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Anonymous Referee #1 1	

Received and published: 27 October 2017 2	

This is original analysis air pollution trends in China based on aerosol extinction mea- 3	

surements. The paper is well structured and clearly written. I do not find any scientific 4	

errors in methods or data interpretation.  I recommend this paper to published in ACP 5	

after considering the following minor issues. 6	

 7	

Thank you very much to the reviewer for his/her encouraging comments on our paper! We 8	

have replied to the specific comments below, and have also revised the manuscript 9	

accordingly. 10	

 11	

Scientific issues: 12	

Lines 53-55:  There is at least one more point why remote sensing observations are 13	

problematic here:  they do not easily distinguish between different mixed-layer height, 14	

which is a major parameters affecting surface air pollution. 15	

 16	

Thanks a lot for this note. We added a discussion here as follows: 17	

“Moreover, remote sensing techniques cannot recognize mixed layer height, a major 18	

parameter affecting surface air pollution, which make them unsuitable for air quality 19	

studies.” 20	

 21	



	 2	

Lines  61-63.   The  authors  compared  visibility  observations  against  remote  22	

sensing 23	

here.  How about in situ measurements of air pollution vs.  visibility observations?  I 24	

suppose that there are clear differences in terms of both spatial coverage and length of 25	

time series. I would like to see in situ measurement shortly (couple of lines) mentioned 26	

in this context as well. 27	

 28	

We did compare visibility converted AEC data against in situ PM2.5 and PM10 observations 29	

in our previous paper: 30	

Li, J., C. Li, C. Zhao, and T. Su (2016), Changes in surface aerosol extinction trends over 31	

China during 1980–2013 inferred from quality-controlled visibility data, Geophys. Res. 32	

Lett., 43, 8713–8719, doi:10.1002/2016GL070201. 33	

 34	

The figure is attached below: 35	
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 36	

Figure R1. Validation of visibility converted aerosol extinction coefficient (AEC, km-1) 37	

against PM10 (µg/m3) and PM2.5 (µg/m3) concentration. (a–c) The spatial distribution of 38	

AEC collocates with PM10 stations, distribution of PM10, and the correlation between AEC 39	

and PM10 calculated using daily mean data. (d–f) The same information for AEC and PM2.5. 40	

(Figure source is Li et al., 2016) 41	

 42	

We also added a phrase here that the visibility data used in this study compare well with 43	

surface air quality measurements. In the end of Section 2.1 we also mentioned that “This 44	

AEC dataset has also been validated against surface PM2.5 and PM10 measurements. 45	

Please refer to Li et al. (2016) for detailed description of the correction and validation 46	

processes.” 47	

 48	

Technical issues: 49	
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The use of tense is not in a good balance in the abstract.  I would recommend the 50	

authors to consider this point carefully and make the necessary revisions. 51	

Both AEC and its trend have a unit.  It seems that these units have been scaled out 52	

somehow from figures 1-4, making it impossible interprete the real magnitude of AEC 53	

(or its trend) from these figures. The authors should add this information. 54	

 55	

We are sorry for the confusion. The reviewer is correct in that the unit of AEC has been 56	

scaled out, i.e., the trends in this paper actually refer to relative changes. This is because the 57	

absolute magnitudes of mean and extreme AEC are different and thus the absolute trends 58	

cannot be directly compared. We have ensured that the term trend is consistent throughout 59	

the manuscript. We have also added an explanation in the abstract that the magnitude of the 60	

trends are “expressed in terms of relative changes”. 61	

 62	

line 266-267: studies – > studied...remains to be understood whether... 63	

 64	

Corrected.65	
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Anonymous Referee #2 66	

Received and published: 19 December 2017 67	

GENERAL 68	

The paper presents trend analyses of aerosol extinction coefficient at numerous mea- 69	

surement sites in China.  Different methods for calculating trends are compared.  The 70	

analysis also compares trends in major areas of China. The paper is very interesting, 71	

I can definitely recommend publishing it in ACP. I did not find any very big errors in the 72	

paper.  However, there are some points that need to be explained in more detail and 73	

some points that should be changed. The changes I am suggesting are minor, mainly 74	

clarifications. 75	

 76	

We thank the reviewer for his/her positive and helpful comments on our paper! We have 77	

addressed the detailed comments point-by-point below, and have also revised the paper 78	

accordingly. 79	

 80	

DETAILED COMMENTS 81	

 82	

The most important point that should be changed is this:  the Aerosol Extinction Co- 83	

efficient (AEC) that is used for the analyses is not unitless like it is presented all over 84	

the paper and the supplement. AEC comes from the Koschmieder formula (visibility = 85	

3.912/AEC ) and visibility is given in units of length. So, the unit of AEC is inverse units 86	
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of length, for instance inverse meters or inverse kilometers or inverse megameters. In 87	

polluted areas of China extinction coefficient is typically in the range of some hundreds 88	

of inverse megameters.  Go through the paper and the supplement and present the 89	

units of AEC everywhere both in the text and the figures.  This is important also since 90	

the AEC values are something that link the paper’s values better to the rest of the world. 91	

 92	

We are sorry for the confusion. Yes, AEC has unit km-1. However, because the absolute 93	

value of extreme and mean AEC can be orders of magnitude different which makes their 94	

absolute trends incomparable, we report all trends in terms of relative changes. Therefore, 95	

the trends throughout the paper are unitless. We have clarified this point in both the abstract 96	

(line 13) and the main text (lines 158-160). 97	

 98	

There are no tables.  Give the main results in 1 or 2 tables.  For instance trends within 99	

each  major  region  obtained  with  the  different  methods.   Tables  give  you  100	

also  more references because they can easily be compared with by other authors. 101	

 102	

Thanks for this suggestion. We added a table displaying the extreme and mean trends and 103	

their differences for the major regions. We also added the same table for seasonal trends in 104	

the supplementary material. 105	

 106	

In the figures, give units for the color bars, if they have a unit. And if they are unitless, 107	
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give an explanation of the color scales in the captions. Now there are no explanations 108	

of the colorbars in any figure. 109	

 110	

OK. We added statements in the figure captions that the trends are unitless (line 437). 111	

 112	

L108 " ...  annual or seasonal time series of the 95th percentile of the extinction coef- 113	

ficients ..." There is nowhere mentioned, what is time resolution of the data.  So, does 114	

this mean the 95th percentile of one-minute or hourly or daily averaged AEC in any 115	

given year? How do you define each season? 116	

 117	

Again sorry for the confusion here. We use daily averages (averaged from hourly data) and 118	

the percentiles refer to those of daily averages. We added an explanation as follows in lines 119	

110-111: 120	

“The hourly AEC is first averaged to daily values and 95th percentile (50th percentile for 121	

the median trend) is then calculated for each year or each season for the seasonal 122	

analysis.” 123	

 124	

The seasons are defined as: March, April and May for spring, June, July August for 125	

summer, September, October and November for autumn and December, January and 126	

February for winter, which are stated in the parenthesis of lines 260-263. 127	

 128	
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L111. In eq (1) there is Xi and Xj. They must be the AEC values at i and j. Then b has 129	

the same unit as AEC. Or is it - as I would assume - that b has the units of AEC divided 130	

by the units of time, for instance inverse meters in a year if i – j in eq.  (1) means time 131	

step. Does it? 132	

 133	

b has unit of AEC divided by units of time. We use annual percentiles of AEC so the unit of 134	

b is km-1/yr. However, b is not the final trend reported as we converted it to relative changes, 135	

which is b times the number of years divided by the AEC value of the starting year (1980). 136	

This point is clarified in lines 158-160. 137	

 138	

The quantile regression has the formula (9). Is the beta in formula 9 the trend? If it is, 139	

write it explicitly out.  If it is not, in which formula is it?  And further, does it also have 140	

units? It should if it is to be compared with b of eq. (1). 141	

 142	

Yes. The beta in (9) is the slope of the trend and its unit is also km-1/yr. The final trend of 143	

the quantile regression model is also reported as relative changes. 144	

 145	

Figure 2 shows the probability density functions of AEC in different regions.  It is very 146	

interesting. But the same issue applies to this plot also: units. AEC has units of inverse 147	

length, e.g., inverse megameters.  So, I would recommend presenting the picture so 148	

that you simply show the x-axis as inverse megameters but use a logarithmic scale. 149	
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That would also help in comparing the data with the rest of the world.  Another issue 150	

in this figure is the values of the pdfs. The integral of a pdf should equal 1. Now there 151	

are values larger than 1 so the integrals are definitely > 1. Explain in detail what the y 152	

axes mean. And do corrections if needed. Further in the same figure: if you calculate 153	

a pdf like that, the data are divided into bins of AEC and then you present how large a 154	

fraction of data is in each bin. What is the bin division you used? 155	

 156	

Figure 2 shows the distribution of the absolute AEC values so they have unit km-1. We have 157	

changed the x axis to inversion megameters in logarithmic scale and added the unit in the 158	

figure caption. We have double checked that the integral of all pdf functions are indeed 1. 159	

Values greater than 1 are reasonable to appear in the pdf and this does not necessarily mean 160	

the integral is greater than 1 (for integral you have to multiply the x axis). In fact, pdf can 161	

take any non-negative values as long as the integral equals to 1. The pdf only reflects the 162	

probability density for some interval rather than the real probability. For example, in one 163	

pdf in Figure 2 the y axis is 1.35 and the x axis is 6.21. This means the probability between 164	

some very small interval around 6.21, say between 6.20 and 6.22 is 165	

1.35*(6.22-6.20)=0.027. This number must not exceed 1. To produce Figure 2 we use 20 166	

bins ranging from the minimum log(AEC) to the maximum log(AEC) to calculate each 167	

pdf. 168	
�169	

170	



	 10	

Different trends between extreme and median surface aerosol extinction 171	

coefficients over China inferred from quality controlled visibility data 172	

Jing Li1,*, Chengcai Li1, Chunsheng Zhao1 173	

Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, 174	

Beijing, China, 100871 175	

 176	

Abstract 177	

 178	

Although the temporal changes of aerosol properties have been widely investigated, 179	

the majority focused on the averaged condition without much emphasis on the extremes. 180	

However, the latter can be more important in terms of human health and climate change. 181	

This study uses a previously validated, quality-controlled visibility dataset to investigate 182	

the long-term trends (expressed in terms of relative changes) of extreme surface aerosol 183	

extinction coefficient (AEC) over China, and compare them with the median trends. Two 184	

methods are used to independently evaluate the trends, which arrive at consistent results. 185	

The sign of extreme and median trends are generally coherent, whereas their magnitudes 186	

show distinct spatial and temporal differences. In the 1980s, an overall positive trend is 187	

found throughout China with the extreme trend exceeding the mean trend, except for 188	

Northwest China and the North China Plain. In the 1990s, AEC over Northeast and 189	

Northwest China starts to decline while the rest of the country still exhibits an increase. 190	

The extreme trends continue to dominate in the south while it yields to the mean trend in 191	
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the north. After year 2000, the extreme trend becomes weaker than the mean trend overall 192	

in terms of both the magnitude and significance level. The annual trend can be primarily 193	

attributed to winter and fall trends. The results suggest that the decadal changes of 194	

pollution in China may be governed by different mechanisms. Synoptic conditions that 195	

often result in extreme air quality changes might dominate in the 1980s, whereas 196	

emission increase might be the main factor for the 2000s. 197	

 198	

1. Introduction 199	

 200	

As a by-product of the rapid industrial and economic development, China has been 201	

faced with a serious issue of air pollution. The variability and trends of China’s air quality 202	

or aerosol properties have become the focus of numerous past studies (Jinhuan and 203	

Liquan, 2000; Che et al., 2007; Deng et al., 2008; Streets et al., 2008; Yoon et al., 2011; 204	

Guo et al., 2011; Zhang et al., 2015). While many of these works reached important 205	

conclusions about the temporal evolution of China’s pollution, the majority only analyzed 206	

the arithmetic means (e.g., monthly or annual means of aerosol optical depth), with little 207	

attention paid to the extreme values. However, it is often these extremes that are 208	

responsible for many health and climate related aftermaths. Additionally, considering that 209	

the distribution of aerosol optical properties, such as aerosol optical depth (AOD) and 210	

extinction coefficients, are often highly right-skewed (O’Neill et al., 2000; Collaud Coen 211	

et al., 2013; Yoon et al., 2016), analyzing the arithmetic mean tends to discard the large 212	
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portion of information in the long tails, thus biasing the result. Moreover, as indicated by 213	

previous studies, extreme pollution events are often associated with abnormal synoptic 214	

conditions (Zheng et al., 2015; Ye et al., 2016), whereas the mean should be more prone 215	

to changes in the emission which increases pollution level overall. Therefore, analyzing 216	

the changes in both the mean and extreme values would help understand the factors 217	

influencing the variability of pollution.  218	

For the few studies that did address temporal changes in the percentiles of aerosol 219	

loading, usually either satellite or surface based remote sensing measurements are used, 220	

such as Aerosol Optical Depth (AOD) retrievals from Moderate Resolution Imaging 221	

Spectroradiometer (MODIS, Sullivan et al., 2015) or the Aerosol Robotic Network 222	

(AERONET, Xia, 2011; Yoon et al., 2016). Nonetheless, remote sensing data is not ideal 223	

for extreme analysis, mainly because it frequently misses heavy pollution conditions 224	

likely associated with strict cloud screening (Lin and Li, 2016). Moreover, remote sensing 225	

techniques cannot recognize mixed layer height, a major parameter affecting surface air 226	

pollution, which make them unsuitable for air quality studies. As a result, the “real” 227	

extremely high aerosol loadings cannot be well detected using remote sensing. On the 228	

other hand, surface visibility observations that do not require cloud screening or other 229	

retrieval assumptions, can serve as a suitable alternative for pollution related research. 230	

After eliminating fog, rain or snow conditions, degradation of surface visibility can be 231	

mainly attributed to aerosol extinction and are thus closely related to air quality (Husar et 232	

al., 2000). Moreover, since routine visibility observation started as early as 1970s for 233	
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many sites, these data can offer a much longer time series for trend analysis than remote 234	

sensing products. Previously, Li et al. (2016) used a quality controlled (by comparing 235	

against surface PM10 and PM2.5 measurements) visibility converted Aerosol Extinction 236	

Coefficient (AEC) dataset to study temporal changes of monthly mean surface aerosol 237	

extinction in China for the past 30 years and found that there are obvious shifts in the 238	

trends for different time periods. However, it still remains to understand whether the 239	

extreme values change faster or slower than the mean.  240	

In this paper, we use the same dataset as in Li et al. (2016) to further investigate the 241	

trends of extremely high (defined as the 95th percentile) surface aerosol extinction 242	

coefficients and compare them with the median trends representing averaged condition. 243	

Although a threshold visibility value is often used in previous studies to define extreme 244	

events (e.g., Fu et al. 2013 define extreme pollution as visibility lower than 5 km 245	

conditions), the same threshold does not apply to all sites since their reporting 246	

conventions may be different. We thus believe a percentile criterion would be more 247	

appropriate. In addition to estimating the linear trend of the 95th percentile value itself, we 248	

also use a novel method proposed by Franzke (2013) based on quantile regression with 249	

surrogate data testing for significance, who used this method to test for significant trends 250	

in extreme temperatures. To our knowledge, this method has not been applied to aerosol 251	

related research, and the independent application of two methods increases the robustness 252	

of the results.  253	

In section 2, we describe the data and method used in this study. The analysis results 254	
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are presented in section 3, followed by the conclusions and a brief discussion in section 4. 255	

 256	

2. Data and Methods 257	

 258	

2.1 Visibility data 259	

 260	

Here we use the same visibility dataset as in Li et al. (2016). This hourly surface 261	

visibility dataset is obtained from the National Centers for Environmental Information 262	

(NCDC, http://www1.ncdc.noaa.gov/pub/data/noaa/) of the National Oceanic and 263	

Atmospheric Administration (NOAA). The data selection criteria and quality control 264	

procedure strictly follows those implemented by Li et al. (2016). Briefly, data before 265	

1980 is not used because of different reporting standard (Che et al., 2007; Wu et al., 266	

2012). Those after 2013 are also excluded because many sites have replaced human 267	

observation with automatic visibility sensors. Then the eight quality assurance steps 268	

proposed by Li et al. (2016) is applied to the dataset. A total of 272 sites are selected for 269	

China, whose data have been manually inspected to show no observable jumps or spikes. 270	

The visibility is further converted to Aerosol Extinction Coefficient (AEC) using the 271	

Koschmieder formula (Koschmieder, 1926), and corrected for relative humidity effects 272	

according to Husar and Holloway (1984) and Che et al. (2007). This AEC dataset has 273	

also been validated against surface PM2.5 and PM10 measurements. Please refer to Li et al. 274	

(2016) for detailed description of the correction and validation processes. 275	
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 276	

2.2 Trend analysis methods 277	

 278	

 We define extremes as the 95th percentile of the visibility converted surface AEC. 279	

The hourly AEC is first averaged to daily values and 95th percentile (50th percentile for 280	

the median trend) is then calculated for each year or each season for the seasonal analysis. 281	

To estimate trend of the extremes, we use two independent methods. The first is to obtain 282	

an annual or seasonal time series of the 95th percentile of the extinction coefficients and 283	

then perform a Sen’s slope (Sen, 1968) estimate of its linear trend. The Sen’s slope b is 284	

calculated as 285	

b =Median(
Xi − Xj

i − j
)∀j < i                        (1) 286	

where Xi  and Xj  are the ith and jth value in the time series respectively. 287	

Then the Mann-Kendall statistical test (Mann, 1945; Kendall, 1975) is applied to test 288	

whether the trend is significant at 95% level. The test statistic is calculated as 289	

S = sgn(Xj − Xi )
j=i+1

n

∑
i=1

n−1

∑                       (2) 290	

Where n is the number of data points, and sgn is the sign function: 291	

sgn(Xj − Xi ) =
+1         if     Xj > Xi

0           if    Xj = Xi

−1         if    Xj < Xi

⎧

⎨
⎪

⎩
⎪

             (3) 292	

The variance of S is given by 293	

Formatted: Superscript
Formatted: Superscript



	 16	

Var(S) = 1
18
n(n −1)(2n + 5)          (4) 294	

If the sample size n>30, which is well satisfied in our case, the standard normal test 295	

statistic ZS is computed using: 296	

ZS =

S −1
Var(S)

     if  S>0

0                  if  S = 0
S +1
Var(S)

     if  S < 0

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

        (5) 297	

According to the normal distribution table, the 5% significance level is satisfied if 298	

|ZS|>1.96. 299	

 The second approach is quantile regression, which is a well established method used 300	

in many previous studies (Koenker and Hallock, 2001; Hannachi, 2006; Barbosa et al., 301	

2011; Donner et al., 2012; Franzke, 2013) to estimate extreme trends of climate data.  302	

For regular linear least square regression, the model can be expressed as 303	

E y |X[ ] = βX + ε                          (6) 304	

where y is the response variable conditioned on X, and theβ ’s satisfy the minimization of 305	

the summed error function 306	

err = min ξ(yi − βXi )
i
∑                       (7) 307	

where 308	

ξ(u) = u2                             (8) 309	

For linear quantile regression, the response variable becomes theτ th (τ ∈[0,1] ) quantile 310	

of y conditioned on X, 311	
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Qτ y |X[ ] = βX + ε                         (9) 312	

where theβ s still satisfy equation (2), but equation (3) now becomes 313	

ξτ (u) =
uτ             u ≥ 0
u(τ −1)    u < 0
⎧
⎨
⎩

                      (10) 314	

Note that ξτ  is symmetric when τ = 0.5 , rotated to the right when τ < 0.5  and to the 315	

left whenτ > 0.5 . The quantile regression problem can be numerically solved by linear 316	

programming (Koenker and Hallock, 2001). Here we use the R package “quantreg” to 317	

solve for the regression coefficients of daily mean AEC. Trends for both the 95th and 50th 318	

(median) percentiles are estimated and the trends are compared. To test for significance of 319	

the quantile regression trends, we adopt the bootstrap approach proposed by Franzke 320	

(2013), who used surrogate data generated with the same autocorrelation function and the 321	

same probability density function as the original dataset. The detailed generation 322	

procedure can be found in Schreiber and Schmitz (1996) and Franzke (2013). Here we 323	

generate 1000 surrogate time series to represent the intrinsic variability of the AEC time 324	

series.  325	

 In addition, we also calculate the trends for the median AEC (50th percentile) using 326	

the above two methods, and compare them with the extreme trends. All trends are 327	

normalized and expressed as relative changes per decade, calculated as trend slope times 328	

the length of the time series divided by the corresponding AEC percentiles of the initial 329	

year. Therefore the trends reported are unitless. 330	

 Figure S1 in the supplement shows an example of the trend analysis using these two 331	

Deleted: percentage 332	
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methods. In the following text, to save space we only present trends using quantile 333	

regression, whereas the Sen’s slope results, which agree well with the former, are 334	

presented in the supplement material.  335	

 336	

3. Results 337	

 338	

3.1 Trend Maps 339	

 340	

 We first examine the distribution and temporal changes of trends for all sites in China. 341	

As indicated by Li et al. (2016), there are significant temporal shifts of the magnitude and 342	

sign of monthly mean AEC trends for different decades. We thus also respectively 343	

examine the extreme and median trends for three consecutive decades: 1980-1990, 344	

1991-2000 and 2000-2013. The overall trends for the 1980 to 2013 period are weakly 345	

positive for the majority of the sites (see Figure S2). 346	

 The three columns in Figure 1 show the distribution of extreme trend (upper row), 347	

median trend (middle row) and their differences (extreme minus median, bottom row) for 348	

the 272 sites for the three periods respectively. To avoid the confusion caused by positive 349	

and negative signs of the trend, the difference here are calculated using the absolute value 350	

of the extreme and median trends. Larger dots in black circles mean that the trends are 351	

statistically significant at 95% level. Figure 1 is the results from quantile regression, 352	

whereas the trends using Sen’s slope is presented in Figure S3, which shows largely 353	



	 19	

consistent pattern. It is seen from Figure 1 that the sign of median and extreme trends 354	

mostly agree throughout China. An extensive positive trend is observed all over China in 355	

the 1980s. During the 1990s, many sites, especially those in north China, began to 356	

experience a decreased AEC. After year 2000, the north China sites continue to show 357	

decreasing trends whereas AEC over many south China sites started to rise again.  358	

However, a detailed comparison between median and extreme trends reveals distinct 359	

spatial and temporal differences. Focusing on the bottom three panels of Figure 1 (g-h), it 360	

is clear that in the 1980s, the extreme trends exceed the median trend throughout China, 361	

with some differences as large as 50% (northwestern sites). The number of sites showing 362	

significant extreme trend (178) is also greater than those with significant median trend 363	

(91). Note that the number of significant sites can be different between quantile 364	

regression and Sen’s slope results, because (1) quantile regression is applied to daily data 365	

while Sen’s slope uses annual or seasonal percentiles and (2) quantile regression uses 366	

bootstrap method to test for significance while Sen’s slope uses MK test. Nonetheless, the 367	

spatial patterns of the two methods are consistent. In the 1990s, the distribution of the 368	

trend differences switched to a north-south “dipole” pattern, with negative values in the 369	

north and positive in the south in general, i.e., extreme trends are weaker than the median 370	

trend in the north but stronger in the south, with a rough separation at 33°N marked by 371	

the horizontal black line on Figure 1h. In the north, the sites showing significant extreme 372	

trends also becomes fewer than those with significant median trends in the north. Even in 373	

the south, the difference between the extreme and median trends is much smaller 374	
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compared to the 1980s, indicating a slowdown of the increase in the extreme values. 375	

After year 2000, almost the entire China exhibits a “blue” pattern as opposed to the “red” 376	

pattern in the 1980s. Except for a few sites in central south China, the majority exhibits a 377	

weaker extreme trend than the mean trend. There are also fewer sites showing significant 378	

trends in the extreme (52) than in the median (119). This feature is particularly strong for 379	

northeast, northwest and south China. Although east and south China still show positive 380	

AEC trends, this result suggest that in this decade, the extreme pollution conditions have 381	

not increased as much as the mean or background pollution.  382	

In short, the positive trends in the 1980s over China can be primarily attributed an 383	

increase in the extremes. The 1990s experienced with a transition, with extreme trends 384	

becoming weaker than the median trend in the north and only slightly stronger in the 385	

south. Finally in the 2000s, the extreme trends largely yield to the median trends.  386	

 387	

3.2 Regional Trends 388	

 389	

 To examine the spatial and temporal changes in more detail, we further divide the 390	

country into six representative regions, marked by black rectangles on Figure 1b. Three 391	

of these regions: the North China Plain (NCP), Yangtze River Delta (YRD), and Pearl 392	

River Delta (PRD) are the major urban conglomerates in China. Since the change in the 393	

extreme and median is essentially related to the shift of the distribution, we first evaluate 394	

the regional AEC (/Mm-1) distributions for the three decades. Figure 2 plots these 395	
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distributions by region on logarithmic scale, as AEC is usually considered to follow a 396	

lognormal distribution (Collaud Coen et al., 2013). The dashed lines in Figure 2 indicate 397	

location of the 95th percentile. For all regions, there is a rightward extension of the tail of 398	

the distribution from 1990s to 1980s, implying an increase of the extremes, which is also 399	

characterized by the rightward shift of the 95th percentile line. NCP, YRD and NW China 400	

also show a rightward shift of the distribution peak. From 1990s to 2000s, although the 401	

distribution peak shifts to the right for PRD, YRD, SW China and NE China, there is no 402	

obvious shift in the tail for these four regions. For the other two regions, NCP and NW 403	

China, there is a leftward shift in both the peak and the tail, but the shift of the peak is 404	

stronger. Overall, we can roughly conclude that the 1980s’ AEC trend is characterized by 405	

a change of the extremes, while in the 2000s the median dominates the trend. 406	

Consistent with Li et al. (2016), we also calculate trends successively for all periods 407	

starting each year from 1980 to 2004 and ends in 2013 with 10-year increments. Figure 3 408	

shows the temporal evolution of the quantile regression trend differences with x axis 409	

indicating the trend calculation start year and y axis indicating the length of the time 410	

series, with its counterpart using Sen’s slope shown by Figure S4. To save space, only the 411	

absolute differences between the extreme and median trends are presented in Figure 3, 412	

while their respective values are shown in Figures S5 and S6 for quantile regression and 413	

Figures S7 and S8 for Sen’s slope. Table 1 displays the regional extreme and median 414	

trends using the two methods and their differences for the three periods: 1980-1990, 415	

1991-2000, 2001-2013. Note although the absolute values of Sen’s slope and quantile 416	
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regression trends can be different, their signs are consistent. The time series and linear 417	

trends for each region are presented in Figure S9. Because in Figure 3 the trends are 418	

calculated successively for each period, it helps to examine the time node of the changes 419	

more precisely. For example, although Figures 1 and 2 both indicate that the extremes 420	

increase more rapidly in the 1980s, for YRD and PRD, the duration is short with the 421	

extreme trend exceeding the median trend since around 1982, while for the rest four 422	

regions the change happened around 1986 or later. YRD, PRD and NE China experienced 423	

a short period of stronger extreme trend from ~1994 to 1996, whereas the other three 424	

regions show weaker extreme trends. After 2002, SW and NW China display a slightly 425	

higher extreme trend, which is different from the rest four regions. These features suggest 426	

that there can be minor differences when the trends are examined for different time 427	

periods.  428	

The seasonal time series of the difference between extreme and median quantile 429	

regression trends are plotted in Figure 4, with a 4-year moving average to smooth out 430	

small wrinkles (its counterpart using Sen’s slope is shown in Figure S10). Note that 431	

Figure 4 shows the evolution of the trend difference for every ten-year period from 1980 432	

to 2004 (i.e, 1980-1989, 1981-1990,…, 2004-2013). An outstanding feature in Figure 4 is 433	

that for all regions, the summer (JJA) trend difference (indicated by red curves) exhibit 434	

quite different, or even reversed variability from the other three seasons and the annual 435	

result. For NE, NW China and the PRD, spring (MAM) trends also have relatively larger 436	

departure. In general, winter (DJF) and fall (SON) trends agree better with the annual 437	
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trend. Since these two seasons are dominated by anthropogenic aerosols such as sulfate, 438	

nitrate, black and organic carbon throughout China (Cao et al., 2007; Wang et al., 2007; 439	

Wang et al., 2015), the results indicate that changes in anthropogenic aerosol loading are 440	

primarily responsible for the observed extreme and median trends. In the spring many 441	

regions are influenced by dust, and in the summer, the relative humidity effect may 442	

significantly enhance aerosol extinction. Both are natural factors and should have minor 443	

contribution to the annual trend according to Figure 4. 444	

 445	

4. Conclusions and Discussion 446	

 447	

 While the trends of aerosol pollution in China have been studied extensively, it 448	

remains to understand whether the extreme conditions have changed and whether their 449	

changes are faster or slower than the mean. In this study, we use a quality controlled 450	

visibility dataset to examine decadal trends of extreme values of surface aerosol 451	

extinction coefficients. Quantile regression and Sen’s slope estimates are jointly used to 452	

estimate the trends to improve its robustness. Our analysis reveals that in general, the 453	

extreme and median trends agree in terms of the sign, but they can differ significantly in 454	

terms of the amplitude. During the 1980s, the extremes increased faster than the median 455	

for most China except for a few north and northwest sites. The 1990s experienced a 456	

transition with extreme trend becoming weaker than median trend in the north but still 457	

slightly stronger in the south. Then in the 2000s, the majority of the country exhibited a 458	
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weaker extreme trend than the median trend. Seasonally, winter and fall trends are the 460	

most consistent with annual trends, while the summer trend shows the largest departure 461	

from the annual trend.  462	

 This study uses daily mean daytime AEC without accounting for its diurnal 463	

variability. Nonetheless, visibility can still change considerably in the course of a day 464	

(Deng et al., 2011). To examine this effect we repeat the analysis using daily minimum 465	

and daily maximum AEC respectively. Their counterparts of Figure 1 are shown in 466	

Figures S11 and S12. A brief comparison indicates high resemblance of these two figures 467	

to Figure 1 that uses daily mean data, albeit with some reasonable differences in the 468	

amplitude.  469	

 The reason for the different behaviors between the extreme and median trends still 470	

needs further investigation, and will be the topic of our future study. Some implication is 471	

that in the 1980s and part of 1990s, synoptic conditions might be playing a major role in 472	

modulating aerosol variability. For example, several extremely heavy pollution events are 473	

believed to be linked to stagnant weather (Tao et al., 2014; Zheng et al., 2015). After mid 474	

1990s, emission might become more dominate which tends to increase both the extreme 475	

and the mean. But since it is a relatively uniform background change, the signal might be 476	

more prominent in the mean condition. On the other hand, aerosol properties can also be 477	

potentially influenced by decadal or interannual climate variability (Chen and Wang, 478	

2015; Wang and Chen, 2016), whose footprint may be embedded in these extreme and 479	

mean trends. However, the mechanism that they impact on the extremes and the mean 480	
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still need to be understood, and likely require a comprehensive study using both 481	

observations and model simulations. This also requires the models to accurately simulate 482	

the extreme events, which is a challenging task.  483	

 Admittedly, the visibility data is not ideal for aerosol-related studies, given its 484	

various sources of uncertainties as discussed in Li et al. (2016). However, it is a currently 485	

best compromise since there is lack of reliable long-term aerosol observation datasets. 486	

Moreover, remote sensing produces are vulnerable to extreme pollution, making them 487	

unsuitable for extreme trend studies. For example, as discussed in Lin and Li (2013), 488	

MODIS frequently misses the heavy haze over north China likely due to cloud screening 489	

algorithm. Sun photometers will also stop working when the sun is blocked by the heavy 490	

pollution. This also suggests that current remote sensing instruments and retrieval 491	

algorithms need to be improved to observe these extreme events. 492	

 493	
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Table 2. Regional extreme and median trends 607	
Re
gio
n 

1980-1990 1991-2000 2001-2013 
SL* 
95th 
perc
entil
e 

SL 
Me
dia
n 

Diffe
rence 

QR* 
95th 
perc
entil
e 

QR 
Me
dia
n 

Diffe
rence 

SL* 
95th 
perc
entil
e 

SL 
Me
dia
n 

Diffe
rence 

QR* 
95th 
perc
entil
e 

QR 
Me
dia
n 

Diffe
rence 

SL* 
95th 
perc
entil
e 

SL 
Me
dia
n 

Diffe
rence 

QR* 
95th 
perc
entil
e 

QR 
Me
dia
n 

Diffe
rence 

NE 
Chi
na 

.97 .73 .24 .87 .58 .29 -.26 -.27 .02 -.24 -.31 .08 -.16 -.13 -.03 -.16 -.22 .06 

NC
P 

.67 .70 -.03 .59 .71 -.11 -.14 -.02 -.12 -.13 -.17 .04 .15 .27 -.12 .16 .28 -.12 

N
W 
Chi
na 

.88 .79 .11 .91 .87 .04 .12 -.19 .32 -.01 -.22 .21 -.15 -.23 .08 -.09 -.24 .15 

SW 
Chi
na 

.55 .15 .40 .46 .13 .33 .04 -.03 .07 .00 -.05 .05 .19 .07 .12 .16 .07 .09 

YR
D 

.68 .32 .36 .59 .33 .26 .05 -.11 .16 .08 -.02 .10 .13 .32 -.19 .14 .33 -.19 

PR
D 

.76 .17 .59 .66 .18 .48 .16 .12 .05 .13 .07 .06 .43 .54 -.11 .40 .53 -.13 

* SL refers to Sen’s slope and QR refers to quantile regression	608	
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 610	

Figure 1. The first row: extreme trends estimate using quantile regression for the three 611	

decades, 1980-1990 (a), 1991-2000 (b), 2001-2013 (c); The second row: median trends 612	

estimated using quantile regression for the three decades; Bottom row: the difference 613	

between the values of the extreme trends and median trends, calculated as the extreme 614	

minus median. All trends are unitless and expressed as relative changes. 615	
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 617	
Figure 2. Probability distribution function (pdf) of AEC (megameter-1) for the three 618	

decades over the six representative regions marked on panel b of Figure 1. The AEC has 619	

been converted to logarithmic scale. 620	
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 623	
Figure 3. Difference between extreme and median trends calculated using quantile 624	

regression for the six representative regions marked on panel b of Figure 1. Trends are 625	

between each year from 1980 to 2004 and the end of the record, with 10 minimum. The x 626	

axis indicates the staring year, and the y axis indicates the length of the time series to 627	

calculate the trend.628	
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 629	
Figure 4. Seasonal time series of the difference between the extreme and median trends. 630	

The trends are calculated for each 10 year period starting form 1980 to 2004 (x axis), i.e., 631	

the first point is the trend difference for the 1980 to 1989 period, the second from 1982 to 632	

1990, etc.  633	
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