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Abstract. Stochasticity in collisional growth of cloud droplets is studied in a box model using the super-droplet method (SDM).

The SDM is compared with direct numerical simulations and the master equation. We use the SDM to study fluctuations in

autoconversion time and the sol-gel transition. We determine how many computational droplets are necessary to correctly

model expected number and standard deviation of autoconversion time. Also, growth rate of lucky droplets is determined and

compared with a theoretical prediction. Size of the coalescence cell is found to strongly affect system behavior. In small cells,5

correlations in droplet sizes and droplet depletion affect evolution of the system. In large cells, unrealistic collisions between

rain drops, caused by the assumption that the cell is well-mixed, become important. Maximal size of a volume that is turbulently

well-mixed with respect to coalescence is estimated at Vmix = 1.5 · 10−2 cm3. It is argued that larger cells can be considered

approximately well-mixed, but only through comparison with fine-grid simulations. In addition, validity of the Smoluchowski

equation is tested. Discrepancy between the SDM and the Smoluchowski equation is observed if droplets are initially relatively10

small. This implies that cloud models that use the Smoluchowski equation might produce rain too soon.

1 Introduction

Coalescence of hydrometeors is commonly modeled using the Smoluchowski equation (Smoluchowski, 1916), often also

called the stochastic coalescence equation. It is a mean-field equation that can be derived from the more fundamental stochastic

description by neglecting correlations in the number of droplets of different sizes (Gillespie, 1972; Bayewitz et al., 1974). These15

correlations are especially important in small volumes and neglecting them can lead to unphysical behavior. For example, when

a single drop contains majority of water in a coalescence cell (gelation), the Smoluchowski equation does not conserve mass

for some coalescence kernels (Leyvraz, 2003).

Another limitation of the Smoluchowski equation is that it describes evolution only of the expected number of droplets

of given size. It does not contain information about fluctuations around this number, which are suspected to be crucial for20

precipitation onset (Telford, 1955; Scott, 1967; Marcus, 1968). Rate of collisions between droplets depends on their sizes.

Small droplets rarely collide with each other, because they are repelled by disturbance flow induced by their settling. Once a

droplet reaches a threshold size, it becomes more efficient at collecting smaller droplets. The mean time for a droplet to reach

the threshold size is long, but some lucky droplets could reach it much sooner through a series of unlikely collisions. Then they

grow quickly, resulting in a sooner onset of precipitation. This effect cannot be described using the Smoluchowski equation.25

The Smoluchowski equation can be written for the discrete number of droplets of given size, but often droplet concentration is
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used instead. This adds an additional assumption that the coalescence volume is large, somewhat in agreement with neglection

of fluctuations and correlations in droplet numbers (Gillespie, 1972).

A number of methods alternative to the Smoluchowski equation exist. They are capable of solving stochastic coalescence,

but have some shortcomings that make their use in large-scale cloud simulations impossible. The most accurate one is the

direct numerical simulation (DNS). In it, trajectories of droplets are modeled explicitly and collisions occur when they come5

in contact. The downside of DNS is that it is computationally extremely demanding. Running large ensemble of simulations

from which statistics could be obtained would take prohibitively long time. An alternative approach is to use a master equation

(Gillespie, 1972). It describes temporal evolution of probability of observing a given number of particles of a given size.

Collisions are allowed between all particles in some coalescence volume and are assumed to be Markovian, i.e. they only

depend on the instantaneous state of the system and not on its history. This can only be justified if the volume is well-mixed,10

i.e. if droplets are randomly redistributed within the volume between collisions. It is worth to note that DNS does not require

such assumptions, so it reproduces correlations between positions and sizes of droplets. The master equation was analytically

solved only for a constant coalescence kernel (Bayewitz et al., 1974). A more general form of the Bayewitz equation is given

in Wang et al. (2006), but cannot be solved for any realistic coalescence kernel. Solving master equation numerically also

proves extremely difficult due to huge phase space to be considered. Recently, Alfonso (2015) developed a method to solve the15

master equation numerically, but was only able to apply the method to a system of up to 40 droplets (Alfonso and Raga, 2016).

Alternatively, the stochastic simulation algorithm (SSA) (Gillespie, 1975; Seeβelberg et al., 1996) can be used to model single

trajectory obeying the master equation, but obtaining large enough statistics would require very long computations.

Recently, several Lagrangian schemes have been developed to model cloud microphysics in Large Eddy Simulations (Andrejczuk et al.,

2008; Shima et al., 2009; Riechelmann et al., 2012). Their common point is that they explicitly model microphysical processes20

on a small population of computational particles, each representing large number of real particles. In this paper, we use box

model simulations to investigate if the super-droplet method (Shima et al., 2009) is capable of exactly representing the stochas-

tic nature of coalescence.

In Sec. 3 we compare super-droplet method results with master equation results for a system undergoing the sol-gel transi-

tion. Next, we validate SDM against direct numerical simulations of conversion of cloud droplets to rain drops (Sec. 4). We also25

determine how many computational particles are needed in SDM to obtain the correct mean behavior and correct fluctuations.

In Sec. 5 we look for the minimal system size to which Smoluchowski equation can be applied. We use SDM in Sec. 6 to

quantify how quickly the luckiest cloud droplets become rain drops and we compare the results with theoretical predictions.

Finally, in Sec. 7, size of a well-mixed air parcel is estimated.

2 The super-droplet method30

Consider NSD computational particles, called super-droplets (SDs), in a well-mixed volume. Each SD is characterized by two

parameters: radius r and multiplicity ξ. Multiplicity is the number of real droplets that this SD represents. Coalescence is

calculated in a stochastic manner. Consider two randomly selected droplets i and j. Probability that they will collide during
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timestep ∆t is Pij = K(ri, rj)∆t/V , where K is the coalescence kernel and V is the volume of the box. Two assumptions are

made that affect amplitude of fluctuations in number of collisions. The first assumption is that SDs collide in an "all-or-nothing"

manner. If a collision happens, all real droplets represented by the SD with lower multiplicity collide. The second simplification

is that instead of considering all NSD(NSD−1)/2 collision pairs, only [NSD/2] non-overlapping pairs are randomly selected.

The notation [x] stand for the largest integer equal to, or smaller than x. To keep the expected number of collisions equal to5

the real one, coalescence probabilities are scaled up be the factor (NSD(NSD−1)/2)/[NSD/2]. Intuitively, one would expect

that these assumptions lead to much larger fluctuations than in the real system, because number of collision trials is artificially

reduced.

We will use two types of simulations. In "one-to-one" simulations, all super-droplets have multiplicity ξ = 1. They are

initialized by randomly drawing radii from the assumed initial distribution. Droplet collisions cause one of the SDs to be10

discarded. Timestep length is chosen so that none of the collision pairs has coalescence probability greater than one. This

approach is similar to the Direct Simulation Monte Carlo method used in diluted gas dynamics (Bird, 1994). The second

type of simulation, in which number of super-droplets is constant, is closer to the original idea of Shima et al. (2009). We

will refer to it as "constant SD" simulations. In that type of simulations, the number of super-droplets is prescribed, but they

have different multiplicities. To avoid large differences in initial droplet distribution between realizations, SD sizes are not15

completely randomly drawn from the assumed distribution as in the "one-to-one" simulations. Instead, the assumed distribution

is divided into NSD bins and size of a single SD is randomly selected within each bin. The first step of initialization is finding

the largest and smallest initial droplet radius, rmax and rmin. They are defined by the relation n(ln(re))∆ln(r)V = 1, where

re is either rmax or rmin, n(ln(r)) is the initial droplet sizes distribution and ∆ln(r) = (ln(rmax)− ln(rmin))/NSD. Then,

within each bin of size ∆ln(r), radius of one SD is randomly selected and its multiplicity is given by n(ln(r))∆ln(r)V . This20

procedure does not represent well the tails of the distribution, especially for large NSD. Since the large tail is important for

coalescence, we draw additional
∫∞
ln(rmax)

n(ln(r))dln(r) super-droplets with ξ = 1 from the distribution for radii greater than

rmax. In this type of simulations, coalescence probabilities can exceed unity. If they do, they represent multiple collisions

between the pair of SDs. If multiplicity of a SD drops to zero, it is used to split the SD with largest ξ in the system into two.

Super-droplets are discarded after collision only if all other SDs have ξ = 1.25

We use an implementation of SDM from the libcloudph++ library (Arabas et al., 2015). It is an open-source project available

at https://github.com/igfuw/libcloudphxx.

3 The sol-gel transition

In a system of aggregating particles, the sol-gel transition (gelation) occurs when most of the total mass is located in a single

agglomerate (Leyvraz, 2003). For some forms of coalescence kernel, the Smoluchowski equation is known not to conserve30

mass after the transition. Alfonso and Raga (2016) presented exact solutions of the master equation for a small cloud volume

undergoing the sol-gel transition. We perform simulations for the same setup as in Alfonso and Raga (2016) to test if SDM

can reproduce these exact results. Consider a 1 cm3 volume containing 20 droplets with radius of 17 µm and 10 droplets of
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Figure 1. Mass of droplets per size bin averaged over 105 simulations. Bins are 1 µm wide. Shown for comparison with Fig. 8 in

Alfonso and Raga (2016).

radius 21.4 µm. Gravitational collision kernel is used with collision efficiencies from Hall (1980). Droplet terminal velocities

are calculated using the formula from Beard (1976).

In the "one-to-one" simulations, every real droplet is represented by a single computational droplet. That way the "all-or-

nothing" simplification is removed, but the number of collision pairs is reduced. Figure 1 shows the mass distribution between

droplet sizes after t = 2500 s averaged over an ensemble of Ω = 105 realizations. It compares well with results presented in Fig.5

8 in Alfonso and Raga (2016). This implies that the "one-to-one" SDM simulation gives correct average result of coalescence,

accounting for correlations between number of droplets of each size. To check if it also gives correct fluctuations in the number

of collisions, relative standard deviation of mass of the largest droplet σ(mmax)/〈mmax〉 is plotted in Fig. 2. The same plot

obtained using master equation is shown in Fig. 7 of Alfonso and Raga (2016). Again, they compare very well, signifying that

fluctuations are unaffected by the reduction in the number of collision pairs considered.10

In a "one-to-one" simulation, probability Podt that two randomly selected droplets coalesce in a short time step dt is

Podt = PpairηPcoldt, where Ppair is the probability of these two droplets belonging to the same randomly selected pair,

η = NSD(NSD−1)
2 /[NSD

2 ] is the scaling-up of probability (Shima et al., 2009) and Pcoldt is the probability of coalescence if

all pairs were considered. To calculate Ppair, we first consider even values of NSD. Consider a random permutation of droplet

indices. Probability that the first droplet from the pair is at an odd position in the permutation and the second is at the next15

position to the right is 1
2

1
NSD−1 . Probability that the first is at an even position and the second is to the left of it is the same.
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Figure 2. Relative standard deviation of mass of the largest droplet from an ensemble of 105 simulations. Shown for comparison with Fig. 7

in Alfonso and Raga (2016).

Summing these two we get P even
pair (NSD) = 1/(NSD − 1). If NSD is odd, the probability is P odd

pair = P even
pair (NSD − 1)NSD−2

NSD
.

We can write an expression for both odd and even cases Ppair = 1/(NSD − 1+ 2 ∗ (NSD/2− [NSD/2])). It is readily ob-

tained that Po = Pcol, i.e. that the probability of collision between any pair of real droplets is conserved in the "one-to-one"

simulations.

The super-droplet method is computationally more efficient than solving the master equation directly, or using the SSA.5

It also puts no constraints on the initial distribution of droplets. Therefore we can use SDM to predict gelation times for

larger systems and more realistic initial conditions. We use an initial droplet distribution that is exponential in mass n(m) =
n0
m exp(−m/m), where n(m)dm is the number of droplets in mass range (m,m+dm) in unit volume, n0 = 142 cm−3 and m

is the mass of a droplets with radius r = 15 µm. This is the same distribution as in Onishi et al. (2015). The total initial number

of droplets in the system is N0 = n0V . Results of the "one-to-one" simulations for N0 up to 106 are shown in Fig. 3. For10

N0 ≥ 102, the relative standard deviation of mass of the largest droplet, which quantifies amplitude of fluctuations, decreases

with increasing system size. This can be understood if we look at a larger cell as an ensemble of ten smaller cells. Comparing

between independent realizations, variability in the size of the single, largest droplet will be smaller if this droplet is selected

from ten cells in each realization than if it was selected from only a single cell per realization. Interestingly, for N0 = 105 an

inflection point appears around t = 500 s. It is not seen in smaller cells. This indicates that some new source of variability is15

introduced. We believe that it is associated with collisions between large rain drops. We will come back to this in Sec. 5.

5
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Figure 3. Relative standard deviation of mass of the largest droplet for different system sizes. Obtained from ensembles of 104 simulations.

The sol-gel transition time coincides with the time at which σ(mmax)/〈mmax〉 reaches maximum (Leyvraz, 2003; Alfonso and Raga,

2016). Intuitively, we would expect the time for most of the mass to accumulate in a single agglomerate to increase with in-

creasing system size. This turns out to be true for systems with N0 > 103. For system sizes 102 < N0 < 103 gelation time

is approximately the same, around 300 s. Behavior of an extremely small system with only 10 droplets is much different.

Maximum relative fluctuations are smaller and gelation time is longer than in a ten times larger system. Also, the maximum of5

σ(mmax)/〈mmax〉 is not very distinct. This is a manifestation of strong correlations in number of droplets of a given size. For

example, if particles collide to form only two droplets of similar size, these two droplets may not collide for a very long time.

Hence we observe large fluctuations even at t = 2500 s.

4 Fluctuations in conversion to rain drops

Fluctuations in time of conversion of cloud droplets to rain drops were studied using direct numerical simulations by Onishi et al.10

(2015). Following their notation, by t10% we denote time after which 10% of mass of cloud droplets is turned into droplets

with r > 40 µm. Droplets of this size should then quickly grow through coalescence. The time t10% is used as a measure

of efficiency of rain production. We will compare results of "one-to-one" simulations with DNS and try to determine how

many super-droplets are needed in the "constant SD" simulations to accurately represent coalescence. The same initial droplet

distribution and coalescence kernel is used as in Sec. 3.15

6
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Smoluchowski equation.

In Fig. 4, values of mean 〈t10%〉 for different initial number of droplets are plotted against the number of SDs. Results

of both the "one-to-one" (rightmost points in each series) and "constant SD" (rest of the points) simulations are presented.

Horizontal line shows the result of solving Smoluchowski equation using the flux method from Bott (1998). The "one-to-one"

results converge with increasing system volume (i.e. increasing N0). It is not clear if they would converge to Smoluchowski

result, or to some higher value. The error caused by using SDs with ξ > 1 (in "constant SD" simulations) weakly depends on5

the system size. Using 103 SDs gives 〈t10%〉 within 1% of the "one-to-one" value. Using 102 SDs causes about 10% delay in

rain formation. It is worth noting that on modern computers, large eddy simulations (LES) with 102 SDs per cell are feasible,

but those with NSD = 103 would be very demanding.

To analyze the amplification of fluctuations in the "constant SD" method, we plot the relative standard deviation of t10%

in Fig. 5. For reference, results from DNS from Onishi et al. (2015) are shown. Results from our "one-to-one" simulations10

are in good agreement with them. Small discrepancies are probably caused by the fact that in Onishi et al. (2015) different

coalescence kernels were used for different N0. Results of "one-to-one" simulations were fitted with a function α
√

1/N0 with

α = 6. Figure 5 also presents fluctuations in "constant SD" simulations for various NSD. This type of simulations gives correct

amplitude of fluctuations only for relatively low values of the ratio N0/NSD. For constant NSD, as N0 increases, amplitude

of fluctuations correctly decreases. Then, above some critical value of the N0/NSD ratio, fluctuations stop to decrease and15
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remain constant independent of the system size. This is a result of introducing unrealistic correlations between droplet sizes, a

consequence of low number of simulational particles (Bayewitz et al., 1974). We show the limiting, minimal value of relative

standard deviation of t10% in Fig. 6. It decreases as β
√

1/NSD, with β = 2. By comparing it with α = 6, we conclude that in

order to obtain correct fluctuations in t10%, number of SDs has to be NSD ≥ 1
9N0. Using so many SDs is not feasible in LES

simulations, but is possible in smaller scale simulations. Also, knowing α and β we can estimate the magnitude of fluctuation5

amplification in the SDM.

5 Validity of the Smoluchowski equation

The Smoluchowski equation presents a mean-field description of the evolution of the size spectrum. It is exact only in the

thermodynamic limit (V →∞). We will try to determine minimal system size for which Smoluchowski equation can be used

without introducing major errors. To do so, we analyze evolution of θ, the ratio of rain water (r ≥ 40 µm) content to the10

total water content. Onishi et al. (2015) denote this value by τ . We do not adopt this notation to avoid confusion with the

characteristic time.

We compare results of "one-to-one" simulations with solutions of the Smoluchowski equation in two cases - with fast and

with slow rain development. In both cases collision efficiencies for large droplets were taken from Hall (1980) and for small
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droplets from Davis (1972). In the first case, we use the same initial distribution as in Secs. 3 and 4, which results in rapid rain

development. As seen in Fig. 7, the Smoluchowski equation gives correct mean rain development for systems with N0 ≥ 104.

In smaller systems, rain develops slower than predicted by the Smoluchowski equation. Agreement of stochastic coalescence

in large systems with the Smoluchowski equation for a similar initial distribution was shown in Seeβelberg et al. (1996).

Onishi et al. (2015) present figures similar to Fig. 7, but obtained from DNS runs for N0 = 7.24 · 104 (Figs. 1(a) and 1(b)5

therein). They also show good agreement between model results and the Smoluchowski equation, at least up to t = 330 s.

The second case is well below the size gap, i.e. the range of radii for which both collisional and condensational growths are

slow. We use r = 9.3 µm and n0 = 297 cm−3 as in Wang et al. (2006). In addition, we cut the distribution to 0 at r = 20 µm.

That way we get rid of the occasional very large droplets present at t = 0 in some realizations. Then, rain development takes

much longer and fluctuations can play a bigger role. Results are presented in Fig. 8. Surprisingly, the "one-to-one" results do10

not converge to the Smoluchowski results with increasing system size. We see convergence towards some other, higher value

in the time it takes for rain to form. Up to 〈θ〉= 0.2 results for N0 = 105 are the same as for N0 = 106, but much different

from the Smoluchowski results. The latter might be affected by numerical diffusion because the simulation runs for quite long

before any rain is formed. For 〈θ〉 ≥ 0.2, there are discrepancies between N0 = 105 and N0 = 106 results. The rate of growth

of 〈θ〉 decreases earlier with increasing system size. In consequence, after t = 5000 s we get lower rain fraction for N0 = 10515

than for N0 = 104, and even lower for N0 = 106.
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Figure 7. Rain content ratio θ for different system sizes averaged over ensembles of Ω = 104 simulations. Shaded regions show one standard

deviation interval.

The decrease of rain growth rate coincides with a decrease in concentration of rain drops nr, as shown in Fig. 9. Number of

rain drops decreases due to collisions between droplets from this category. A single droplet that results out of such collision is

less efficient at scavenging cloud droplets than two pre-collision droplets. As a result, growth rate of θ decreases. In coalescence

cells with N0 ≤ 104, we do not observe the decrease in number of rain drops within 5000 s, probably because sizes of rain

drops are similar. For larger cells, more rain drops with a broader distribution are formed. In consequence, they collide more5

often which decreases their number and the rate of collection of cloud droplets. It is likely that the same effect is responsible

for the additional inflection point around t = 500 s in the plot of relative standard deviation of the largest droplet mass for

N0 = 105 (cf. Fig. 3). This could also lead to the deviation from the∼ 1/
√

N0 scaling seen in Fig. 5. Fluctuations in cells with

N0 = 107 are greater than predicted using this scaling.

Judging from Fig. 9, we conclude that Smoluchowski equation consistently overestimates the number of rain drops during10

the initial phase, that is when 〈nr〉 increases. Smoluchowski equation gives up to 50% higher values of 〈nr〉. We also observe

that although the amount of rain water depends strongly on the cell size, the number of rain drops does not. In larger cells rain

drops acquire larger sizes through collisions with rain drops, but rate of production of rain drops is not affected by using larger

cell size. In box model simulations, the Smoluchowski equation produces too much rain if initial distribution is well below size

gap and droplets slowly grow through coalescence. It is difficult to tell if using the Smoluchowski equation in cloud models15
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Figure 8. As in Fig. 7, but for an initial distribution with r = 9.3 µm, n0 = 297 cm−3 and a cutoff at r = 20 µm.

Table 1. Average, standard deviation and sample size of time (in seconds) for the lucky realizations to produce single rain droplet.

γ = 10−4 γ = 10−3 γ = 10−2 γ = 10−1 γ = 1

N0 〈tγ
40〉 σ(tγ

40) γΩ 〈tγ
40〉 σ(tγ

40) γΩ 〈tγ
40〉 σ(tγ

40) γΩ 〈tγ
40〉 σ(tγ

40) γΩ 〈tγ
40〉 σ(tγ

40) γΩ

102 2052 212 10 2930 356 10 4053 517 102 6365 1158 103 14777 6099 103

103 1366 120 102 1762 170 103 2400 267 104 3440 505 105 6500 1700 106

104 1089 173 3 1336 103 10 1717 176 102 2354 276 103 3912 764 104

105 946 33 2 1090 60 20 1334 85 200 1721 169 2000 2552 415 104

106 1038 165 2 1301 176 20 1831 277 102

overestimates the amount of rain. Possibly, condensational growth helps droplets cross the gap, leading to initial condition that

is closer to the one in the first case (r = 15 µm). For such initial condition, Smoluchowski equation gives correct results.

6 Lucky droplets

There is a well-established idea that some droplets undergo series of unlikely collisions and grow much faster than an average

droplet (Telford, 1955; Scott, 1967; Marcus, 1968; Robertson, 1974; Mason, 2010). These few lucky droplets are argued5

to be responsible for droplet spectra broadening and rain formation quicker than predicted by the Smoluchowski equation.
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Figure 9. Mean concentration of rain drops for the same initial distribution as in Fig. 8 from ensembles of at least Ω = 104 simulations.

Luck is supposed to be especially important during crossing of the size gap, when collisions happen rarely (Robertson, 1974;

Kostinski and Shaw, 2005). A single droplet that would cross the size gap through lucky collisions could then initiate a cascade

of collisions. We use the same initial distribution as in the second case in Sec. 5. The mean radius is r = 9.3 µm, well below

the size gap. Theoretical estimation of the "luck factor" was presented in Kostinski and Shaw (2005). We use "one-to-one"

simulations to test predictions from that paper.5

We are interested in time t40 it takes for the largest droplet in the system to grow to r = 40 µm. From an ensemble of Ω

realizations, we select sub-ensembles of luckiest realizations, i.e. those with smallest t40. We consider sub-ensembles of size

γΩ with log10(γ) =−4,−3,−2,−1,0. In each sub-ensemble, we calculate mean 〈tγ40〉 and standard deviation σ(tγ40). The

results for different cell sizes are shown in Tab. 1. There is a large variability in 〈tγ40〉 with cell size. This is caused by the fact

that t40 depends only on a single largest droplet. Larger cells contain more droplets, so probability of producing single large10

droplet increases with cell size. We notice that 〈tγ40〉 is approximately the same along the diagonals of Tab. 1. For example,

cell containing 106 droplets on average will produce first rain droplet in 30 minutes. If we divided it into 10 cells with 105

droplets each, the luckiest one would also produce a droplet in 30 minutes on average. This shows that using large coalescence

cells does not affect formation of first rain drops. The differences discussed in previous Sections emerge later, when there are

already some rain drops that can collide with each other. Moving to very small cells, we no longer observe same 〈tγ40〉 along15

the diagonals. Ten cells with N0 = 102 produce rain drops slower than a single cell with N0 = 103. This is due to depletion
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of water droplets in small cells. The largest droplet a cell with N0 = 102 can produce has r ≈ 43 µm, close to the 40 µm rain

threshold.

Kostinski and Shaw (2005) estimate that the luckiest 10−3 fraction of droplets should cross the size gap around six times

faster than average, while the luckiest 10−5 around nine times faster. We compare these values with our simulations for

N0 = 103. We choose this cell size, because it is the smallest one for which water depletion does not affect t40. As far as t40 is5

concerned, larger cells behave exactly like an ensemble of cells of this size. We find 〈t10−3

40 〉/〈t140〉 ≈ 3.7 and 〈t10−5

40 〉/〈t140〉 ≈ 6.

The value of 〈t10−5

40 〉 was estimated at 1090 s based on values along the diagonal for larger γ and larger N0. These ratios are

lower than given in Kostinski and Shaw (2005), showing that their theoretical analysis overestimates the "luckiness" in droplet

growth. Nevertheless, we agree with their conclusion that fluctuations play an important role in rain formation. Thanks to lucky

collisions in some realizations (or, alternatively, in some parts of the cloud), mean concentration of rain drops after 30 minutes10

is about 200 m−3. On the other hand, using the Smoluchowski equation leads to higher rain drop concentration than can be

produced by lucky collisions (cf. Fig. 9). Significant role of fluctuations can also be seen in Fig. 8. Relative standard deviation

of θ is high in small cells (N0 ≤ 104). This implies that small parts of the cloud could produce significant amount of rain much

faster than average.

7 Coalescence cell size15

In the previous sections we have seen that size of the coalescence cell has a profound impact on the system evolution. Possibly,

many of these differences would disappear once turbulent droplet motion and sedimentation are modeled. In this Section we

try to determine the size of a cell that could be used in such modeling. All methods in which each droplet within a cell can

collide with any other droplet within the same cell rely on the assumption that the cell is well-mixed. This includes the master

equation, SSA, SDM as well as the Smoluchowski equation. The assumption that a cell is well-mixed is valid if τmix ≪ τcoal,20

where τcoal and τmix are the characteristic times for coalescence and cell homogenization, respectively (Lehmann et al., 2009;

Gillespie et al., 2014). By well-mixed we mean that droplets should be distributed homogeneously within the cell before

every collision. Droplet coalescence generates inhomogeneities, i.e. correlations between droplet positions and sizes. Consider

two droplets growing independently within a cell. After gaining large sizes, they collide and generate even larger droplet. In

reality they could not both obtain large sizes before the collision, because they would deplete liquid water from each other’s25

surrounding.

Rigorously, characteristic time for coalescence is the mean time between coalescence events, as in diffusion-limited chem-

ical systems (Gillespie et al., 2014). To estimate its magnitude, consider a single large collector droplet falling through a field of

smaller droplets. Using geometric coalescence kernel with efficiency E, the mean time between collisions is τcoal = (Eπ(rl + rs)2vrns)−1,

where rl and rs are radii of large and small droplets, vr is the relative velocity and ns is the concentration of small droplets.30

For rl = 100 µm, rs = 10 µm, vr = 70 cm/s, E = 1 and ns = 100 cm−3 we get τcoal ≈ 0.4 s.

Droplets in the cell can be mixed through turbulence. Turbulence acts similarly to diffusion and its characteristic time for

mixing is τ t
mix = (V (2/3)/ε)(1/3), where V is cell volume and ε is turbulent energy dissipation rate (Lehmann et al., 2009).
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Turbulent energy dissipation rate in clouds is in the range from 10 cm2/s3 for stratocumulus clouds to 103 cm2/s3 for cu-

mulonimbus clouds (Malinowski et al., 2013; Grabowski and Wang, 2013). Let us assume that τ t
mix ≪ τcoal is satisfied if

τ t
mix = 0.1τcoal. Even in the most turbulent clouds, this means that the coalescence cell has to be very small V ≈ 1.5·10−2cm3.

On average, this volume would contain around one droplet, depending on concentration of droplets. The Smoluchowski equa-

tion cannot be used for such small populations. Using super-droplet microphysics would be very cumbersome, because ex-5

tremely short time steps would be required to decouple motion from collisions. To use larger cells, we need to choose some

less strict value of characteristic time of coalescence. For instance, Shima et al. (2009) assume τcoal = 100 s without much

explanation. Some larger cell size, that would be approximately well-mixed, could be found phenomenologically through ex-

act simulations including droplet motion. One example of such reference simulations are DNS runs from Onishi et al. (2015)

discussed in Sec. 5. They prove that in the case with r = 15 µm, Smoluchowski equation gives correct results. This suggests10

that cells with N0 ≥ 104 can be used in this case.

Another process that can mix droplets is sedimentation. It is difficult to assess its timescale, because it strongly depends

on droplet sizes. Droplets of similar sizes are not mixed by sedimentation, but it is efficient at mixing rain drops with cloud

droplets. We can expect that it would prevent depletion of cloud droplets in the surrounding of a rain droplet that was observed

for smallest cells in Secs. 3 and 6. Sedimentation acts only in one direction, so it could only allow us to use cells larger only in15

the vertical direction.

8 Conclusions

The super-droplet method can exactly represent stochastic coalescence. It was compared with the master equation approach

(see Sec. 3) and with direct numerical simulations (see Sec. 4). Precision of the SDM is controlled by the number of super-

droplets used. Fluctuations in the autoconversion time are represented well if NSD ≥N0/9. Using smaller NSD increases20

standard deviation of autoconversion time by a factor 1
3

√
N0/NSD (cf. Sec. 4). It is computationally less expensive to correctly

reproduce mean autoconversion time. Using NSD = 103 gives mean results within a 1% margin, while using NSD = 102 -

within 10%.

The SDM was used to study stochastic coalescence for two initial droplet size distributions - with small (r = 9.3 µm)

and with large (r = 15 µm) droplets. They result in slow and fast rain formation, respectively. Dependence of the system25

behavior on coalescence cell size was observed, especially in the small droplets case. Cell size not only affects fluctuations in

observables, but also their expected value. If the coalescence cell is small (N0 < 103), sizes of droplets are strongly correlated

and depletion of cloud water plays an important role. In reality, these two effects are probably not manifested, because collector

drop sedimentation acts against them. If the coalescence cell is relatively large (N0 > 104), rain drops that in reality would

form far from each other and would need time to get close, can collide immediately. This is because the coalescence cell is30

assumed to be well-mixed, which is usually not true. We estimate a well-mixed (with respect to coalescence) volume in the

most turbulent clouds to be only 1.5 · 10−2 cm3.
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Unrealistic collisions between rain drops, caused by the assumption that coalescence cell is well-mixed, do not affect results

if droplets are initially large. Then, collisions of cloud and rain drops and between cloud droplets are frequent, so relatively rare

collisions between rain drops are not important. The mean behavior of the system converges to the Smoluchowski equation

results with increasing system size. Good agreement with it is found for systems with N0 ≥ 104. The picture is different if

droplets are initially small. Conversion of cloud droplets into rain drops is slow, so decrease in rain drop concentration due5

to these unrealistic collisions is relatively more important. Coalescence of rain drops decreases the rate of collection of cloud

droplets, because a single larger drop has smaller collisional cross section than two smaller drops with the same total volume. In

consequence, mean behavior of the system no longer converges with increasing cell size. Up to 〈θ〉= 0.2, results for N0 = 105

are the same as for N0 = 106. Then, rate of rain growth decreases sooner in the larger coalescence cell. Another aspect of

the slow-coalescence scenario is that in it, some lucky droplets can grow much faster than average droplets. We found that a10

single luckiest droplet out of a thousand grows 3.7 times faster than average and the luckiest out of a hundred thousand - 6

times faster. These values are smaller than predicted by Kostinski and Shaw (2005), but large enough to be important for quick

formation of rain.

The size of a well-mixed volume, i.e. a volume within which droplets are randomly rearranged through turbulence between

coalescence events, is of the order of the volume occupied by a single droplet. Larger cells can be assumed to be only approx-15

imately well-mixed. For example, in the fast-coalescence case, DNS modeling gives the same results as the Smoluchowski

equation (Onishi et al., 2015). Box model simulations using well-mixed volume with N0 = 105 droplets also gives the same

results. Therefore it can be assumed that such volume is approximately well-mixed in the case of fast coalescence. On the

other hand, in the slow-coalescence case, box model simulations do no converge to the Smoluchowski result. This implies that

models that use the Smoluchowski equation might produce rain too soon. The real behavior of the system could be determined20

through DNS modeling or SDM simulations with droplet motion.

Cells used in LES are typically ten orders of magnitude larger than a well-mixed volume. They do not necessarily have

to be well-mixed. It is sufficient if they are homogeneous, i.e. they are an ensemble of identical, approximately well-mixed

sub-cells. Some statistical moments for such ensembles were presented in this work. In general, it is not clear what could be

the size of these sub-cells and if the Smoluchowski equation is valid for them. We have shown that for initially small droplets,25

the Smoluchowski equation gives wrong results, but is correct for initially large droplets. One could hope that condensational

growth leads to initial conditions close to the ones for which the Smoluchowski equation is valid, but justifying it would require

further research.

9 Code availability

Simulation code is available at https://github.com/pdziekan/coal_fluctu. The libcloudph++ library is available at https://github.com/igfuw/libcloudphxx30
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