Assessment of co-benefits of black carbon emission reduction measures in Southeast Asia: Part 2 emission scenarios for 2030 and co-benefits on mitigation of air pollution and climate forcing

Didin Agustian Permadi¹, Nguyen Thi Kim Oanh^{1*} and Robert Vautard²

¹ Environmental Engineering and Management; School of Environment, Resources and Development; Asian Institute of Technology; Klong Luang, Pathumthani 12120, Thailand.

² Laboratoire des Sciences du Climate de l'Environment (LSCE), Institut Pierre Simon Laplace (IPSL), Gif Sur Yvette, France.

Correspondence to: Nguyen Thi Kim Oanh (kimoanh@ait.ac.th)

Table S1: Description of mitigation measures for RED2030 Scenario for Indonesia and Thailand

Table S2: Summary of projected activity data used for BAU2030

Figure S1: Annual average concentrations of BC and OC obtained from global LMDZ/INCA simulation for 2006 and 2030 and the constructed 2030/2006 ratios for both species

Figure S2: Comparison of sectoral emissions in the BY2007 with BAU2030 and RED2030 scenarios for Indonesia and Thailand

Table S1: Description of mitigation measures for RED2030 Scenario for Indonesia and Thailand.

No	Sector	Description of RED2030 measures			
		Indonesia	Thailand		
1	Transportation	All personal cars would have to comply with Euro2 in 2030 ^a	All personal cars <1,600 CC in the market in 2030 would have fuel consumption 5 liters/100 km and would comply with Euro4 standarde		
		100% of public diesel buses would be shifted to CNG ^b	Implementation of cleaner fuel of CNG for all public buses and taxi in 2030 ^f		
2	Residential	Full implementation of "zero kero" program to cover 42 million (64%) households converted from kerosene to LPG by 2012 and 80% of number of households as endpoint (by 2030)°	50% of total fuel consumption of wood and charcoal in 2030 would be converted to LPG ^f		
		Substitution of traditional fuel wood cook stoves to cleaner biomass stoves (gasifier stoves) ^b	Electricity to replace biomass (in 2030 20% of fuel wood would be converted to electricity) ^f		
3	Industry	Fuel switch from coal to biomass and natural gas for cement, iron steel, pulp and paper, and textiles and fertilizer industries ^b	Increasing efficiency of boilers (new rotary burners) and furnaces (by preheating fuel) that could save energy of around 16% by 2030 ^c		
		Modernization of process from wet to dry kiln in cement industry and increasing efficiency of boilers and furnace that could save energy around 16% by 2030 ^b	Full implementation of maximum feasible reduction (application of air pollution control devices) in cement and iron industry by 2030°		
4	Biomass open burning	20% reduction of burned area for forest fire and crop residue open burning in 2014 and around 40% in 2030 as compared to the year of 2010 ^d (National strategic plan 2010)	Forest area burned would not be over than 48,000 ha y ⁻¹ (2030) ^g (National master plan)		
		Zero burning of solid waste by 2030 due to improved SW management in most of urban areas ^c	Zero burning policy to re-use of crop residue as bio-energy up to 25% from total energy demand in 2030g		
			Amount of solid waste subjected to burn should be reduced at least 75% through adequate solid waste management system in 2030 ^g		

Source:

^a Clean Air Asia (CAI, 2010). Roadmap of Euro standard in Asian Countries.

^b Indonesia Climate Change Sectoral Roadmap (ICCSR, 2010).

^c Energy Sector Management Assistance Program (ESMAP, 2012). Low carbon country studies: Indonesia.

^d Ministry of Forestry (MoF, 2010). Strategic Plan 2010-2014. Converted from number of hotspot (active fire count) to the burned area.

^e Chotichanatawewong and Thongplew (2012). Development trajectory, emission profile and policy actions.

^f Department of Alternative Energy Development and Efficiency (DEDE, 2009). Renewable Energy Development Plant.

^g National Master Plan of Open Burning in Thailand. PCD (2007).

Table S2: Summary of projected activity data used for BAU2030

No	Activity data	Indonesia	Thailand	2030/2007 ratio	2030/2007 ratio
				(Indonesia)	(Thailand)
1	Population	1998-2007ª	1994-2007°	1.8	1.3
2	Total number of motor vehicles	1998-2007 ^b	1988-2007 ^f	3.1	2.2
3	Total crop production	1998-2007ª	1996-2007 ^g	1.4	1.2
4	Livestock population	1998-2007ª	1996-2007 ^g	1.8	1.7
5	Petroleum refinery production	1998-2007°	2003-2007 ^h	2.1	3.3
6	Mining production	1998-2007°	2003-2007 ^h	2.0	1.1
7	Aviation landing and take off	1998-2007ª	2003-2007 ⁱ	2.4	1.1
9	GDP in forestry sector	1998-2007a	-	0.7	-
10	Forestry area	-	1992-2001°	-	0.9
11	Energy consumption in power generation	2000-2007°	1988-2007 ^h	1.8	2.1
12	Energy consumption in industrial sector	2000-2007°	1988-2007 ^h	1.9	2.0
13	Total GDP	tal GDP 2000-2007(all other SEA countries)		2.2	

Data sources:

^a National Bureau of Statistics (BPS, 2008). Indonesia in figure 2008.

^b Department of Land Transportation (DLT, 2008). Transportation Statistics 2008.

^c Ministry of Energy and Mineral Resources (MEMR, 2008). Key Indicator of Indonesia Energy and Mineral Resources 2008.

^d The World Bank (WB, 2008). http://data.worldbank.org/indicator/NY.GDP.PCAP.KD.ZG. Population weighted GDP from other SEA countries and China for the period of 2000-2007 was collected to project to 2030. The GDP growth factor expressed as the ratio of 2030/2007 population weighted GDP was calculated and was used to project emissions for other SEA countries and Southern part of China.

^e Thailand National Statistics Office (NSO, 2008).

^f Ministry of Transportation (DLT, 2008). Transportation Statistics. Department of Land Transport (DLT) (2008).

^g Office of Agricultural Economics (OAE, 2008). Agricultural Statistics of Thailand 2008.

^h Energy Policy and Planning Office (EPPO, 2008). Statistics database.

¹Department of Civil Aviation (DCA, 2008). Statistics report.

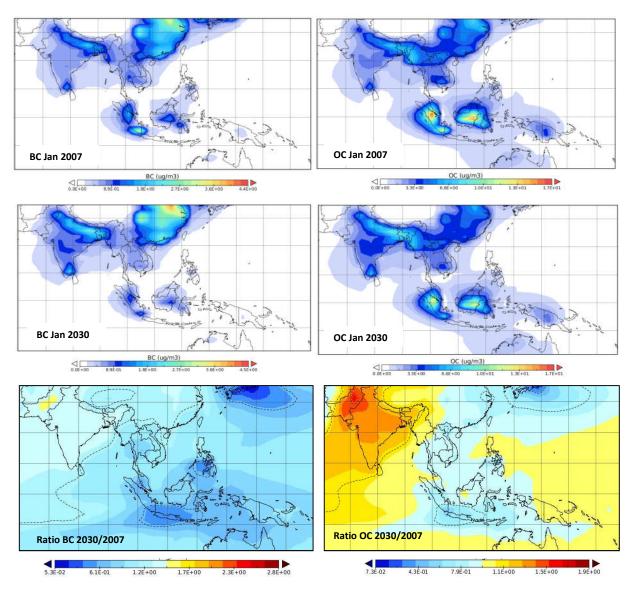


Figure S1: Annual average concentrations of BC and OC obtained from global LMDZ/INCA simulation for 2006 and 2030 and the constructed 2030/2006 ratios for both species (Data from Dr Didier Hauglustaine, through personal communication)

Note: dotted lines show the ratio of 1.0

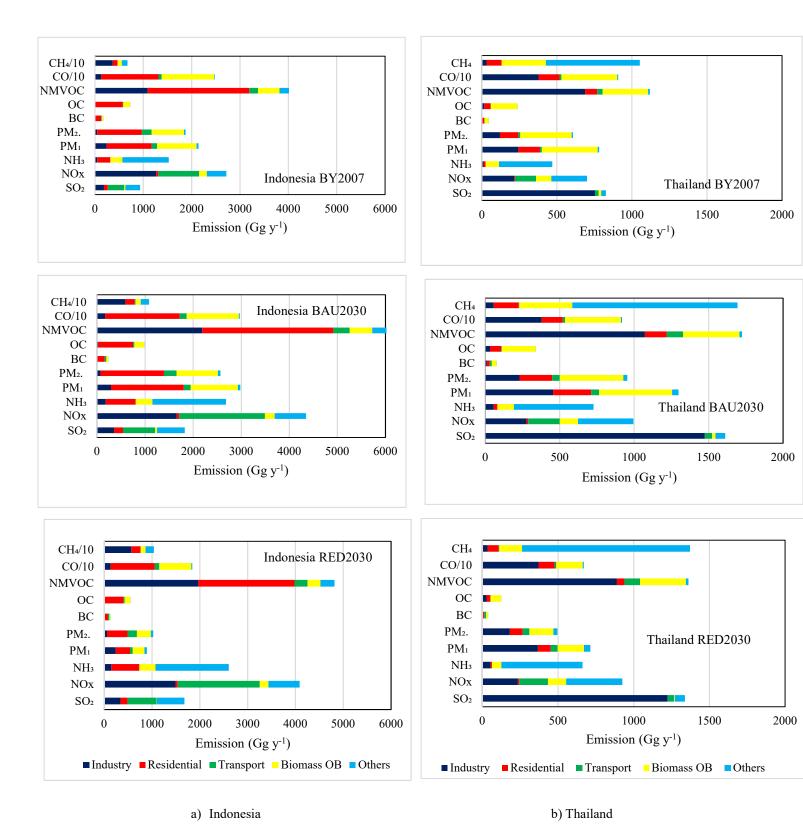


Figure S2: Sectoral emissions of key species in BY2007, BAU2030 and RED2030 scenarios for Indonesia and Thailand