
Reply to Reviewers

July 14, 2017

We would like to thank the reviewers for their questions and comments.
Before we answer them, we need to point out that we found an inconsistency
in the way the collision efficiency tables were interpolated in the SDM and in
the Bott method. It only affected simulations that use efficiencies from Hall
(1980) for large droplets and from Davis (1972) for small droplets. This kind of
collision kernel was used in Sections 5 and 6. The SDM simulations presented
in Figs. 7, 8 and 9 were repeated with the problem fixed. The main difference
is that now we see convergence of the “one-to-one” results to the Smoluchowski
equation in the slow-coalescence case. What did not change is the fact that
using larger coalescence cells can decrease the rate of conversion of cloud to rain
drops due to additional collisions between rain drops. In consequence, using the
Smoluchowski equation can underestimate the amount of rain produced. The
problem affected only large drops, with radius greater than ca. 90 microns.
Therefore the lucky droplet analysis from Sec. 6, in which droplets grow only
up to 40 microns, remains valid.

Answer to the Anonymous Referee #1.

- The methodological section (2) should be expanded. From the
current text, it is not possible to detect the equation of motions for
the single droplets. Are the droplet tracers or inertial? Or are they
just subjected to the gravitational force? A complete set of kine-
matic, dynamics and radius equation evolution should be given for
a more general configuration, and then the system can be simplified
depending on the hypothesis introduced by the authors.

We use box model simulations, which are convenient for studying coales-
cence. Droplet motion is not modelled, therefore we do not give their equations
of motion. However, we use gravitational coalescence kernels, so droplets collide
as if they settled due to gravitation. To clarify it, Section (2) was rewritten and
says:
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“ Consider coalescence of water droplets in a well-mixed volume V . Other
processes, like water condensation and evaporation, are not included. Thanks
to the assumption that the volume is well-mixed, all droplets within the same
well-mixed volume can collide with each other, independently of their positions
(Gillespie, 1972). Therefore droplet motion does not have to be explicitly mod-
eled and droplet coalescence can be calculated in a stochastic manner, as it is
done in the master equation. Consider two randomly selected droplets i and j.
Probability that they collide during timestep ∆t is P (ri, rj) = K(ri, rj)∆t/V ,
where ri and rj are their radii, K is the coalescence kernel and V is volume of
the box. We use gravitational coalescence kernels, so the effect of turbulence on
coalescence is not studied. ”

- The English level of the manuscript needs to be improved. The
most frequent error is the lack of articles in front of many substantive
in all the manuscript (in collisional growth in the collisional growth,
growth rate of lucky droplets The growth rate of lucky droplets, just
to give few examples). The origin derives from the lack of articles
in Slavic languages, so the manuscript English level should be more
carefully addressed in the next revision.

We made an effort to improve the text. If the manuscript is accepted, re-
maining errors will be fixed during the copy-editing that is included in the
processing charges.

- The authors compare the DNS case by Onishi et al. (2015). It is
not clear in the paper how the comparison has been done. Again, it
is not clear if the super-droplets are influenced or not by (and if they
move driven by) turbulent fluctuations or if the comparison is done
just considering gravitational settling. The latter case would imply
that the turbulent fluctuations have a weak effect on particle-particle
collisions that it does not seem the case in reality.

We studied coalescence only due to gravitational settling. It is now written
explicitly in Section 2:

“We use gravitational coalescence kernels, so the effect of turbulence on
coalescence is not studied.”

Onishi et al. (2015) performed DNS both for stagnant and turbulent air.
They found that the mean autoconversion time is significantly decreased by tur-
bulence, so turbulent fluctuations do have strong influence on collisions. How-
ever, we compare with them not the mean autoconversion time, but the relative
standard deviation of autoconversion time and how it scales with the system
size. Onishi et al. (2015) show that turbulence can change the relative stan-
dard deviation of autoconversion time by about 25%. While this is a significant
change, it is barely visible on the logarithmic scale in Fig. 5.

-Many important references are missing regarding the methodol-
ogy: Unterstrasser et al. 2016 doi:10.5194/gmd-2016-271, Li et al.
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2017 doi:10.1002/2017MS000930. The latter, in particular, has many
analogies and supports the results of the current manuscript.

Both papers are now cited in Section 1:
“ A thorough comparison of coalescence algorithms from Lagrangian meth-

ods was done by Unterstrasser et al. (2016). It lead to the conclusion that the
method of Shima et al. (2009) “yields the best results and is the only algorithm
that can cope with all tested kernels”. It was also found to be optimal in DNS
tests (Li et al., 2017).”

Moreover, Li et al. (2017) is now cited in Section 8:
” Li et al. (2017) have shown that condensation can regulate differences

between Eulerian and Lagrangian coalescence schemes. Discrepancies between
these schemes that they observed in simulations with condensation and coales-
cence were smaller than in pure coalescence simulations. ”

-It would be interesting to include the effects of condensational
growth as stated in the last paragraph of the conclusion. A new La-
grangian stochastic model has been proposed by Sardina et al. 2015
doi:10.1103/PhysRevLett.115.184501. The model could be easily im-
plemented in the super-droplet framework.

We have the option to include condensation in our model. We did not do it,
because we believe that it is important to first understand the simpler problem
of pure coalescence before dealing with more complex problems.

-The LES sentence in the introduction can be obscure for non-
specialist researchers in the field. The implication of the current
approach for LES can be fundamental. The paragraph should be
expanded to explain better the concept of LES and why collisions
should be accurately modelled in the absence of small turbulence
scales.

We do not include turbulence in our coalescence scheme, so we think that
there is no need to explain the concept of LES. We agree that the sentence could
be obscure. Moreover, use of the super-droplet microphysics is not limited to
LES. For these reasons we changed the sentence so that it does not mention
LES anymore. Implications for cloud modeling, including LES, are discussed in
Sec. 8.

-Section 6-Lucky droplets: The values of Kostinski and Shaw (2005)
are estimation. The sentence: their theoretical analysis overestimates
the luckiness in droplet growth is too strong, the order of magnitude
of their analysis is the same of the one detected with the super-droplet
method.

We changed that to:
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“their theoretical analysis slightly overestimates the luckiness in droplet
growth.”

Technical corrections: -It is hard to distinguish the different lines
in most of the plots if printed in black and white.

In addition to different colors, lines now also have different dashing.

-For the reader point of view, it is easier if the comparison with the
results of Alfonso and Raga (2016) are embedded directly in figure 1
and figure 2 (as the authors already did for figure 5).

We have obtained the data from the authors of Alfonso and Raga (2016)
and plotted it in the Figures 1 and 2.

-Figure 4: Is it possible to include in the plot the DNS results for
a better comparison?

Onishi et al. (2015) give a DNS result for stagnant air only for one system
size. We have added it to the Figure 4. The DNS result is significantly different
from the SDM and the Smoluchowski equation results. Following Onishi et al.
(2015), we conclude that this is due to the inaccuracy of the Hall coalescence
kernel that was used in the latter two. Part of Section 4 that discusses Figure
4 now says:

“ The SDM results are also compared with the results of DNS, in which air
turbulence was not modelled, but hydrodynamic interactions between droplets
were accounted for. We choose this kind of DNS, because it should be well
described by the Hall kernel that is used in the SDM and in the Smoluchowski
equation. It turns out that the Hall kernel gives too short autoconversion times.
The same issue was observed by Onishi et al. (2015) (cf. Fig. 1(b) therein). ”

Answer to the Anonymous Referee #2.

- The presentation is too short to fully understand what has been
done and to be able to judge it. Moreover, the statements are too gen-
eral. Also the motivation behind choosing the presented tests must
be made clearer. In the present style the presented tests resemble a
bit a random collection of tests related to a specific SD coalescence
algorithm.

We have made an effort to make the statements and the presentation more
specific. Regarding the motivation for different tests, we have rewritten the last
paragraph to the introduction to make it more clear:
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“ The Shima algorithm is not based on the Smoluchowski equation, but,
similarly to the master equation, on the assumption that the volume is well-
mixed. The Shima algorithm introduces some simplifications that may increase
the scale of fluctuations in the number of collisions, as described in Sec. 2.
These simplifications are not necessary in the limiting case of a single compu-
tational particle representing a single real particle, what we call “one-to-one”
simulations. Then, the Shima algorithm should be equivalent to the SSA, i.e. it
should produce a realization in agreement with the master equation. To show
that this is true, we compare the Shima algorithm with the master equation
and the SSA in Sec. 3. We also compare it with the more fundamental DNS
approach in Sec. 4. Once the “one-to-one” approach is shown to be at the
same level of precision as the master equation, we use it to study some physical
processes that are related to the stochastic nature of coalescence. The way the
sol-gel transition time changes with system size is studied in Sec . 3 and in
Sec. 6, we quantify how quickly the luckiest cloud droplets become rain drops.
In addition, we use the “one-to-one” approach to validate more approximate
methods. The Shima algorithm with multiplicities greater than one is studied
in Sec. 4. We determine how many computational particle s are required to
obtain the correct mean autoconversion time and correct fluctuations in the au-
toconversion time. Next, in Sec. 5, we determine how large the system has to be
for the Smoluchowski equation to correctly represent the rate of rain formation.
Throught the paper we observe that evolution of the system strongly depends
on its size. The size of a well-mixed air parcel is estimated in Sec. 7 and some
implications for cloud simulations are discussed in Sec. 8. ”

In addition, we changed the titles of Secs. 3 and 4 to make it more clear
what is their purpose.

General points 1. The description of your method and results is
too short and often not clear enough. For a reviewer it is difficult
to understand what you have done in detail and this makes it hard
to thoroughly rate your work. The description in section 2 must be
considerably expanded and be more precise. Also the results section
should be improved. For example the motivation behind showing the
comparison in section 3 is not really clear to me. As an example I
go over page 3 and try to highlight what I miss there and where I
suspect that other readers would get stuck:

The method was described in detail by Shima et al. (2009), so our intention
was only to describe how our simulation method differs from theirs. Apparently
this makes the method not clear, so we extend the description of the method as
asked by the Reviewer in the following points. Regarding the motivation behind
different comparisons, it is now given in the Introduction, as explained in the
answer to the previous comment.

It is not always clear if you talk about real droplets or super-
droplets. It should be always clear if your statement relates to the
real world or the super droplet world.

5



It is now clarified in Sec. 1:
“ We will refer to these computational particles as super-droplets (SDs). The

words “droplets” and “drops” are reserved for real hydrometeors. ”

You should define the coalescence probability of a SD pair.

It is now given in Sec. 2: “ Probability of coalescence of two SDs i and j that
belong to the same collision pair is PSD(ri, rj , ξi, ξj) =max(ξi, ξj)P (ri, rj)(NSD(NSD−
1)/2)/bNSD/2c (Shima et al., 2009).

”

Can collections occur between droplets in one SD?

We use gravitational coalescence kernels, so droplets in one SD all have the
same terminal velocity and therefore cannot collide. We now say it explicitly in
Sec. 2:

“ Real droplets represented by the same SD cannot collide with each other,
because they have the same sedimentation velocities. ”

l.9: Do you use two types of simulations or is it only the initial-
isation that differs between the two types? Then I would not call it
types of simulations.

We use two types of simulations. The main difference, besides the initialisa-
tion, is that in the “one-to-one” simulations the timestep is adaptive, as stated
in Sec. 2:

”Timestep length is adapted at each step to ensure that none of the collision
pairs has coalescence probability greater than one.”

In the “constant SD” simulations the timestep is constant and multiple col-
lisions between SDs in a single timestep are allowed, as said in Sec. 2:

“ In this type of simulation, the time step length is constant ∆t = 1 s.
It is not adapted, as it is done in the “one-to-one” simulations, to make the
simulation computationally more efficient. Using constant time step length can
make the coalescence probability exceed unity. If it does, it represent multiple
collisions between a pair of SDs (Shima et al., 2009). ”

In general I can imagine how the constant SD initialisation works,
however I am confused by your description. o l.21: do you mean large
or small NSD? Or large r?

As written, we mean large NSD. For large NSD, ∆lr becomes small and
therefore rmax is small.

o rmin and rmax are defined by the relation in line 18. Using the
ln(r) definition of line 19, you end up with implicit equations in the
two variables. I am pretty sure this is not what you wanted to say.
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Yes, we end up with implicit equations for these variables. Many pairs of
values of rmin and rmax could satisfy them. We find our solution numerically,
what is now explained in more detail in Sec. 2:

“ The first step of the initialization is finding the largest and smallest initial
super-droplet radius, rmax and rmin. They are found iteratively, starting with
rmin = 10−9 m and rmax = 10−3 m. We require that they satisfy the condition

n(ln(re))∆lrV ≥ 1, (1)

where re is either rmax or rmin, n(ln(r)) is the initial droplet size distribution
and ∆lr = (ln(rmax) − ln(rmin))/NSD. In each iteration, if rmin (rmax) does
not satisfy (1), it is increased (decreased) by 1%. ”

o You initialise additional SDs to better represent the tails of the
SDs. Adding those SDs to your ensemble, isnt it necessary to reduce
the multiplicity of the SD drawn from the largest bin?

No, in “constant SD” the right edge of the largest bin is rmax, so effectively
the distribution is cut at rmax and droplets with r > rmax, that would be
present in the real system, are not accounted for. Adding additional SDs with
r > rmax fixes this problem and does not affect the number of droplets with
r ≤ rmax (i.e. the multiplicity of SDs with r ≤ rmax).

Is the refinement done at both sides?

No, only on the large radius side. We now write explicitly in Sec. 2:
“ We do not add SDs from the small tail of the distribution, because very

small droplets are of little importance for rain formation. ”

In the end, the actual number of SDs should be higher than the
nominal value NSD? How much higher?

Yes, it is a little higher, what is now written in Sec. 2:
“ This makes the actual number of SDs higher than the prescribed value

NSD, typically by ca. 1%. ”

Is the one-to-one initialisation the limiting case of the constant SD
initialisation?

No, because using NSD = N0 (i.e. multiplicity = 1) in a “constant SD”
simulation would result in relatively small rmax and large rmin. Then this type
of initialisation would not represent well the given distribution. Therefore a
different approach to initialisation is used in the “one-to-one” simulations.

Are the multiplicities in the constant SD approach integer values?
How is the rounding done?
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Yes they are, as explained in Shima et al. (2009). The rounding is done
to the nearest integer. The error introduced is small, because multiplicities are
high.

o l.20: To be more explicit, you should write that one SD is created
per bin and its radius is randomly selected.

It is written in Sec. 2:
“ Once rmin and rmax are found, radius of one SD is randomly selected

within each bin of size ∆lr. ”

o l.23: Do you want to say that the probability is allowed to ex-
ceed 1. Why does this occur only here, and not in the one-to-one
simulation? Is the time step longer? Why dont you reduce it then in
this case?

Yes, in the method of Shima et al. (2009) the coalescence probability is al-
lowed to exceed 1. It is a consequence of keepeing the time step length constant.
We added to Sec. 2:

“ In this type of simulation, the time step length is constant ∆t = 1 s.
It is not adapted, as it is done in the “one-to-one” simulations, to make the
simulation computationally more efficient. Using constant time step length can
make the coalescence probability exceed unity. If it does, it represent multiple
collisions between a pair of SDs (Shima et al., 2009). ”

o What are multiple collections?

It means that, during a single time step, a pair of SDs collides more than
once. The details are given in Shima (2009).

o Do you use a constant time step throughout a simulation?

In the “one-to-one” simulations it is adaptive, as said in Sec. 2:
“ Time step length is adapted at each time step to ensure that none of the

collision pairs has coalescence probability greater than one. ”
In the “constant SD” simulations it is constant, what is now explicitly stated

in Sec. (2):
“ In this type of simulations, the time step length is constant ∆t = 1 s. ”

2. Your conclusions are too general. Your paper reads like a
general comparison between the one and only SDM approach and
all kinds of other algorithms. Coalescence (or similarly coagulation
of aerosols and dust or aggregation of ice crystals) can be treated
in many ways in particle-based approaches (see algorithms by An-
drejczuk et al, Shima et al, Riechelmann et al, Solch & Karcher,
Zsom & Dullemond, Kolodko & Sabelfeld, deVille et al). There is

8



not the one natural way to do this. Similarly, various algorithms ex-
ist for bin model approaches. Please make clearer which statements
hold in general and which are probably only valid for your specific
SDM.

Regarding coalescence, the main difference between these particle-based ap-
proaches (with the exception of the DeVille algorithm, which is based on the
Smoluchowski equation) is in what is the outcome of a collision of super-droplets
with multiplicities ξ > 1. Majority of our simulations were the “one-to-one” sim-
ulations, in which ξ = 1. In that case, it is straightforward what the result of
a collision should be, so differences between these algorithms disappear. More-
over, like the master equation, the “one-to-one” simulations are only based on
the assumption that the cell is well-mixed. The numerical trick of reducing the
number of collision pairs (”linear sampling”) does not affect the fluctuations, as
we show in Sec. 3. Therefore the “one-to-one” simulations are quite similar to
the SSA. They are at the same level of accuracy as the master equation: less
precise than the DNS, more precise than the Smoluchowski equation. It is now
cleary stated in the Introduction:

“ The Shima algorithm is not based on the Smoluchowski equation, but,
similarly to the master equation, on the assumption that the volume is well-
mixed. The Shima algorithm introduces some simplifications that may increase
the scale of fluctuations in the number of collisions, as described in Sec. 2.
These simplifications are not necessary in the limiting case of a single compu-
tational particle representing a single real particle, what we call “one-to-one”
simulations. Then, the Shima algorithm should be equivalent to the SSA, i.e. it
should produce a realization in agreement with the master equation. To show
that this is true, we compare the Shima algorithm with the master equation
and the SSA in Sec. 3. We also compare it with the more fundamental DNS
approach in Sec. 4. ”

In simulations with ξ > 1, we use the Shima method, as it was found to be
optimal by Unterstrasser et al. (2017) and by Li et al. (2017). These simulations
are used only in Sec. 4 in order to determine their accuracy, as explained by an
added paragraph in the introduction:

“ In addition, we use the “one-to-one” approach to validate more approx-
imate methods. The Shima algorithm with multiplicities greater than one is
studied in Sec. 4. We determine how many computational particles are re-
quired to obtain the correct mean autoconversion time and correct fluctuations
in the autoconversion time. ”

A recent study by Unterstrasser et al compared three different
SD algorithms for the collection process (your all-or-nothing SDM is
among the tested algorithms). Each algorithm has its strengths and
weaknesses. One major finding was that the performance depends
strongly on how the SDs are initialised from a given size distribution.
This has several implications: 1. an accurate description of your
initialisation is needed (see point 1) and
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Unterstrasser et al. (2017) found that the Shima method is optimal, what we
now say in the introduction: “ A thorough comparison of coalescence algorithms
from Lagrangian methods was done by Unterstrasser et al. (2017). It lead to
the conclusion that the method of Shima (2009) “yields the best results and is
the only algorithm that can cope with all tested kernels”. It was also found to
be optimal in DNS tests Li et al. (2017). In the light of these results, we choose
to use the coalescence algorithm of Shima (2009) in this work. ”

We also observed that the way the initialisation is done is important. We
believe that now our initialisation algorithm is described more clearly.

2.Are your simulations sensitive to initialisation details besides
the number of SDs?

It is only sensitive to the number of SDs. Initial values of rmin and rmax, if
reasonable, do not affect it much.

3. In my opinion you present five types of tests: 1. Compar-
isons with algorithms for the master equation (ME), 2. Comparisons
with DNS algorithms 3. Comparisons with algorithms for the Smolu-
chowski equation (KCE) 4. Comparison with analytical results and 5.
Stand-alone sensitivity tests of your SD algorithm. With each type
of test different aspects of your SD method can be tested. Each ref-
erence model you compare with (Bott, Alfonso, Onishi, Kostinski &
Shaw) differs in which physical processes are explicitly treated. You
often miss to clearly specify the purpose of and the motivation behind
the individual evaluation steps you take. This must be made clearer
in the revised version.

We believe that it is now made clear by the following paragraph in the
introduction:

“ The Shima algorithm is not based on the Smoluchowski equation, but,
similarly to the master equation, on the assumption that the volume is well-
mixed. The Shima algorithm introduces some more simplifications that may
increase the scale of fluctuations in the number of collisions, as described in
Sec. 2. These additional simplifications are not necessary in the limiting case
of a single computational particle representing a single real particle, what we
call “one-to-one” simulations. Then, the Shima algorithm should be equivalent
to the SSA, i.e. it should produce a trajectory in agreement with the master
equation. To show that this is true, we compare the Shima algorithm with
the master equation and the SSA in Sec. 3. We also compare it with the more
fundamental DNS approach in Sec. 4. Once the “one-to-one” approach is shown
to be at the same level of precision as the master equation, we use it to study
some physical processes that are related to the stochastic nature of coalescence.
The way the sol-gel transition time changes with system size is studied in Sec.
3 and in Sec. 6, we quantify how quickly the luckiest cloud droplets become
rain drops. In addition, we use the “one-to-one” approach to validate more
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approximate methods. The Shima algorithm with multiplicities greater than
one is studied in Sec. 4. We determine how many computational particles are
required to obtain the correct mean autoconversion time and correct fluctuations
in the autoconversion time. Next, in Sec. 5, we determine how large the system
has to be for the Smoluchowski equation to correctly represent the rate of rain
formation. ”

4. Your study is written in a style that implies that your SD al-
gorithm does not solve the KCE. By comparing your SD results with
KCE results you seemingly disclose shortcomings of the KCE descrip-
tion. In fact, SDMs also rely on KCE and your study is not really
suited to question the physics of the various formulations. In my
understanding, you compare different numerical strategies of solving
the KCE.

The SD algorithm is not a method of solving the KCE. Contrary to the
KCE, it does include correlations between number of droplets of different sizes.
The “one-to-one” simulations are similar to the SSA, i.e. they produce a single
trajectory that follows the master equation (c.f. Sec. 2). As such, they are more
precise than the KCE, so they are well-suited to discolse shortcomings of the
KCE. To us it is not clear how the “constant SD” simulations relate to the KCE
and the master equation. They have been shown to give mean result in agree-
ment with the KCE in large systems (Shima et al., 2009, Unterstrasser et al.,
2016). Regarding fluctuations, using the “all-or-nothing” algorithm should am-
plify fluctuations, because it introduces unrealistic correlations between number
of droplets of different sizes. In Sec. 4 we quantify how much the fluctuations
amplitude increases.

The probabilistic nature of your SDM is inherent to your specific
algorithm. The SDMs of Riechelmann or Andrejczuk are not proba-
bilistic. On the other hand, I agree that the probabilistic component
of your SDM looks like it attempts to mimic the processes in nature.
Nevertheless, the two should not be mistaken. In the superdropelt
world of your SDM, the probabilistic approach comes from the fact,
that each superdropelt represents a large number of real droplets and
you may or may not perform a superdroplet collection. This not per
se related to the stochastic nature of the real world processes that
accounted for in the master equation.

The probabilistic nature of our SDM has the same source as the probabilistic
nature of the master equation, i.e. the fact that a collision between a pair of SDs
happens with some probability, according to the assumption that the volume is
well-mixed. To our knowledge, this Monte Carlo approach to collisions is used in
all SDMs, including the ones of Riechelmann and Andrejczuk. If multiplicities
are equal to one (”one-to-one” simulations), the SDM is as much related to the
real world process as the master equation. If multiplicities are greater than one,
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various SDM algorithms start to differ. In the Shima algorithm that we use, the
scale of fluctuations is increased, because the number of collision trials is lower
than it would be in reality. We try to quantify how much it is increased. In the
Riechelmann and Andrejczuk SDMs, the fluctuations are lower than in the one
of Shima. Unfortunately, they do not give mean results as good as the Shima
algorithm (Unterstrasser et al., 2016).

Major points: 5. In my understanding there two mathematical
descriptions of the coalescence process: The Smoluchowski equation
and the master equation where only the latter accounts for corre-
lations. You never state it explicitly but I suppose that your SD
method is based on solving KCE. Many spectral bin methods exist
for the KCE and in the recent past SD methods for KCE were intro-
duced. Hence, demonstrating agreement between your KCE solver
and the ME solver by Alfonso is only reasonable for a physical prob-
lem where correlations are negligible. If you want to show the nu-
merical consistency of your approach, then a comparison with other
well-established KCE solvers would be more straightforward. Could
you give reasons why you compare results of your KCE solver and an
ME solver? Or do you want to claim that SDMs implicitly account
for correlations?

Our SD method is not based on solving KCE. The “one-to-one” simulations
are at the level of precision of the master equation, what is now explicitly written
in the introduction:

“ The Shima algorithm is not based on the Smoluchowski equation, but,
similarly to the master equation, on the assumption that the volume is well-
mixed. The Shima algorithm introduces some more simplifications that may
increase the scale of fluctuations in the number of collisions, as described in
Sec. 2. These additional simplifications are not necessary in the limiting case
of a single computational particle representing a single real particle, what we
call “one-to-one” simulations. Then, the Shima algorithm should be equivalent
to the SSA, i.e. it should produce a trajectory in agreement with the master
equation. To show that this is true, we compare the Shima algorithm with the
master equation and the SSA in Sec. 3. ”

We compare “one-to-one” simulations with the master equation to validate
the claim that they are at the same level of precision, i.e. that “one-to-one”
method accounts for correlations. In the problem of Alfonso, correlations are
very important and, as shown in Alfonso and Raga (2017), the KCE does not
solve it well.

6. I am not exactly sure what you intended to show in section 3.
Did you want to demonstrate the suitability of your linear sampling
of droplet pairs? Then you should compare results of your algorithm,
once with linear sampling and once considering all possible combina-
tion. For a simulation with 30 droplets (as done in the comparison
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with Alfonso) this should be feasible. How do the curves in Fig.3 and
4 change, if you evaluate all possible combinations instead of linear
sampling (at least for N0=10 and 100)?

We intended to show that “one-to-one” simulations agree with the master
equation. Linear sampling is an optimization technique that we expected might
be responsible for some differences between the master equation and “one-to-
one” simulations. To make the comparison more detailed, now in Section 3 we
compare “one-to-one” simulations, with and without linear sampling, with the
master equation. We find that linear sampling does not affect mean number of
collisions, nor the fluctuations in the number of collisions. Figs. 3 and 4 (up to
N0=100) do not change if linear sampling is not used.

The second paragraph of Section 3 has been rewritten to explain these new
results of simulations without linear sampling.

7. Is it all reasonable trying to sample a continuous exponential
distribution with 10 SDs? Are the total mass and number of the SDs
(averaged over all ensembles) equal to the prescribed values? What
about the higher moments, do they match the values of the analytical
distribution? This is an important aspect as much of your evaluated
variability may come from the initialisation and not so much from
stochasticity of the SDM.

Averaged over the ensamble, up to the 4-th moment of the distribution is in
agreement with the prescribed one. It is true that the initial distributions can be
very different between realisations and it may be the cause of large variability.
For this reason we removed the N0 = 10 case from Fig. 3.

8. Even though Fig.4 shows simulations with an initialisation
analogous to Onishi, the presented test is a stand-alone test (following
the above categorisation). Hence, further tests with other kernels or
other initial size distributions can be made (as no comparison with
Onishi is required) in order to corroborate your findings about how
many SDs are necessary to reach convergence.

Now in Fig. 4 we compare our results with Onishi’s results. Our expectation
is that for other kernels relevant for cloud physics the results would not be much
different. Nevertheless, we agree that tests with other kerneles, and with other
initial conditions, would be useful. Such tests could easily fill a whole new paper.
Our result can be considered as a guideline for users, who should do convergence
tests for the specific kernels they use.

9. In Fig.4 and following figures, does the Smoluchoswki line
depend on the parameter choices of the underlying Bott algorithm
(time step or number of bins)? Bott is known to be diffusive; this
may explain the faster generation of large droplets. Anyway I would

13



not call it the Smoluchowski line, it is the Bott line. The line may
look differently for other bin KCE algorithms. Moreover, your lines
are also Smoluchowski lines (see general point 4).

We have done convergence tests of the Bott algorithm. It is now explained
in Sec. 4:

“ In the Bott algorithm, we used ∆t = 1 s and mass bin spacing mi+1 =
21/10mi. The same parameters were used in each simulation presented in this
manuscript. Convergence tests were done for each case. ”

We agree that the Bott algorithm produces rain too soon most probably due
to numerical diffusion. We now write in Sec. 4:

“ The “one-to-one” results converge with increasing system volume (i.e. in-
creasing N0) to a value higher than the Smoluchowski result. The difference is
probably caused by the numerical diffusion of the Bott algorithm. ”

Labels on figures are one of: DNS, master equation, SSA, SDM (”one-to-
one” or “constant SD”), Smoluchowski equation. In our view these are different
appproches to solving droplet coalescence, not different numerical methods for
solving some equation. The numerical methods used, i.e. the Bott algorithm for
the Smoluchowski equation and the Alfonso algorithm for the master equation,
are explained in text.

Minor points: 10. p.3, l21: Is the sol-gel transition an important
aspect in cloud physics? You note that mass conservation is not
guaranteed for some kernels. Are those kernels relevant in cloud
physics? In super-droplet approaches mass conservation should be
guaranteed by construction.

Mass is not conserved for the multiplicative kernel, which is not relevant
in cloud physics. Nevertheless, the paper Alfonso and Raga (ACP, 2017) is a
detailed study of the sol-gel transition in a small cloud volume. We decided that
it will be interesting to extend their results to more realistic cases.

11. I do not understand the statement the number of collision
pairs is reduced in p.4 l.4.

It was supposed to mean that linear sampling is used, i.e. less collision
pairs are considered than in an exact description. Now in Sec. 2 we define the
meaning of linear sampling, which is later used in the paper:

“ The second simplification, that we will refer to as linear sampling, is
that instead of considering all NSD(NSD1)/2 collision pairs, only [NSD/2] non-
overlapping pairs are randomly selected. ”

12. The paragraph starting p.4 l.11 should be moved to section
2.

In the paragraph it was shown that in the “one-to-one” method with linear
sampling, the probability of collision between any two real droplets is the same
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as in simulations without linear sampling. This does not ensure that fluctuations
in the number of collisions are also correctly represented. Therefore we removed
the paragraph. In its place we added to Figs. 1 and 2 the results of simulations
without linear sampling, i.e. with all collision pairs considered. Their agreement
with the linear sampling simulations implies that linear sampling does not affect
the scale of fluctuations. Proving that was the point of the removed paragraph.

13. For Figs.1 & 2 it would be ideal to obtain the data from
Alfonso and include it in the plots.

We did that.

14. P.2 l.13: Tanaka and Nakazawa present solutions for kernels
other than the constant kernel. See also Table 2 in Alfonso, 2015.

We now cite Tanaka and Nakazawa in the introduction:
“ The master equation was analytically solved only for monodisperse initial

conditions with simple coalescence kernels (Bayewitz et al., 1974; Tanaka and
Nakazawa, 1993). ”

Table 2 in Alfonso (2013) gives solutions of the Smoluchowski equation, not
the master equation.

15. P.5 l.5. Isnt this statement trivial? Probably any algorithm
for KCE is faster than solving the master equation. A comparison
among various KCE solvers would be fairer.

As explained previously, SDM is similar to the SSA and not to KCE solvers.
For this reason we compare with the SSA and a solver of the master equation.

16. Figs. 2&3 show relative standard deviation of the largest
droplet mass. Wouldnt it be interesting to know how large the largest
droplet mass is? How many collections have occurred to form the
largest droplet?

Relative standard deviation of the largest droplet mass is interesting as a
measure of the sol-gel transition. We do not see a reason to show the mass of it
or the number of collisions that lead to it.

17. P.7 l.10-12: I am confused. DNS simulations compute droplet
trajectories and directly evaluate if there are collisions between droplets.
Why do you need a coalescence kernel in this numerical approach?

It was our error. The DNS was done not for different coalescence kernels,
but for different turbulence strength. We changed that sentence to:

“ Small discrepancies are probably caused by the fact that the DNS included
turbulence of various strength for different N0. “
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18. Fig.8: Do you also use the 20um cut-off in the Bott simulation?
It is not explicitly stated in the text.

Yes, we do use it in the Bott simulation. It is now said explicitly:
“ In addition, we cut the distribution to 0 at r = 20 m. This cutoff is used

in SDM modelling as well as when solving the Smoluchowski equation. ”

Technical points: Figure caption should include the information
t=2500s.

We add it to the caption of Fig. 1.

P.5 l.9: droplet, not dropeltS.

Fixed.

16



Stochastic coalescence in Lagrangian cloud microphysics

Piotr Dziekan and Hanna Pawlowska

Institute of Geophysics, Faculty of Physics, University of Warsaw, Poland

Correspondence to: P. Dziekan (pdziekan@igf.fuw.edu.pl)

Abstract. Stochasticity in
✿✿

of
✿✿✿

the collisional growth of cloud droplets is studied in a box model using the super-droplet method

(SDM). The SDM is compared with direct numerical simulations and the master equation. We use the SDM
✿

It
✿✿✿

is
✿✿✿✿✿✿

argued

✿✿✿

that
✿✿✿✿✿

SDM
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿

in
✿✿✿✿✿

which
✿✿✿✿

one
✿✿✿✿✿✿✿✿✿✿✿

super-droplet
✿✿✿✿✿✿✿✿✿

represents
✿✿✿

one
✿✿✿✿

real
✿✿✿✿✿✿

droplet
✿✿✿

are
✿✿

at
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿

level
✿✿✿

of
✿✿✿✿✿✿✿✿

precision
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

master

✿✿✿✿✿✿✿

equation.
✿✿✿✿✿

Such
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

are
✿✿✿✿✿

used
✿

to study fluctuations in autoconversion time and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

autoconversion
✿✿✿✿✿

time,
✿

the sol-gel

transition . We determine how many computational droplets are necessary to correctly model expected number and standard5

deviation of autoconversion time. Also,
✿✿✿

and
✿✿✿

the growth rate of lucky dropletsis determined and
✿

,
✿✿✿✿✿

which
✿✿

is
✿

compared with a

theoretical prediction. Size of the coalescence cell is found to strongly affect system behavior. In small cells, correlations in

droplet sizes and droplet depletion affect evolution of the system
✿✿✿

and
✿✿✿✿✿

slow
✿✿✿✿✿

down
✿✿✿✿

rain
✿✿✿✿✿✿✿✿

formation. In large cells, unrealistic

collisions between rain drops , caused by the assumption that the cell is well-mixed, become important
✿✿

are
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

frequent

✿✿✿

and
✿✿✿

can
✿✿✿✿

also
✿✿✿✿✿

slow
✿✿✿✿✿

down
✿✿✿

rain
✿✿✿✿✿✿✿✿✿✿

formation.
✿✿✿

The
✿✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿

the
✿✿✿✿

rate
✿✿

of
✿✿✿✿✿✿✿

collision
✿✿✿✿✿✿✿✿

between
✿✿✿✿

rain
✿✿✿✿✿

drops
✿✿✿✿

may
✿✿

be
✿✿✿

an
✿✿✿✿✿✿✿

artefact
✿✿✿✿✿✿

caused10

✿✿

by
✿✿✿✿✿✿✿✿

assuming
✿✿

a
✿✿✿

too
✿✿✿✿

large
✿✿✿✿✿✿✿✿✿✿

well-mixed
✿✿✿✿✿✿✿

volume.
✿✿✿✿✿✿✿

Highest
✿✿✿✿

ratio
✿✿

of
✿✿✿✿

rain
✿✿✿✿✿

water
✿✿

to
✿✿✿✿✿

cloud
✿✿✿✿✿

water
✿✿

is
✿✿✿✿✿

found
✿✿

in
✿✿✿✿

cells
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

intermediate
✿✿✿✿✿

sizes.

✿✿✿✿

Next,
✿✿✿

we
✿✿✿

use
✿✿✿✿✿

these
✿✿✿✿✿✿

precise
✿✿✿✿✿✿✿✿✿

simulations
✿✿

to
✿✿✿✿✿✿✿✿✿

determine
✿✿✿✿✿✿

validity
✿✿

of
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

approximate
✿✿✿✿✿✿✿✿

methods:
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿✿

equation
✿✿✿

and
✿✿✿

the

✿✿✿✿

SDM
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

mulitplicities
✿✿✿✿✿✿

greater
✿✿✿✿

than
✿✿

1.
✿✿

In
✿✿✿

the
✿✿✿✿✿

latter,
✿✿✿

we
✿✿✿✿✿✿✿✿

determine
✿✿✿✿

how
✿✿✿✿✿

many
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿✿

droplets
✿✿✿

are
✿✿✿✿✿✿✿✿

necessary
✿✿

to
✿✿✿✿✿✿✿✿

correctly

✿✿✿✿✿

model
✿✿✿

the
✿✿✿✿✿✿✿✿

expected
✿✿✿✿✿✿

number
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

autoconversion
✿✿✿✿

time. Maximal size of a volume that is turbulently

well-mixed with respect to coalescence is estimated at Vmix = 1.5 · 10−2 cm3.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿✿

equation
✿✿

is
✿✿✿

not
✿✿✿✿

valid
✿✿✿

in15

✿✿✿✿

such
✿✿✿✿✿

small
✿✿✿✿✿✿✿

volumes.
✿

It is argued that larger cells
✿✿✿✿✿✿✿

volumes can be considered approximately well-mixed, but only through
✿✿✿✿

such

✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿✿✿✿

needs
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

supported
✿✿✿

by
✿

a
✿

comparison with fine-grid simulations . In addition, validity of the Smoluchowski

equation is tested. Discrepancy between the SDM and the Smoluchowski equation is observed if droplets are initially relatively

small. This implies that cloud models that use the Smoluchowski equation might produce rain too soon
✿✿✿

that
✿✿✿✿✿✿

resolve
✿✿✿✿✿✿✿

droplet

✿✿✿✿✿✿

motion.20

1 Introduction

Coalescence of hydrometeors is commonly modeled using the Smoluchowski equation (Smoluchowski, 1916), often also

called the stochastic coalescence equation. It is a mean-field equation that can be derived from the more fundamental stochastic

description by neglecting correlations in the number of droplets of different sizes (Gillespie, 1972; Bayewitz et al., 1974). These

correlations are especially important in small volumes and neglecting them can lead to unphysical behavior. For example, when25
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a single drop contains majority of water in a coalescence cell (gelation), the Smoluchowski equation does not conserve mass

for some coalescence kernels (Leyvraz, 2003).

Another limitation of the Smoluchowski equation is that it describes evolution only of the expected number of droplets

of given size. It does not contain information about fluctuations around this number, which are suspected to be crucial for

precipitation onset (Telford, 1955; Scott, 1967; Marcus, 1968). Rate of collisions between droplets depends on their sizes.5

Small droplets rarely collide with each other, because they are repelled by disturbance flow induced by their settling. Once a

droplet reaches a threshold size, it becomes more efficient at collecting smaller droplets. The mean time for a droplet to reach

the threshold size is long, but some lucky droplets could reach it much sooner through a series of unlikely collisions. Then they

grow quickly, resulting in a sooner onset of precipitation. This effect cannot be described using the Smoluchowski equation.

The Smoluchowski equation can be written for the discrete number of droplets of given size, but often droplet concentration is10

used instead. This adds an additional assumption that the coalescence volume is large, somewhat in agreement with neglection

of fluctuations and correlations in droplet numbers (Gillespie, 1972).

A number of methods alternative to the Smoluchowski equation exist. They are capable of solving stochastic coalescence,

but have some shortcomings that make their use in large-scale cloud simulations impossible. The most accurate one is the

direct numerical simulation (DNS). In it, trajectories of droplets are modeled explicitly and collisions occur when they come15

in contact. The downside of DNS is that it is computationally extremely demanding. Running large ensemble of simulations

from which statistics could be obtained would take prohibitively long time. An alternative approach is to use a master equa-

tion (Gillespie, 1972). It describes temporal evolution of probability of observing a given number of particles of a given size.

Collisions are allowed between all particles in some coalescence volume and are assumed to be Markovian, i.e. they only

depend on the instantaneous state of the system and not on its history. This can only be justified if the volume is well-mixed,20

i.e. if droplets are randomly redistributed within the volume between collisions
✿✿✿✿

after
✿✿✿✿

each
✿✿✿✿✿✿✿✿

collision. It is worth to note that

DNS does not require such assumptions, so it reproduces correlations between positions and sizes of droplets. The master

equation was analytically solved only for a constant coalescence kernel (Bayewitz et al., 1974)
✿✿✿✿✿✿✿✿✿✿✿

monodisperse
✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿

conditions

✿✿✿✿

with
✿✿✿✿✿✿

simple
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿✿✿

kernels
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Bayewitz et al., 1974; Tanaka and Nakazawa, 1993). A more general form of the Bayewitz

equation is given in Wang et al. (2006)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Wang et al. (2006), but cannot be solved for any realistic coalescence kernel. Solv-25

ing
✿✿✿

the master equation numerically also proves
✿

is
✿

extremely difficult due to huge phase space to be considered. Recently,

Alfonso (2015)
✿✿✿✿✿✿✿✿✿✿✿✿✿

Alfonso (2015) developed a method to solve the master equation numerically, but was only able to apply the

method to a system of up to 40 droplets (Alfonso and Raga, 2016)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Alfonso and Raga, 2017). Alternatively, the stochastic sim-

ulation algorithm (SSA) (Gillespie, 1975; Seeβelberg et al., 1996) can be used to model single trajectory obeying the master

equation, but obtaining large enough statistics would require very long computations.30

Recently, several Lagrangian schemes
✿✿✿✿✿

Several
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿

methods have been developed to model cloud microphysics in

Large Eddy Simulations (Andrejczuk et al., 2008; Shima et al., 2009; Riechelmann et al., 2012). Their common point is that

they explicitly model microphysical processes on a small population of computational particles, each representing
✿

a large num-

ber of real particles. In this paper, we use box model simulations to investigate if the super-droplet method (Shima et al., 2009) is

capable of exactly representing the stochastic nature of coalescence.35
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In
✿✿✿

We
✿✿✿

will
✿✿✿✿✿

refer
✿✿

to
✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿✿

particles
✿✿✿

as
✿✿✿✿✿✿✿✿✿✿✿

super-droplets
✿✿✿✿✿✿

(SDs).
✿✿✿✿

The
✿✿✿✿✿

words
✿✿✿✿✿✿✿✿✿

“droplets”
✿✿✿

and
✿✿✿✿✿✿✿

“drops”
✿✿✿

are
✿✿✿✿✿✿✿

reserved
✿✿✿

for

✿✿✿

real
✿✿✿✿✿✿✿✿✿✿✿✿

hydrometeors.
✿✿

A
✿✿✿✿✿✿✿

thorough
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

of
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿✿✿✿✿✿

algorithms
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿

methods
✿✿✿

was
✿✿✿✿✿

done
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Unterstrasser et al. (2016).

✿

It
✿✿✿✿

lead
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

conclusion
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

method
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shima et al. (2009) “yields
✿✿

the
✿✿✿✿

best
✿✿✿✿✿✿

results
✿✿✿

and
✿✿

is
✿✿✿

the
✿✿✿✿

only
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿

that
✿✿✿

can
✿✿✿✿✿

cope

✿✿✿✿

with
✿✿

all
✿✿✿✿✿

tested
✿✿✿✿✿✿✿✿

kernels”.
✿✿

It
✿✿✿

was
✿✿✿✿

also
✿✿✿✿✿

found
✿✿✿

to
✿✿

be
✿✿✿✿✿✿✿

optimal
✿✿

in
✿✿✿✿

DNS
✿✿✿✿✿

tests
✿✿✿✿✿✿✿✿✿✿✿✿✿

(Li et al., 2017).
✿✿

In
✿✿✿

the
✿✿✿✿✿

light
✿✿

of
✿✿✿✿

these
✿✿✿✿✿✿✿

results,
✿✿✿

we
✿✿✿✿✿✿

choose

✿✿

to
✿✿✿

use
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿✿✿✿✿✿

algorithm
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shima et al. (2009) in
✿✿✿✿

this
✿✿✿✿✿

work.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shima et al. (2009) algorithm
✿✿

is
✿✿✿✿

not
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the5

✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿✿

equation,
✿✿✿

but,
✿✿✿✿✿✿✿✿

similarly
✿✿

to
✿✿✿

the
✿✿✿✿✿

master
✿✿✿✿✿✿✿✿

equation,
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

assumption
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

volume
✿✿

is
✿✿✿✿✿✿✿✿✿✿

well-mixed.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

algorithm

✿✿✿✿✿✿✿✿

introduces
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿✿✿✿✿✿

simplifications
✿✿✿

that
✿✿✿✿

may
✿✿✿✿✿✿✿✿

increase
✿✿✿

the
✿✿✿✿

scale
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

fluctuations
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿

collisions,
✿✿

as
✿✿✿✿✿✿✿✿

described
✿✿✿

in
✿✿✿✿

Sec.

✿✿

2.
✿✿✿✿✿

These
✿✿✿✿✿✿✿✿✿✿✿✿

simplifications
✿✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿

necessary
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

limiting
✿✿✿✿

case
✿✿

of
✿✿

a
✿✿✿✿✿

single
✿✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿

particle
✿✿✿✿✿✿✿✿✿✿✿

representing
✿✿

a
✿✿✿✿✿

single
✿✿✿✿

real

✿✿✿✿✿✿

particle,
✿✿✿✿✿

what
✿✿✿

we
✿✿✿✿

call
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿✿✿✿✿✿✿

simulations.
✿✿✿✿✿

Then,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shima et al. (2009) algorithm
✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿✿✿✿✿

equivalent
✿✿✿

to
✿✿✿

the
✿✿✿✿✿

SSA,

✿✿

i.e.
✿✿

it
✿✿✿✿✿✿

should
✿✿✿✿✿✿✿

produce
✿✿

a
✿✿✿✿✿

single
✿✿✿✿✿✿✿✿✿

realization
✿✿✿

in
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

master
✿✿✿✿✿✿✿✿

equation.
✿✿✿

To
✿✿✿✿✿

show
✿✿✿

that
✿✿✿✿

this
✿✿

is
✿✿✿✿

true,
✿✿✿

we
✿✿✿✿✿✿✿✿

compare
✿✿✿

the10

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shima et al. (2009) algorithm
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

master
✿✿✿✿✿✿✿

equation
✿✿✿✿

and
✿✿✿

the
✿✿✿✿

SSA
✿✿

in
✿

Sec. 3we compare super-droplet method results with

master equation results for a system undergoing
✿

.
✿✿✿

We
✿✿✿

also
✿✿✿✿✿✿✿✿

compare
✿

it
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

fundamental
✿✿✿✿✿

DNS
✿✿✿✿✿✿✿

approach
✿✿

in
✿✿✿✿

Sec.
✿✿

4.
✿✿✿✿✿

Once

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿✿✿✿

approach
✿✿

is
✿✿✿✿✿

shown
✿✿

to
✿✿✿

be
✿✿

at
✿✿✿

the
✿✿✿✿

same
✿✿✿✿

level
✿✿

of
✿✿✿✿✿✿✿✿

precision
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

master
✿✿✿✿✿✿✿✿

equation,
✿✿✿

we
✿✿✿

use
✿

it
✿✿

to
✿✿✿✿✿

study
✿✿✿✿✿

some
✿✿✿✿✿✿✿

physical

✿✿✿✿✿✿✿✿

processes
✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿

related
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

stochastic
✿✿✿✿✿

nature
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

coalescence.
✿✿✿

The
✿✿✿✿

way
✿

the sol-gel transition . Next, we validate SDM against

direct numerical simulations of conversion of cloud droplets to rain drops(
✿✿✿✿

time
✿✿✿✿✿✿✿

changes
✿✿✿✿

with
✿✿✿✿✿✿

system
✿✿✿✿

size
✿✿

is
✿✿✿✿✿✿

studied
✿✿

in
✿✿✿✿

Sec.
✿✿

315

✿✿✿

and
✿✿

in
✿✿✿✿

Sec.
✿✿

6,
✿✿✿

we
✿✿✿✿✿✿✿

quantify
✿✿✿✿

how
✿✿✿✿✿✿✿

quickly
✿✿✿

the
✿✿✿✿✿✿✿

luckiest
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿

droplets
✿✿✿✿✿✿✿

become
✿✿✿✿

rain
✿✿✿✿✿

drops.
✿✿✿

In
✿✿✿✿✿✿✿

addition,
✿✿✿

we
✿✿✿✿

use
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”

✿✿✿✿✿✿✿

approach
✿✿

to
✿✿✿✿✿✿✿

validate
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

approximate
✿✿✿✿✿✿✿✿

methods.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shima et al. (2009) algorithm
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

multiplicities
✿✿✿✿✿✿

greater
✿✿✿✿

than
✿✿

1
✿✿

is
✿✿✿✿✿✿

studied

✿✿

in Sec. 4). We also .
✿✿✿

We
✿

determine how many computational particles are needed in SDM
✿✿✿✿✿✿

required
✿

to obtain the correct mean

behavior
✿✿✿✿✿✿✿✿✿✿✿✿

autoconversion
✿✿✿✿

time and correct fluctuations . In
✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

autoconversion
✿✿✿✿✿

time.
✿✿✿✿✿

Next,
✿✿

in Sec. 5we look for the minimal

system size to which Smoluchowski equation can be applied. We use SDM in Sec. 6 to quantify how quickly the luckiest cloud20

droplets become rain drops and we compare the results with theoretical predictions. Finally, in Sec. 7, ,
✿✿✿

we
✿✿✿✿✿✿✿✿✿

determine
✿✿✿✿

how

✿✿✿✿

large
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿

has
✿✿

to
✿✿✿

be
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿

equation
✿✿

to
✿✿✿✿✿✿✿✿

correctly
✿✿✿✿✿✿✿✿

represent
✿✿✿

the
✿✿✿

rate
✿✿

of
✿✿✿✿

rain
✿✿✿✿✿✿✿✿✿

formation.
✿✿✿✿✿✿✿✿

Throught
✿✿✿

the
✿✿✿✿✿

paper

✿✿

we
✿✿✿✿✿✿✿

observe
✿✿✿✿

that
✿✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿

depends
✿✿

on
✿✿✿

its
✿✿✿✿

size.
✿✿✿

The
✿

size of a well-mixed air parcel is estimated
✿

in
✿✿✿✿

Sec.
✿✿

7

✿✿✿

and
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿✿✿

implications
✿✿✿

for
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

are
✿✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿

Sec.
✿

8.

2 The super-droplet method25

Consider NSD computational particles, called super-droplets (SDs),
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿

of
✿✿✿✿✿

water
✿✿✿✿✿✿✿

droplets
✿

in a well-mixed volume

. Each SD is characterized by two parameters: radius r and multiplicity ξ. Multiplicity is the number of real droplets that

this SD represents. Coalescence is
✿✿

V .
✿✿✿✿✿✿

Other
✿✿✿✿✿✿✿✿

processes,
✿✿✿✿

like
✿✿✿✿✿

water
✿✿✿✿✿✿✿✿✿✿✿

condensation
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

evaporation,
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿

included.
✿✿✿✿✿✿✿

Thanks
✿✿

to

✿✿

the
✿✿✿✿✿✿✿✿✿✿

assumption
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

volume
✿✿

is
✿✿✿✿✿✿✿✿✿✿

well-mixed,
✿✿✿

all
✿✿✿✿✿✿✿

droplets
✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿

volume
✿✿✿✿

can
✿✿✿✿✿✿

collide
✿✿✿✿

with
✿✿✿✿

each
✿✿✿✿✿

other,
✿✿✿✿✿✿✿✿✿✿✿✿

independently
✿✿✿

of

✿✿✿✿

their
✿✿✿✿✿✿✿

positions
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Gillespie, 1972).
✿✿✿✿✿✿✿✿

Therefore
✿✿✿✿✿✿

droplet
✿✿✿✿✿✿✿

motion
✿✿✿✿

does
✿✿✿

not
✿✿✿✿

have
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿

explicitly
✿✿✿✿✿✿✿✿

modeled
✿✿✿

and
✿✿✿✿✿✿

droplet
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿

can30

✿✿

be
✿

calculated in a stochastic manner,
✿✿

as
✿✿

it
✿✿

is
✿✿✿✿✿

done
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

master
✿✿✿✿✿✿✿

equation. Consider two randomly selected droplets i and j.

Probability that they will collide during timestep ∆t is Pij =K(ri, rj)∆t/V , where
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

P (ri, rj) =K(ri, rj)∆t/V ,
✿✿✿✿✿

where
✿✿✿

ri

3



✿✿✿

and
✿✿

rj
✿✿✿

are
✿✿✿✿✿

their
✿✿✿✿✿

radii, K is the coalescence kernel and V is the volume of the box. Two assumptions
✿✿✿

We
✿✿✿

use
✿✿✿✿✿✿✿✿✿✿✿

gravitational

✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿✿✿

kernels,
✿✿✿

so
✿✿✿

the
✿✿✿✿✿

effect
✿✿

of
✿✿✿✿✿✿✿✿✿

turbulence
✿✿

on
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿

studied.

✿✿

At
✿✿✿

the
✿✿✿✿

heart
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

super-droplet
✿✿✿✿✿✿✿

method
✿✿

is
✿✿✿

the
✿✿✿

idea
✿✿✿✿

that
✿✿

all
✿✿✿✿✿✿✿

droplets
✿✿✿✿

with
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿

properties
✿✿✿✿✿✿

within
✿

a
✿✿✿✿✿✿✿✿✿✿

well-mixed
✿✿✿✿✿✿

volume
✿✿✿

can
✿✿✿

be

✿✿✿✿✿✿✿✿✿

represented
✿✿✿

by
✿

a
✿✿✿✿✿✿

single
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿

entity,
✿✿✿✿✿

called
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

super-droplet
✿✿✿✿✿

(SD).
✿✿

As
✿✿✿

we
✿✿✿

are
✿✿✿✿✿✿✿✿✿

interested
✿✿✿✿

only
✿✿

in
✿✿✿✿✿✿

droplet
✿✿✿✿✿✿✿✿✿✿✿

coalescence,

✿

it
✿✿

is
✿✿✿✿✿✿✿✿

sufficient
✿✿

if
✿✿✿✿

SDs
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

by
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿✿

parameters:
✿✿✿✿✿

radius
✿✿

r
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

multiplicity
✿✿

ξ,
✿✿✿✿✿✿

which
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿

real
✿✿✿✿✿✿✿

droplets5

✿✿✿

that
✿

a
✿✿✿

SD
✿✿✿✿✿✿✿✿✿✿

represents.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿

algorithm
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shima et al. (2009),
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿✿✿✿

simplifications
✿

are made that affect
✿✿✿

may
✿✿✿✿✿

affect
✿✿✿

the
✿

amplitude

of fluctuations in
✿✿

the
✿

number of collisions. The first assumption
✿✿✿✿✿✿✿✿✿✿✿

simplification
✿

is that SDs collide in an "
✿

“all-or-nothing"
✿

”

manner. If a collision happens, all real droplets
✿✿✿✿

each
✿✿✿

real
✿✿✿✿✿✿

droplet
✿

represented by the SD with lower multiplicity collide
✿✿✿✿✿✿

collides

✿✿✿✿

with
✿

a
✿✿✿✿✿✿

single
✿✿✿✿✿✿

droplet
✿✿✿✿✿✿✿✿✿

represened
✿✿✿

by
✿✿✿

the
✿✿✿✿

SD
✿✿✿✿

with
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿✿

multiplicity.
✿✿✿✿✿✿✿✿✿✿

Intuitively,
✿✿✿

one
✿✿✿✿✿✿

would
✿✿✿✿✿✿

expect
✿✿✿✿

that
✿✿✿

this
✿✿✿✿✿✿

should
✿✿✿✿

lead
✿✿✿

to

✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿✿✿

fluctuations
✿✿✿✿

than
✿✿

in
✿✿✿✿

the
✿✿✿

real
✿✿✿✿✿✿✿

system,
✿✿✿✿✿✿✿

because
✿✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿✿

collision
✿✿✿✿

trials
✿✿✿

is
✿✿✿✿✿✿✿✿✿

artificially
✿✿✿✿✿✿✿

reduced. The second sim-10

plification
✿

,
✿✿✿

that
✿✿✿

we
✿✿✿✿

will
✿✿✿✿✿

refer
✿✿

to
✿✿✿

as
✿✿✿✿✿✿

“linear
✿✿✿✿✿✿✿✿✿

sampling”,
✿

is that instead of considering all NSD(NSD − 1)/2 collision pairs,

only [NSD/2]
✿✿✿✿✿✿✿✿

⌊NSD/2⌋
✿

non-overlapping pairs are randomly selected. The notation [x] stand
✿✿✿✿

NSD
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿

SDs

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿✿✿✿

volume
✿✿✿

and
✿✿✿✿

⌊x⌋
✿✿✿✿✿✿

stands
✿

for the largest integer equal to, or smaller than x. To keep the expected num-

ber of collisions equal to the real one, coalescence probabilities are scaled upbe the factor (NSD(NSD − 1)/2)/[NSD/2].

Intuitively, one would expect that these assumptions lead to much larger fluctuations than in the real system, because number15

of collision trials is artificially reduced
✿

.
✿✿✿✿✿✿✿✿✿

Probability
✿✿

of
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿

of
✿✿✿✿

two
✿✿✿✿

SDs
✿

i
✿✿✿

and
✿✿

j
✿✿✿

that
✿✿✿✿✿✿

belong
✿✿

to
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿

collision
✿✿✿✿

pair
✿✿

is

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

PSD(ri, rj , ξi, ξj) =max(ξi, ξj)P (ri, rj)(NSD(NSD − 1)/2)/⌊NSD/2⌋
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Shima et al., 2009).
✿✿✿✿

Real
✿✿✿✿✿✿✿

droplets
✿✿✿✿✿✿✿✿✿

represented
✿✿✿

by
✿✿✿

the

✿✿✿✿

same
✿✿✿

SD
✿✿✿✿✿✿

cannot
✿✿✿✿✿✿

collide
✿✿✿✿

with
✿✿✿✿

each
✿✿✿✿✿

other,
✿✿✿✿✿✿✿

because
✿✿✿✿

they
✿✿✿✿

have
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿✿✿

sedimentation
✿✿✿✿✿✿✿✿✿

velocities.

We will use

✿✿✿

We
✿✿✿

will
✿✿✿✿✿✿✿

perform two types of simulations. In "
✿✿

the
✿

“one-to-one"
✿

”
✿

simulations, all super-droplets
✿✿✿

SDs
✿

have multiplicity ξ = 1.20

They
✿✿✿

That
✿✿✿✿

way
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

“all-or-nothing”
✿✿✿✿✿✿✿✿✿✿✿✿

simplification
✿

is
✿✿✿✿✿✿✿✿

removed.
✿✿✿✿

SDs
✿

are initialized by randomly drawing radii from the assumed

initial distribution. Droplet collisions cause
✿✿✿✿✿✿✿✿✿✿

Coalescence
✿✿✿✿✿✿

causes
✿

one of the SDs to be discarded. Timestep length is chosen so

✿✿✿✿

Time
✿✿✿✿

step
✿✿✿✿✿

length
✿✿

is
✿✿✿✿✿✿✿

adapted
✿✿

at
✿✿✿✿

each
✿✿✿✿

time
✿✿✿✿

step
✿✿

to
✿✿✿✿✿✿

ensure that none of the collision pairs has coalescence probability greater than

one
✿

1. This approach is similar to the Direct Simulation Monte Carlo method used in diluted gas dynamics (Bird, 1994).
✿✿

In
✿✿✿✿

Sec.

✿

3
✿✿✿

we
✿✿✿✿✿

show
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿✿

method
✿✿

is
✿✿

in
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

master
✿✿✿✿✿✿✿✿

equation.25

The second type of simulation
✿✿✿✿✿✿✿✿✿

simulations, in which number of super-droplets
✿✿✿

SDs
✿

is constant, is closer to the original idea of

Shima et al. (2009)
✿✿✿✿

ideas
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shima et al. (2009). We will refer to it as "constant SD"
✿✿

the
✿✿✿✿✿✿✿✿✿

“constant
✿✿✿

SD”
✿

simulations. In that
✿✿✿

this

type of simulations, the number of super-droplets
✿✿✿✿

SDs is prescribed, but they have different multiplicities. To avoid large dif-

ferences in initial droplet
✿✿✿

the
✿✿✿✿✿

initial
✿✿✿✿✿✿

droplet
✿✿✿✿

size distribution between realizations, SD sizes are not completely randomly drawn

from the assumed distribution as in the "
✿

“one-to-one"
✿

” simulations. Instead, the assumed distribution is divided into NSD bins30

and size
✿✿

the
✿✿✿✿✿✿

radius of a single SD is randomly selected within each bin. The first step of
✿✿

the
✿

initialization is finding the largest

and smallest initial droplet
✿✿✿✿✿✿✿✿✿✿

super-droplet
✿

radius, rmax and rmin. They are defined by the relation n(ln(re))∆ln(r)V = 1,

✿✿✿✿✿

found
✿✿✿✿✿✿✿✿✿

iteratively,
✿✿✿✿✿✿

starting
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

rmin = 10−9
✿✿

m
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

rmax = 10−3
✿✿

m.
✿✿✿✿

We
✿✿✿✿✿✿

require
✿✿✿

that
✿✿✿✿

they
✿✿✿✿✿✿

satisfy
✿✿✿

the
✿✿✿✿✿✿✿✿

condition

n(ln(re))∆lrV ≥ 1,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(1)

4



where re is either rmax or rmin, n(ln(r)) is the initial droplet sizes distribution and ∆ln(r) = (ln(rmax)− ln(rmin))/NSD.

Then, within each bin of size ∆ln(r)
✿✿✿

size
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

∆lr = (ln(rmax)− ln(rmin))/NSD.
✿✿

In
✿✿✿✿

each
✿✿✿✿✿✿✿✿

iteration,
✿

if
✿✿✿✿✿

rmin
✿✿✿✿✿✿

(rmax)

✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿

satisfy
✿✿✿

(1),
✿✿

it
✿

is
✿✿✿✿✿✿✿✿

increased
✿✿✿✿✿✿✿✿✿✿

(decreased)
✿✿✿

by
✿✿✿

1%.
✿✿✿✿✿

Once
✿✿✿✿✿

rmin
✿✿✿

and
✿✿✿✿✿

rmax
✿✿✿

are
✿✿✿✿✿

found, radius of one SD is randomly selected

and its
✿✿✿✿✿

within
✿✿✿✿

each
✿✿✿

bin
✿✿

of
✿✿✿✿

size
✿✿✿✿

∆lr.
✿✿✿

Its multiplicity is given by n(ln(r))∆ln(r)V
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ξ = n(ln(r))∆lrV . This procedure does not

represent well the tails of the distribution, especially for large NSD. Since the large tail is important for coalescence, we draw5

additional
∫

∞

ln(rmax)
n(ln(r))dln(r)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

⌊
∫

∞

ln(rmax)
n(ln(r))dln(r)+ 0.5⌋ super-droplets with ξ = 1 from the distribution for radii

greater than rmax.
✿✿✿

This
✿✿✿✿✿✿

makes
✿✿✿

the
✿✿✿✿✿

actual
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿

SDs
✿✿✿✿✿✿

higher
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿

prescribed
✿✿✿✿✿

value
✿✿✿✿✿

NSD,
✿✿✿✿✿✿✿✿

typically
✿✿

by
✿✿✿

ca.
✿✿✿✿

1%.
✿✿✿

We
✿✿✿

do

✿✿✿

not
✿✿✿

add
✿✿✿✿

SDs
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

small
✿✿✿

tail
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

distribution,
✿✿✿✿✿✿✿

because
✿✿✿✿

very
✿✿✿✿✿

small
✿✿✿✿✿✿✿

droplets
✿✿✿

are
✿✿

of
✿✿✿✿

little
✿✿✿✿✿✿✿✿✿✿

importance
✿✿✿

for
✿✿✿✿

rain
✿✿✿✿✿✿✿✿

formation.
✿

In

this type of simulations, coalescence probabilities can
✿✿✿✿✿✿✿✿✿

simulation,
✿✿✿

the
✿✿✿✿

time
✿✿✿✿

step
✿✿✿✿✿

length
✿✿

is
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿✿

∆t= 1
✿✿

s.
✿

It
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

adapted,

✿✿

as
✿

it
✿✿

is
✿✿✿✿✿

done
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿✿✿✿✿✿

simulations,
✿✿

to
✿✿✿✿✿

make
✿✿✿

the
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿✿✿✿✿✿✿✿✿✿

computationally
✿✿✿✿✿

more
✿✿✿✿✿✿✿

efficient.
✿✿✿✿✿✿

Using
✿✿✿✿✿✿✿

constant
✿✿✿✿

time
✿✿✿✿

step10

✿✿✿✿✿

length
✿✿✿

can
✿✿✿✿✿

make
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿✿✿✿✿✿✿

probability exceed unity. If they do, they
✿

it
✿✿✿✿✿

does,
✿

it
✿

represent multiple collisions between the

✿

a pair of SDs
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Shima et al., 2009). If multiplicity of a SD drops to zero, it is used to split the SD with largest ξ in the system

into two. Super-droplets are discarded after collision only if all other SDs have ξ = 1.

We use an implementation of
✿✿

the
✿

SDM from the libcloudph++ library (Arabas et al., 2015). It is an open-source project

available at https://github.com/igfuw/libcloudphxx.15

3 The sol-gel transition
✿✿✿✿✿✿✿✿✿✿✿

Comparison
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿

SDM
✿✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

master
✿✿✿✿✿✿✿✿

equation

In a system of aggregating particles, the sol-gel transition (gelation) occurs when most of the total mass is located in a single

agglomerate (Leyvraz, 2003). For some forms of
✿✿✿

the coalescence kernel, the Smoluchowski equation is known not to conserve

mass after the transition. Alfonso and Raga (2016) presented exact
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Alfonso and Raga (2017) present
✿✿✿✿✿✿✿✿

numerical
✿

solutions of

the master equation for a small cloud volume undergoing the sol-gel transition,
✿✿✿

for
✿✿✿✿✿✿

which
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿✿

equation
✿✿

is
✿✿✿

not20

✿✿✿✿

valid. We perform simulations for the same setup as in Alfonso and Raga (2016) to test if SDM can reproduce these exact

results
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

are
✿✿

in
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

master
✿✿✿✿✿✿✿

equation
✿✿✿✿✿✿✿✿

approach. Consider a 1 cm3 volume containing

20 droplets with
✿✿

the
✿

radius of 17 µm and 10 droplets of radius 21.4 µm. Gravitational collision kernel is used with collision

efficiencies from Hall (1980)
✿✿✿✿✿✿✿✿✿✿

Hall (1980).
✿✿✿✿✿✿✿✿

Collision
✿✿✿✿✿✿✿✿✿✿

efficiencies
✿✿✿

are
✿✿✿✿✿✿✿✿

bilinearly
✿✿✿✿✿✿✿✿✿✿

interpolated
✿✿✿

in
✿✿✿

the
✿✿✿✿✿

radius
✿

-
✿✿✿✿✿

ratio
✿✿

of
✿✿✿✿

radii
✿✿✿✿✿

space.

Droplet terminal velocities are calculated using the formula from Beard (1976)
✿✿✿✿✿✿✿✿✿✿✿

Beard (1976).25

✿✿✿✿✿

Figure
✿✿

1
✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿

mass
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿✿

obtained
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

with
✿✿✿

and
✿✿✿✿✿✿✿

without
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

sampling

✿✿

of
✿✿✿✿✿✿✿

collision
✿✿✿✿✿

pairs.
✿

In the "
✿✿✿✿

latter
✿✿✿✿

case,
✿✿✿

all
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NSD(NSD − 1)/2
✿✿✿✿✿✿✿✿

collision
✿✿✿✿

pairs
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

considered
✿✿✿

and
✿✿

a
✿✿✿✿✿✿✿

constant
✿✿✿✿

time
✿✿✿✿

step
✿✿✿✿✿✿✿✿

∆t= 0.1

✿

s
✿✿✿

was
✿✿✿✿✿

used.
✿✿✿✿

Both
✿✿✿✿✿✿✿✿✿✿✿

appproaches
✿✿✿✿

give
✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿✿✿

results,
✿✿✿✿

what
✿✿✿✿✿

shows
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿✿✿✿✿

technique
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿

affect
✿✿✿

the
✿✿✿✿✿✿✿

average

✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿

collisions.
✿✿✿

In
✿✿✿✿✿✿✿

addition,
✿✿✿

the
✿✿

“one-to-one" simulations , every real droplet is represented by a single computational

droplet. That way the "all-or-nothing" simplification is removed, but the number of collision pairs is reduced. Figure 1 shows the30

mass distribution between droplet sizes after t= 2500 s averaged over an ensemble of Ω= 105 realizations. It compares well

with results presented in Fig. 8 in Alfonso and Raga (2016). This implies that the "
✿

”
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

are
✿✿✿✿✿✿✿✿

compared
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

master

✿✿✿✿✿✿✿

equation
✿✿✿✿✿✿✿✿

approach.
✿✿✿✿✿

Both
✿✿✿✿✿✿✿✿✿✿

approaches
✿✿✿

are
✿✿✿✿✿✿✿✿

generally
✿✿

in
✿✿✿✿✿✿✿✿✿✿

agreement,
✿✿✿✿

with
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿✿

differences
✿✿✿

at
✿✿✿

the
✿✿✿✿

large
✿✿✿✿

end
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

distribution.
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Mass of droplets per size bin averaged

over 105 simulations. Bins are 1 µm wide. Shown for comparison with Fig. 8 in Alfonso and Raga (2016).

Figure 1.
✿✿✿✿

Mass
✿✿

of
✿✿✿✿✿✿

droplets
✿✿✿

per
✿✿✿✿

size
✿✿✿

bin
✿✿

at
✿✿✿✿✿✿✿

t= 2500
✿✿

s.
✿✿✿✿

Bins
✿✿✿

are
✿

1
✿✿✿

µm
✿✿✿✿✿

wide.
✿✿✿✿✿

Points
✿✿✿✿✿

depict
✿✿✿

an
✿✿✿✿✿✿✿

averaged
✿✿✿✿

result
✿✿✿

of
✿✿✿✿✿✿✿

Ω= 104
✿✿✿✿✿✿✿✿✿✿

“one-to-one”

✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

with
✿✿✿

and
✿✿✿✿✿✿

without
✿✿✿✿

linear
✿✿✿✿✿✿✿

sampling
✿✿

of
✿✿✿✿✿✿✿

collision
✿✿✿✿

pairs.
✿✿✿✿

Error
✿✿✿✿

bars
✿✿✿✿

show
✿

a
✿✿✿✿

95%
✿✿✿✿✿✿✿✿

confidence
✿✿✿✿✿✿

interval.
✿✿✿✿

Line
✿✿✿✿✿✿

depicts
✿

a
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

solution

✿

of
✿✿✿

the
✿✿✿✿✿

master
✿✿✿✿✿✿✿

equation
✿✿✿

(see
✿✿✿✿

Fig.
✿

8
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Alfonso and Raga (2017),
✿✿✿

data
✿✿✿✿✿✿✿

courtesy
✿✿

of
✿✿

L.
✿✿✿✿✿✿✿

Alfonso).
✿

✿✿✿✿✿

These
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿

may
✿✿

be
✿✿✿✿✿✿

caused
✿✿✿

by
✿✿✿

the
✿✿✿

way
✿✿✿✿

how
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿✿✿✿✿

efficiency
✿✿✿✿✿

tables
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

interpolated.
✿✿✿✿✿✿✿

Another
✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿

source
✿✿

of

✿✿✿✿✿✿✿✿✿✿✿

discrepancies
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿

diffusion
✿✿✿✿✿✿

present
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

finite-differences
✿✿✿✿✿✿✿

method
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

Alfonso (2015).
✿✿✿

To
✿✿✿

test
✿✿

if
✿✿✿

the
✿

“one-to-one"

SDM simulation gives correct average result of coalescence, accounting for correlations between number of droplets of each

size. To check if it
✿

”
✿✿✿✿✿✿✿

method also gives correct fluctuations in the number of collisions, relative standard deviation of mass

of the largest droplet σ(mmax)/〈mmax〉 is plotted in Fig. 2. The same plot obtained using master equation is shown in Fig.5

7 of Alfonso and Raga (2016). Again, they compare very well, signifying that fluctuations are unaffected by the reduction in

the number of collision pairs considered.
✿✿✿✿✿✿✿✿✿✿✿

“One-to-one”
✿✿✿✿✿✿✿✿✿✿

simulations,
✿✿✿✿

with
✿✿✿

and
✿✿✿✿✿✿✿

without
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

sampling,
✿✿✿

are
✿✿✿✿✿✿✿✿✿

compared
✿✿✿✿

with
✿✿✿✿

SSA

✿✿✿✿✿✿✿✿✿✿

simulations.
✿✿✿

As
✿✿

in
✿✿✿

Fig.
✿✿

1,
✿✿✿

we
✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿

observe
✿✿✿

any
✿✿✿✿✿✿✿✿

negative
✿✿✿✿✿

effect
✿✿

of
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿✿✿✿✿

technique
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”

✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿✿✿✿

compare
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿

well
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

SSA.
✿✿✿✿✿✿✿

Possible
✿✿✿✿✿✿✿

sources
✿✿

if
✿✿✿✿✿✿✿✿✿✿✿

discrepancies
✿✿✿

are
✿✿✿

the
✿✿✿✿✿

same
✿✿

as
✿✿

in
✿✿✿✿

Fig.
✿✿

1.
✿✿✿✿✿✿✿

Judging
✿✿✿✿✿

from

✿✿✿✿

Figs.
✿✿

1
✿✿✿

and
✿✿

2,
✿✿✿

we
✿✿✿✿✿✿✿✿

conclude
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿✿✿✿

approach
✿✿

is
✿✿✿

in
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

master
✿✿✿✿✿✿✿✿

equation
✿✿✿✿✿✿✿✿

approach.
✿✿

It
✿✿✿✿✿✿✿✿

accounts10

✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿

droplets
✿✿✿

per
✿✿✿✿✿✿✿

size-bin
✿✿✿

and
✿✿

as
✿✿✿✿✿

such
✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿✿

fundamental
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿✿

equation

✿✿✿✿✿✿✿✿

approach.

In a "one-to-one" simulation, probability Podt that two randomly selected droplets coalesce in a short time step dt is

Podt= PpairηPcoldt, where Ppair is the probability of these two droplets belonging to the same randomly selected pair,
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Figure 2.
✿✿✿✿✿✿

Relative
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿

deviation
✿✿

of
✿✿✿✿

mass
✿✿

of
✿✿

the
✿✿✿✿✿✿

largest
✿✿✿✿✿

droplet
✿✿

in
✿✿✿

the
✿✿✿✿✿

system.
✿✿✿✿✿✿

Details
✿✿

of
✿✿✿

the
✿✿✿✿

SDM
✿✿✿✿✿✿✿✿✿

simulations
✿✿

are
✿✿✿✿✿

given
✿

in
✿✿✿

the
✿✿✿✿✿✿

caption
✿✿

of

✿✿✿

Fig.
✿✿

1.
✿✿✿

Size
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

ensamble
✿✿

of
✿✿✿

SSA
✿✿✿✿✿✿✿✿✿

simulations
✿✿

is
✿✿✿✿✿✿✿

Ω= 103.
✿✿✿

The
✿✿✿✿

SSA
✿✿✿✿✿

results
✿✿

are
✿✿✿✿✿

taken
✿✿✿✿

from
✿✿✿✿

Fig.7
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Alfonso and Raga (2017) (data
✿✿✿✿✿✿✿

courtesy

✿

of
✿✿

L.
✿✿✿✿✿✿✿✿

Alfonso).

η = NSD(NSD−1)
2 /[NSD

2 ] is the scaling-up of probability (Shima et al., 2009) and Pcoldt is the probability of coalescence if all

pairs were considered. To calculate Ppair, we first consider even values of NSD. Consider a random permutation of droplet

indices. Probability that the first droplet from the pair is at an odd position in the permutation and the second is at the next

position to the right is 1
2

1
NSD−1 . Probability that the first is at an even position and the second is to the left of it is the same .

Summing these two we get P even
pair (NSD) = 1/(NSD − 1). If NSD is odd, the probability is P odd

pair = P even
pair (NSD − 1)NSD−2

NSD
.5

We can write an expression for both odd and even cases Ppair = 1/(NSD − 1+2 ∗ (NSD/2− [NSD/2])). It is readily obtained

that Po = Pcol, i.e. that the probability of collision between any pair of real droplets is conserved in the "

✿✿✿

The
✿

“one-to-one" simulations.

The super-droplet method
✿

”
✿✿✿✿✿

SDM
✿✿✿✿

with
✿✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

sampling is computationally more efficient than solving the master equation

directly, or using the SSA. It also puts no constraints on the initial distribution of droplets. Therefore we can use SDM to10

predict gelation times for larger systems and more realistic initial conditions. We use an initial droplet distribution that is

exponential in mass n(m) = n0

m exp(−m/m), where n(m)dm is the number of droplets in mass range (m,m+ dm) in unit

volume, n0 = 142 cm−3 and m is the mass of a droplets
✿✿✿✿✿✿

droplet with radius r = 15 µm. This is the same distribution as in

Onishi et al. (2015)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Onishi et al. (2015). The total initial number of droplets in the system is N0 = n0V . Results of the "
✿

“one-

7



to-one" ”
✿

simulations for N0 up to 106
✿✿✿

105 are shown in Fig. 3. For N0 ≥ 102, the relative standard deviation of mass of the

largest droplet, which quantifies amplitude of fluctuations, decreases with increasing system size. This can be understood if we

look at a larger cell as an ensemble of ten smaller cells. Comparing between independent realizations, variability in the size

of the single, largest droplet will be smaller if this droplet is selected from ten cells in each realization than if it was selected

from only a single cell per realization. Interestingly, for N0 = 105 an inflection point appears around t= 500 s. It is not seen in5

smaller cells. This indicates that some new source of variability is introduced. We believe that it is associated with collisions

between large rain drops. We will come back to this in Sec. 5.

Relative standard deviation of mass of the largest droplet for different system sizes. Obtained from ensembles of 104

simulations.

The sol-gel transition time coincides with the time at which σ(mmax)/〈mmax〉 reaches maximum (Leyvraz, 2003; Alfonso and Raga, 201610

Intuitively, we would expect the time for most of the mass to accumulate in a single agglomerate to increase with increasing sys-

tem size. This turns out to be true for systems with N0 > 103. For system sizes 102 <N0 < 103 gelation time is approximately

the same, around 300 s. Behavior of an extremely small system with only 10 droplets is much different. Maximum relative

fluctuations are smaller and gelation time is longer than in a ten times larger system. Also, the maximum of σ(mmax)/〈mmax〉
is not very distinct. This is a manifestation of strong correlations in number of droplets of a given size. For example, if particles15

collide to form only two droplets of similar size, these two droplets may not collide for a very long time. Hence we observe

large fluctuations even at t= 2500 s.

4 Fluctuations in conversion to rain drops
✿✿✿

and
✿✿✿✿✿✿✿

validity
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

“constant
✿✿✿✿

SD”
✿✿✿✿✿

SDM

Fluctuations in time of conversion of cloud droplets to rain drops were studied using direct numerical simulations by Onishi et al. (2015)
✿✿✿✿✿

Onishi

Following their notation, by t10% we denote time after which 10% of mass of cloud droplets is turned into droplets with r > 4020

µm. Droplets of this size should then quickly grow through coalescence. The time t10% is used as a measure of efficiency

of rain production. We will compare results of "
✿✿

the
✿✿

“one-to-one"
✿

”
✿

simulations with DNS and try to determine how many

super-droplets
✿✿✿

SDs
✿

are needed in the "constant SD"
✿✿✿✿✿✿✿

“constant
✿✿✿✿

SD”
✿

simulations to accurately represent coalescence. The same

initial droplet distribution and coalescence kernel is used as in Sec. 3.

In Fig. 4, values of mean 〈t10%〉
✿✿✿✿

t10% for different initial number of droplets are plotted against the number of SDs. Results25

of both the "
✿

“one-to-one"
✿

”
✿

(rightmost points in each series) and "constant SD"
✿✿

the
✿✿✿✿✿✿✿✿

“constant
✿✿✿✿

SD”
✿

(rest of the points
✿✿

in
✿✿✿

the

✿✿✿✿✿

series) simulations are presented. Horizontal line shows the result of solving
✿✿✿

For
✿✿✿✿✿✿✿✿✿✿

comparison,
✿✿✿✿✿

t10%
✿✿✿✿✿✿✿

obtained
✿✿✿

by
✿✿✿✿✿✿✿

solving
✿✿✿

the

Smoluchowski equation using the flux method from Bott (1998). The "
✿✿✿✿

Bott
✿✿✿✿✿✿✿✿

algorithm
✿✿

is
✿✿✿✿✿✿✿

plotted
✿✿✿✿✿✿✿✿✿✿✿

(Bott, 1998).
✿✿

In
✿✿✿

the
✿✿✿✿✿

Bott

✿✿✿✿✿✿✿✿

algorithm,
✿✿✿

we
✿✿✿✿✿

used
✿✿✿✿✿✿

∆t= 1
✿✿

s
✿✿✿✿

and
✿✿✿✿

mass
✿✿✿✿

bin
✿✿✿✿✿✿✿

spacing
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

mi+1 = 21/10mi.
✿✿✿✿

The
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿

were
✿✿✿✿✿

used
✿✿

in
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿✿

simulation

✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

manuscript.
✿✿✿✿✿✿✿✿✿✿✿

Convergence
✿✿✿✿

tests
✿✿✿✿✿

were
✿✿✿✿

done
✿✿✿

for
✿✿✿✿

each
✿✿✿✿

case.
✿✿✿✿

The
✿✿

“one-to-one" ”
✿

results converge with increasing30

system volume (i.e. increasing N0) . It is not clear if they would converge to Smoluchowski result, or to some higher value.

The
✿

to
✿✿

a
✿✿✿✿

value
✿✿✿✿✿✿

higher
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿

result.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

difference
✿✿

is
✿✿✿✿✿✿✿✿

probably
✿✿✿✿✿✿

caused
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿

diffusion
✿✿

of
✿✿✿

the
✿✿✿✿

Bott

✿✿✿✿✿✿✿✿

algorithm.
✿✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿

“constant
✿✿✿✿

SD”
✿✿✿✿✿✿✿✿✿✿✿

simulations, error caused by using SDs with ξ > 1 (in "constant SD" simulations) weakly

8



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500 2000 2500

σ
(m

m
a
x
)/
〈m

m
a
x
〉

time [s]

N0 = 102

N0 = 103

N0 = 104

N0 = 105

Figure 3.
✿✿✿✿✿✿

Relative
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿

deviation
✿✿

of
✿✿✿✿✿

mass
✿✿

of
✿✿✿

the
✿✿✿✿✿

largest
✿✿✿✿✿✿

droplet
✿✿✿

for
✿✿✿✿✿✿✿

different
✿✿✿✿✿

system
✿✿✿✿✿

sizes.
✿✿✿✿✿✿✿✿

Estimated
✿✿✿✿

from
✿✿✿✿✿✿✿✿

ensembles
✿✿✿

of
✿✿✿✿✿✿✿

Ω= 104

✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

for
✿✿✿

each
✿✿✿✿✿

value
✿✿

of
✿✿✿

N0.

depends on the system size. Using 103 SDs gives 〈t10%〉 within 1% of the "
✿

“one-to-one"
✿

”
✿

value. Using 102 SDs causes about

10% delay in rain formation. It is worth noting thaton modern computers, large eddy simulations (LES) with 102 SDs per cell

are feasible, but those with NSD = 103 would be very demanding
✿✿✿✿✿✿✿✿✿

difference.
✿✿✿✿

This
✿✿✿✿✿

shows
✿✿✿✿

that,
✿✿

in
✿✿✿✿✿

terms
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿

cost,

✿

it
✿✿

is
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿✿

cheap
✿✿

to
✿✿✿✿✿✿

obtain
✿

a
✿✿✿✿✿

good
✿✿✿✿✿✿✿

estimate
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿

result
✿✿

of
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿

SDM.
✿✿✿

The
✿✿✿✿✿

SDM
✿✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿

also

✿✿✿✿✿✿✿✿

compared
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

results
✿✿

of
✿✿✿✿✿

DNS,
✿✿

in
✿✿✿✿✿

which
✿✿✿

air
✿✿✿✿✿✿✿✿✿

turbulence
✿✿✿

was
✿✿✿

not
✿✿✿✿✿✿✿✿✿

modelled,
✿✿✿

but
✿✿✿✿✿✿✿✿✿✿✿✿

hydrodynamic
✿✿✿✿✿✿✿✿✿✿

interactions
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

droplets5

✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

accounted
✿✿✿

for.
✿✿✿

We
✿✿✿✿✿✿

choose
✿✿✿✿

this
✿✿✿✿

kind
✿✿

of
✿✿✿✿✿✿

DNS,
✿✿✿✿✿✿✿

because
✿

it
✿✿✿✿✿✿

should
✿✿✿

be
✿✿✿✿

well
✿✿✿✿✿✿✿✿

described
✿✿✿

by
✿✿✿

the
✿✿✿✿

Hall
✿✿✿✿✿✿

kernel
✿✿✿

that
✿✿

is
✿✿✿✿

used
✿✿✿

in
✿✿✿

the

✿✿✿✿

SDM
✿✿✿✿

and
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿✿

equation.
✿✿

It
✿✿✿✿

turns
✿✿✿

out
✿✿✿✿

that
✿✿✿

the
✿✿✿

Hall
✿✿✿✿✿✿

kernel
✿✿✿✿✿

gives
✿✿✿

too
✿✿✿✿

short
✿✿✿✿✿✿✿✿✿✿✿✿✿

autoconversion
✿✿✿✿✿

times.
✿✿✿✿

The
✿✿✿✿

same
✿✿✿✿✿

issue

✿✿✿

was
✿✿✿✿✿✿✿✿

observed
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Onishi et al. (2015) (cf.
✿✿✿

Fig.
✿✿✿✿

1(b)
✿✿✿✿✿✿✿

therein).

To analyze the amplification of fluctuations in the "constant SD"
✿✿✿✿✿✿✿

“constant
✿✿✿✿

SD”
✿

method, we plot the relative standard devia-

tion of t10% in Fig. 5. For reference, results from DNS from Onishi et al. (2015)
✿✿

of
✿✿✿✿

DNS
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Onishi et al. (2015) are shown.10

Results from our "
✿

“one-to-one"
✿

”
✿

simulations are in good agreement with them. Small discrepancies are probably caused by

the fact that in Onishi et al. (2015) different coalescence kernels were used
✿✿✿

the
✿✿✿✿

DNS
✿✿✿✿✿✿✿✿

included
✿✿✿✿✿✿✿✿✿

turbulence
✿✿

of
✿✿✿✿✿✿✿

various
✿✿✿✿✿✿✿

strength

for different N0. Results of "
✿✿✿

the
✿

“one-to-one"
✿

” simulations were fitted with a
✿✿

the function α
√

1/N0 with ,
✿✿✿✿✿✿✿✿

resulting
✿✿

in α= 6.

Figure 5 also presents fluctuations in "constant SD"
✿✿

the
✿✿✿✿✿✿✿✿✿

“constant
✿✿✿✿

SD” simulations for various NSD. This type of simulations

gives correct amplitude of fluctuations only for relatively low values of the ratio N0/NSD. For constant NSD, as N0 increases,15

✿✿

the
✿

amplitude of fluctuations correctly decreases
✿✿✿✿✿✿✿✿

decreases
✿✿✿✿✿✿✿

correctly. Then, above some critical value of the N0/NSD ratio,

9
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Figure 4. Mean t10%
✿✿

for
✿✿✿✿✿✿✿

different
✿✿✿✿✿

system
✿✿✿✿

sizes
✿✿✿

and
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

numbers
✿✿

of
✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿✿

droplets
✿✿✿✿✿

NCD .
✿✿

In
✿✿✿✿

SDM
✿✿✿✿✿✿✿✿✿

simulations,
✿✿✿✿✿✿✿✿✿✿✿

NCD =NSD

✿✿✿

and
✿

in
✿✿✿✿✿

DNS,
✿✿✿✿✿✿✿✿✿

NCD =N0.
✿✿✿✿

The
✿✿✿✿✿

single
✿✿✿✿

DNS
✿✿✿✿

result
✿✿

is
✿✿✿✿

taken
✿

from ensemble
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Onishi et al. (2015) (the
✿✿✿✿✿✿

NoT-HI
✿✿✿✿

case
✿✿✿✿✿✿

therein).
✿✿✿✿✿✿✿✿

Ensemble
✿

sizes
✿✿

are

Ω≥ 103
✿✿

for
✿✿✿✿

SDM
✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

and
✿✿✿✿✿✿

Ω= 102
✿✿✿

for
✿✿✿✿

DNS. Errorbars
✿✿✿

The
✿✿✿✿

95%
✿✿✿✿✿✿✿✿

confidence
✿✿✿✿✿✿

intervals
✿

are smaller than plotted points. Rightmost
✿✿✿

The

✿✿✿✿✿✿✿

rightmost point for
✿✿

in each
✿✿✿✿

SDM series is
✿✿✿✿

comes
✿

from "
✿✿

the
✿

“one-to-one"
✿

”
✿

simulations. Other points
✿✿

in
✿✿✿✿

SDM
✿✿✿✿✿

series are from
✿✿

the
✿✿✿✿✿✿✿✿

“constant

✿✿✿

SD”
✿

simulations with various values of NSD . The horizontal line is the
✿

a
✿

value obtained from
✿✿

by
✿✿✿✿✿✿✿✿✿

numerically
✿✿✿✿✿✿

solving the Smoluchowski

equation
✿✿✿✿

using
✿✿

the
✿✿✿

flux
✿✿✿✿✿✿

method
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

Bott (1998).

fluctuations stop to decrease and remain constant independent of the system size. This is a result of introducing unrealistic cor-

relations between droplet sizes, a consequence of
✿✿✿

the low number of simulational particles (Bayewitz et al., 1974). We show the

limiting, minimal value of relative standard deviation of t10% in Fig. 6. It decreases as β
√

1/NSD, with β = 2. By comparing

it with α= 6, we conclude that in order to obtain correct fluctuations in t10%, number of SDs has to be NSD ≥ 1
9N0. Using so

many SDs is not feasible in LES simulations
✿✿✿✿

Large
✿✿✿✿✿

Eddy
✿✿✿✿✿✿✿✿✿✿

Simulations
✿✿✿✿✿

(LES), but is possible in smaller scale simulations. Also,5

knowing α and β,
✿

we can estimate the magnitude of fluctuation amplification in the
✿✿✿✿✿✿✿✿

“constant
✿✿✿✿

SD” SDM.

5 Validity of the Smoluchowski equation

The Smoluchowski equation presents a mean-field description of the evolution of the size spectrum. It is exact only in the

thermodynamic limit (V →∞). We will try to determine minimal system size for which
✿✿✿

the
✿

Smoluchowski equation can be

used without introducing major errors. To do so, we analyze
✿✿✿

the evolution of θ, the ratio of rain water (r ≥ 40 µm) content to10
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Figure 5. Relative standard deviation of t10% against system size. Our
✿✿✿✿

SDM results are based on samples of size of at least 103
✿✿✿✿✿✿✿✿✿

realizations.

✿✿✿✿

DNS
✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿

taken
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Onishi et al. (2015). Where not shown, errorbars are smaller than plotted points. Curve fitting gave
✿✿

The
✿✿✿✿✿

value

α= 6
✿✿✿

was
✿✿✿✿✿✿

obtained
✿✿✿

by
✿✿✿✿

curve
✿✿✿✿✿

fitting
✿✿

to
✿✿

the
✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿

results.

the total water content. Onishi et al. (2015)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Onishi et al. (2015) denote this value by τ . We do not adopt this notation to avoid

confusion with the characteristic time.

We compare results of "
✿✿✿

the
✿

“one-to-one"
✿

” simulations with solutions of the Smoluchowski equation in
✿✿

for
✿

two cases - with

fast and with slow rain development. In both cases collision efficiencies for large droplets were taken from Hall (1980)
✿✿

are
✿✿✿✿✿

taken

✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿

Hall (1980) and for small droplets from Davis (1972)
✿✿✿✿✿✿✿✿✿✿

Davis (1972). In the first case, we use the same initial distribution as5

in Secs. 3 and 4, which results in rapid rain development. As seen in Fig. 7, the Smoluchowski equation gives correct mean rain

development
✿✿✿

rate for systems with N0 ≥ 104. In smaller systems
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿

curve
✿✿

is
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿

shifted
✿✿✿✿

left,
✿✿✿✿✿✿✿

probably
✿✿✿✿

due

✿✿

to
✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

diffusion
✿✿✿

of
✿✿

the
✿✿✿✿

Bott
✿✿✿✿✿✿✿✿✿

algorithm,
✿✿

as
✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿

Sec.
✿✿

4.
✿✿

In
✿✿✿✿✿✿✿

systems
✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿✿✿✿✿✿✿

N0 = 104, rain develops slower

than predicted by the Smoluchowski equation. Agreement of stochastic coalescence in large systems with the Smoluchowski

equation for a similar initial distribution was shown in Seeβelberg et al. (1996). Onishi et al. (2015)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Seeβelberg et al. (1996).10

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Onishi et al. (2015) present figures similar to Fig. 7, but obtained from DNS runs for N0 = 7.24 · 104 (Figs
✿✿✿

Fig. 1(a) and 1(b)

therein). They also show good agreement between model results and the Smoluchowski equation, at least up to t= 330 s.

The second case is well below the size gap, i.e. the range of radii for which both collisional and condensational growths are

slow. We use r = 9.3 µm and n0 = 297 cm−3 as in Wang et al. (2006)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Wang et al. (2006). In addition, we cut the distribution

to 0 at r = 20 µm.
✿✿✿✿

This
✿✿✿✿✿

cutoff
✿✿

is
✿✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

SDM
✿✿✿✿✿✿✿✿

modelling
✿✿✿

as
✿✿✿✿

well
✿✿✿

as
✿✿✿✿✿

when
✿✿✿✿✿✿

solving
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿✿

equation.
✿

That15
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Figure 6. Minimal, limiting value of the relative standard deviation of t10% for a given number of super-droplets (squares)
✿

in
✿✿✿✿✿✿✿

“constant
✿✿✿✿

SD”

✿✿✿✿✿✿✿✿

simulations. It is calculated as an average of the points to the right of the α/
√
N0 curve in Fig. 5. Line is the fitted function β/

√
NSD with

β = 2.

way we get rid of the occasional very large droplets
✿✿✿

SDs
✿

present at t= 0 in some realizations . Then
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

SDM.
✿✿✿

For
✿✿✿✿✿

these

✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿

conditions, rain development takes much longer and fluctuations can play a bigger role. Results are presented in Fig. 8.

Surprisingly, the "
✿✿✿✿✿

Again,
✿✿✿

we
✿✿✿

see
✿✿✿✿✿✿✿✿✿✿✿

convergence
✿✿

of
✿✿✿

the
✿

“one-to-one" results do not converge ”
✿✿✿✿✿✿✿✿✿✿

simulations
✿

to the Smoluchowski

results with increasing system size. We see convergence towards some other, higher value in
✿✿✿✿✿

result,
✿✿✿

but
✿✿

in
✿✿✿✿

this
✿✿✿✿

case
✿✿✿

the
✿✿✿✿✿✿

system

✿✿✿

has
✿✿

to
✿✿

be
✿✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿✿✿

(N0 ≥ 107)
✿✿✿

for the time it takes for rain to form. Up to 〈θ〉= 0.2 results for N0 = 105 are the same as for5

N0 = 106, but much different from the Smoluchowski results. The latter might be affected by numerical diffusion because

the simulation runs for quite long before any rain is formed. For 〈θ〉 ≥ 0.2, there are discrepancies between N0 = 105 and

N0 = 106 results. The rate of growth of 〈θ〉 decreases earlier with increasing system size
✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿

equation
✿✿

to
✿✿✿

be
✿✿✿✿✿

valid.

✿✿✿

The
✿✿✿✿

way
✿✿✿✿

how
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

“one-to-one”
✿✿✿✿✿✿

curves
✿✿✿✿✿✿✿

converge
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿

curve
✿✿

is
✿✿✿✿✿✿✿✿✿

interesting.
✿✿✿

As
✿✿

in
✿✿✿

the
✿✿✿

first
✿✿✿✿✿

case,
✿✿

in
✿✿✿✿✿✿

smaller
✿✿✿✿✿✿✿

systems

✿✿✿

rain
✿✿✿✿✿✿✿

appears
✿✿✿✿

later
✿✿✿✿

than
✿✿

in
✿✿✿✿✿

larger
✿✿✿✿✿✿✿

systems.
✿✿✿

On
✿✿✿

the
✿✿✿✿

other
✿✿✿✿✿

hand,
✿✿✿

the
✿✿✿✿

rain
✿✿✿✿✿✿✿✿

formation
✿✿✿✿

rate
✿✿✿

(the
✿✿✿✿✿

slope
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

curves
✿✿

in
✿✿✿

Fig.
✿✿

8)
✿✿

in
✿✿✿✿✿✿✿

smaller10

✿✿✿✿✿✿

systems
✿✿✿✿✿

starts
✿✿✿

to
✿✿✿✿✿✿✿

decrease
✿✿

at
✿✿✿✿✿✿

higher
✿✿✿✿✿✿

values
✿✿

of
✿✿

θ
✿✿✿✿

than
✿✿

in
✿✿✿✿✿✿

larger
✿✿✿✿✿✿✿

systems. In consequence, after t= 5000 s we get lower rain

fraction for N0 = 105 than for N0 = 104, and even lower for N0 = 106.

As in Fig. 7, but for an initial distribution with r = 9.3 µm, n0 = 297 cm−3 and a cutoff at r = 20 µm.

The decrease of rain growth rate coincides with a decrease in
✿✿✿✿✿✿

smaller
✿✿✿✿✿✿✿

systems
✿✿✿

can
✿✿✿✿✿✿✿

produce
✿✿✿✿✿

higher
✿✿✿✿

rain
✿✿✿✿

ratio
✿✿✿✿

than
✿✿✿✿✿

larger
✿✿✿✿✿

ones,

✿✿✿✿✿✿✿

although
✿✿✿✿

they
✿✿✿✿✿✿

started
✿✿✿✿✿✿✿✿

producing
✿✿✿✿

rain
✿✿✿✿

later
✿✿✿✿

(e.g.
✿✿✿✿✿✿✿

compare
✿✿✿✿✿✿

curves
✿✿

for
✿✿✿✿✿✿✿✿✿

N0 = 105
✿✿✿

and
✿✿✿✿✿✿✿✿

N0 = 107
✿✿✿

for
✿✿✿✿✿✿✿✿

t > 4200
✿✿

s).
✿✿✿✿

The
✿✿✿✿✿✿✿

decrease
✿✿

in
✿✿✿

the15
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Figure 7. Rain content ratio θ for different system sizes averaged over ensembles of Ω= 104
✿✿✿✿✿✿

Ω= 103
✿

simulations. Shaded regions show

one standard deviation interval.

✿✿✿

rain
✿✿✿✿✿✿✿✿

formation
✿✿✿✿

rate
✿✿

is
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿

the
✿✿✿✿✿✿✿✿

decrease
✿✿

in
✿✿✿

the concentration of rain drops nr, as shown
✿✿✿✿✿✿

plotted in Fig. 9. Number of

rain drops decreases due to collisions between droplets
✿✿✿✿✿

drops from this category. A single droplet that results out of
✿✿✿

drop
✿✿✿✿

that
✿✿

is

✿✿✿✿✿✿✿

produced
✿✿

in
✿

such collision is less efficient at scavenging cloud droplets than
✿✿✿

the two pre-collision droplets. As a
✿✿✿✿✿

drops.
✿✿

In
✿

result,

growth rate of θ decreases.
✿✿✿✿

Using
✿✿✿✿✿

large
✿✿✿✿✿✿✿✿✿

well-mixed
✿✿✿✿✿✿✿✿

volumes
✿✿✿

may
✿✿✿✿✿✿✿✿

introduce
✿✿✿✿✿✿✿✿✿

additional,
✿✿✿✿✿✿✿✿✿

unrealistic
✿✿✿✿✿✿✿

rain-rain
✿✿✿✿✿✿✿✿✿

collisions.
✿✿✿✿✿✿✿✿

Consider

✿✿✿

two
✿✿✿✿✿✿✿

droplets
✿✿✿✿✿✿

within
✿

a
✿✿✿✿✿

large
✿✿✿

cell
✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿

independently
✿✿✿✿✿

grow
✿✿

to
✿✿✿

the
✿✿✿✿

rain
✿✿✿✿✿✿✿

category.
✿✿✿✿✿

They
✿✿✿✿

have
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿

separated
✿✿✿✿✿✿

enough
✿✿✿

not
✿✿

to
✿✿✿✿✿✿✿

deplete5

✿✿✿✿✿

liquid
✿✿✿✿✿

water
✿✿✿✿

from
✿✿✿✿

each
✿✿✿✿✿✿

other’s
✿✿✿✿✿✿✿✿✿✿

surrounding
✿✿

as
✿✿✿✿

they
✿✿✿✿✿

grow.
✿✿

If
✿✿

we
✿✿✿✿✿✿✿

assume
✿✿✿

that
✿✿✿

the
✿✿✿

cell
✿✿

is
✿✿✿✿✿✿✿✿✿✿

well-mixed,
✿✿✿✿

they
✿✿✿

can
✿✿✿✿✿✿✿✿✿✿✿

immediately
✿✿✿✿✿✿

collide

✿✿✿✿

after
✿✿✿✿✿✿✿✿

becoming
✿✿✿✿

rain
✿✿✿✿✿

drops
✿✿✿

and
✿✿✿✿✿✿✿

generate
✿✿✿

an
✿✿✿✿

even
✿✿✿✿✿

larger
✿✿✿✿✿

drop.
✿✿

In
✿✿✿✿✿✿

reality,
✿✿✿✿

they
✿✿✿✿✿

could
✿✿✿✿✿✿

collide
✿✿✿✿

only
✿✿✿✿

after
✿✿✿✿✿

some
✿✿✿✿

time
✿✿✿✿

after
✿✿✿✿✿✿✿✿✿

becoming

✿✿✿

rain
✿✿✿✿✿✿

drops,
✿✿✿✿✿✿

because
✿✿✿✿

first
✿✿✿✿

they
✿✿✿✿✿✿

would
✿✿✿✿

need
✿✿

to
✿✿✿✿✿✿✿✿

overcome
✿✿✿

the
✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿✿

separation.
✿✿✿✿

This
✿✿✿✿✿

means
✿✿✿✿

that
✿✿✿✿✿

using
✿✿✿✿

large
✿✿✿✿✿✿✿✿✿✿

well-mixed
✿✿✿✿✿✿✿✿

volumes,

✿✿✿

e.g.
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿✿

equation,
✿✿✿✿

may
✿✿✿✿✿

result
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimating
✿✿✿

the
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿

rain
✿✿✿✿✿✿✿✿

produced.
✿

In coalescence cells with N0 ≤ 104, we do not observe the decrease in
✿✿✿

the number of rain drops within 5000 s, probably10

because sizes of rain drops are similar. For
✿✿

In
✿

larger cells, more rain drops with a broader distribution are formed. In conse-

quence, they collide more often
✿

, which decreases their number and the rate of collection of cloud droplets. It is likely that the

same effect is
✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿

rain-rain
✿✿✿✿✿✿✿✿

collisions
✿✿

in
✿✿✿✿

large
✿✿✿✿✿✿✿✿

volumes
✿✿✿

are responsible for the additional inflection point around t= 500

s in the plot of
✿✿✿

the relative standard deviation of the largest droplet mass for N0 = 105 (cf. Fig. 3). This
✿✿✿✿

They
✿

could also lead

to the deviation from the ∼ 1/
√
N0 scaling seen in Fig. 5. Fluctuations in cells with N0 = 107 are greater than predicted using15

this scaling.
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Figure 8.
✿✿

As
✿✿

in
✿✿✿

Fig.
✿✿

7,
✿✿✿

but
✿✿✿

for
✿✿

an
✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

with
✿✿✿✿✿✿✿

r = 9.3
✿✿✿

µm,
✿✿✿✿✿✿✿✿

n0 = 297
✿✿✿✿

cm−3

✿✿✿✿

and
✿

a
✿✿✿✿✿

cutoff
✿✿

at
✿✿✿✿✿

r = 20
✿✿✿✿

µm.
✿✿✿

The
✿✿✿✿✿✿✿✿

ensamble
✿✿✿

size
✿✿

is

✿✿✿✿✿✿✿✿✿✿

Ω= 108/N0.

Mean concentration of rain drops for the same initial distribution as in Fig. 8 from ensembles of at least Ω= 104 simulations.

Judging from Fig. 9, we conclude that Smoluchowski equation consistently overestimates the number of rain drops during

the initial phase, that is when 〈nr〉 increases. Smoluchowski equation gives up to 50% higher values of 〈nr〉. We also observe

that,
✿

although the amount of rain water depends strongly on the cell size, the number of rain drops does not. In larger cells rain5

drops acquire larger sizes through collisions with rain drops
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿

droplets, but rate of production of
✿✿✿✿✿✿✿✿✿✿✿✿

autoconversion
✿✿✿

of
✿✿✿✿✿

cloud

✿✿✿✿✿✿

droplets
✿✿✿

to rain drops is not affected by using larger
✿✿✿✿

much
✿✿✿

by cell size. In box model simulations, the Smoluchowski equation

produces too much rain if initial distribution is well below size gap and droplets slowly grow through coalescence. It is difficult

to tell if using the Smoluchowski equation in cloud models overestimates the amount of rain. Possibly, condensational growth

helps droplets cross the gap, leading to initial condition that is closer to the one in the first case (r = 15 µm). For such initial10

condition, Smoluchowski equation gives correct results.

6 Lucky droplets

There is a well-established idea that some droplets undergo series of unlikely collisions and grow much faster than an av-

erage droplet (Telford, 1955; Scott, 1967; Marcus, 1968; Robertson, 1974; Mason, 2010). These few lucky droplets are
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Figure 9.
✿✿✿✿

Mean
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿

of
✿✿✿

rain
✿✿✿✿

drops
✿✿✿✿

from
✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿✿✿✿✿

simulations
✿✿

as
✿✿

in
✿✿✿

Fig.
✿✿

8.

Table 1. Average, standard deviation and sample size of time (in seconds) for the lucky realizations to produce single rain droplet
✿✿✿

drop.

γ = 10−4 γ = 10−3 γ = 10−2 γ = 10−1

σ(tγ40)
✿✿✿✿✿✿

σ(t40)γ
✿

γΩ 〈tγ40〉
✿✿✿✿✿

〈t40〉γ σ(tγ40)
✿✿✿✿✿✿

σ(t40)γ
✿

γΩ 〈tγ40〉
✿✿✿✿✿

〈t40〉γ σ(tγ40)
✿✿✿✿✿✿

σ(t40)γ
✿

γΩ 〈tγ40〉
✿✿✿✿✿

〈t40〉γ σ(tγ40)
✿✿✿✿✿✿

σ(t40)γ
✿

γΩ 〈tγ40〉
✿✿✿✿✿

〈t40〉γ
212 10 2930 356 10 4053 517 102 6365 1158 103 14777

120 102 1762 170 103 2400 267 104 3440 505 105 6500

173 3 1336 103 10 1717 176 102 2354 276 103 3912

33 2 1090 60 20 1334 85 200 1721 169 2000 2552

1038 165 2 1301 176 20 1831

argued to be responsible for droplet spectra broadening and rain formation
✿✿✿✿✿✿

forming
✿

quicker than predicted by the Smolu-

chowski equation. Luck is supposed to be especially important during crossing of the size gap, when collisions happen

rarely (Robertson, 1974; Kostinski and Shaw, 2005). A single droplet that would cross the size gap through lucky collisions

could then initiate a cascade of collisions. We use the same initial distribution as in the second case in Sec. 5. The mean

radius is r = 9.3 µm, well below the size gap. Theoretical estimation of the "luck factor"
✿✿✿✿✿

“luck
✿✿✿✿✿✿

factor”
✿

was presented in5

Kostinski and Shaw (2005)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kostinski and Shaw (2005). We use "
✿✿✿

the
✿

“one-to-one"
✿

”
✿

simulations to test predictions from that

paper.
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We are interested in time t40 it takes for the largest droplet in the system to grow to r = 40 µm.
✿✿✿

We
✿✿✿✿✿✿✿

perform
✿✿✿✿✿✿✿✿✿✿

simulations

✿✿

for
✿✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿

as
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿

case
✿✿

in
✿✿✿✿

Sec.
✿✿✿

5.
✿✿✿✿

The
✿✿✿✿✿

mean
✿✿✿✿✿

radius
✿✿

is
✿✿✿✿✿✿✿

r = 9.3
✿✿✿✿

µm,
✿✿✿✿

well
✿✿✿✿✿✿

below
✿✿✿

the
✿✿✿✿

size
✿✿✿✿

gap.

From an ensemble of Ω realizations, we select sub-ensembles of luckiest realizations, i.e. those with
✿✿

the
✿

smallest t40. We

consider sub-ensembles of size γΩ with log10(γ) =−4,−3,−2,−1,0. In each sub-ensemble, we calculate mean 〈tγ40〉 and

standard deviation σ(tγ40) ✿✿

the
✿✿✿✿✿

mean
✿✿✿✿✿✿

〈t40〉γ
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿✿✿✿✿

σ(t40)γ ,
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿

subscript
✿✿

γ
✿✿✿✿✿✿

denotes
✿✿✿✿

the
✿✿✿

size
✿✿✿

of
✿✿✿

the5

✿✿✿✿✿✿✿✿✿✿✿

sub-ensemble
✿✿✿✿

from
✿✿✿✿✿✿

which
✿✿✿

the
✿✿✿✿✿✿✿

statistic
✿✿✿

was
✿✿✿✿✿✿✿✿✿

calculated. The results for different cell sizes are shown in Tab. 1. There is a large

variability in 〈tγ40〉 ✿✿✿✿✿

〈t40〉γ with cell size. This is caused by the fact that t40 depends only on a single largest droplet. Larger

cells contain more droplets, so probability of producing single large droplet increases with cell size. We notice that 〈tγ40〉 ✿✿✿✿✿

〈t40〉γ
is approximately the same along the diagonals of Tab. 1. For example, cell containing 106 droplets on average will produce

first rain droplet in 30 minutes. If we divided it into 10 cells with 105 droplets each, the luckiest one would also produce a10

droplet in 30 minutes on average. This shows that using large coalescence cells does not affect formation of first rain drops.

The differences discussed in previous Sections emerge later, when there are already some rain drops that can collide with

each other. Moving to very small cells, we no longer observe same 〈tγ40〉 ✿✿✿✿✿

〈t40〉γ along the diagonals. Ten cells with N0 = 102

produce rain drops slower than a single cell with N0 = 103. This is due to depletion of water droplets in small cells. The largest

droplet a cell with N0 = 102 can produce has r ≈ 43 µm, close to the 40 µm rain threshold.15

Kostinski and Shaw (2005)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kostinski and Shaw (2005) estimate that the luckiest 10−3 fraction of droplets should cross the

size gap around six times faster than average, while the luckiest 10−5 around nine times faster. We compare these val-

ues with our simulations for N0 = 103. We choose this cell size, because it is the smallest one for which water depletion

does not affect t40. As far as t40 is concerned, larger cells behave exactly like an ensemble of cells of this size. We find

〈t10−3

40 〉/〈t140〉 ≈ 3.7 and 〈t10−5

40 〉/〈t140〉 ≈ 6
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

〈t40〉10−3/〈t40〉1 ≈ 3.7
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

〈t40〉10−5/〈t40〉1 ≈ 6. The value of 〈t10−5

40 〉
✿✿✿✿✿✿✿✿

〈t40〉10−520

was estimated at 1090 s based on values along the diagonal for larger γ and larger N0. These ratios are lower than given

in Kostinski and Shaw (2005)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kostinski and Shaw (2005), showing that their theoretical analysis overestimates the "luckiness"

✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿✿✿✿

overestimates
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

“luckiness”
✿

in droplet growth. Nevertheless, we agree with their conclusion that fluctuations play an

important role in rain formation. Thanks to lucky collisions in some realizations (or, alternatively, in some parts of the cloud),

mean concentration of rain drops after 30 minutes is about 200 m−3. On the other hand, using the Smoluchowski equation25

leads to higher rain drop concentration than can be produced by lucky collisions (cf. Fig. 9). Significant role of fluctuations can

also be seen in Fig. 8. Relative standard deviation of θ is high in small cells (N0 ≤ 104). This implies that small parts of the

cloud could produce significant amount of rain much faster than average.

7 Coalescence
✿✿✿

Size
✿✿

of
✿✿

a
✿✿✿✿✿✿✿✿✿✿

well-mixed
✿✿✿✿✿✿✿✿✿✿

coalescence
✿

cellsize

In the previous sections
✿✿✿✿✿✿✿

Sections
✿

we have seen that size of the coalescence cell has a profound impact on the system evolution30

. Possibly, many of these differences would disappear once turbulent droplet motion and sedimentation are modeled
✿✿✿✿✿✿✿✿

evolution

✿✿

of
✿✿✿

the
✿✿✿✿✿✿

system. In this Section we try to determine
✿✿✿✿✿✿✿

estimate the size of a cell that could be used in such modeling
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

assumed

✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿✿

well-mixed. All methods in which each droplet within a cell can collide with any other droplet within the same cell
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✿✿✿✿✿✿✿✿✿

probability
✿✿

of
✿✿✿✿✿✿✿✿

collision
✿✿

of
✿✿✿✿✿✿✿

droplets
✿✿✿✿✿✿✿

depends
✿✿✿✿

only
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

instantaneous
✿✿✿✿

state
✿✿

of
✿✿✿✿

the
✿✿✿

cell
✿✿✿✿

and
✿✿✿

not
✿✿

on
✿✿✿

its
✿✿✿✿✿✿

history
✿

rely on the as-

sumption that the cell is well-mixed. This includes the master equation, SSA, SDM as well as the Smoluchowski equation. The

assumption that a cell is well-mixed is valid if τmix ≪ τcoal, where τcoal and τmix are the characteristic times for coalescence

and cell homogenization, respectively (Lehmann et al., 2009; Gillespie et al., 2014). By well-mixed we mean that droplets

should be distributed homogeneously within the cell before every collision. Droplet coalescence generates inhomogeneities,5

i.e. correlations between droplet positions and sizes. Consider two droplets growing independently within a cell. After gaining

large sizes, they collide and generate even larger droplet. In reality they could not both obtain large sizes before the collision,

because they would deplete liquid water from each other’s surrounding.

Rigorously, characteristic time for coalescence is the mean time between coalescence events, as in diffusion-limited chem-

ical systems (Gillespie et al., 2014). To estimate its magnitude, consider a single large collector droplet falling through a field of10

smaller droplets. Using geometric coalescence kernel with efficiency E, the mean time between collisions is τcoal = (Eπ(rl + rs)
2vrns)

−1,

where rl and rs are radii of large and small droplets, vr is the relative velocity and ns is the concentration of small droplets.

For rl = 100 µm, rs = 10 µm, vr = 70 cm/s, E = 1 and ns = 100 cm−3 we get τcoal ≈ 0.4 s.

Droplets in the cell can be mixed through turbulence. Turbulence acts similarly to diffusion and its characteristic time for

mixing is τ tmix = (V (2/3)/ε)(1/3), where V is cell volume and ε is turbulent energy dissipation rate (Lehmann et al., 2009).15

Turbulent energy dissipation rate in clouds is in the range from 10 cm2/s3 for stratocumulus clouds to 103 cm2/s3 for cu-

mulonimbus clouds (Malinowski et al., 2013; Grabowski and Wang, 2013). Let us assume that τ tmix ≪ τcoal is satisfied if

τ tmix = 0.1τcoal. Even in the most turbulent clouds, this means that the coalescence cell has to be very small V ≈ 1.5·10−2cm3.

On average, this volume would contain around one droplet, depending on concentration of droplets. The Smoluchowski

equation cannot be used for such small populations. Using super-droplet microphysics
✿✿

For
✿✿✿✿✿

such
✿✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿✿✿✿✿

volumes,20

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿

is
✿✿✿

not
✿✿✿✿

valid
✿✿✿✿

and
✿✿✿✿

SDM
✿

would be very cumbersome, because extremely short time steps would be requiredto

decouple motion from collisions. To use larger cells, we need to choose some less strict value of characteristic time of coales-

cence. For instance, Shima et al. (2009) assume τcoal = 100 s without much explanation. Some larger cell size, that would be

approximately well-mixed, could be found phenomenologically through exact
✿✿✿✿✿✿✿

fine-grid
✿

simulations including droplet motion.

One example of such reference simulations are DNS runs from Onishi et al. (2015)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Onishi et al. (2015) discussed in Sec. 5.25

They prove that in the case with r = 15 µm,
✿✿

the
✿

Smoluchowski equation gives correct results. This suggests that cells with

N0 ≥ 104 can be used in this case.

Another process that can mix droplets is sedimentation. It is difficult to assess its timescale, because it strongly depends

on droplet sizes. Droplets of similar sizes are not mixed by sedimentation, but it is efficient at mixing rain drops with cloud

droplets. We can expect that it would prevent depletion of cloud droplets in the surrounding of a rain droplet that was observed30

for smallest cells in Secs. 3 and 6. Sedimentation acts only in one direction, so it could only allow us to use cells larger only in

the vertical direction.
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8 Conclusions

The super-droplet method can exactly represent stochastic coalescence
✿

in
✿✿

a
✿✿✿✿✿✿✿✿✿✿

well-mixed
✿✿✿✿✿✿

volume. It was compared with the

master equation approach (see Sec. 3) and with direct numerical simulations (see Sec. 4). Precision of the SDM is controlled

by the number of super-droplets used. Fluctuations in the autoconversion time are represented well if NSD ≥N0/9. Using

smaller NSD increases standard deviation of autoconversion time by a factor 1
3

√

N0/NSD (cf. Sec. 4). It is computationally5

less expensive to correctly reproduce mean autoconversion time. Using NSD = 103 gives mean results within a 1% margin,

while using NSD = 102 - within 10%.

The SDM was used to study stochastic coalescence for two initial droplet size distributions - with small (r = 9.3 µm) and

with large (r = 15 µm) droplets. They result in slow and fast rain formation, respectively. Dependence of the system behavior

on coalescence cell size
✿✿✿

size
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

well-mixed
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿

cell
✿

was observed, especially in the small droplets case. Cell size10

not only affects fluctuations in
✿✿

the
✿

observables, but also their expected value
✿✿✿✿✿

values. If the coalescence cell is small(N0 < 103),

sizes of droplets are strongly correlated and depletion of cloud water plays an important role. In reality
✿✿✿

real
✿✿✿✿✿✿

clouds, these two

effects are probably not manifested, because collector drop sedimentation acts against them. If the coalescence cell is relatively

large (N0 > 104)
✿

In
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿✿

large
✿✿✿✿

cells, rain drops that in reality would form far from each other and would need time to get

close, can collide immediately. This is because the coalescence cell is assumed to be well-mixed, which is usually not true.15

We estimate a
✿✿✿✿✿✿

collide
✿✿✿✿

with
✿✿✿✿

each
✿✿✿✿✿

other
✿✿✿✿✿

more
✿✿✿✿✿

often
✿✿✿✿

than
✿✿

in
✿✿✿✿✿

small
✿✿✿✿✿

cells.
✿✿✿✿

This
✿✿✿✿✿

leads
✿✿

to
✿

a
✿✿✿✿✿✿✿✿✿

reduction
✿✿

in
✿✿✿

the
✿✿✿✿

rate
✿✿

of
✿✿✿✿✿✿✿✿✿

conversion
✿✿✿

of

✿✿✿✿

cloud
✿✿✿✿✿

water
✿✿✿

to
✿✿✿

rain
✿✿✿✿✿✿

water,
✿✿✿✿✿✿✿

because
✿✿✿✿✿✿✿✿✿

scavenging
✿✿✿

of
✿✿✿✿✿

cloud
✿✿✿✿✿✿✿

droplets
✿✿✿✿✿✿✿

becomes
✿✿✿✿

less
✿✿✿✿✿✿✿✿

efficient.
✿✿

In
✿✿✿✿✿✿✿✿✿✿✿

consequence,
✿✿✿✿✿✿✿

highest
✿✿✿

rain
✿✿✿✿✿✿✿

content

✿

is
✿✿✿✿✿✿✿✿

produced
✿✿✿

in
✿✿✿✿

cells
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

intermediate
✿✿✿✿✿

sizes.
✿✿✿✿✿✿✿✿

Possibly,
✿✿✿✿

these
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿

rain-rain
✿✿✿✿✿✿✿✿

collisions
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿

justified
✿✿✿

by
✿✿✿✿✿✿✿

turbulent
✿✿✿✿✿✿✿

droplet

✿✿✿✿✿✿

motion
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

sedimentation,
✿✿✿

but
✿✿✿✿

they
✿✿✿✿

also
✿✿✿✿✿

might
✿✿✿

be
✿✿

an
✿✿✿✿✿✿✿

artefact
✿✿✿✿✿✿

caused
✿✿

by
✿✿✿✿✿

using
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

unrealisticaly
✿✿✿✿

large
✿

well-mixed (with respect

to coalescence) volume in the most turbulent clouds to be only 1.5 · 10−2 cm3.20

Unrealistic collisions between rain drops, caused by the assumption that coalescence cell is
✿✿✿✿✿✿

volume.
✿✿✿✿✿✿✿✿

Fine-grid
✿✿✿✿✿✿✿✿✿

computer

✿✿✿✿✿✿✿✿

modeling
✿✿✿✿

with
✿✿✿✿✿✿✿

explicit
✿✿✿✿✿✿

droplet
✿✿✿✿✿✿✿

motion
✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿

used
✿✿✿

to
✿✿✿✿✿✿

resolve
✿✿✿✿

this
✿✿✿✿✿

issue.
✿✿✿

If
✿✿✿

the
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿

collisions
✿✿✿✿✿

were
✿✿✿✿✿✿

found
✿✿

to
✿✿✿

be

✿✿✿✿✿✿✿✿✿

unrealistic,
✿

it
✿✿✿✿✿✿

would
✿✿✿✿✿

mean
✿✿✿

that
✿✿✿✿✿

cloud
✿✿✿✿✿✿

models
✿✿✿

that
✿✿✿✿

use
✿✿✿✿

large well-mixed ,
✿✿✿✿

cells,
✿✿✿

e.g.
✿✿✿

by
✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿

equaton,
✿✿✿✿✿✿✿

produce

✿✿✿

too
✿✿✿✿

little
✿✿✿✿

rain.

✿✿✿

The
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿

rain-rain
✿✿✿✿✿✿✿✿

collisions
✿

do not affect results if droplets are initially large. Then, collisions of cloud and rain25

drops and between cloud droplets are frequent, so relatively rare
✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿

the
✿✿✿✿

rate
✿✿

of
✿

collisions between rain drops are
✿✿

is

not important. The mean behavior of the system converges to the Smoluchowski equation results with increasing system size.

Good agreement with it is found for systems with N0 ≥ 104. The picture is different if droplets are initially small. Conversion

of cloud droplets into rain drops is slow, so
✿✿

the
✿

decrease in rain drop concentration due to these unrealistic
✿✿

the
✿✿✿✿✿✿✿✿✿

additional

collisions is relatively more important. Coalescence of rain drops decreases the rate of collection of cloud droplets, because30

a single larger drop has smaller collisional cross section than two smaller drops with the same total volume. In consequence,

mean behavior of the system no longer converges with increasing cell size. Up to 〈θ〉= 0.2, results for N0 = 105 are the same

as for N0 = 106. Then, rate of rain growth decreases sooner in the larger coalescence cell.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿

Smoluchowski
✿✿✿✿✿✿✿

equation
✿✿

is
✿✿✿✿✿

found

✿✿

to
✿✿

be
✿✿✿✿

valid
✿✿✿

for
✿✿✿✿✿✿✿✿

N0 ≥ 107
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

slow-coalescence
✿✿✿✿✿

case.
✿✿✿✿

One
✿✿✿✿✿

could
✿✿✿✿✿

expect
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿

condensational
✿✿✿✿✿✿

growth
✿✿✿✿✿

leads
✿✿

to
✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿

conditions

18



✿✿✿✿

with
✿✿✿✿

high
✿✿✿✿

radii
✿✿

of
✿✿✿✿✿✿✿

droplets,
✿✿✿

for
✿✿✿✿✿✿

which
✿✿

the
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿

collisions
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿✿

important.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Li et al. (2017) have
✿✿✿✿✿

shown
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿

condensation

✿✿✿

can
✿✿✿✿✿✿✿

regulate
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

Eulerian
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿✿✿✿✿

schemes.
✿✿✿✿✿✿✿✿✿✿✿✿

Discrepancies
✿✿✿✿✿✿✿

between
✿✿✿✿✿

these
✿✿✿✿✿✿✿

schemes
✿✿✿✿

that

✿✿✿

they
✿✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

condensation
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿✿

were
✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿

in
✿✿✿✿

pure
✿✿✿✿✿✿✿✿✿✿

coalescence
✿✿✿✿✿✿✿✿✿✿✿

simulations.

Another aspect of the slow-coalescence scenario is that in it, some lucky droplets can grow much faster than average droplets.

We found that a single luckiest droplet out of a thousand grows 3.7 times faster than average and the luckiest out of a hundred5

thousand - 6 times faster. These values are smaller than predicted by Kostinski and Shaw (2005), but large enough to be

important for quick formation of rain
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kostinski and Shaw (2005).

The size of
✿✿✿

We
✿✿✿✿✿✿✿✿

estimate a well-mixed volume, i.e. a volume within which droplets are randomly rearranged through

turbulence between coalescence events,
✿✿✿✿

(with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

coalescence)
✿✿✿✿✿✿

volume
✿✿

in
✿✿✿

the
✿✿✿✿✿

most
✿✿✿✿✿✿✿

turbulent
✿✿✿✿✿✿

clouds
✿✿

to
✿✿

be
✿✿✿✿

only
✿✿✿✿✿✿✿✿✿

1.5 · 10−2

✿✿✿✿

cm3.
✿✿

It
✿

is of the order of the volume occupied by a single droplet. Larger cells can be assumed to be only approximately10

well-mixed. For example, in the fast-coalescence case, DNS modeling gives the same results as the Smoluchowski equation

(Onishi et al., 2015). Box model simulations using well-mixed volume with N0 = 105
✿✿✿✿✿✿✿✿

N0 = 104 droplets also gives the same

results. Therefore it can be assumed that such volume is approximately well-mixed in the case of fast coalescence. On the other

hand, in
✿✿

In the slow-coalescence case, box model simulations do no converge to the Smoluchowski result. This implies that

models that use
✿✿✿✿✿✿✿✿✿

well-mixed
✿✿✿✿✿✿✿

volume
✿✿✿✿✿

needs
✿✿

to
✿✿

be
✿✿✿✿✿

larger
✿✿✿✿

than
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

fast-coalescence
✿✿✿✿

case
✿✿✿

for the Smoluchowski equation might15

produce rain too soon. The real behavior of the system could be determined through DNS modeling or SDM simulations with

droplet motion.

✿✿

to
✿✿

be
✿✿✿✿✿

valid.
✿✿✿✿

Size
✿✿

of
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿✿✿✿✿✿✿✿✿

well-mixed
✿✿✿

cell
✿✿✿

for
✿✿✿

this
✿✿✿✿

case
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿✿

determined
✿✿✿✿✿

using
✿✿✿✿

DNS
✿✿✿✿

with
✿✿✿✿✿✿✿

initially
✿✿✿✿

small
✿✿✿✿✿✿✿✿

droplets.

Cells used in LES are typically ten orders of magnitude larger than a well-mixed volume. They do not necessarily have to be

well-mixed. It is sufficient if they are homogeneous, i.e. they are an ensemble of identical, approximately well-mixed sub-20

cells. Some statistical moments for such ensembles were presented in this work. In general, it is not clear what could be the

size of these sub-cells and if the Smoluchowski equation is valid for them. We have shown that for initially small droplets,

the Smoluchowski equation gives wrong results, but is correct for initially large droplets. One could hope that condensational

growth leads to initial conditions close to the ones for which the Smoluchowski equation is valid, but justifying it would require

further research.25

9 Code availability

Simulation code is available at https://github.com/pdziekan/coal_fluctu. The libcloudph++ library is available at https://github.com/igfuw/libcloudphxx
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