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Abstract 7	

 8	

Although the temporal changes of aerosol properties have been widely investigated, 9	

the majority focused on the averaged condition without much emphasis on the extremes. 10	

However, the latter can be more important in terms of human health and climate change. 11	

This study uses a previously validated, quality-controlled visibility dataset to investigate 12	

the long-term trends of extreme surface aerosol extinction coefficient (AEC) over China, 13	

and compare them with the median trends. Two methods are used to independently 14	

evaluate the trends, which arrive at consistent results. The sign of extreme and median 15	

trends are generally coherent, whereas their magnitudes show distinct spatial and 16	

temporal differences. In the 1980s, an overall positive trend is found throughout China 17	

with the extreme trend exceeding the mean trend, except for Northwest China and the 18	

North China Plain. In the 1990s, AEC over Northeast and Northwest China starts to 19	

decline while the rest of the country still exhibits an increase. The extreme trends 20	

continue to dominate in the south while it yields to the mean trend in the north. After year 21	
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2000, the extreme trend becomes weaker than the mean trend overall in terms of both the 22	

magnitude and significance level. The annual trend can be primarily attributed to winter 23	

and fall trends. The results suggest that the decadal changes of pollution in China may be 24	

governed by different mechanisms. Synoptic conditions that often result in extreme air 25	

quality changes might dominate in the 1980s, whereas emission increase might be the 26	

main factor for the 2000s. 27	

 28	

1. Introduction 29	

 30	

As a by-product of the rapid industrial and economic development, China has been 31	

faced with a serious issue of air pollution. The variability and trends of China’s air 32	

quality or aerosol properties have become the focus of numerous past studies (Jinhuan 33	

and Liquan, 2000; Che et al., 2007; Deng et al., 2008; Streets et al., 2008; Yoon et al., 34	

2011; Guo et al., 2011; Zhang et al., 2015). While many of these works reached 35	

important conclusions about the temporal evolution of China’s pollution, the majority 36	

only analyzed the arithmetic means (e.g., monthly or annual means of aerosol optical 37	

depth), with little attention paid to the extreme values. However, it is often these extremes 38	

that are responsible for many health and climate related aftermaths. Additionally, 39	

considering that the distribution of aerosol optical properties, such as aerosol optical 40	

depth (AOD) and extinction coefficients, are often highly right-skewed (O’Neill et al., 41	

2000; Collaud Coen et al., 2013; Yoon et al., 2016), analyzing the arithmetic mean tends 42	
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to discard the large portion of information in the long tails, thus biasing the result. 43	

Moreover, as indicated by previous studies, extreme pollution events are often associated 44	

with abnormal synoptic conditions (Zheng et al., 2015; Ye et al., 2016), whereas the mean 45	

should be more prone to changes in the emission which increases pollution level overall. 46	

Therefore, analyzing the changes in both the mean and extreme values would help 47	

understand the factors influencing the variability of pollution.  48	

For the few studies that did address temporal changes in the percentiles of aerosol 49	

loading, usually either satellite or surface based remote sensing measurements are used, 50	

such as Aerosol Optical Depth (AOD) retrievals from Moderate Resolution Imaging 51	

Spectroradiometer (MODIS, Sullivan et al., 2015) or the Aerosol Robotic Network 52	

(AERONET, Xia, 2011; Yoon et al., 2016). Nonetheless, remote sensing data is not ideal 53	

for extreme analysis, mainly because it frequently misses heavy pollution conditions 54	

likely associated with strict cloud screening (Lin and Li, 2016). As a result, the “real” 55	

extremely high aerosol loadings cannot be well detected using remote sensing. On the 56	

other hand, surface visibility observations that do not require cloud screening or other 57	

retrieval assumptions, can serve as a suitable alternative for pollution related research. 58	

After eliminating fog, rain or snow conditions, degradation of surface visibility can be 59	

mainly attributed to aerosol extinction and are thus closely related to air quality (Husar et 60	

al., 2000). Moreover, since routine visibility observation started as early as 1970s for 61	

many sites, these data can offer a much longer time series for trend analysis than remote 62	

sensing products. Previously, Li et al. (2016) used a quality controlled visibility dataset to 63	
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study temporal changes of monthly mean surface aerosol extinction in China for the past 64	

30 years and found that there are obvious shifts in the trends for different time periods. 65	

However, it still remains to understand whether the extreme values change faster or 66	

slower than the mean.  67	

In this paper, we use the same dataset as in Li et al. (2016) to further investigate the 68	

trends of extremely high (defined as the 95th percentile) surface aerosol extinction 69	

coefficients and compare them with the median trends representing averaged condition. 70	

Although a threshold visibility value is often used in previous studies to define extreme 71	

events (e.g., Fu et al. 2013 define extreme pollution as visibility lower than 5 km 72	

conditions), the same threshold does not apply to all sites since their reporting 73	

conventions may be different. We thus believe a percentile criterion would be more 74	

appropriate. In addition to estimating the linear trend of the 95th percentile value itself, we 75	

also use a novel method proposed by Franzke (2013) based on quantile regression with 76	

surrogate data testing for significance, who used this method to test for significant trends 77	

in extreme temperatures. To our knowledge, this method has not been applied to aerosol 78	

related research, and the independent application of two methods increases the robustness 79	

of the results.  80	

In section 2, we describe the data and method used in this study. The analysis results 81	

are presented in section 3, followed by the conclusions and a brief discussion in section 4. 82	

 83	

2. Data and Methods 84	
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 85	

2.1 Visibility data 86	

 87	

Here we use the same visibility dataset as in Li et al. (2016). This hourly surface 88	

visibility dataset is obtained from the National Centers for Environmental Information 89	

(NCDC, http://www1.ncdc.noaa.gov/pub/data/noaa/) of the National Oceanic and 90	

Atmospheric Administration (NOAA). The data selection criteria and quality control 91	

procedure strictly follows those implemented by Li et al. (2016). Briefly, data before 92	

1980 is not used because of different reporting standard (Che et al., 2007; Wu et al., 93	

2012). Those after 2013 are also excluded because many sites have replaced human 94	

observation with automatic visibility sensors. Then the eight quality assurance steps 95	

proposed by Li et al. (2016) is applied to the dataset. A total of 272 sites are selected for 96	

China, whose data have been manually inspected to show no observable jumps or spikes. 97	

The visibility is further converted to Aerosol Extinction Coefficient (AEC) using the 98	

Koschmieder formula (Koschmieder, 1926), and corrected for relative humidity effects 99	

according to Husar and Holloway (1984) and Che et al. (2007). This AEC dataset has 100	

also been validated against surface PM2.5 and PM10 measurements. Please refer to Li et al. 101	

(2016) for detailed description of the correction and validation processes. 102	

 103	

2.2 Trend analysis methods 104	

 105	
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 We define extremes as the 95th percentile of the visibility converted surface AEC. To 106	

estimate trend of the extremes, we use two independent methods. The first is to obtain an 107	

annual or seasonal time series of the 95th percentile of the extinction coefficients and then 108	

perform a Sen’s slope (Sen, 1968) estimate of its linear trend. The Sen’s slope b is 109	

calculated as 110	

b =Median(
Xi − Xj

i − j
)∀j < i                        (1) 111	

where Xi  and Xj  are the ith and jth value in the time series respectively. 112	

Then the Mann-Kendall statistical test (Mann, 1945; Kendall, 1975) is applied to test 113	

whether the trend is significant at 95% level. The test statistic is calculated as 114	

S = sgn(Xj − Xi )
j=i+1

n

∑
i=1

n−1

∑                       (2) 115	

Where n is the number of data points, and sgn is the sign function: 116	

sgn(Xj − Xi ) =
+1         if     Xj > Xi

0           if    Xj = Xi

−1         if    Xj < Xi

⎧

⎨
⎪

⎩
⎪

             (3) 117	

The variance of S is given by 118	

Var(S) = 1
18
n(n −1)(2n + 5)          (4) 119	

If the sample size n>30, which is well satisfied in our case, the standard normal test 120	

statistic ZS is computed using: 121	
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ZS =

S −1
Var(S)

     if  S>0

0                  if  S = 0
S +1
Var(S)

     if  S < 0

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

        (5) 122	

According to the normal distribution table, the 5% significance level is satisfied if 123	

|ZS|>1.96. 124	

 The second approach is quantile regression, which is a well established method used 125	

in many previous studies (Koenker and Hallock, 2001; Hannachi, 2006; Barbosa et al., 126	

2011; Donner et al., 2012; Franzke, 2013) to estimate extreme trends of climate data.  127	

For regular linear least square regression, the model can be expressed as 128	

E y |X[ ] = βX + ε                          (6) 129	

where y is the response variable conditioned on X, and theβ ’s satisfy the minimization of 130	

the summed error function 131	

err = min ξ(yi − βXi )
i
∑                       (7) 132	

where 133	

ξ(u) = u2                             (8) 134	

For linear quantile regression, the response variable becomes theτ th (τ ∈[0,1] ) quantile 135	

of y conditioned on X, 136	

Qτ y |X[ ] = βX + ε                         (9) 137	

where theβ s still satisfy equation (2), but equation (3) now becomes 138	

ξτ (u) =
uτ             u ≥ 0
u(τ −1)    u < 0
⎧
⎨
⎩

                      (10) 139	
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Note that ξτ  is symmetric when τ = 0.5 , rotated to the right when τ < 0.5  and to the 140	

left whenτ > 0.5 . The quantile regression problem can be numerically solved by linear 141	

programming (Koenker and Hallock, 2001). Here we use the R package “quantreg” to 142	

solve for the regression coefficients of daily mean AEC. Trends for both the 95th and 50th 143	

(median) percentiles are estimated and the trends are compared. To test for significance 144	

of the quantile regression trends, we adopt the bootstrap approach proposed by Franzke 145	

(2013), who used surrogate data generated with the same autocorrelation function and the 146	

same probability density function as the original dataset. The detailed generation 147	

procedure can be found in Schreiber and Schmitz (1996) and Franzke (2013). Here we 148	

generate 1000 surrogate time series to represent the intrinsic variability of the AEC time 149	

series.  150	

 In addition, we also calculate the trends for the median AEC (50th percentile) using 151	

the above two methods, and compare them with the extreme trends. All trends are 152	

normalized and expressed as percentage change per decade. 153	

 Figure S1 in the supplement shows an example of the trend analysis using these two 154	

methods. In the following text, to save space we only present trends using quantile 155	

regression, whereas the Sen’s slope results, which agree well with the former, are 156	

presented in the supplement material.  157	

 158	

3. Results 159	

 160	
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3.1 Trend Maps 161	

 162	

 We first examine the distribution and temporal changes of trends for all sites in 163	

China. As indicated by Li et al. (2016), there are significant temporal shifts of the 164	

magnitude and sign of monthly mean AEC trends for different decades. We thus also 165	

respectively examine the extreme and median trends for three consecutive decades: 166	

1980-1990, 1991-2000 and 2000-2013. The overall trends for the 1980 to 2013 period are 167	

weakly positive for the majority of the sites (see Figure S2). 168	

 The three columns in Figure 1 show the distribution of extreme trend (upper row), 169	

median trend (middle row) and their differences (extreme minus median, bottom row) for 170	

the 272 sites for the three periods respectively. To avoid the confusion caused by positive 171	

and negative signs of the trend, the difference here are calculated using the absolute value 172	

of the extreme and median trends. Larger dots in black circles mean that the trends are 173	

statistically significant at 95% level. Figure 1 is the results from quantile regression, 174	

whereas the trends using Sen’s slope is presented in Figure S3, which shows largely 175	

consistent pattern. It is seen from Figure 1 that the sign of median and extreme trends 176	

mostly agree throughout China. An extensive positive trend is observed all over China in 177	

the 1980s. During the 1990s, many sites, especially those in north China, began to 178	

experience a decreased AEC. After year 2000, the north China sites continue to show 179	

decreasing trends whereas AEC over many south China sites started to rise again.  180	

However, a detailed comparison between median and extreme trends reveals distinct 181	
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spatial and temporal differences. Focusing on the bottom three panels of Figure 1 (g-h), it 182	

is clear that in the 1980s, the extreme trends exceed the median trend throughout China, 183	

with some differences as large as 50% (northwestern sites). The number of sites showing 184	

significant extreme trend (178) is also greater than those with significant median trend 185	

(91). Note that the number of significant sites can be different between quantile 186	

regression and Sen’s slope results, because (1) quantile regression is applied to daily data 187	

while Sen’s slope uses annual or seasonal percentiles and (2) quantile regression uses 188	

bootstrap method to test for significance while Sen’s slope uses MK test. Nonetheless, the 189	

spatial patterns of the two methods are consistent. In the 1990s, the distribution of the 190	

trend differences switched to a north-south “dipole” pattern, with negative values in the 191	

north and positive in the south in general, i.e., extreme trends are weaker than the median 192	

trend in the north but stronger in the south, with a rough separation at 33°N marked by 193	

the horizontal black line on Figure 1h. In the north, the sites showing significant extreme 194	

trends also becomes fewer than those with significant median trends in the north. Even in 195	

the south, the difference between the extreme and median trends is much smaller 196	

compared to the 1980s, indicating a slowdown of the increase in the extreme values. 197	

After year 2000, almost the entire China exhibits a “blue” pattern as opposed to the “red” 198	

pattern in the 1980s. Except for a few sites in central south China, the majority exhibits a 199	

weaker extreme trend than the mean trend. There are also fewer sites showing significant 200	

trends in the extreme (52) than in the median (119). This feature is particularly strong for 201	

northeast, northwest and south China. Although east and south China still show positive 202	
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AEC trends, this result suggest that in this decade, the extreme pollution conditions have 203	

not increased as much as the mean or background pollution.  204	

In short, the positive trends in the 1980s over China can be primarily attributed an 205	

increase in the extremes. The 1990s experienced with a transition, with extreme trends 206	

becoming weaker than the median trend in the north and only slightly stronger in the 207	

south. Finally in the 2000s, the extreme trends largely yield to the median trends.  208	

 209	

3.2 Regional Trends 210	

 211	

 To examine the spatial and temporal changes in more detail, we further divide the 212	

country into six representative regions, marked by black rectangles on Figure 1b. Three 213	

of these regions: the North China Plain (NCP), Yangtze River Delta (YRD), and Pearl 214	

River Delta (PRD) are the major urban conglomerates in China. Since the change in the 215	

extreme and median is essentially related to the shift of the distribution, we first evaluate 216	

the regional AEC distributions for the three decades. Figure 2 plots these distributions by 217	

region on logarithmic scale, as AEC is usually considered to follow a lognormal 218	

distribution (Collaud Coen et al., 2013). The dashed lines in Figure 2 indicate location of 219	

the 95th percentile. For all regions, there is a rightward extension of the tail of the 220	

distribution from 1990s to 1980s, implying an increase of the extremes, which is also 221	

characterized by the rightward shift of the 95th percentile line. NCP, YRD and NW China 222	

also show a rightward shift of the distribution peak. From 1990s to 2000s, although the 223	
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distribution peak shifts to the right for PRD, YRD, SW China and NE China, there is no 224	

obvious shift in the tail for these four regions. For the other two regions, NCP and NW 225	

China, there is a leftward shift in both the peak and the tail, but the shift of the peak is 226	

stronger. Overall, we can roughly conclude that the 1980s’ AEC trend is characterized by 227	

a change of the extremes, while in the 2000s the median dominates the trend. 228	

Consistent with Li et al. (2016), we also calculate trends successively for all periods 229	

starting each year from 1980 to 2004 and ends in 2013 with 10-year increments. Figure 3 230	

shows the temporal evolution of the quantile regression trend differences with x axis 231	

indicating the trend calculation start year and y axis indicating the length of the time 232	

series, with its counterpart using Sen’s slope shown by Figure S4. To save space, only the 233	

absolute differences between the extreme and median trends are presented in Figure 3, 234	

while their respective values are shown in Figures S5 and S6 for quantile regression and 235	

Figures S7 and S8 for Sen’s slope. The time series and linear trends for each region are 236	

presented in Figure S9. Because in Figure 3 the trends are calculated successively for 237	

each period, it helps to examine the time node of the changes more precisely. For 238	

example, although Figures 1 and 2 both indicate that the extremes increase more rapidly 239	

in the 1980s, for YRD and PRD, the duration is short with the extreme trend exceeding 240	

the median trend since around 1982, while for the rest four regions the change happened 241	

around 1986 or later. YRD, PRD and NE China experienced a short period of stronger 242	

extreme trend from ~1994 to 1996, whereas the other three regions show weaker extreme 243	

trends. After 2002, SW and NW China display a slightly higher extreme trend, which is 244	
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different from the rest four regions. These features suggest that there can be minor 245	

differences when the trends are examined for different time periods.  246	

The seasonal time series of the difference between extreme and median quantile 247	

regression trends are plotted in Figure 4, with a 4-year moving average to smooth out 248	

small wrinkles (its counterpart using Sen’s slope is shown in Figure S10). Note that 249	

Figure 4 shows the evolution of the trend difference for every ten-year period from 1980 250	

to 2004 (i.e, 1980-1989, 1981-1990,…, 2004-2013). An outstanding feature in Figure 4 is 251	

that for all regions, the summer (JJA) trend difference (indicated by red curves) exhibit 252	

quite different, or even reversed variability from the other three seasons and the annual 253	

result. For NE, NW China and the PRD, spring (MAM) trends also have relatively larger 254	

departure. In general, winter (DJF) and fall (SON) trends agree better with the annual 255	

trend. Since these two seasons are dominated by anthropogenic aerosols such as sulfate, 256	

nitrate, black and organic carbon throughout China (Cao et al., 2007; Wang et al., 2007; 257	

Wang et al., 2015), the results indicate that changes in anthropogenic aerosol loading are 258	

primarily responsible for the observed extreme and median trends. In the spring many 259	

regions are influenced by dust, and in the summer, the relative humidity effect may 260	

significantly enhance aerosol extinction. Both are natural factors and should have minor 261	

contribution to the annual trend according to Figure 4. 262	

 263	

4. Conclusions and Discussion 264	

 265	
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 While the trends of aerosol pollution in China have been studies extensively, it 266	

remains to understand whether the extreme conditions have changed and whether their 267	

changes are faster or slower than the mean. In this study, we use a quality controlled 268	

visibility dataset to examine decadal trends of extreme values of surface aerosol 269	

extinction coefficients. Quantile regression and Sen’s slope estimates are jointly used to 270	

estimate the trends to improve its robustness. Our analysis reveals that in general, the 271	

extreme and median trends agree in terms of the sign, but they can differ significantly in 272	

terms of the amplitude. During the 1980s, the extremes increased faster than the median 273	

for most China except for a few north and northwest sites. The 1990s experienced a 274	

transition with extreme trend becoming weaker than median trend in the north but still 275	

slightly stronger in the south. Then in the 2000s, the majority of the country exhibited a 276	

weaker extreme trend than the median trend. Seasonally, winter and fall trends are the 277	

most consistent with annual trends, while the summer trend shows the largest departure 278	

from the annual trend.  279	

 This study uses daily mean daytime AEC without accounting for its diurnal 280	

variability. Nonetheless, visibility can still change considerably in the course of a day 281	

(Deng et al., 2011). To examine this effect we repeat the analysis using daily minimum 282	

and daily maximum AEC respectively. Their counterparts of Figure 1 are shown in 283	

Figures S11 and S12. A brief comparison indicates high resemblance of these two figures 284	

to Figure 1 that uses daily mean data, albeit with some reasonable differences in the 285	

amplitude.  286	
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 The reason for the different behaviors between the extreme and median trends still 287	

needs further investigation, and will be the topic of our future study. Some implication is 288	

that in the 1980s and part of 1990s, synoptic conditions might be playing a major role in 289	

modulating aerosol variability. For example, several extremely heavy pollution events are 290	

believed to be linked to stagnant weather (Tao et al., 2014; Zheng et al., 2015). After mid 291	

1990s, emission might become more dominate which tends to increase both the extreme 292	

and the mean. But since it is a relatively uniform background change, the signal might be 293	

more prominent in the mean condition. On the other hand, aerosol properties can also be 294	

potentially influenced by decadal or interannual climate variability (Chen and Wang, 295	

2015; Wang and Chen, 2016), whose footprint may be embedded in these extreme and 296	

mean trends. However, the mechanism that they impact on the extremes and the mean 297	

still need to be understood, and likely require a comprehensive study using both 298	

observations and model simulations. This also requires the models to accurately simulate 299	

the extreme events, which is a challenging task.  300	

 Admittedly, the visibility data is not ideal for aerosol-related studies, given its 301	

various sources of uncertainties as discussed in Li et al. (2016). However, it is a currently 302	

best compromise since there is lack of reliable long-term aerosol observation datasets. 303	

Moreover, remote sensing produces are vulnerable to extreme pollution, making them 304	

unsuitable for extreme trend studies. For example, as discussed in Lin and Li (2013), 305	

MODIS frequently misses the heavy haze over north China likely due to cloud screening 306	

algorithm. Sun photometers will also stop working when the sun is blocked by the heavy 307	
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pollution. This also suggests that current remote sensing instruments and retrieval 308	

algorithms need to be improved to observe these extreme events. 309	
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 425	

Figure 1. The first row: extreme trends estimate using quantile regression for the three 426	

decades, 1980-1990 (a), 1991-2000 (b), 2001-2013 (c); The second row: median trends 427	

estimated using quantile regression for the three decades; Bottom row: the difference 428	

between the values of the extreme trends and median trends, calculated as the extreme 429	

minus median. 430	
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 432	

Figure 2. Probability distribution function (pdf) of AEC for the three decades over the six 433	

representative regions marked on panel b of Figure 1. The AEC has been converted to 434	

logarithmic scale. 435	
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 437	

Figure 3. Difference between extreme and median trends calculated using quantile 438	

regression for the six representative regions marked on panel b of Figure 1. Trends are 439	

between each year from 1980 to 2004 and the end of the record, with 10 minimum. The x 440	

axis indicates the staring year, and the y axis indicates the length of the time series to 441	

calculate the trend.442	
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 443	

Figure 4. Seasonal time series of the difference between the extreme and median trends. 444	

The trends are calculated for each 10 year period starting form 1980 to 2004 (x axis), i.e., 445	

the first point is the trend difference for the 1980 to 1989 period, the second from 1982 to 446	

1990, etc.  447	
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