The influence of mid-latitude cyclones on European background surface ozone,

by K. E. Knowland et al.

May 19, 2017

General Remarks

The topic of an elevated stratospheric ozone contribution at the surface has been in the focus of numerous recent studies driven by air-quality considerations. In particular, it has has been a mystery to me why Mace Head is reached by descending air masses, which has not been observed that frequently elsewhere. The paper is well written and deserves publication, but I recommend considering a few amendments.

Details

(1) Introduction: Consider mentioning the role of STT in some of the recent air-quality studies, such as:

Lefohn et al., Atmos. Environ. 45 (2011), 4845-4857 Langford et al., JGR 117, D00V06 (2012) M. Lin et al., JGR 117, D00V22 (2012) Lefohn et al., Atmos. Environ. 62 (2012), 646-656 Ma et al., ACP 14 (2014), 5311-5325 Dempsey, Atmos. Environ. 98 (2014), 111-122 M. Lin et al., Nature Communications 2015 Itoh and Narazaki, ACP 16 (2016), 6241-6261 Langford et al., JGR 122 (2017), 1312-1337

High-lying sites are more affected by STT (western US, Alps (Zugspitze, Jungfraujoch), Tibet).

- (2) Introduction/Discussion: The penetration of STT air into the PBL has been rarely observed (you cite Davis and Schuepbach (1994); some more words can be found in Eisele et al., J. Atmos. Sci. 56 (1999), 319-330). The probability of entrainment into the PBL seems to be low, which suggests subsidence during night-time followed by day-time turbulent mixing (Eisele et al., 1999; Ott et al., JGR 121 (2016), 3687-3706; Langford et al., 2017) to be a more reasonable mechanism. Is there anything different at the seaside (Cooper et al., JGR 100 (2005), D23310; Itoh and Narazaki (2016))? You mention a fraction around 50 %. Could this be related to the chance of night-time subsidence?
- (3) Also constituents from originally lofted Canadian fire plumes were observed at Mace Head (Forster et al., JGR 106 (2001), 22887-22906
- (4) P. 4, line 28: The spatial resolution seems to be sufficient to resolve STT layers. This is an important issue (e.g., Roelofs et al., J. Geophys. Res. **108** (2003), 8529; Eastham and Jacob, ACP 17 (2017), 2543-2553). However, there is, still, the issue of mixing even in high-resolution models that can lead to a loss of information (two rather bad comparisons between

measurements and a high-resolution ECMWF model results: Trickl et al., ACP 16 (2016), 8791-8815). This topic should be addressed somewhere in the paper.