
Different quantiles of the probability distribution are displayed (blue lines and area), as are the tracer measurements
(red squares).
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