
Response to the reviews

September 20, 2017

We would like to express our gratitude to the reviewers for the time they
invested in improving the paper. We have made changes to the manuscript in
order to make the presentation more clear. Also, following the editor’s advice,
we have consulted a researcher from outside of our field on readability of the
paper.

Answer to the Anonymous Referee #2.

I appreciate very much the improvements made by the authors.
The scientific content of the paper is novel and original. Nevertheless
I believe that the presentation should be still improved in order to
help future readers and to make sure it draws the attention it de-
serves. I still have the feeling that your presentation should be more
explicit and that you should guide the readers better through the
paper.

Main points

The newly added part towards the end of section 1 is a first step,
but each section should start with a motivation and explain the goals
behind the next tests. This is already nicely done in Section 4, 5, 6
and 7. On some occasions it may suffice to simply change the order
of the presented material.

Sections 2 and 3 now start with short introductions that explain their goals.

Some examples: 1. Whereas the intention of showing the size
distribution in Fig.1 is clear to everyone and needs no further ex-
planation, most readers probably do not know beforehand why you
analyse of sigma(m max)/E(m max) and that this quantity is related
to the gelation time. Your sentence on page 5, line 30 is essential in
motivating what you do and hence should appear earlier.
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The sentence now appears before we discuss Fig.2.

2. You may still expand the description of the algorithm to make
your paper self-contained such that readers are not forced to read
Shima. Your whole paper is based on this algorithm, so I think it is
worth investing a few more lines. It probably suffices to present a
condensed version of their Eqs. 12-19, better explain multiple collec-
tions, and stress the point that only integer multiplicities are allowed.
It may also help to highlight that the constant N SD simulation with
N SD=N 0 is different to a one-to-one simulation with N 0. Still I
think that some formulations are not explicit enough. See e.g. my
comment from the last review you should write that one SD is cre-
ated... Contrary to your response, I do not think you already say it.
You just say that the radius is randomly selected. Better write that
one SIP per bin is created....

We agree that it will be easier for the readers if they do not have to go
through all of the Shima’s paper before reading our work. Section 2 has been
considerably expanded following the suggestions. We believe that it now in-
cludes all necessary information on how coalescence is done in the super-droplet
method.

3. The following comment nicely demonstrates your implicit style
of writing: The number of used realizations must be mentioned in
the text, not only in the figure caption. In section 3, even the fact
you analyse a certain number of realizations is not really mentioned
directly. It is only implicitly clear by saying average or because you
analyse sigmas.

It is true that it may have been stated more clearly. We have made an effort
to give all necessary information more explicitly throughout the paper.

4. Could you expand the description of Table 1 in the text? I
do not understand the meaning of the third column. Hence, I am
not able to reconstruct all parameters of the individual cases. In
particular Im confused about values like 2, 3, 200 etc.

We have expanded the caption of Table 1.

Discussion points

I was wrong in stating that all SD methods solve the KCE (see
points 4 and 5 of original review) and you convinced me that the prob-
abilistic nature of the all-or-nothing approach has the same source of
variability as the master equation. However, this is not true for the
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Riechelmann and Andrejczuk algorithms. They are not probabilis-
tic (no Monte-Carlo approach is used, instead they solve the average
KCE) and behave differently in the limiting case (explanation fol-
lows in the next paragraph).So I would put it the following way:
Some SD methods are based on KCE, some are based on the mas-
ter equation. Hence, to avoid confusion, your statements throughout
the manuscript should be reformulated, as they do not hold for SD
methods in general.

We agree that some SD methods are based on the KCE. It was not our
intention to give any conclusions on SD methods in general, only on the method
of Shima. The misconception might be caused by the fact that there is no
standard nomenclature in use. To clarify the text, now in the introduction we
explicitly say that by the SD method we mean the method of Shima and that
our conclusions are valid only for this method. In addition, we added a reference
to the Shima method in the abstract.

In your and Shimas application of the all or nothing algorithm
the multiplicities are integer values. Due to the design of the al-
gorithm multiplicities remain integer, if integer values are used at
initialisation. This is different in the Riechelmann and Andrejczuk
algorithms, they produce real numbers, even for integer initialisa-
tions. So the limiting case of a one-to-one simulation does not reduce
to the master equation. Hence, my impression is that the various
SD methods are not equivalent in the limiting case. Note that the
all-or-nothing algorithm can also be applied with real numbers (see
Unterstrasser et al, 2017.

The finding in Sec 4 N SD > 1/9 N 0 has strong implications on
the feasibility of LES. May it be possible that with a full sampling
of the SD pairs the constraint on N SD is less strict? You may add
at least a full sampling line for N SD=32 in Fig.5 to get a rough
tendency. I acknowledge the tests you show in Figs.1&2, but those
may not suffice to prove the equivalence between the full and linear
sampling for all applications.

It is true that LES with N SD > 1/9 N 0 is not feasible. Using less SDs
results in high fluctuations, but it does not mean that such simulations are
useless. We have done LES of a stratocumulus with N SD=100 and the resulting
time series and averaged profiles are in qualitative agreement with results of LES
with the KCE.

As suggested by the Reviewer, we have added a line for N SD=32 with full
sampling to Fig. 5. It is in good agreement with the line for N SD=32 with
linear sampling, so we conclude that the linear sampling does not affect the
constraint on the number of SDs.
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Minor Points:

You define SSA as the algorithm by Gillespie, but later on SSA
refers to the algorithm by Alfonso, doesnt it?

SSA is the algorithm by Gillespie and it was used by Alfonso in the paper
in which he introduces his own method. We now say it more clearly in Section
3.

p.2., l.24: You miss to cite the Lagrangian cloud model by Slch &
Krcher,2010. By the way it uses also the all-or-nothing approach for
particle collisions.

We added the citation.

p.3, l.20: I would say that only the opposite direction is true, i.e.
all droplets in a SD are identical, but not all identical droplets are
necessarily represented by one SD. You can well have two or ten SDs
that represent all those droplets with similar properties.

We agree. The sentence now says that a SD represents many, not all, droplets
with similar properties.

p.4, l.24: you may add which can only happen if two SDs with
identical eta collide.

Done.

p.6, l.7: you probably refer to the exponential distribution used
in Section 3. Check also for other occurences.

Yes, we refer to the distribution which is used in Section 3 to initialize
droplet sizes. We think that it is clearly stated. We write that the initial
droplet distribution is the same to avoid any misunderstanding that the droplet
distribution after the simulation is the same as in Section 3.

To make the connection between Fig. 5 and 6 clearer, you may
use the same colours for the squares

We did so.

in Fig 6 as in Fig.5 p.8, l.1: simulational = computational?

Changed.
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p.9, l.6: How can it be that DNS results agree well with KCE
results, even though in Fig. 4 you argue that the autoconversion
time of KCE (and SDM) is too short?

That is a good point. The KCE results agree with DNS results only if the
Long kernel is used in the KCE, what is now stated in Section 5. If the Hall
kernel is used, the autoconversion time of the KCE is too short. We conclude
that it is not the KCE approach that is invalid, but the kernel used.

p.10, l.13: I thought the conclusion would be that rain production
is overestimated. What do you mean with amount of rain, mass
or number of rain drops? Maybe it is the case, that the mass is
overestimated and the number is underestimated?

We meant that the mass of rain is underestimated. Now we say explicitly
that both the number of rain drops and the mass of rain are underestimated.

p.12, l.3: Do you want to say ..it takes until the first droplet grows
to r=40um? Your formulation could cause confusion, as it changes
over time, which droplet is the largest.

We have changed that following the suggestion.

p.13,l14 and l15: 1.) the ratios must be flipped to get numbers
¿1.

The error has been corrected.

2.) Did Kostinski & Shaw results depend on system size? Your
results do: For N 0=104 and 105, the ratio goes down from 3.7 to
2.9 (=3912/1336) and 2.3 (=2552/1090). Whats the interpretation
of this?

That is a very good point and led us to change our conclusions - now we
conclude that our results are in agreement with the Kostinski & Shaw theory.
By calculating the ratios of t 40 we want to find out how much faster the luckiest
droplet can grow compared to an average droplet. From the fact that values of
t 40 are similar along the diagonals of Table 1 we concluded that, when looking
for the time for the first droplet to grow to r=40 microns, large cells behave like
ensembles of cells with N 0=103. We used to think that smaller cells distort the
result, so we were calculating the “luck factor”, i.e. the ratio of lucky t 40 to
average t 40, for cells with N 0=103. The values of “luck factor” calculated using
results for larger cells are smaller, because each larger cell itself is an ensemble
of smaller cells, so it is an ensemble of droplets that can independently grow to
r=40 microns.

5



The text and our reasoning has been changed in the following way. To better
show that larger cells behave like an ensemble of smaller cells, we added a plot
of < t 40 > vs N 0 / gamma (Fig. 10). Based on this plot we conclude that
even smaller cells, with N 0=102, do not distort the results. Such cells can
produce only a single drop with r=40 microns, so calculating the “luck factor”
using these cells does in fact mean comparing single droplets and not ensembles
of droplets. We find that the “luck factor” calculated from results for N 0=102

is in agreement with the Kostinski & Shaw theory, so we conclude that their
theory is correct.

Typos

p.5, l.15: of discrepancies
p.6, l.12: each simulation -> any Bott simulation
ensemble, not ensamble
The reference list contains several small errors. I guess this is

mostly due to the fact that in your bib file the paper titles are not
embraced by title. Then all words appear in lower case, see Alfonso
& Raga, Li, Malinowski, ..

Unterstrasser should be cited with the GMD, not the GMDD
article.

Typos have been fixed.
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Abstract. Stochasticity of the collisional growth of cloud droplets is studied in a box model using the super-droplet method

(SDM)
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shima et al. (2009).
✿✿✿✿✿✿✿✿

Statistics
✿✿✿

are
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

ensembles
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

collision-coalescence
✿✿✿

in
✿

a
✿✿✿✿✿✿

single

✿✿✿✿✿✿✿✿✿

well-mixed
✿✿✿✿

cell. The SDM is compared with direct numerical simulations and the master equation. It is argued that SDM

simulations in which one super-droplet
✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿✿

droplet represents one real droplet are at the same level of precision as

the master equation. Such simulations are used to study fluctuations in the autoconversion time, the sol-gel transition and the5

growth rate of lucky droplets, which is compared with a theoretical prediction. Size of the coalescence cell is found to strongly

affect system behavior. In small cells, correlations in droplet sizes and droplet depletion affect evolution of the system and

slow down rain formation. In large cells, collisions between rain drops are more frequent and can also
✿✿✿

this
✿✿✿

also
✿✿✿✿

can slow down

rain formation. The increase in the rate of collision between rain drops may be an artefact caused by assuming a too large

well-mixed volume. Highest
✿✿✿

The
✿✿✿✿✿✿✿

highest ratio of rain water to cloud water is found in cells of intermediate sizes. Next, we use10

these precise simulations to determine validity of more approximate methods: the Smoluchowski equation and the SDM with

mulitplicities greater than 1. In the latter, we determine how many computational droplets are necessary to correctly model the

expected number and the standard deviation of autoconversion time. Maximal size of a volume that is turbulently well-mixed

with respect to coalescence is estimated at Vmix = 1.5 · 10−2
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Vmix = 1.5 · 10−2 cm3. The Smoluchowski equation is not valid

in such small volumes. It is argued that larger volumes can be considered approximately well-mixed, but such approximation15

needs to be supported by a comparison with fine-grid simulations that resolve droplet motion.

1 Introduction

Coalescence of hydrometeors is commonly modeled using the Smoluchowski equation (Smoluchowski, 1916), often also

called the stochastic coalescence equation. It is a mean-field equation that can be derived from the more fundamental stochas-

tic description by neglecting correlations in the number
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

numbers of droplets of different sizes (Gillespie, 1972;20

Bayewitz et al., 1974). These correlations are especially important in small volumes and neglecting them can lead to unphys-

ical behavior. For example, when a single drop contains majority of water in a coalescence cell (gelation), the Smoluchowski

equation does not conserve mass for some coalescence kernels (Leyvraz, 2003).

Another limitation of the Smoluchowski equation is that it describes evolution only of the expected number of droplets

of given size. It does not contain information about fluctuations around this number, which are suspected to be crucial for25

precipitation onset (Telford, 1955; Scott, 1967; Marcus, 1968). Rate of collisions between droplets depends on their sizes.
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Small droplets rarely collide with each other, because they are repelled by disturbance flow induced by their settling. Once a

droplet reaches a threshold size, it becomes more efficient at collecting smaller droplets. The mean time for a droplet to reach

the threshold size is long, but some lucky droplets could reach it much sooner through a series of unlikely collisions. Then they

grow quickly, resulting in a sooner onset of precipitation. This effect cannot be described using the Smoluchowski equation.

The5

✿✿✿✿✿✿✿✿

Moreover,
✿✿✿✿✿✿✿✿

although
✿✿✿

the Smoluchowski equation can be written for the discrete number of droplets of given size, but often

droplet concentration is used instead
✿

it
✿✿

is
✿✿✿✿

more
✿✿✿✿✿

often
✿✿✿✿

used
✿✿✿

for
✿✿✿✿✿✿

droplet
✿✿✿✿✿✿✿✿✿✿✿✿✿

concentrations. This adds an additional assumption that

the coalescence volume is large, somewhat in agreement with neglection of fluctuations
✿✿✿✿✿✿✿✿

neglectng
✿✿✿✿✿✿✿✿✿✿

fluctuations
✿✿

in
✿✿✿✿✿✿

number
✿✿✿

of

✿✿✿✿✿✿✿✿

collisions and correlations in droplet numbers (Gillespie, 1972).

A number of methods alternative to the Smoluchowski equation exist. They are capable of solving
✿✿✿✿✿✿✿✿

addressing
✿

stochastic10

coalescence, but have some shortcomings that make their use in large-scale cloud simulations impossible. The most accurate

one is the direct numerical simulation (DNS). In it
✿✿✿✿

DNS, trajectories of droplets are modeled
✿✿✿✿✿✿✿✿

simulated
✿

explicitly and collisions

occur when they come in contact. The downside of DNS is that it is computationally extremely demanding. Running large

ensemble of simulations from which statistics could be obtained would take prohibitively long time. An alternative approach

is to use a master equation (Gillespie, 1972). It describes temporal evolution of probability of observing a given number of15

particles of a given size. Collisions are allowed between all particles in some coalescence volume and are assumed to be

Markovian, i.e. they only depend on the instantaneous state of the system and not on its history. This can only be justified if

the volume is well-mixed, i.e. if droplets are randomly redistributed within the volume after each collision. It is worth to note

that DNS does not require such assumptions, so it reproduces correlations between positions and sizes of droplets. The master

equation was analytically solved only for monodisperse initial conditions with simple coalescence kernels (Bayewitz et al.,20

1974; Tanaka and Nakazawa, 1993). A more general form of the Bayewitz equation is given in Wang et al. (2006), but cannot

be solved for any realistic coalescence kernel. Solving the master equation numerically is extremely difficult due to
✿

a
✿

huge

phase space to be considered. Recently, Alfonso (2015) developed a method to solve the master equation numerically, but

was only able to apply the method to a system of up to 40 droplets (Alfonso and Raga, 2017). Alternatively, the stochastic

simulation algorithm (SSA) (Gillespie, 1975; Seesselberg et al., 1996) can be used to model single trajectory obeying the25

master equation, but obtaining large enough statistics would require very long computations.

Several Lagrangian methods have been developed to model cloud microphysics (Andrejczuk et al., 2008; Shima et al., 2009; Riechelmann et

Their common point is that they explicitly model microphysical processes on a small population of computational particles,

each representing a large number of real particles. We will refer to these computational particles as super-droplets (SDs). The

words “droplets” and “drops” are reserved for real hydrometeors. A thorough comparison of coalescence algorithms from30

Lagrangian methods was done by Unterstrasser et al. (2017). It lead to the conclusion that the method of Shima et al. (2009)

“yields the best results and is the only algorithm that can cope with all tested kernels”. It was also found to be optimal in

DNS tests (Li et al., 2017). In the light of these results, we choose to use the coalescence algorithm of Shima et al. (2009) in

this work.
✿✿✿✿✿✿✿✿✿

Throughout
✿✿✿

the
✿✿✿✿✿

paper,
✿✿✿

by
✿✿✿

the
✿✿✿✿✿

name
✿✿✿✿✿✿✿✿✿✿✿✿

“super-droplet
✿✿✿✿✿✿✿

method”
✿✿✿

we
✿✿✿✿

refer
✿✿✿

to
✿✿✿

this
✿✿✿✿✿✿✿

specific
✿✿✿✿✿✿✿✿

algorithm
✿✿✿

and
✿✿✿✿

any
✿✿✿✿✿✿✿✿✿✿

conclusions

✿✿✿✿✿✿✿✿

regarding
✿✿✿✿

SDM
✿✿✿

are
✿✿✿✿✿

valid
✿✿✿✿

only
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

Shima
✿✿✿✿✿✿

SDM. The Shima et al. (2009) algorithm is not based on the Smoluchowski equa-35
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tion, but, similarly to the master equation, on the assumption that the volume is well-mixed. The algorithm introduces some

simplifications that may increase the scale of fluctuations in the number of collisions, as described in Sec. 2. These simplifica-

tions are not necessary in the limiting case of a single computational particle representing a single real particle, what we call

“one-to-one” simulations. Then, the Shima et al. (2009) algorithm should be equivalent to the SSA, i.e. it should produce a sin-

gle realization in agreement with the master equation. To show that this is true, we compare the Shima et al. (2009) algorithm5

with the master equation and the SSA in Sec. 3. We also compare it with the more fundamental DNS approach in Sec. 4. Once

the “one-to-one” approach is shown to be at the same level of precision as the master equation, we use it to study some physical

processes that are related to the stochastic nature of coalescence. The way the sol-gel transition time changes with system
✿✿✿

cell

size is studied in Sec. 3 and in Sec. 6, we quantify how quickly the luckiest cloud droplets become rain drops. In addition, we

use the “one-to-one” approach to validate more approximate methods. The Shima et al. (2009) algorithm with multiplicities10

greater than 1 is studied in Sec. 4. We determine how many computational particles are required to obtain the correct mean

autoconversion time and correct fluctuations in the autoconversion time. Next, in Sec. 5, we determine how large the system
✿

a

✿✿✿

cell has to be for the Smoluchowski equation to correctly represent the rate of rain formation. Throught
✿✿✿✿✿✿✿✿✿✿

Throughout the paper

we observe that evolution of the system
✿✿✿✿✿

droplet
✿✿✿✿

size
✿✿✿✿✿✿✿✿

spectrum strongly depends on its size
✿✿✿

size
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿

cell. The size

of a well-mixed air parcel
✿✿✿✿✿✿

volume
✿

is estimated in Sec. 7 and some implications for cloud simulations are discussed in Sec. 8.15

2 The super-droplet method

✿✿

In
✿✿✿

this
✿✿✿✿✿✿✿

Section
✿✿✿

we
✿✿✿✿✿✿

present
✿✿✿✿

how
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

collision-coalescence
✿✿

is
✿✿✿✿✿✿✿

handled
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

super-droplet
✿✿✿✿✿✿✿

method.
✿✿✿✿✿✿✿

Further
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿

about
✿✿✿✿✿

SDM

✿✿✿

can
✿✿

be
✿✿✿✿✿

found
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shima et al. (2009). Consider coalescence of water droplets in a well-mixed volume V . Other processes, like

water condensation and evaporation, are not included. Thanks to the assumption that the volume is well-mixed, all droplets

within the volume can collide with each other, independently of their positions (Gillespie, 1972). Therefore droplet motion20

does not have to be explicitly modeled and droplet coalescence can be calculated in a stochastic manner, as it is done in the

master equation. Consider two randomly selected droplets i and j. Probability that they collide during
✿✿

the
✿

timestep ∆t is

P (ri, rj) =K(ri, rj)∆t/V , where ri and rj are their radii ,
✿✿✿

and
✿

K is the coalescence kerneland V is the volume of the box.

We use gravitational coalescence kernels, so the effect of turbulence on coalescence is not studied.

At the heart of the super-droplet method is the idea that all
✿✿✿✿✿

many droplets with same properties within a well-mixed volume25

can be represented by a single computational entity, called the super-droplet (SD). As we are interested only in droplet coales-

cence
✿✿✿✿✿

within
✿✿

a
✿✿✿✿✿

single
✿✿✿

cell, it is sufficient if SDs are characterized by two parameters: radius r and multiplicity ξ, which is the

number of real droplets that a SD represents.
✿✿✿✿

Only
✿✿✿✿✿✿

integer
✿✿✿✿✿✿✿✿✿✿✿

multiplicities
✿✿✿

are
✿✿✿✿✿✿✿

allowed.
✿

In the algorithm of Shima et al. (2009),

two simplifications are made that may affect the amplitude of fluctuations in the number of collisions. The first simplification

is that SDs collide in an “all-or-nothing” manner. If a collision happens, each real droplet represented by the SD with lower30

multiplicity collides with a single droplet represened
✿✿✿✿✿✿✿✿✿

represented
✿

by the SD with higher multiplicity.
✿

If
✿✿✿

the
✿✿✿✿

i-th
✿✿✿

and
✿✿✿✿

j-th
✿✿✿✿

SDs
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✿✿✿✿✿✿

collide,
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

are
✿✿✿✿✿✿✿

updated
✿✿✿

to:

ξ′j =ξj , ξ′i = ξi − ξj

r′j =(r3i + r3j )
1/3, r′i = ri,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(1)

✿✿✿✿✿

where
✿✿✿✿✿✿

primes
✿✿✿✿✿

denote
✿✿✿✿✿✿✿✿✿✿✿✿✿

post-collisional
✿✿✿✿✿✿

values
✿✿✿

and
✿✿✿

we
✿✿✿✿✿✿

assume
✿✿✿✿✿✿

ξj ≤ ξi.
✿

Intuitively, one would expect that this should
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

“all-or-nothing”

✿✿✿✿✿✿✿✿

procedure
✿✿

to
✿

lead to larger fluctuations than in the
✿

a real system, because the number of collision trials is artificially reduced.

The second simplification, that we will refer to as “linear sampling”, is that instead of considering all NSD(NSD − 1)/25

✿✿✿✿✿✿✿✿✿✿

N(N − 1)/2
✿

collision pairs, only ⌊NSD/2⌋
✿✿✿✿✿✿

⌊N/2⌋ non-overlapping pairs are randomly selected. NSD
✿

N
✿

is the number

of SDs in the coalescence volume
✿✿✿

cell
✿

and ⌊x⌋ stands for the largest integer equal to, or smaller than x. To keep the ex-

pected number of collisions equal to the real one, coalescence probabilities are scaled up. Probability of coalescence of two

SDs i and j that belong to the same collision pair is PSD(ri, rj , ξi, ξj) =max(ξi, ξj)P (ri, rj)(NSD(NSD − 1)/2)/⌊NSD/2⌋

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(ξi, ξj)P (ri, rj)(N(N − 1)/2)/⌊N/2⌋
✿

(Shima et al., 2009). Real droplets represented by the same SD cannot collide with10

each other, because they have the same sedimentation velocities.

We will perform two types of simulations. In the “one-to-one” simulations, all SDs have multiplicity ξ = 1. That way the

“all-or-nothing” simplification is removed. SDs
✿✿✿

N0
✿✿✿✿✿✿✿✿✿✿✿✿

super-droplets are initialized by randomly drawing radii from the assumed

initial distribution
✿✿✿✿✿✿

droplet
✿✿✿✿

size
✿✿✿✿✿✿✿✿✿✿

distribution,
✿✿✿✿✿

where
✿✿✿

N0
✿✿

is
✿✿✿

the
✿✿✿✿✿

initial
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿

real
✿✿✿✿✿✿✿

droplets
✿✿

in
✿

a
✿✿✿

cell. Coalescence causes one of

the SDs to be discarded. Time step
✿✿✿✿✿

Unlike
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

original
✿✿✿✿✿✿

method
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shima et al. (2009),
✿✿✿✿✿✿✿

timestep length is adapted at each time15

step
✿✿✿✿✿✿✿

timestep to ensure that none of the collision pairs has coalescence probability greater than 1. This approach is similar to

the Direct Simulation Monte Carlo method used in diluted gas dynamics (Bird, 1994). In Sec. 3 we show that the “one-to-one”

method is in agreement with the master equation.

The second type of simulations, in which number of SDs is constant
✿✿✿✿✿✿

remains
✿✿✿✿✿✿✿

constant
✿✿✿✿✿

(with
✿✿✿✿

rare
✿✿✿✿✿✿✿✿✿✿

exceptions), is closer to

the ideas of Shima et al. (2009). We will refer to it as the “constant SD” simulations. In this type of simulations, the number20

of SDs is prescribed , but they
✿

as
✿✿✿✿✿

NSD
✿✿✿

and
✿✿✿✿

SDs
✿

have different multiplicities. To
✿✿✿✿✿✿✿✿

Typically,
✿✿✿✿✿

NSD
✿✿

is
✿✿✿✿✿

much
✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿✿✿

N0.
✿✿✿

We

✿✿✿

use
✿

a
✿✿✿✿✿

novel
✿✿✿✿✿✿✿✿

algorithm
✿✿✿

for
✿✿✿✿✿✿✿✿✿

initialising
✿✿✿

the
✿✿✿✿

radii
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

multiplicities
✿✿

of
✿✿✿✿

SDs.
✿✿✿✿

The
✿✿✿

aim
✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿✿✿

algorithm
✿✿

is
✿✿

to
✿

avoid large differences

in the initial droplet size distribution between realizations, SD sizes
✿✿✿✿✿✿✿✿✿✿

distributions
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿✿

realizations.
✿✿✿✿✿✿✿✿✿✿✿

Super-droplet
✿✿✿✿✿

radii

are not completely randomly drawn from the assumed distribution as in the “one-to-one” simulations. Instead, the assumed

distribution is divided into NSD bins and the radius of a single SD is randomly selected within each bin. The
✿✿✿✿

bins
✿✿✿✿

have
✿✿✿✿✿

equal25

✿✿✿✿

sizes
✿✿

on
✿✿

a
✿✿✿✿✿✿✿✿✿✿

logarithmic
✿✿✿✿✿

scale.
✿✿✿✿✿✿✿

Consider
✿✿✿

an
✿✿✿✿✿

initial
✿✿✿✿✿✿

droplet
✿✿✿✿

size
✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿✿✿

n(ln(r)).
✿✿✿

We
✿✿✿✿✿✿✿

employ
✿

a
✿✿✿✿✿✿✿

notation
✿✿

in
✿✿✿✿✿✿

which
✿✿✿

we
✿✿✿✿

omit
✿✿✿

the

✿✿✿✿✿✿

division
✿✿✿

of
✿✿✿✿✿

radius
✿✿

by
✿✿✿✿

unit
✿✿

of
✿✿✿✿✿✿

length
✿✿✿✿✿✿✿✿

whenever
✿✿✿

the
✿✿✿✿✿✿✿✿

logarithm
✿✿

of
✿✿✿✿✿✿

radius
✿✿

is
✿✿✿✿✿

taken,
✿✿✿

i.e.
✿✿✿✿✿

ln(r)
✿✿✿✿✿

stands
✿✿✿

for
✿✿✿✿✿✿✿✿✿

ln(r/µm).
✿✿✿✿✿✿✿✿✿✿✿✿

Concentration
✿✿

of

✿✿✿✿✿✿

droplets
✿✿✿✿✿

with
✿✿✿✿

radii
✿✿

in
✿✿✿

the
✿✿✿✿✿

range
✿✿✿✿

from
✿✿

r
✿✿

to
✿✿✿✿✿✿

r+ dr
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

n|r,r+dr = n(ln(r))dln(r).
✿✿✿✿

The
✿

first step of the initialization is finding
✿✿

to

✿✿✿

find
✿

the largest and
✿✿

the
✿

smallest initial super-droplet radius, rmax and rmin
✿✿✿✿

rmax
✿✿✿✿

and
✿✿✿✿

rmin. They are found iteratively, starting

with rmin = 10−9 m and rmax = 10−3
✿✿✿✿✿✿✿✿✿✿

rmin = 10−9
✿✿

m
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

rmax = 10−3 m. We require that they satisfy the condition30

n(ln(re))∆lrV ≥ 1, (2)
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where re is either rmax or rmin, n(ln(r)) is the initial droplet size distribution and ∆lr = (ln(rmax)− ln(rmin))/NSD
✿✿✿✿

rmax

✿✿

or
✿✿✿✿

rmin
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

∆lr = (ln(rmax)− ln(rmin))/NSD. In each iteration, if rmin (rmax
✿✿✿

rmin
✿✿✿✿✿✿

(rmax) does not satisfy (2), it is in-

creased (decreased) by 1%. Once rmin and rmax
✿✿✿✿

rmin
✿✿✿✿

and
✿✿✿✿

rmax
✿

are found, radius of one SD is randomly selected within

each bin of size ∆lr. Its multiplicity is given by ξ = n(ln(r))∆lrV . This
✿✿✿✿

NSD
✿✿✿✿✿✿✿✿✿✿✿✿

super-droplets
✿✿✿

are
✿✿✿✿✿✿✿

created.
✿✿✿✿✿✿

Radius
✿✿

of
✿✿✿

the
✿✿✿✿

i-th

✿✿✿

SD
✿✿

is
✿✿✿✿✿✿✿✿

initialised
✿✿✿

by
✿✿✿✿✿✿✿✿

randomly
✿✿✿✿✿✿✿✿

selecting
✿✿✿✿✿✿

ln(ri)
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

range
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(ln(rmin)+ (i− 1)∆lr, ln(rmin)+ i∆lr].
✿✿✿✿✿

Initial
✿✿✿✿✿✿✿✿✿✿

multiplicity
✿✿✿

of5

✿✿

the
✿✿✿✿

i-th
✿✿✿

SD
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ξi = ⌊n(ln(ri))∆lrV +0.5⌋.
✿✿✿✿✿✿

Please
✿✿✿✿

note
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿

NSD
✿✿✿✿✿✿

causes
✿✿✿✿

∆lr
✿✿

to
✿✿✿✿✿✿✿

decrease
✿✿✿✿

and
✿✿✿✿

this
✿✿

in
✿✿✿✿

turn
✿✿✿✿✿

gives

✿✿✿✿✿✿✿

relatively
✿✿✿✿✿

large
✿✿✿✿✿✿

values
✿✿

of
✿✿✿✿✿

rmin
✿✿✿

and
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿✿

small
✿✿✿✿✿✿

values
✿✿✿

of
✿✿✿✿✿

rmax.
✿✿

It
✿✿✿✿✿

means
✿✿✿✿

that
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

initialisation
✿

procedure does not rep-

resent well the tails of the distribution, especially for large NSD.
✿

It
✿✿✿✿

also
✿✿✿✿✿✿

means
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

“constant
✿✿✿✿✿

SD”
✿✿✿✿✿✿✿✿✿✿

initialisation
✿✿✿✿✿

with

✿✿✿✿✿✿✿✿✿

NSD =N0
✿✿

is
✿✿✿✿

not
✿✿✿✿✿✿✿✿✿

equivalent
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿✿✿✿✿✿✿✿

initialisation. Since the large tail is important for coalescence, we draw

additional ⌊
∫

∞

ln(rmax)
n(ln(r))dln(r)+ 0.5⌋

✿✿✿

add
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⌊
∫

∞

ln(rmax)
n(ln(r))dln(r)V +0.5⌋ super-droplets with ξ = 1

✿

to
✿✿✿

the
✿✿✿✿

cell.
✿✿✿✿✿

Their10

✿✿✿✿

radii
✿✿✿

are
✿✿✿✿✿✿✿

selected
✿✿

by
✿✿✿✿✿✿✿✿

randomly
✿✿✿✿✿✿✿

drawing
✿✿✿✿✿

ln(r) from the distribution for radii greater than rmax
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cn(ln(r))H(ln(r)− ln(rmax)),

✿✿✿✿✿

where
✿✿

C
✿✿

is
✿

a
✿✿✿✿✿✿✿✿✿✿✿

normalizing
✿✿✿✿✿✿✿

constant
✿✿✿

and
✿✿✿✿✿✿

H(x)
✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Heaviside
✿✿✿✿

step
✿✿✿✿✿✿✿

function. This makes the actual number of SDs
✿✿

N
✿

higher

than the prescribed value NSD, typically by ca. 1%. We do not add SDs from the small tail of the distribution, because very

small droplets are of little importance for rain formation. In this type of simulation, the time step
✿✿✿✿✿✿✿✿✿✿

simulations,
✿✿✿

the
✿✿✿✿✿✿✿✿

timestep

length is constant ∆t= 1 s. It is not adapted, as it is done in the “one-to-one” simulations, to make the simulation computa-15

tionally more efficient. Using constant time step
✿✿✿✿✿✿✿

timestep length can make the coalescence probability exceed unity. If it does,

it represent multiple collisions between
✿

is
✿✿✿✿✿✿✿

assumed
✿✿✿✿

that a pair of SDs (Shima et al., 2009). If multiplicity of a SD
✿✿✿✿✿✿

collides
✿✿✿✿✿

more

✿✿✿

than
✿✿✿✿✿

once
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿✿

timestep
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Shima et al., 2009).
✿✿✿✿✿

Then,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

procedure
✿✿✿

for
✿✿✿✿✿✿✿✿✿

calculating
✿✿✿✿✿✿✿✿✿✿✿✿✿

post-collisional
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿

(Eq.
✿✿

1)
✿✿

is

✿✿✿✿✿✿

applied
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

γ̃ =min(γ,ξi/ξj)
✿✿✿✿✿

times,
✿✿✿✿✿✿

where
✿✿✿✿✿

γ ≥ 1
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿

collisions
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

i-th
✿✿✿

and
✿✿✿

the
✿✿✿✿

j-th
✿✿✿

SD
✿✿✿

and
✿✿✿✿✿✿✿

ξi ≥ ξj .
✿✿✿✿✿

Such

✿✿✿✿✿✿✿

handling
✿✿

of
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿✿✿✿

collisions
✿✿✿✿

can
✿✿✿✿✿

cause
✿✿✿

the
✿✿✿✿✿✿✿

expected
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿

collisions
✿✿

to
✿✿

be
✿✿✿✿✿

lower
✿✿✿✿

than
✿✿✿

the
✿✿✿✿

real
✿✿✿

one
✿✿

if
✿✿✿✿✿✿✿✿✿

γ > ξi/ξj .
✿✿✿✿✿✿✿

Another20

✿✿✿✿✿✿✿✿✿✿✿

inconsistency
✿✿

is
✿✿✿

that
✿✿✿✿✿✿✿✿✿

rigorously,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

probability
✿✿

of
✿✿✿✿✿✿✿✿

collision
✿✿✿✿✿✿✿

between
✿✿✿✿

SDs
✿✿✿✿✿

should
✿✿✿✿✿✿✿

change
✿✿✿✿

after
✿✿✿✿

each
✿✿

of
✿✿✿

the
✿̃

γ
✿✿✿✿✿✿✿✿✿

collisions.
✿✿✿

For
✿✿✿✿✿

these

✿✿✿✿✿✿

reasons
✿✿✿✿✿✿✿

timestep
✿✿✿✿✿✿

length
✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿✿✿✿

carefully
✿✿✿✿✿✿✿

selected
✿✿

so
✿✿✿✿

that
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿✿✿✿

collisions
✿✿

do
✿✿✿✿

not
✿✿✿✿✿✿

happen
✿✿✿✿✿

often.
✿✿

If
✿✿✿

two
✿✿✿✿

SDs
✿✿✿✿

with
✿✿✿✿✿✿✿✿

identical

✿

ξ
✿✿✿✿✿✿✿

collide,
✿✿✿✿✿✿✿✿✿

multiplicity
✿✿✿

of
✿✿✿

one
✿✿

of
✿✿✿✿✿

them
✿

drops to zero, it
✿

.
✿✿✿✿✿

Then,
✿✿✿

the
✿✿✿

SD
✿✿✿✿

with
✿✿✿✿✿

ξ = 0
✿

is used to split the SD with
✿✿

the
✿

largest ξ in

the system into two.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿

different
✿✿✿✿

than
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shima et al. (2009) algorithm,
✿✿

in
✿✿✿✿✿

which
✿✿

a
✿✿✿

SD
✿✿✿✿

with
✿✿✿✿✿

ξ = 0
✿✿

is
✿✿✿✿✿

used
✿✿

to

✿✿✿

split
✿✿✿

the
✿✿✿✿✿

other
✿✿✿

SD
✿✿✿✿

that
✿✿✿✿

came
✿✿✿

out
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

collision
✿✿✿✿

that
✿✿✿✿✿✿

caused
✿✿

the
✿✿✿✿✿✿✿✿✿✿

multiplicity
✿✿

to
✿✿✿✿✿

drop
✿✿

to
✿✿✿✿

zero.
✿

Super-droplets are discarded after25

collision only if all other SDs have ξ = 1.

We use an implementation of the SDM from the libcloudph++ library (Arabas et al., 2015). It is an open-source project

available at https://github.com/igfuw/libcloudphxx.

3 Comparison of the “one-to-one” SDM with the master equation

✿✿✿

The
✿✿✿✿

goal
✿✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿

Section
✿✿

is
✿✿

to
✿✿✿✿✿

show
✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿

SDM
✿✿

is
✿✿

at
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿

level
✿✿✿

of
✿✿✿✿✿✿✿✿

precision
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

master
✿✿✿✿✿✿✿✿

equation.
✿✿✿

To30

✿✿✿

this
✿✿✿✿

end,
✿✿✿

we
✿✿✿✿✿✿✿

calculate
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿

droplet
✿✿✿✿

size
✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿

and
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿

of
✿✿✿✿✿

mass
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿✿✿✿

droplet
✿✿✿✿

from
✿✿✿

an
✿✿✿✿✿✿✿✿

ensemble

✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿✿✿✿✿✿

simulations.
✿✿✿

As
✿

a
✿✿✿✿✿✿✿✿✿

reference,
✿✿

we
✿✿✿✿

use
✿✿✿

the
✿✿✿✿✿

results
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Alfonso and Raga (2017),
✿✿✿✿

who
✿✿✿✿

used
✿✿✿

the
✿✿✿✿✿✿

master
✿✿✿✿✿✿✿✿

equation

✿✿✿✿✿✿✿

approach
✿✿

to
✿✿✿✿✿

study
✿✿✿

the
✿✿✿✿✿✿

sol-gel
✿✿✿✿✿✿✿✿✿

transition. In a system of aggregating particles, the sol-gel transition (gelation) occurs when most

5
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of the total mass is located in a single agglomerate (Leyvraz, 2003). For some forms of the coalescence kernel, the Smolu-

chowski equation is known not to conserve mass after the transition. Alfonso and Raga (2017) present numerical solutions

of the master equation for a small cloud volume undergoing the sol-gel transition, for which the Smoluchowski equation is

not valid. We perform simulations for the same setup to test if the “one-to-one” simulations are in agreement with the mas-

ter equation approach. Consider a 1 cm3 volume containing 20 droplets with the radius of 17 µm and 10 droplets of radius5

21.4 µm. Gravitational collision kernel is used with collision efficiencies from Hall (1980). Collision efficiencies are bilinearly

interpolated in the radius - ratio of radii space. Droplet terminal velocities are calculated using the formula from Beard (1976).

Figure 1 shows the average mass distribution obtained using the “one-to-one” simulations with and without linear sampling

of collision pairs. In the latter case, all NSD(NSD − 1)/2 collision pairs were
✿✿✿

The
✿✿✿✿✿✿✿

average
✿✿

is
✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿

from
✿✿✿

an
✿✿✿✿✿✿✿✿

ensemble

✿✿

of
✿✿✿✿✿✿✿

Ω= 104
✿✿✿✿✿✿✿✿✿✿

realizations
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿

case.
✿✿

In
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿✿

without
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

sampling,
✿✿

all
✿✿✿✿✿✿✿✿✿✿✿

N(N − 1)/2
✿✿✿✿✿✿✿✿

collision
✿✿✿✿

pairs
✿✿✿

are
✿

considered10

and a constant time step
✿✿✿✿✿✿

timestep
✿

∆t= 0.1 s was
✿✿

is used. Both appproaches give the same
✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿

give
✿✿✿✿✿✿

similar
✿

results,

what shows that the linear sampling technique does not affect the average number of collisions. In addition, the “one-to-

one” simulations are compared with the master equation approach
✿✿✿✿✿

solved
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿

method
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Alfonso and Raga (2017). Both

approaches are generally in agreement, with some differences at the large end of the distribution. These differences may be

caused by the way how the coalescence efficiency tables are interpolated. Another possible source of discrepancies is the15

numerical diffusion present in the finite-differences method of Alfonso (2015). To test if the “one-to-one” method also gives

correct fluctuations in the number of collisions, relative standard deviation of mass of the largest droplet σ(mmax)/〈mmax〉

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

σ(mmax)/〈mmax〉 is plotted in Fig. 2. “One-to-one
✿✿✿✿

This
✿✿✿✿✿

value
✿

is
✿✿✿

of
✿✿✿✿✿✿✿

interest,
✿✿✿✿✿✿

because
✿✿✿

the
✿✿✿✿✿✿

sol-gel
✿✿✿✿✿✿✿✿

transition
✿✿✿✿✿

time
✿✿✿✿✿✿✿✿

coincides
✿✿✿✿

with

✿✿

the
✿✿✿✿✿

time
✿✿

at
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

σ(mmax)/〈mmax〉
✿✿✿✿✿✿✿

reaches
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Leyvraz, 2003; Alfonso and Raga, 2017).
✿✿

In
✿✿✿✿

Fig.
✿✿

2,
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”

simulations, with and without linear sampling, are compared with SSA simulations
✿✿✿✿✿✿

results
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

master
✿✿✿✿✿✿✿✿

equation
✿✿✿✿✿✿✿✿

approach20

✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Alfonso and Raga (2017).
✿✿✿✿✿✿

Please
✿✿✿✿

note
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Alfonso and Raga (2017) obtained
✿✿✿✿✿

values
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

σ(mmax)/〈mmax〉
✿✿✿✿✿

from

✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿

SSA
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿

rather
✿✿✿✿

than
✿✿✿

by
✿✿✿✿✿✿

solving
✿✿✿

the
✿✿✿✿✿✿

master
✿✿✿✿✿✿✿✿

equation,
✿✿

as
✿✿✿✿

was
✿✿✿

the
✿✿✿✿

case
✿✿

in
✿✿✿✿

Fig.
✿

1. As in Fig. 1, we do not

observe any negative effect of using the linear sampling technique and the “one-to-one” simulations compare relatively well

with the SSA. Possible sources if
✿✿

of discrepancies are the same as in Fig. 1. Judging from Figs. 1 and 2, we conclude that the

“one-to-one” approach is in agreement with the master equation approach. It accounts for the correlations in the number of25

droplets per size-bin and as such is more fundamental than the Smoluchowski equation approach.

The “one-to-one” SDM with linear sampling is computationally more efficient than solving the master equation directly, or

using the SSA. It also puts no constraints on the initial distribution of droplets. Therefore we can use SDM to predict gelation

times for larger systems and more realistic initial conditions. We use an initial droplet distribution that is exponential in mass

n(m) = n0

m exp(−m/m), where n(m)dm is the number of droplets in mass range (m,m+ dm) in unit volume, n0 = 14230

cm−3 and m is the mass of a droplet with radius r = 15 µm. This is the same distribution as in Onishi et al. (2015). The

total initial number of droplets in the system is N0 = n0V . Results of the “one-to-one” simulations for N0 up to 105 are

shown in Fig. 3. For N0 ≥ 102, the relative standard deviation of mass of the largest droplet , which quantifies amplitude of

fluctuations, decreases with increasing system
✿✿✿

cell
✿

size. This can be understood if we look at a larger cell as an ensemble

of ten smaller cells. Comparing between independent realizations, variability in the size of the single, largest droplet will be35

6
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Figure 1. Mass of droplets per size bin at t= 2500 s. Bins are 1 µm wide. Points depict an averaged result of Ω= 104 “one-to-one”

simulations with and without linear sampling of collision pairs. Error bars show a 95% confidence interval. Line depicts a numerical solution

of the master equation (see Fig. 8 in Alfonso and Raga (2017), data courtesy of L. Alfonso).

smaller if this droplet is selected from ten cells in each realization than if it was selected from only a single cell per realization.

Interestingly, for N0 = 105 an inflection point appears around t= 500 s. It is not seen in smaller cells. This indicates that

some new source of variability is introduced. We believe that it is associated with collisions between large rain drops. We will

come back to this in Sec. 5. The sol-gel transition time coincides with the time at which σ(mmax)/〈mmax〉 reaches maximum

(Leyvraz, 2003; Alfonso and Raga, 2017). Intuitively, we would expect the time for most of the mass to accumulate in a single5

agglomerate to increase with increasing system
✿✿✿

cell
✿

size. This turns out to be true for systems
✿✿✿✿

cells with N0 > 103. For system

✿✿✿

cell sizes 102 <N0 < 103 gelation time is approximately the same, around 300 s.

4 Fluctuations in conversion to rain drops and validity of the “constant SD” SDM

Fluctuations in time of conversion of cloud droplets to rain drops were studied using direct numerical simulations by

Onishi et al. (2015). Following their notation, by t10% we denote time after which 10% of mass of cloud droplets is turned10

into droplets with r > 40 µm. Droplets of this size should then quickly grow through coalescence. The time t10% is used as a

measure of efficiency of rain production. We will compare results of the “one-to-one” simulations with DNS and try to deter-

7
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Figure 2. Relative standard deviation of mass of the largest droplet in the system. Details of the SDM simulations are given in the caption

of Fig. 1. Size of the ensamble
✿✿✿✿✿✿

ensemble
✿

of SSA simulations is Ω= 103. The SSA results are taken from Fig.7 in Alfonso and Raga (2017)

(data courtesy of L. Alfonso).

mine how many SDs are needed in the “constant SD” simulations to accurately represent coalescence. The same initial droplet

distribution and coalescence kernel is used
✿✿

are
✿✿✿

the
✿✿✿✿✿

same as in Sec. 3.

In Fig. 4, values of mean t10% for different initial number of droplets are plotted against the number of SDs. Results of

both the “one-to-one” (rightmost points in each series) and the “constant SD” (rest of the points in the series) simulations are

presented. For comparison, t10% obtained by solving the Smoluchowski equation using the Bott algorithm is plotted (Bott,5

1998). In the Bott algorithm, we used ∆t= 1 s and mass bin spacing mi+1 = 21/10mi. The same parameters were used in

each
✿✿✿

any
✿✿✿✿

Bott
✿

simulation presented in this manuscript. Convergence tests were done for each case. The “one-to-one” results

converge with increasing system
✿✿✿

cell volume (i.e. increasing N0) to a value higher than the Smoluchowski result. The difference

is probably caused by the numerical diffusion of the Bott algorithm. In the “constant SD” simulations, error caused by using

SDs with ξ > 1 weakly depends on the system
✿✿✿

cell size. Using 103 SDs gives 〈t10%〉 within 1% of the “one-to-one” value.10

Using 102 SDs causes about 10% difference. This shows that, in terms of computational cost, it is relatively cheap to obtain a

good estimate of the average result of coalescence using the SDM. The SDM results are also compared with the results of DNS,

in which air turbulence was not modelled, but hydrodynamic interactions between droplets were accounted for. We choose this

kind of DNS, because it should be well described by the Hall kernel that is used in the SDM and in the Smoluchowski equation.
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Figure 3. Relative standard deviation of mass of the largest droplet for different system
✿✿

cell
✿

sizes. Estimated from ensembles of Ω= 104

“one-to-one” simulations for each value of N0.

It turns out that the Hall kernel gives too short autoconversion times. The same issue was observed by Onishi et al. (2015) (cf.

Fig. 1(b) therein).

To analyze the amplification of fluctuations in the “constant SD” method, we plot the relative standard deviation of t10% in

Fig. 5. For reference, results of DNS from Onishi et al. (2015) are shown. Results from our “one-to-one” simulations are in

good agreement with them
✿✿✿

the
✿✿✿✿

DNS. Small discrepancies are probably caused by the fact that the DNS included turbulence of5

various strength for different N0. Results of the “one-to-one” simulations were fitted with the function α
√

1/N0 , resulting in

α= 6. Figure 5 also presents fluctuations in the “constant SD” simulations for various NSD. This type of simulations gives

correct amplitude of fluctuations only for relatively low values of the ratio N0/NSD. For constant NSD, as N0 increases,

the amplitude of fluctuations decreases correctly. Then, above some critical value of the N0/NSD ratio, fluctuations stop to

decrease and remain constant independent of the system
✿✿✿

cell size. This is a result of introducing unrealistic correlations between10

droplet sizes,
✿✿✿✿✿

which
✿✿

is a consequence of the
✿✿✿✿✿

using low number of simulational
✿✿✿✿✿✿✿✿✿✿✿

computational
✿

particles (Bayewitz et al., 1974).

✿✿

To
✿✿✿✿✿

show
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿✿✿✿✿

technique
✿✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿✿✿✿

contribute
✿✿

to
✿✿✿✿

this
✿✿✿✿✿

effect,
✿✿✿

we
✿✿✿✿

plot
✿✿✿✿✿

result
✿✿✿

of
✿

a
✿✿✿✿✿✿✿✿

“constant
✿✿✿✿✿

SD”
✿✿✿✿✿✿✿✿✿

simulation

✿✿✿✿✿✿

without
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

sampling
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

NSD = 32,
✿✿✿✿✿

which
✿✿

is
✿✿✿

the
✿✿✿✿✿

same
✿✿✿

as
✿✿✿

for
✿✿✿✿✿✿✿✿✿

NSD = 32
✿✿✿✿✿

with
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

sampling. We show the limiting,

minimal value of relative standard deviation of t10% in Fig. 6. It decreases as β
√

1/NSD, with β = 2. By comparing it with

α= 6, we conclude that in order to obtain correct fluctuations in t10% ,
✿✿✿✿

using
✿✿✿✿✿✿✿✿✿

“constant
✿✿✿✿

SD”
✿✿✿✿✿✿✿✿✿✿

simulations,
✿✿✿

the number of SDs15
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Figure 4. Mean t10% for different system
✿✿✿

cell sizes and different numbers of computational droplets NCD . In SDM simulations, NCD =

NSD and in DNS, NCD =N0. The single DNS result is taken from Onishi et al. (2015) (the NoT-HI case therein). Ensemble sizes are

Ω≥ 103 for SDM simulations and Ω= 102 for DNS. The 95% confidence intervals are smaller than plotted points. The rightmost point in

each SDM series comes from the “one-to-one” simulations. Other points in SDM series are
✿✿✿✿

come from the “constant SD” simulations with

various values of NSD . The horizontal line is a value obtained by numerically solving the Smoluchowski equation using the flux method

from Bott (1998).

has to be NSD ≥ 1
9N0. Using so many SDs is not feasible in Large Eddy Simulations (LES), but is possible in smaller scale

simulations. Also, knowing α and β, we can estimate the magnitude of fluctuation amplification in the “constant SD” SDM.

5 Validity of the Smoluchowski equation

The Smoluchowski equation presents a mean-field description of the evolution of the size spectrum. It is exact only in the

thermodynamic limit (V →∞). We will try to determine minimal system
✿✿✿

cell size for which the Smoluchowski equation can5

be used without introducing major errors. To do so, we analyze the evolution of θ, the ratio of rain water (r ≥ 40 µm) content

to the total water content. Onishi et al. (2015) denote this value by τ . We do not adopt this notation to avoid confusion with the

characteristic time.

We compare results of the “one-to-one” simulations with solutions of the Smoluchowski equation for two cases - with fast

and
✿✿✿✿

with slow rain development. In both cases collision efficiencies for large droplets are taken from Hall (1980) and for small10

droplets from Davis (1972). In the first case
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

with
✿✿✿

fast
✿✿✿✿✿✿✿✿✿✿✿

development
✿✿✿

of
✿✿✿✿

rain, we use the same initial distribution

10
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results are taken from Onishi et al. (2015). Where not shown, errorbars are smaller than plotted points. The value α= 6 was obtained by

curve fitting to the “one-to-one” results.
✿✿✿

The
✿✿✿✿✿✿✿

acronym
✿✿✿

NLS
✿✿

in
✿✿✿

the
✿✿✿✿✿

legend
✿✿✿✿✿

stands
✿✿✿

for
✿✿✿

“no
✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

sampling”.

as in Secs. 3 and 4, which results in rapid rain development. As seen in Fig. 7, the Smoluchowski equation gives correct

mean rain development rate for systems
✿✿✿✿

cells with N0 ≥ 104. The Smoluchowski curve is slightly shifted left, probably due

to the numerical diffusion of the Bott algorithm, as discussed in Sec. 4. In systems
✿✿✿

cells
✿

smaller than N0 = 104, rain develops

slower than predicted by the Smoluchowski equation. Agreement of stochastic coalescence in large systems
✿✿✿

cells
✿

with the

Smoluchowski equation for a similar initial distribution was shown in
✿✿✿✿

using
✿✿✿

the
✿✿✿✿

SSA
✿✿✿

by Seesselberg et al. (1996). Onishi et al.5

(2015) present figures similar to Fig. 7, but obtained from DNS runs for N0 = 7.24 · 104 (Fig. 1(b) therein). They also show

good agreement between model results
✿✿✿✿

DNS
✿

and the Smoluchowski equation
✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

kernel
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

Long (1974), at least up to

t= 330 s.
✿✿

If
✿✿✿

the
✿✿✿✿

Hall
✿✿✿✿✿

kernel
✿✿

is
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿

equation,
✿✿✿✿✿✿✿✿✿✿✿✿✿

autoconversion
✿✿

is
✿✿✿✿✿✿

quicker
✿✿✿✿

than
✿✿

in
✿✿✿

the
✿✿✿✿✿

DNS,
✿✿

as
✿✿✿✿✿✿✿✿✿

discussed
✿✿

in

✿✿✿

Sec.
✿✿

4.
✿

The second case is well
✿✿✿✿✿

Next,
✿✿✿

we
✿✿✿✿✿✿✿

validate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿✿

equation
✿✿

in
✿✿

a
✿✿✿✿

setup
✿✿✿✿✿

with
✿✿✿✿

slow
✿✿✿✿

rain
✿✿✿✿✿✿✿✿✿✿✿

development.
✿✿✿✿

This
✿✿✿✿✿

time10

✿✿

the
✿✿✿✿✿✿

initial
✿✿✿✿✿✿

droplet
✿✿✿✿

size
✿✿✿✿✿✿✿✿✿

distribution
✿✿

is
✿

below the size gap, i.e. the range of radii for which both collisional and condensational

growths are slow. We use r = 9.3 µm and n0 = 297 cm−3 as in Wang et al. (2006). In addition, we cut the distribution to 0 at

r = 20
✿✿

for
✿✿✿✿✿✿

r ≥ 20
✿

µm. This cutoff is used in the SDM modelling as well as when solving the Smoluchowski equation. That

way we get rid of the occasional very large SDs present at t= 0 in some realizations of the SDM. For these initial conditions,

rain development takes much longer and fluctuations can play a bigger role. Results are presented in Fig. 8. Again, we see15
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Figure 6. Minimal
✿✿✿✿

Points
✿✿✿✿✿

depict
✿✿✿

the
✿✿✿✿✿✿

minimal, limiting value of the relative standard deviation of t10% for a given number of super-droplets

(squares) in “constant SD” simulations. It
✿✿

For
✿✿✿✿

each
✿✿✿✿

value
✿✿✿

of
✿✿✿✿

NSD ,
✿✿✿

the
✿✿✿✿✿✿

minimal
✿✿✿✿✿

value
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

σ(t10%)/〈t10%〉
✿

is calculated as an average of the

✿✿✿✿✿✿✿

respective
✿

points to the right of the α/
√
N0 curve in Fig. 5. Line is

✿✿✿✿✿

depicts the fitted function β/
√
NSD with β = 2.

convergence of the “one-to-one” simulations to the Smoluchowski result, but in this case the system
✿✿✿

cell
✿

has to be larger

(N0 ≥ 107) for the Smoluchowski equation to be valid. The way how the “one-to-one” curves converge to the Smoluchowski

curve is interesting. As in the first case, in smaller systems
✿✿✿

cells
✿

rain appears later than in larger systems
✿✿✿

cells. On the other

hand, the rain formation rate (the slope of the curves in Fig. 8) in smaller systems
✿✿✿✿

cells starts to decrease at higher values of

θ than in larger systems
✿✿✿✿

cells. In consequence, smaller systems
✿✿✿✿

cells can produce higher rain ratio than larger ones, although5

they started producing rain later (e.g. compare curves for N0 = 105 and N0 = 107 for t > 4200 s). The decrease in the rain

formation rate is associated with the decrease in the concentration of rain drops nr, plotted in Fig. 9. Number of rain drops

decreases due to collisions between drops from this category. A single drop that is produced in such collision is less efficient

at scavenging cloud droplets than the two pre-collision drops. In result, growth rate of θ decreases. Using large well-mixed

volumes may introduce additional, unrealistic rain-rain collisions. Consider two droplets within a large cell that independently10

grow to the rain category. They have to be separated enough not to deplete liquid water from each other’s surrounding as they

grow. If we assume that the cell is well-mixed, they can immediately collide
✿✿✿✿✿

collide
✿✿✿✿✿✿✿✿✿✿✿

immediately
✿

after becoming rain drops

and generate an even larger drop. In reality, they could collide only after some time after becoming rain drops, because first

they would need to overcome the initial separation. This means that using large well-mixed volumes, e.g. in the Smoluchowski
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Figure 7. Rain content ratio θ for different system
✿✿

cell
✿

sizes averaged over ensembles of Ω= 103 simulations. Shaded regions show one

standard deviation interval.

equation, may result in underestimating the amount
✿✿

an
✿✿✿✿✿✿✿

artificial
✿✿✿✿✿✿✿✿

decrease
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿

rain
✿✿✿✿✿

drops
✿✿✿✿

and
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimation

✿✿

of
✿✿✿✿

mass
✿

of rain produced.

In coalescence cells with N0 ≤ 104, we do not observe the decrease in the number of rain drops within 5000 s, probably

because sizes of rain drops are similar. In larger cells, more rain drops with a broader distribution are formed. In consequence,

they collide more often, which decreases their number and the rate of collection of cloud droplets. It is likely that the additional5

rain-rain collisions in large volumes are responsible for the additional inflection point around t= 500 s in the plot of the

relative standard deviation of the largest droplet mass for N0 = 105 (cf. Fig. 3). They could also lead to the deviation from

the ∼ 1/
√
N0 scaling seen

✿✿✿✿✿

shown
✿

in Fig. 5. Fluctuations in cells with N0 = 107 are greater than predicted using this scaling.

We also observe that , although the amount of rain water depends strongly
✿✿

for
✿✿✿✿✿✿✿✿

t≤ 3000
✿✿

s,
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿

rain
✿✿✿✿✿

drops
✿✿✿✿✿

does
✿✿✿

not

✿✿✿✿✿✿

depend on cell size , the number of rain drops does not
✿✿✿

(c.f.
✿✿✿✿

Fig.
✿✿✿

9),
✿✿✿

but
✿✿✿

the
✿✿✿✿

mass
✿✿

of
✿✿✿✿

rain
✿✿✿✿✿

water
✿✿✿✿

does
✿✿✿✿

(c.f.
✿✿✿✿

Fig.
✿✿

8). In larger cells10

rain drops acquire larger sizes through collisions with cloud droplets, but rate of autoconversion of cloud droplets to rain drops

is not affected much by cell size.

13



−0.2

0

0.2

0.4

0.6

0.8

1

2000 2500 3000 3500 4000 4500 5000

〈θ
〉

time [s]

"one-to-one", N0 = 103

"one-to-one", N0 = 104

"one-to-one", N0 = 105

"one-to-one", N0 = 106

"one-to-one", N0 = 107

Smoluchowski

Figure 8. As in Fig. 7, but for an initial distribution with r = 9.3 µm, n0 = 297 cm−3 and a cutoff at r = 20 µm. The ensamble
✿✿✿✿✿✿✿

ensemble

size is Ω= 108/N0.

Table 1. Average ,
✿✿✿

and standard deviation and sample size of time (in seconds) for the lucky realizations to produce
✿

a
✿

single rain drop
✿✿✿

with

✿✿✿✿✿

r ≥ 40
✿✿✿

µm.
✿✿

γ
✿

is
✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿

the
✿✿✿✿✿

fastest
✿✿✿✿✿✿✿✿✿

realizations
✿✿

out
✿✿

of
✿✿✿

all
✿

Ω
✿✿✿✿✿✿✿✿✿

realizations
✿✿✿

that
✿✿✿✿

were
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿

compute
✿✿✿

the
✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿

〈t40〉γ
✿✿✿

and
✿✿✿✿✿✿

σ(t40)γ .
✿✿✿✿

The

✿✿✿✿✿✿✿✿✿✿

sub-ensemble
✿✿✿

size
✿✿✿

γΩ
✿✿

is
✿✿✿✿✿

shown
✿✿

to
✿✿✿

give
✿✿

an
✿✿✿✿

idea
✿✿✿✿

about
✿✿✿✿✿✿✿

precision
✿✿

of
✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿

statistics.

γ = 10−4 γ = 10−3 γ = 10−2 γ = 10−1 γ = 1

N0 〈t40〉γ σ(t40)γ γΩ 〈t40〉γ σ(t40)γ γΩ 〈t40〉γ σ(t40)γ γΩ 〈t40〉γ σ(t40)γ γΩ 〈t40〉γ σ(t40)γ γΩ

102 2052 212 10 2930 356 10 4053 517 102 6365 1158 103 14777 6099 103

103 1366 120 102 1762 170 103 2400 267 104 3440 505 105 6500 1700 106

104 1089 173 3 1336 103 10 1717 176 102 2354 276 103 3912 764 104

105 946 33 2 1090 60 20 1334 85 200 1721 169 2000 2552 415 104

106 1038 165 2 1301 176 20 1831 277 102

6 Lucky droplets

There is a well-established idea that some droplets undergo series of unlikely collisions and grow much faster than an average

droplet (Telford, 1955; Scott, 1967; Marcus, 1968; Robertson, 1974; Mason, 2010). These few lucky droplets are argued

to be responsible for droplet spectra broadening and rain forming quicker than predicted by the Smoluchowski equation.

Luck is supposed to be especially important during crossing of the size gap, when collisions happen rarely (Robertson, 1974;5
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Figure 9. Mean concentration of rain drops from the same simulations as in Fig. 8.

Kostinski and Shaw, 2005). A single droplet that would cross the size gap through lucky collisions could then initiate a cascade

of collisions. Theoretical estimation of the “luck factor” was presented in Kostinski and Shaw (2005). We use the “one-to-one”

simulations to test predictions from that paper.

We are interested in time t40 it takes for the largest droplet in the system to grow
✿✿✿✿

until
✿✿✿

the
✿✿✿✿

first
✿✿✿✿✿✿

droplet
✿✿✿✿✿

grows
✿

to r = 40

µm. We perform simulations for the same initial distribution
✿✿✿✿✿✿✿✿

ensembles
✿✿

of
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

for
✿✿✿✿✿✿✿

different
✿✿✿✿

cell
✿✿✿✿

sizes
✿✿✿✿

N0.
✿✿✿✿

Size
✿✿

of
✿✿✿

an5

✿✿✿✿✿✿✿✿

ensemble
✿✿

is
✿✿✿✿✿✿✿

denoted
✿✿

by
✿✿✿

Ω.
✿✿✿✿

The
✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿

is
✿✿✿

the
✿✿✿✿✿

same
✿

as in the second case in Sec. 5. The mean radius is r = 9.3

µm, well below the size gap. From an ensemble of Ω realizations
✿✿✿

The
✿✿✿✿✿✿

liquid
✿✿✿✿✿

water
✿✿✿✿✿✿

content
✿✿

is
✿✿✿✿✿✿✿

1g/cm3
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿

is

✿✿✿

297
✿✿✿✿✿✿

cm−3,
✿✿

so
✿✿✿

the
✿✿✿✿✿✿✿

smallest
✿✿✿

cell
✿✿✿✿

that
✿✿✿

has
✿✿✿✿✿✿✿

enough
✿✿✿✿✿

water
✿✿

to
✿✿✿✿✿✿✿

produce
✿

a
✿✿✿✿✿✿

droplet
✿✿✿✿

with
✿✿✿✿✿✿

r = 40
✿✿✿

µm
✿✿

is
✿✿✿✿✿✿✿✿

N0 ≈ 80.
✿✿✿✿✿✿✿✿✿

Therefore
✿✿✿

the
✿✿✿✿✿✿✿

smallest

✿✿✿

cell
✿✿✿✿

size
✿✿

we
✿✿✿✿✿✿✿✿

consider
✿✿

is
✿✿✿✿✿✿✿✿✿

N0 = 102.
✿✿✿

For
✿✿✿✿

each
✿✿✿✿✿

value
✿✿

of
✿✿✿

N0, we select sub-ensembles of luckiest realizations, i.e. those with the

smallest t40. We consider sub-ensembles of size γΩ with log10(γ) =−4,−3,−2,−1,0. In each sub-ensemble, we calculate10

the mean 〈t40〉γ and the standard deviation σ(t40)γ , where the subscript γ denotes the size of the sub-ensemble from which

the statistic was
✿✿✿✿✿✿✿

statistics
✿✿✿✿

were
✿

calculated. The results for different cell sizes are shown in Tab. 1.

There is a large variability in 〈t40〉γ with cell size. This is caused by the fact that t40 depends only on a single largest droplet.

Larger cells contain more droplets, so probability of producing single large droplet increases with cell size. We notice that

〈t40〉γ is approximately the same along the diagonals of Tab. 1. For example, a
✿

cell containing 106 droplets on average will15

produce first rain droplet in 30 minutes. If we divided it into 10 cells with 105 droplets each, the luckiest one
✿✿

out
✿✿

of
✿✿✿

ten
✿

would

also produce a droplet in 30 minutes on average. This shows that using large coalescence cells does not affect formation of

15



first rain drops. The differences discussed in previous Sections emerge later, when there are already some rain drops that can

collide with each other. Moving to very small cells, we no longer observe same 〈t40〉γ along the diagonals. Ten cells with

N0 = 102 produce rain drops slower than a single cell with N0 = 103. This is due to depletion of water droplets in small cells

. The largest droplet a
✿✿

To
✿✿✿✿✿

depict
✿✿✿✿

that
✿✿✿

size
✿✿✿

of
✿

a
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿

cell
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿

affect
✿✿✿✿✿✿✿✿✿

formation
✿✿

of
✿✿✿✿

first
✿✿✿

rain
✿✿✿✿✿✿

drops,
✿

it
✿✿

is
✿✿✿✿✿✿

helpful
✿✿

to
✿✿✿✿✿

think

✿✿✿✿

about
✿✿✿

the
✿✿✿✿

test
✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿

this
✿✿✿✿✿✿✿

Section
✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿

simulation
✿✿

of
✿

a
✿✿✿✿✿

large
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿

initially
✿✿✿✿✿✿✿✿✿

containing
✿✿✿✿✿✿✿✿✿✿✿

Ntot =N0/γ
✿✿✿✿✿✿✿

droplets
✿✿✿✿✿✿

divided
✿✿✿✿

into5

✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿

cells
✿✿

of
✿✿✿✿

size
✿✿✿

N0.
✿✿✿✿

We
✿✿✿

are
✿✿✿✿✿✿✿✿

interested
✿✿

in
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿

time
✿✿✿✿✿

〈t40〉
✿✿✿

for
✿✿✿

the
✿✿✿

first
✿✿✿✿✿✿✿

droplet
✿✿✿

out
✿✿

of
✿✿

all
✿✿✿✿✿

Ntot
✿✿✿✿✿✿✿

droplets
✿✿

to
✿✿✿✿✿

grow
✿✿

to

✿✿✿✿✿

r = 40
✿✿✿✿

µm.
✿✿

In
✿✿✿✿

Fig.
✿✿

10
✿✿✿

we
✿✿✿✿

plot
✿✿✿✿

〈t40〉
✿✿✿✿✿✿

against
✿✿✿✿✿

Ntot
✿✿

for
✿✿✿✿✿✿✿✿

different
✿✿✿✿

sizes
✿✿

of
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿

cell.
✿✿

It
✿✿

is
✿✿✿✿

seen
✿✿✿

that
✿✿✿✿✿

〈t40〉
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿

depend
✿✿✿

on

✿✿✿

N0.
✿✿✿✿✿

Even
✿✿✿✿

using
✿✿

a
✿✿✿✿✿✿✿✿✿✿

coalescence cell with N0 = 102can produce has r ≈ 43 µm, close to the 40 µm rain threshold
✿

,
✿✿

in
✿✿✿✿✿

which
✿✿✿✿✿

there

✿

is
✿✿✿✿✿✿

barely
✿✿✿✿✿✿

enough
✿✿✿✿✿

water
✿✿

to
✿✿✿✿✿✿✿

produce
✿✿

a
✿✿✿✿

drop
✿✿✿✿

with
✿✿✿✿✿✿

r = 40
✿✿✿

µm,
✿✿✿✿

does
✿✿✿✿

not
✿✿✿✿✿✿

change
✿✿✿

the
✿✿✿✿✿

results.

Kostinski and Shaw (2005) estimate that the luckiest 10−3 fraction of droplets should cross the size gap around six times10

faster than average , while the luckiest 10−5 around nine times faster. We compare these values with our simulations for

N0 = 103. We choose this cell size, because it is the smallest one for which water depletion does not affect t40. As
✿✿✿✿

Next
✿✿✿

we

✿✿✿✿✿✿✿

calculate
✿✿✿

the
✿✿✿✿✿

“luck
✿✿✿✿✿✿

factor”,
✿✿✿

i.e.
✿✿✿✿

how
✿✿✿✿✿

much
✿✿✿✿✿

faster
✿✿✿

the
✿✿✿✿✿✿✿

luckiest
✿✿✿✿✿✿✿

droplets
✿✿✿✿

grow
✿✿✿

to
✿✿✿✿✿

r = 40
✿✿✿✿

µm
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿

droplets.
✿✿✿

To

✿✿✿✿✿✿✿

calculate
✿✿

it
✿✿✿

we
✿✿✿

use
✿✿✿

the
✿✿✿✿

data
✿✿✿

for
✿✿✿✿✿✿✿✿

N0 = 102,
✿✿✿✿✿✿✿

because
✿✿✿✿✿

cells
✿✿

of
✿✿✿

this
✿✿✿✿

size
✿✿✿

can
✿✿✿✿✿✿✿

produce
✿✿✿✿

only
✿✿

a
✿✿✿✿✿

single
✿✿✿✿✿✿

droplet
✿✿✿✿

with
✿✿✿✿✿✿

r = 40
✿✿✿✿

µm.
✿✿✿✿✿✿

Larger

✿✿✿✿

cells
✿✿✿✿✿✿

behave
✿✿✿

like
✿✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿✿

cells
✿✿✿✿

with
✿✿✿✿✿✿✿✿

N0 = 102
✿✿

as
✿

far as t40 is concerned, larger cells behave exactly like an ensemble15

of cells of this size
✿✿

so
✿✿✿✿✿✿✿✿✿

calculating
✿✿✿

the
✿✿✿✿✿✿

“luck
✿✿✿✿✿✿

factor”
✿✿✿✿✿

using
✿✿✿

t40
✿✿✿✿✿

from
✿✿✿✿✿

larger
✿✿✿✿✿

cells
✿✿✿✿✿

would
✿✿✿✿

tell
✿✿

us
✿✿✿✿

how
✿✿✿✿✿

much
✿✿✿✿✿✿

faster
✿✿✿

the
✿✿✿✿✿✿✿

luckiest

✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿✿✿✿

droplets
✿✿✿✿✿✿✿✿

produces
✿

a
✿✿✿✿

rain
✿✿✿✿✿✿

droplet,
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿

an
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿

ensemble
✿

-
✿✿

a
✿✿✿✿✿✿✿

quantity
✿✿✿✿

that
✿✿

we
✿✿✿

are
✿✿✿✿

not
✿✿✿✿✿✿✿✿

interested
✿✿

in. We

find 〈t40〉10−3/〈t40〉1 ≈ 3.7 and 〈t40〉10−5/〈t40〉1 ≈ 6
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

〈t40〉1/〈t40〉10−3 ≈ 5
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

〈t40〉1/〈t40〉10−5 ≈ 11. The value of 〈t40〉10−5

was estimated at 1090
✿✿✿✿

1366
✿

s based on values along the diagonal for larger γ and larger N0. These ratios are lower than

given in Kostinski and Shaw (2005) , showing that their theoretical analysis slightly overestimates the “luckiness” in droplet20

growth
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kostinski and Shaw (2005) estimate
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

luckiest
✿✿✿✿✿

10−3
✿✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿✿✿✿

droplets
✿✿✿✿✿✿

should
✿✿✿✿✿

cross
✿✿✿

the
✿✿✿

size
✿✿✿

gap
✿✿✿✿✿✿

around
✿✿✿

six
✿✿✿✿✿

times

✿✿✿✿

faster
✿✿✿✿

than
✿✿✿✿✿✿✿

average,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿✿

luckiest
✿✿✿✿

10−5
✿✿✿✿✿✿

around
✿✿✿✿

nine
✿✿✿✿✿

times
✿✿✿✿✿

faster.
✿✿✿✿✿

These
✿✿✿✿✿✿

values
✿✿✿

are
✿✿

in
✿✿✿✿

good
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿✿

with
✿✿✿

our
✿✿✿✿✿✿✿✿✿✿

observations.

7 Size of a well-mixed coalescence cell

In the previous Sections we have seen that size of the coalescence cell has a profound impact on the evolution of the system.

In this Section we estimate the size of a cell that can be assumed to be well-mixed. All methods in which probability of25

collision of droplets depends only on the instantaneous state of the cell and not on its history rely on the assumption that the

cell is well-mixed. This includes the master equation, SSA, SDM as well as the Smoluchowski equation. The assumption that

a cell is well-mixed is valid if τmix ≪ τcoal, where τcoal and τmix
✿✿✿✿✿✿✿✿✿✿✿

τmix ≪ τcoal,
✿✿✿✿✿

where
✿✿✿✿✿

τcoal
✿✿✿

and
✿✿✿✿

τmix
✿

are the characteristic

times for coalescence and cell homogenization, respectively (Lehmann et al., 2009; Gillespie et al., 2014). By well-mixed we

mean that droplets should be distributed homogeneously within the cell before every collision. Droplet coalescence generates30

inhomogeneities, i.e. correlations between droplet positions and sizes.

Rigorously, characteristic time for coalescence is the mean time between coalescence events, as in diffusion-limited chem-

ical systems (Gillespie et al., 2014). To estimate its magnitude, consider a single large collector droplet falling through
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Figure 10.
✿✿✿✿

Mean
✿✿✿✿

time
✿✿✿✿

until
✿

a
✿✿✿✿✿

system
✿✿

of
✿✿✿✿

Ntot
✿✿✿✿✿✿✿

droplets
✿✿✿✿✿✿✿

produces
✿✿✿

first
✿✿✿✿✿

droplet
✿✿✿✿

with
✿✿✿✿✿✿✿✿

r = 40µm.
✿✿✿✿

The
✿✿✿✿✿

system
✿✿

is
✿✿✿✿✿✿

divided
✿✿✿

into
✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿

cells
✿✿

of

✿✿✿

size
✿✿✿

N0.
✿✿✿

The
✿✿✿✿✿

figure
✿✿

is
✿✿✿✿

based
✿✿

on
✿✿✿

the
✿✿✿✿✿

results
✿✿

of
✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

given
✿✿

in
✿✿✿

Tab.
✿✿

1.
✿

a field of smaller droplets. Using geometric coalescence kernel with efficiency E, the mean time between collisions is

τcoal = (Eπ(rl + rs)
2vrns)

−1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

τcoal = (Eπ(rl + rs)
2vrns)

−1, where rl and rs are radii of large and small droplets, vr is the

relative velocity and ns is the concentration of small droplets. For rl = 100 µm, rs = 10 µm, vr = 70 cm/s, E = 1 and ns = 100

cm−3 we get τcoal ≈ 0.4 s.
✿✿✿✿✿✿✿✿✿

τcoal ≈ 0.4
✿✿

s.

Droplets in the cell can be mixed through turbulence. Turbulence acts similarly to diffusion and its characteristic time5

for mixing is τ tmix = (V (2/3)/ε)(1/3)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

τ tmix = (V (2/3)/ε)(1/3), where V is cell volume and ε is turbulent energy dissipation

rate (Lehmann et al., 2009). Turbulent energy dissipation rate in clouds is in the range from 10 cm2/s3 for stratocumulus

clouds to 103 cm2/s3 for cumulonimbus clouds (Malinowski et al., 2013; Grabowski and Wang, 2013). Let us assume that

τ tmix ≪ τcoal
✿✿✿✿✿✿✿✿✿✿

τ tmix ≪ τcoal
✿

is satisfied if τ tmix = 0.1τcoal
✿✿✿✿✿✿✿✿✿✿✿✿

τ tmix = 0.1τcoal. Even in the most turbulent clouds, this means that

the coalescence cell has to be very small V ≈ 1.5 · 10−2cm3. On average, this volume would contain around one droplet,10

depending on concentration of droplets. For such small coalescence volumes, the Smoluchowski is not valid and SDM would

be very cumbersome, because extremely short time steps
✿✿✿✿✿✿✿✿

timesteps would be required. To use larger cells, we need to choose

some less strict value of characteristic time of coalescence. Some larger cell size, that would be approximately well-mixed,

could be found phenomenologically through fine-grid simulations including droplet motion. One example of such reference

simulations are DNS runs from Onishi et al. (2015) discussed in Sec. 5. They prove that in the case with r = 15 µm, the15

Smoluchowski equation gives correct results. This suggests that cells with N0 ≥ 104 can be used in this case.
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Another process that can mix droplets is sedimentation. It is difficult to assess its timescale, because it strongly depends

on droplet sizes. Droplets of similar sizes are not mixed by sedimentation, but it is efficient at mixing rain drops with cloud

droplets. We can expect that it would prevent depletion of cloud droplets in the surrounding of a rain droplet that was observed

for smallest cells in Secs. 3 and 6. Sedimentation acts only in one direction, so it could only allow us to use cells larger only in

the vertical direction.5

8 Conclusions

The super-droplet method can exactly represent stochastic coalescence in a well-mixed volume. It was compared with the

master equation approach (see Sec. 3) and with direct numerical simulations (see Sec. 4). Precision of the SDM is controlled

by the number of super-droplets used. Fluctuations in the autoconversion time are represented well if NSD ≥N0/9. Using

smaller NSD increases standard deviation of autoconversion time by a factor 1
3

√

N0/NSD (cf. Sec. 4). It is computationally10

less expensive to correctly reproduce mean autoconversion time. Using NSD = 103 gives mean results within a 1% margin,

while using NSD = 102 - within 10%.

The SDM was used to study stochastic coalescence for two initial droplet size distributions - with small (r = 9.3 µm) and

with large (r = 15 µm) droplets. They result in slow and fast rain formation, respectively. Dependence of the system behavior

on size of the well-mixed coalescence cell was observed, especially in the small droplets case. Cell size not only affects15

fluctuations in the observables, but also their expected values. If the coalescence cell is small, sizes of droplets are strongly

correlated and depletion of cloud water plays an important role. In real clouds, these two effects are probably not manifested,

because collector drop sedimentation acts against them. In relatively large cells, rain drops collide with each other more often

than in small cells. This leads to a reduction in the rate of conversion of cloud water to rain water, because scavenging of cloud

droplets becomes less efficient. In consequence, highest rain content is produced in cells of intermediate sizes. Possibly, these20

additional rain-rain collisions can be justified by turbulent droplet motion and sedimentation, but they also might be an artefact

caused by using an unrealisticaly
✿✿✿✿✿✿✿✿✿✿✿✿

unrealistically large well-mixed volume. Fine-grid computer modeling with explicit droplet

motion could be used to resolve this issue. If the additional collisions were found to be unrealistic, it would mean that cloud

models that use large well-mixed cells, e.g. by using the Smoluchowski equaton
✿✿✿✿✿✿✿

equation, produce too little rain.

The additional rain-rain collisions do not affect results if droplets are initially large. Then, collisions of cloud and rain drops25

and between cloud droplets are frequent, so
✿✿✿

the increase in the rate of collisions between rain drops is not important. The mean

behavior of the system converges to the Smoluchowski equation results with increasing system
✿✿✿

cell
✿

size. Good agreement

with it is found for systems
✿✿✿✿

cells with N0 ≥ 104. The picture is different if droplets are initially small. Conversion of cloud

droplets into rain drops is slow, so the decrease in rain drop concentration due to the additional collisions is relatively more

important. The Smoluchowski equation is found to be valid for N0 ≥ 107 for the slow-coalescence case. One could expect30

that condensational growth leads to initial conditions with high radii of droplets, for which the additional collisions are not

important. Li et al. (2017) have shown that condensation can regulate differences between Eulerian and Lagrangian coalescence
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schemes. Discrepancies between these schemes that they observed in simulations with condensation and coalescence were

smaller than in pure coalescence simulations.

Another aspect of the slow-coalescence scenario is that in it, some lucky droplets can grow much faster than average droplets.

We found that a single luckiest droplet out of a thousand grows 3.7
✿

5
✿

times faster than average and the luckiest out of a hundred

thousand - 6
✿✿

11
✿

times faster. These values are slightly smaller than the
✿✿

are
✿✿

in
✿✿✿✿✿

good
✿✿✿✿✿✿✿✿

agreement
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

analytical estimation of5

Kostinski and Shaw (2005).

We estimate a well-mixed (with respect to coalescence) volume in the most turbulent clouds to be only 1.5 · 10−2 cm3. It

is of the order of the volume occupied by a single droplet. Larger cells can be assumed to be only approximately well-mixed.

For example, in the fast-coalescence case, DNS modeling gives the same results as the Smoluchowski equation (Onishi et al.,

2015). Box model simulations using well-mixed volume with N0 = 104 droplets also gives the same results. Therefore it can10

be assumed that such volume is approximately well-mixed in the case of fast coalescence. In the slow-coalescence case, the

well-mixed volume needs to be larger than in the fast-coalescence case for the Smoluchowski equation to be valid. Size of an

approximately well-mixed cell for this case can be determined using DNS with initially small droplets. Cells
✿✿✿✿✿✿

Volume
✿✿✿

of
✿✿✿✿

cells

used in LES are
✿✿

is typically ten orders of magnitude larger than a well-mixed volume. They
✿✿✿

The
✿✿✿✿

LES
✿✿✿✿✿

cells do not necessarily

have to be well-mixed. It is sufficient if they are homogeneous, i.e. they are an ensemble of identical, approximately well-mixed15

sub-cells. Some statistical moments for such ensembles were presented in this work. In general, it is not clear what could be

the size of these sub-cells and if the Smoluchowski equation is valid for them.

9 Code availability

Simulation code is available at https://github.com/pdziekan/coal_fluctu. The libcloudph++ library is available at

https://github.com/igfuw/libcloudphxx.20
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